1
|
Aquino G, Sommella EM, Salviati E, Manfra M, Auriemma G, Campiglia P, Pepe G, Basilicata MG. Advancing profiling of secondary antioxidant metabolites in Allium cepa PDO leaf extract: Online comprehensive two-dimensional liquid chromatography with high-resolution mass spectrometry and pre-column DPPH assay. J Chromatogr A 2025; 1749:465877. [PMID: 40121955 DOI: 10.1016/j.chroma.2025.465877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The food and agricultural processing industries generate significant amounts of phenolic-rich by-products, which hold potential as natural antioxidant sources for a wide range of applications, including functional ingredients and nutraceutical formulations. Allium cepa leaves represent a promising source of bioactive compounds. However, due to the complexity of their chemical composition, advanced analytical techniques are required to fully characterize the secondary metabolite profile and identify specific phytochemical classes or fractions with high nutraceutical potential. In this context, an online comprehensive two-dimensional liquid chromatography (LC×LC) approach was developed and optimized for the in-depth characterization of the phytochemical profile of Allium cepa PDO leaf extract. Key parameters in both dimensions, including flow rate, stationary phase chemistry, and mobile phase composition, were investigated to enhance peak capacity and orthogonality. The optimized method combined reversed phase in both dimension (RP-LC×RP-LC), offering high orthogonality (A0: 70.46 %) and peak capacity (nc: 1788.88). and significantly improving the separation of multiple secondary metabolite classes by effective employment of the 2D separation space. Further hyphenation with high-resolution mass spectrometry (HRMS), enhanced compound annotation compared to mono-dimensional (1D-LC) techniques. A total of 147 compounds were tentatively annotated belonging to multiple classes such as flavonoids, saponins, phenylpropanoids, isoprenoids, terpenes, dipeptides, fatty acids, and lipids. Additionally, the antioxidant activity of Allium cepa leaf extract was assessed by coupling a pre-column 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay with the LC×LC-DAD-HRMS platform. This integrated approach enabled the identification of individual contributions of flavonoids, isoprenoids, and phenylpropanoids to radical scavenging activity. The method allowed an in-depth exploration of Allium cepa phytochemical profile, demonstrating to hold significant potential for the standardization of antioxidant biomarkers, with promising applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Giovanna Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, 84084 Salerno, Italy.
| | - Eduardo Maria Sommella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy.
| | - Michele Manfra
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy.
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, 84084 Salerno, Italy.
| | | |
Collapse
|
2
|
Agati G, Brunetti C, dos Santos Nascimento LB, Gori A, Lo Piccolo E, Tattini M. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. THE NEW PHYTOLOGIST 2025; 245:11-26. [PMID: 39434218 PMCID: PMC11617662 DOI: 10.1111/nph.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’ (IFAC)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | | | - Antonella Gori
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Ermes Lo Piccolo
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| |
Collapse
|
3
|
Claude A, Nadam P, Brajon L, Leitao L, Planchais S, Lameth V, Castell JF, Dellero Y, Savouré A, Repellin A, Leymarie J, Puga-Freitas R. The isohydric strategy of Platanus × hispanica tree shapes its response to drought in an urban environment. PHYSIOLOGIA PLANTARUM 2024; 176:e70021. [PMID: 39703071 DOI: 10.1111/ppl.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Urban vegetation provides many ecosystem services like heat island mitigation. However, urban trees are subjected to the stresses that they are meant to alleviate, with drought being a main constraint. We investigated the drought response strategy of plane trees (Platanus × hispanica), focusing on stomatal regulation and metabolic remodelling. To address this question, a semi-controlled experiment was performed in an urban site with fourteen plane trees grown in containers. From May to June 2022, those trees were physiologically characterized in response to a controlled edaphic drought completed by a targeted metabolome analysis focused on amino acids, sugars, polyols and organic acids. Early P. × hispanica response to drought consisted in stomatal closure limiting carbon assimilation and osmotic adjustment, which was likely related to malate and trehalose accumulation. Both allowed the maintenance of stem water potential and Relative Water Content. As the drought became severe, when the extractable soil water content (eSWC) dropped below 30%, a non-stomatal limitation of photosynthesis was observed and was associated with photosynthetic apparatus damage (reduced chlorophyll content and decrease in Fv/Fm) and a further decline in carbon assimilation. When eSWC decreased below 25%, severe drought induced defoliation. Together, these results highlight the isohydric strategy of P. × hispanica, based notably on osmotic adjustment and explain its resistance to drought combined with other urban constraints. In the context of climatic change in cities, it would be interesting to analyse the impact of successive drought cycles in the long term, aiming for sustainable planning and management of urban trees.
Collapse
Affiliation(s)
- Alice Claude
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Univ Paris Est Creteil, CNRS, Sorbonne Université, INRAE, IRD, IEES-Paris, Créteil, France
| | - Paul Nadam
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Univ Paris Est Creteil, CNRS, Sorbonne Université, INRAE, IRD, IEES-Paris, Créteil, France
| | - Ludvine Brajon
- Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Sorbonne Université, Univ Paris Est Creteil, INRAE, CNRS, IRD, Paris, France
| | - Luis Leitao
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Univ Paris Est Creteil, CNRS, Sorbonne Université, INRAE, IRD, IEES-Paris, Créteil, France
| | - Séverine Planchais
- Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Sorbonne Université, Univ Paris Est Creteil, INRAE, CNRS, IRD, Paris, France
| | - Valentin Lameth
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Univ Paris Est Creteil, CNRS, Sorbonne Université, INRAE, IRD, IEES-Paris, Créteil, France
| | | | - Younès Dellero
- INRAE, Université Rennes, Institut Agro, Le Rheu, France
- P2M2, MetaboHUB-Grand-Ouest, France
| | - Arnould Savouré
- Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Sorbonne Université, Univ Paris Est Creteil, INRAE, CNRS, IRD, Paris, France
| | - Anne Repellin
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Univ Paris Est Creteil, CNRS, Sorbonne Université, INRAE, IRD, IEES-Paris, Créteil, France
| | - Juliette Leymarie
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Univ Paris Est Creteil, CNRS, Sorbonne Université, INRAE, IRD, IEES-Paris, Créteil, France
| | - Ruben Puga-Freitas
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Univ Paris Est Creteil, CNRS, Sorbonne Université, INRAE, IRD, IEES-Paris, Créteil, France
| |
Collapse
|
4
|
Zhigzhitzhapova SV, Dylenova EP, Goncharova DB, Zhigzhitzhapov BV, Emelyanova EA, Polonova AV, Tykheev ZA, Bazarsadueva SV, Taraskina AS, Pintaeva ET, Taraskin VV. Functional Activity of the Antioxidant System of Artemisia Genus Plants in the Republic of Buryatia (Russia) and Its Significance in Plant Adaptation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2630. [PMID: 39339609 PMCID: PMC11435044 DOI: 10.3390/plants13182630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Plants are sessile organisms and any changes in environmental factors activate various responses and defense mechanisms. Artemisia plants widely inhabit harsh conditions of arid and semiarid ecosystems. Using two species-a subshrub, Artemisia frigida, and an annual-biennial herb, Artemisia scoparia-the functioning of the antioxidant system of plants in semiarid territories have been examined. The activity of enzymatic antioxidants and the content of non-enzymatic antioxidants in both species as well as the antiradical activity of their extracts have been shown. Although the plants were collected in areas differing in moisture supply, the activity of enzymatic antioxidants and the content of non-enzymatic antioxidants corresponds to their physiological level, within the range of the norm of reaction, in wormwood. Consequently, conditions of differing moisture deficiency do not cause a specific biochemical response at the level of the antioxidant system in the studied species, which confirms their adaptability to these conditions. Meanwhile, A. frigida plants show greater morphological and biochemical plasticity than A. scoparia under changing growth conditions. Both species contain tissue monoterpenoids and sesquiterpenoids, the emission of which provides additional protection against high temperatures and drought. Their composition and contents of phenolic components illustrates the differences in adaptation between perennial and annual plants.
Collapse
Affiliation(s)
- Svetlana V Zhigzhitzhapova
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
| | - Elena P Dylenova
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
- Filippov Buryat State Agricultural Academy, Ulan-Ude 670024, Russia
| | - Danaya B Goncharova
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
| | - Bato V Zhigzhitzhapov
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
| | - Elena A Emelyanova
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
| | - Anastasiya V Polonova
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
| | - Zhargal A Tykheev
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
- Filippov Buryat State Agricultural Academy, Ulan-Ude 670024, Russia
| | - Selmeg V Bazarsadueva
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
| | - Anna S Taraskina
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
| | - Evgeniya T Pintaeva
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
| | - Vasiliy V Taraskin
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude 670047, Russia
- Filippov Buryat State Agricultural Academy, Ulan-Ude 670024, Russia
| |
Collapse
|
5
|
Zhu Y, Sun Z, Wu H, Cui C, Meng S, Xu C. Transcriptomic Analysis of the Molecular Mechanism Potential of Grafting-Enhancing the Ability of Oriental Melon to Tolerate Low-Nitrogen Stress. Int J Mol Sci 2024; 25:8227. [PMID: 39125797 PMCID: PMC11311868 DOI: 10.3390/ijms25158227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Nitrogen is the primary nutrient for plants. Low nitrogen generally affects plant growth and fruit quality. Melon, as an economic crop, is highly dependent on nitrogen. However, the response mechanism of its self-rooted and grafted seedlings to low-nitrogen stress has not been reported previously. Therefore, in this study, we analyzed the transcriptional differences between self-rooted and grafted seedlings under low-nitrogen stress using fluorescence characterization and RNA-Seq analysis. It was shown that low-nitrogen stress significantly inhibited the fluorescence characteristics of melon self-rooted seedlings. Analysis of differentially expressed genes showed that the synthesis of genes related to hormone signaling, such as auxin and brassinolide, was delayed under low-nitrogen stress. Oxidative stress response, involved in carbon and nitrogen metabolism, and secondary metabolite-related differentially expressed genes (DEGs) were significantly down-regulated. It can be seen that low-nitrogen stress causes changes in many hormonal signals in plants, and grafting can alleviate the damage caused by low-nitrogen stress on plants, ameliorate the adverse effects of nitrogen stress on plants, and help them better cope with environmental stresses.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Ziqing Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongxi Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Caifeng Cui
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Horticultural Equipment (Ministry of Agriculture and Rural Affairs), Shenyang Agricultural University, Shenyang 110866, China
| | - Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (Z.S.); (H.W.); (C.C.)
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Horticultural Equipment (Ministry of Agriculture and Rural Affairs), Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Reinecke A, Flaig IC, Lozano YM, Rillig MC, Hilker M. Drought induces moderate, diverse changes in the odour of grassland species. PHYTOCHEMISTRY 2024; 221:114040. [PMID: 38428627 DOI: 10.1016/j.phytochem.2024.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Plants react to drought stress with numerous changes including altered emissions of volatile organic compounds (VOC) from leaves, which provide protection against oxidative tissue damage and mediate numerous biotic interactions. Despite the share of grasslands in the terrestrial biosphere, their importance as carbon sinks and their contribution to global biodiversity, little is known about the influence of drought on VOC profiles of grassland species. Using coupled gas chromatography-mass spectrometry, we analysed the odorants emitted by 22 European grassland species exposed to an eight-week-lasting drought treatment (DT; 30% water holding capacity, WHC). We focused on the odorants emitted during the light phase from whole plant shoots in their vegetative stage. Emission rates were standardised to the dry weight of each shoot. Well-watered (WW) plants (70% WHC) served as control. Drought-induced significant changes included an increase in total emission rates of plant VOC in six and a decrease in three species. Diverging effects on the number of emitted VOC (chemical richness) or on the Shannon diversity of the VOC profiles were detected in 13 species. Biosynthetic pathways-targeted analyses revealed 13 species showing drought-induced higher emission rates of VOC from one, two, three, or four major biosynthetic pathways (lipoxygenase, shikimate, mevalonate and methylerythritol phosphate pathway), while six species exhibited reduced emission rates from one or two of these pathways. Similarity trees of odorant profiles and their drought-induced changes based on a biosynthetically informed distance metric did not match species phylogeny. However, a phylogenetic signal was detected for the amount of terpenoids released by the studied species under WW and DT conditions. A comparative analysis of emission rates of single compounds released by WW and DT plants revealed significant VOC profile dissimilarities in four species only. The moderate drought-induced changes in the odorant emissions of grassland species are discussed with respect to their impact on trophic interactions across the food web. (294 words).
Collapse
Affiliation(s)
- Andreas Reinecke
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.
| | - Isabelle C Flaig
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Yudi M Lozano
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Inst. of Biology, Plant Ecology, Altensteinstr. 6, 14195, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Inst. of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany
| |
Collapse
|
7
|
Esteban R, Pollastri S, Brilli F, García-Plazaola JI, Odriozola I, Michelozzi M, Loreto F. Dehydration and rehydration differently affect photosynthesis and volatile monoterpenes in bryophytes with contrasting ecological traits. PHYSIOLOGIA PLANTARUM 2024; 176:e14395. [PMID: 38922932 DOI: 10.1111/ppl.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/10/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Bryophytes desiccate rapidly when relative humidity decreases. The capacity to withstand dehydration depends on several ecological and physiological factors. Volatile organic compounds (VOCs) may have a role in enhancing tolerance to desiccating bryophytes. However, the functions of VOCs in bryophytes have received little attention so far. We aimed to investigate the impact of a dehydration-rehydration treatment on primary carbon metabolism and volatile terpenes (VTs) in three bryophytes with contrasting ecological traits: Vessicularia dubyana, Porella platyphylla and Pleurochaete squarrosa. First, we confirmed the desiccation sensitivity gradient of the species. Under fully hydrated conditions, the photosynthetic rate (A) was inversely associated with stress tolerance, with a lower rate in more tolerant species. The partial recovery of A in P. platyphylla and P. squarrosa after rehydration confirmed the desiccation tolerance of these two species. On the other hand, A did not recover after rehydration in V. dubyana. Regarding VT, each species exhibited a distinct VT profile under optimum hydration, with the highest VT pool found in the more desiccation-sensitive species (V. dubyana). However, the observed species-specific VT pattern could be associated with the ecological habitat of each species. P. squarrosa, a moss of dry habitats, may synthesize mainly non-volatile secondary metabolites as stress-defensive compounds. On the other hand, V. dubyana, commonly found submerged, may need to invest photosynthetically assimilated carbon to synthesize a higher amount of VTs to cope with transient water stress occurrence. Further research on the functions of VTs in bryophytes is needed to deepen our understanding of their ecological significance.
Collapse
Affiliation(s)
- Raquel Esteban
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/ EHU), Bilbao, Spain
| | - Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
| | | | - Iñaki Odriozola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/ EHU), Bilbao, Spain
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
| | - Francesco Loreto
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
- Department of Biology, University of Naples Federico II, Italy
| |
Collapse
|
8
|
Afzal M, Muhammad S, Tan D, Kaleem S, Khattak AA, Wang X, Chen X, Ma L, Mo J, Muhammad N, Jan M, Tan Z. The Effects of Heavy Metal Pollution on Soil Nitrogen Transformation and Rice Volatile Organic Compounds under Different Water Management Practices. PLANTS (BASEL, SWITZERLAND) 2024; 13:871. [PMID: 38592896 PMCID: PMC10976017 DOI: 10.3390/plants13060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
One of the most concerning global environmental issues is the pollution of agricultural soils by heavy metals (HMs), especially cadmium, which not only affects human health through Cd-containing foods but also impacts the quality of rice. The soil's nitrification and denitrification processes, coupled with the release of volatile organic compounds by plants, raise substantial concerns. In this review, we summarize the recent literature related to the deleterious effects of Cd on both soil processes related to the N cycle and rice quality, particularly aroma, in different water management practices. Under both continuous flooding (CF) and alternate wetting and drying (AWD) conditions, cadmium has been observed to reduce both the nitrification and denitrification processes. The adverse effects are more pronounced in alternate wetting and drying (AWD) as compared to continuous flooding (CF). Similarly, the alteration in rice aroma is more significant in AWD than in CF. The precise modulation of volatile organic compounds (VOCs) by Cd remains unclear based on the available literature. Nevertheless, HM accumulation is higher in AWD conditions compared to CF, leading to a detrimental impact on volatile organic compounds (VOCs). The literature concludes that AWD practices should be avoided in Cd-contaminated fields to decrease accumulation and maintain the quality of the rice. In the future, rhizospheric engineering and plant biotechnology can be used to decrease the transport of HMs from the soil to the plant's edible parts.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Dedong Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China;
| | - Sidra Kaleem
- Riphah Institute of Pharmaceutical Sciences, Islamabad 44600, Pakistan;
| | - Arif Ali Khattak
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Liangfang Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Jingzhi Mo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| |
Collapse
|
9
|
Liu T, Xu H, Amanullah S, Du Z, Hu X, Che Y, Zhang L, Jiang Z, Zhu L, Wang D. Deciphering the Enhancing Impact of Exogenous Brassinolide on Physiological Indices of Melon Plants under Downy Mildew-Induced Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:779. [PMID: 38592782 PMCID: PMC10974236 DOI: 10.3390/plants13060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Melon (Cucumis melo L.) is a valuable horticultural crop of the Cucurbitaceae family. Downy mildew (DM), caused by Pseudoperonospora cubensis, is a significant inhibitor of the production and quality of melon. Brassinolide (BR) is a new type of phytohormone widely used in cultivation for its broad spectrum of resistance- and defense-mechanism-improving activity. In this study, we applied various exogenous treatments (0.5, 1.0, and 2.0 mg·L-1) of BR at four distinct time periods (6 h, 12 h, 24 h, and 48 h) and explored the impact of BR on physiological indices and the genetic regulation of melon seedling leaves infected by downy-mildew-induced stress. It was mainly observed that a 2.0 mg·L-1 BR concentration effectively promoted the enhanced photosynthetic activity of seedling leaves, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis similarly exhibited an upregulated expression of the predicted regulatory genes of photosystem II (PSII) CmHCF136 (MELO3C023596.2) and CmPsbY (MELO3C010708.2), thus indicating the stability of the PSII reaction center. Furthermore, 2.0 mg·L-1 BR resulted in more photosynthetic pigments (nearly three times more than the chlorophyll contents (264.52%)) as compared to the control and other treatment groups and similarly upregulated the expression trend of the predicted key enzyme genes CmLHCP (MELO3C004214.2) and CmCHLP (MELO3C017176.2) involved in chlorophyll biosynthesis. Meanwhile, the maximum contents of soluble sugars and starch (186.95% and 164.28%) were also maintained, which were similarly triggered by the upregulated expression of the predicted genes CmGlgC (MELO3C006552.2), CmSPS (MELO3C020357.2), and CmPEPC (MELO3C018724.2), thereby maintaining osmotic adjustment and efficiency in eliminating reactive oxygen species. Overall, the exogenous 2.0 mg·L-1 BR exhibited maintained antioxidant activities, plastid membranal stability, and malondialdehyde (MDA) content. The chlorophyll fluorescence parameter values of F0 (42.23%) and Fv/Fm (36.67%) were also noticed to be higher; however, nearly three times higher levels of NPQ (375.86%) and Y (NPQ) (287.10%) were observed at 48 h of treatment as compared to all other group treatments. Increased Rubisco activity was also observed (62.89%), which suggested a significant role for elevated carbon fixation and assimilation and the upregulated expression of regulatory genes linked with Rubisco activity and the PSII reaction process. In short, we deduced that the 2.0 mg·L-1 BR application has an enhancing effect on the genetic modulation of physiological indices of melon plants against downy mildew disease stress.
Collapse
Affiliation(s)
- Tai Liu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Huichun Xu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Zhiqiang Du
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Xixi Hu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Ye Che
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Ling Zhang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Zeyu Jiang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Lei Zhu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Di Wang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| |
Collapse
|
10
|
Bertić M, Zimmer I, Andrés-Montaner D, Rosenkranz M, Kangasjärvi J, Schnitzler JP, Ghirardo A. Automatization of metabolite extraction for high-throughput metabolomics: case study on transgenic isoprene-emitting birch. TREE PHYSIOLOGY 2023; 43:1855-1869. [PMID: 37418159 DOI: 10.1093/treephys/tpad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Metabolomics studies are becoming increasingly common for understanding how plant metabolism responds to changes in environmental conditions, genetic manipulations and treatments. Despite the recent advances in metabolomics workflow, the sample preparation process still limits the high-throughput analysis in large-scale studies. Here, we present a highly flexible robotic system that integrates liquid handling, sonication, centrifugation, solvent evaporation and sample transfer processed in 96-well plates to automatize the metabolite extraction from leaf samples. We transferred an established manual extraction protocol performed to a robotic system, and with this, we show the optimization steps required to improve reproducibility and obtain comparable results in terms of extraction efficiency and accuracy. We then tested the robotic system to analyze the metabolomes of wild-type and four transgenic silver birch (Betula pendula Roth) lines under unstressed conditions. Birch trees were engineered to overexpress the poplar (Populus × canescens) isoprene synthase and to emit various amounts of isoprene. By fitting the different isoprene emission capacities of the transgenic trees with their leaf metabolomes, we observed an isoprene-dependent upregulation of some flavonoids and other secondary metabolites as well as carbohydrates, amino acid and lipid metabolites. By contrast, the disaccharide sucrose was found to be strongly negatively correlated to isoprene emission. The presented study illustrates the power of integrating robotics to increase the sample throughput, reduce human errors and labor time, and to ensure a fully controlled, monitored and standardized sample preparation procedure. Due to its modular and flexible structure, the robotic system can be easily adapted to other extraction protocols for the analysis of various tissues or plant species to achieve high-throughput metabolomics in plant research.
Collapse
Affiliation(s)
- Marko Bertić
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Ina Zimmer
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - David Andrés-Montaner
- Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, Garmisch-Partenkirchen 82467, Germany
- Corteva Agriscience Spain S.L.U, Carreño, Spain
| | - Maaria Rosenkranz
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg 93053, Germany
| | - Jaakko Kangasjärvi
- Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, P.O Box 65, FI-00014, Finland
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Environmental Health Center (EHC), Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
11
|
Zhang B, Sun M, Liu W, Lian M, Yang S, Peng F, Xiao Y. Waterlogging resistance and evaluation of physiological mechanism of three peach (Prunus persica) rootstocks. PROTOPLASMA 2023; 260:1375-1388. [PMID: 37010630 DOI: 10.1007/s00709-023-01850-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Waterlogging occurs due to poor soil drainage or excessive rainfall. It is a serious abiotic stress factor that negatively affects crop growth. Waterlogging often causes plants to shed leaves, fruits, and, ultimately, to die. Peach (Prunus persica) trees are generally intolerant to waterlogging, and the primary peach rootstock used in Chinais "Maotao," which has very poor resistance to sensitivity. Therefore, waterlogging has become a restriction on the development of the peach industry in many regions. In this experiment, we tested the waterlogging resistance of "Maotao (Prunus persica (L.) Batsch)" (MT), "Shannong1 (GF677 × Cadaman)" (SN1), and "Mirabolano 29C (Prunus cerasifera)" (M29C) rootstocks. Using a simulated waterlogging method, the effects of waterlogging on the photosynthetic system, leaf pigments, osmotic adjustment, lipid membrane peroxidation, and antioxidant system of these three peach rootstocks were studied, and the changes of chlorophyll fluorescence parameters and fluorescence imaging were observed. The results showed that, with prolonged waterlogging, the photosynthetic pigment content and photosynthesis of the three peach rootstocks decreased rapidly, but the decomposition rate of SN1 and M29C chlorophyll was slower, and it still had high light energy absorption and energy transfer capabilities under waterlogging stress, which reduced the damage caused by waterlogging stress; under the stress of flooding, the osmoregulatory substances of the three rootstocks increased to varying degrees compared with normal conditions. At the same time, the enzyme activity of superoxide dismutase (SOD) activity, peroxidase (POD) activity, and catalase (CAT) activity in the leaves of the three rootstocks under flooding stress all increased and then decreased; during this period, malondialdehyde (MDA) continued to increase, and SN1 and M29C were significantly lower than MT; and chlorophyll fluorescence parameters, including the maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), and electron transfer rate (ETR) decreased significantly. The tolerance of SN1 and M29C to waterlogging was significantly better than that of MT rootstocks. The rootstock and grafted seedlings of SN1 have good waterlogging tolerance.
Collapse
Affiliation(s)
- Binbin Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Maoxiang Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Wenxin Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Min Lian
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Sankui Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
12
|
Tóth EG, Cseke K, Benke A, Lados BB, Tomov VT, Zhelev P, Kámpel JD, Borovics A, Köbölkuti ZA. Key triggers of adaptive genetic variability of sessile oak [Q. petraea (Matt.) Liebl.] from the Balkan refugia: outlier detection and association of SNP loci from ddRAD-seq data. Heredity (Edinb) 2023:10.1038/s41437-023-00629-2. [PMID: 37316726 PMCID: PMC10382515 DOI: 10.1038/s41437-023-00629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Knowledge on the genetic composition of Quercus petraea in south-eastern Europe is limited despite the species' significant role in the re-colonisation of Europe during the Holocene, and the diverse climate and physical geography of the region. Therefore, it is imperative to conduct research on adaptation in sessile oak to better understand its ecological significance in the region. While large sets of SNPs have been developed for the species, there is a continued need for smaller sets of SNPs that are highly informative about the possible adaptation to this varied landscape. By using double digest restriction site associated DNA sequencing data from our previous study, we mapped RAD-seq loci to the Quercus robur reference genome and identified a set of SNPs putatively related to drought stress-response. A total of 179 individuals from eighteen natural populations at sites covering heterogeneous climatic conditions in the southeastern natural distribution range of Q. petraea were genotyped. The detected highly polymorphic variant sites revealed three genetic clusters with a generally low level of genetic differentiation and balanced diversity among them but showed a north-southeast gradient. Selection tests showed nine outlier SNPs positioned in different functional regions. Genotype-environment association analysis of these markers yielded a total of 53 significant associations, explaining 2.4-16.6% of the total genetic variation. Our work exemplifies that adaptation to drought may be under natural selection in the examined Q. petraea populations.
Collapse
Affiliation(s)
- Endre Gy Tóth
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary.
| | - Klára Cseke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Attila Benke
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Botond B Lados
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Vladimir T Tomov
- Department of Landscape Architecture, Faculty of Ecology and Landscape Architecture, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - Petar Zhelev
- Department of Dendrology, Faculty of Forestry, University of Forestry (UF), Kliment Ohridsky 10, Sofia, 1797, Bulgaria
| | - József D Kámpel
- Ottó Herman Environmental and Agricultural Technical School, Vocational School and College (Agricultural Vocational Centre of the Kisalföld Region), Ernuszt Kelemen 1, Szombathely, 9700, Hungary
| | - Attila Borovics
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
| | - Zoltán A Köbölkuti
- Department of Forest Tree Breeding, Forest Research Institute (UOS-FRI), University of Sopron, Várkerület 30/A, Sárvár, 9600, Hungary
- Departement of Applied Forest Genetics Research, Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, Teisendorf, 83317, Germany
| |
Collapse
|
13
|
Akbari A, Ismaili A, Amirbakhtiar N, Pouresmael M, Shobbar ZS. Genome-wide transcriptional profiling provides clues to molecular mechanisms underlying cold tolerance in chickpea. Sci Rep 2023; 13:6279. [PMID: 37072529 PMCID: PMC10113226 DOI: 10.1038/s41598-023-33398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Chickpea is an important food legume cultivated in several countries. A sudden drop in autumn temperature, freezing winter temperature, and late spring cold events result in significant losses in chickpea production. The current study used RNA sequencing of two cold tolerant (Saral) and sensitive (ILC533) Kabuli chickpea genotypes to identify cold tolerance-associated genes/pathways. A total of 200.85 million raw reads were acquired from the leaf samples by Illumina sequencing, and around 86% of the clean reads (199 million) were mapped to the chickpea reference genome. The results indicated that 3710 (1980 up- and 1730 down-regulated) and 3473 (1972 up- and 1501 down-regulated) genes were expressed differentially under cold stress in the tolerant and sensitive genotypes, respectively. According to the GO enrichment analysis of uniquely down-regulated genes under cold stress in ILC533, photosynthetic membrane, photosystem II, chloroplast part, and photosystem processes were enriched, revealing that the photosynthesis is severely sensitive to cold stress in this sensitive genotype. Many remarkable transcription factors (CaDREB1E, CaMYB4, CaNAC47, CaTCP4, and CaWRKY33), signaling/regulatory genes (CaCDPK4, CaPP2C6, CaMKK2, and CaHSFA3), and protective genes (CaCOR47, CaLEA3, and CaGST) were identified among the cold-responsive genes of the tolerant genotype. These findings would help improve cold tolerance across chickpea genotypes by molecular breeding or genetic engineering.
Collapse
Affiliation(s)
- Alireza Akbari
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Nazanin Amirbakhtiar
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Masoumeh Pouresmael
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization, Karaj, Iran.
| |
Collapse
|
14
|
Wu H, Li J, Pu Q, Mi C, Zeng G, Chen Y, Kong D, Zuo X, Hu X, Li O. Physiological and transcriptome analysis of Dendrobium officinale under low nitrogen stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:314-334. [PMID: 36872310 DOI: 10.1071/fp22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is the main nutrient of plants, and low nitrogen usually affects plant growth and crop yield. The traditional Chinese herbal medicine Dendrobium officinale Kimura et. Migo is a typical low nitrogen-tolerant plant, and its mechanism in response to low nitrogen stress has not previously been reported. In this study, physiological measurements and RNA-Seq analysis were used to analyse the physiological changes and molecular responses of D. officinale under different nitrogen concentrations. The results showed that under low nitrogen levels, the growth, photosynthesis and superoxide dismutase activity were found to be significantly inhibited, while the activities of peroxidase and catalase, the content of polysaccharides and flavonoids significantly increased. Differentially expressed genes (DEGs) analysis showed that nitrogen and carbon metabolisms, transcriptional regulation, antioxidative stress, secondary metabolite synthesis and signal transduction all made a big difference in low nitrogen stress. Therefore, copious polysaccharide accumulation, efficient assimilation and recycling of nitrogen, as well as rich antioxidant components play critical roles. This study is helpful for understanding the response mechanism of D. officinale to low nitrogen levels, which might provide good guidance for practical production of high quality D. officinale .
Collapse
Affiliation(s)
- Hangtao Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Qian Pu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chunyi Mi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Guohong Zeng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ying Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310018, P. R. China
| | - Xiaorong Zuo
- Xi'an Ande Pharmaceutical Co., Ltd, Zhenping Branch, Xi'an 710000, P. R. China
| | - Xiufang Hu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ou Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
15
|
Pollastri S, Velikova V, Castaldini M, Fineschi S, Ghirardo A, Renaut J, Schnitzler JP, Sergeant K, Winkler JB, Zorzan S, Loreto F. Isoprene-Emitting Tobacco Plants Are Less Affected by Moderate Water Deficit under Future Climate Change Scenario and Show Adjustments of Stress-Related Proteins in Actual Climate. PLANTS (BASEL, SWITZERLAND) 2023; 12:333. [PMID: 36679046 PMCID: PMC9862500 DOI: 10.3390/plants12020333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Maurizio Castaldini
- Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio, Florence, Italy
| | - Silvia Fineschi
- Institute of Heritage Science-CNR (ISPC), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Jenny Renaut
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Kjell Sergeant
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Simone Zorzan
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Naples, Italy
| |
Collapse
|
16
|
Docherty EM, Gloor E, Sponchiado D, Gilpin M, Pinto CAD, Junior HM, Coughlin I, Ferreira L, Junior JAS, da Costa ACL, Meir P, Galbraith D. Long-term drought effects on the thermal sensitivity of Amazon forest trees. PLANT, CELL & ENVIRONMENT 2023; 46:185-198. [PMID: 36230004 PMCID: PMC10092618 DOI: 10.1111/pce.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv /Fm ) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C-2°C increase in canopy air temperatures following long-term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme-heat damage (T50 ) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long-term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.
Collapse
Affiliation(s)
- Emma M. Docherty
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Emanuel Gloor
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | - Daniela Sponchiado
- Departamento de Ciências Biológicas, Laboratório de Ecologia VegetalUniversidade do Estado de Mato GrossoNova XavantinaMato GrossoBrasil
| | - Martin Gilpin
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| | | | | | - Ingrid Coughlin
- Departamento de Biologia, FFCLRPUniversidade de São PauloRibeirao PretoSão PauloBrasil
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
| | | | | | - Antonio C. L. da Costa
- Instituto de GeosciênciasUniversidade Federaldo ParáBelémParáBrasil
- Museu Paraense Emílio GoeldiBelémParáBrasil
| | - Patrick Meir
- College of Science, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritorAustralia
- College of Science and Engineering, School of GeoSciencesUniversity of EdinburghEdinburghUK
| | - David Galbraith
- Department of Earth and Environment, School of GeographyUniversity of LeedsLeedsUK
| |
Collapse
|
17
|
Yang W, Zhang B, Wu Y, Liu S, Kong F, Li L. Effects of soil drought and nitrogen deposition on BVOC emissions and their O 3 and SOA formation for Pinus thunbergii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120693. [PMID: 36402418 DOI: 10.1016/j.envpol.2022.120693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Soil drought and nitrogen (N) deposition can influence the biogenic volatile organic compound (BVOC) emissions and thereby their ozone (O3) and secondary organic aerosol (SOA) formation. This study addressed their single and combined effects on BVOC emissions of Pinus thunbergii by laboratory simulation experiments. The results showed that light drought (LD, 50% soil volumetric water content (VWC)) stimulated isoprene, monoterpene, sesquiterpene, and total BVOC emissions, while moderate drought (MD, 30% and 40% VWC) and severe drought (SD, 10% and 20% VWC) inhibited their emissions (except for sesquiterpene in 20% VWC). N deposition decreased other VOC emissions and increased isoprene and sesquiterpene emissions. Total BVOCs and monoterpene were stimulated in low N deposition (LN, 2 g N/(m2·yr)) and inhibited in moderate (MN, 5 g N/(m2·yr)) and high N deposition (HN, 10 g N/(m2·yr)). Under combined treatment of soil drought and N deposition, total BVOC, monoterpene, and other VOC emissions were inhibited, sesquiterpene had no significant change, and isoprene emission was inhibited in MD combined treatment but promoted in SD. The O3 formation potential (OFP) and SOA formation potential (SOAP) from the changed BVOC emissions were calculated, OFP and SOAP of BVOC emissions and their compositions varied significantly among the treatments. Our study provided theoretical basis for assessing the impact of climate change and atmospheric pollution on BVOC emissions and their contribution to the formation of secondary atmospheric pollution.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Baowen Zhang
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuai Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
18
|
Li M, Zhang Y, Xu X, Chen Y, Chu J, Yao X. The combined treatments of brassinolide and zeaxanthin better alleviate oxidative damage and improve hypocotyl length, biomass, and the quality of radish sprouts stored at low temperature. Food Chem X 2022; 15:100394. [PMID: 36211765 PMCID: PMC9532720 DOI: 10.1016/j.fochx.2022.100394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The rot and deterioration of sprouts are closely related to their physiological state and postharvest storage quality. The study investigated the influences of brassinolide, zeaxanthin, and their combination on physiological metabolism, chlorophyll fluorescence, and nutritional quality of radish sprouts stored at 4 °C. The combined treatments enhanced hypocotyl length, fresh weight, contents of secondary metabolites, nutritional ingredients, glutathione, the photoprotective capacity of PSII, and FRAP level in radish sprouts compared with zeaxanthin alone. The combined treatments enhanced hypocotyl length, fresh weight, glutathione content, Fv/Fm value, and antioxidant capacity in sprouts compared to brassinolide alone. The combined treatment of zeaxanthin and brassinolide could make radish sprouts keep high biomass and antioxidant capacity by increasing the contents of stress-resistant metabolites and by weakening the photoinhibition of PSII in radish sprouts stored at 4 °C.
Collapse
Affiliation(s)
- Minghui Li
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yanfen Zhang
- Technology Transfer Center of Hebei University, Baoding 071002, China
| | - Xihang Xu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Ying Chen
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| |
Collapse
|
19
|
The Effects of Differentiated Organic Fertilization on Tomato Production and Phenolic Content in Traditional and High-Yielding Varieties. Antioxidants (Basel) 2022; 11:antiox11112127. [DOI: 10.3390/antiox11112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The challenge of sustainable agriculture is to increase yields and obtain higher quality products. Increased antioxidant compounds such as polyphenols in harvest products may be an added value for sustainable agriculture. The aim of the present study was to investigate whether three organic fertilization treatments with different levels of carbon and nitrogen, i.e., N-rich, N-rich+C, and N-poor+C, affected the phenolic content of different tomato varieties. The examined parameters were productivity, plant nutritional status, δ13C, and tomato phenolic content as an indication of the antioxidant capacity. The best production was obtained with ‘Cornabel’, a high-yielding Pebroter variety. The total phenolic content was highest in the traditional ‘Cuban Pepper’ variety regardless of treatment, while naringenin levels were high in all the Pebroter varieties. In N-poor+C fertilized plants, a lower N-NO3 content in leaves was correlated with higher levels of total polyphenols in the fruit. The high-water stress suffered by Montserrat varieties coincided with a low total phenolic content in the tomatoes. In conclusion, organic fertilization with reduced N did not influence the tomato yield but positively affected phenolic compound levels in varieties less sensitive to water stress.
Collapse
|
20
|
Wu BS, Zhang J, Huang WL, Yang LT, Huang ZR, Guo J, Wu J, Chen LS. Molecular mechanisms for pH-mediated amelioration of aluminum-toxicity revealed by conjoint analysis of transcriptome and metabolome in Citrus sinensis roots. CHEMOSPHERE 2022; 299:134335. [PMID: 35339530 DOI: 10.1016/j.chemosphere.2022.134335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Little is known about the effects of pH-aluminum (Al) interactions on gene expression and/or metabolite profiles in plants. Eleven-week-old seedlings of Citrus sinensis were fertilized with nutrient solution at an Al level of 0 or 1 mM and a pH of 3.0 or 4.0 for 18 weeks. Increased pH mitigated Al-toxicity-induced accumulation of callose, an Al-sensitive marker. In this study, we identified more differentially expressed genes and differentially abundant metabolites in pH 4.0 + 1 mM Al-treated roots (P4AR) vs pH 4.0 + 0 mM Al-treated roots (P4R) than in pH 3.0 + 1 mM Al-treated roots (P3AR) vs pH 3.0 + 0 mM Al-treated roots (P3R), suggesting that increased pH enhanced root metabolic adaptations to Al-toxicity. Further analysis indicated that increased pH-mediated mitigation of root Al-toxicity might be related to several factors, including: enhanced capacity to maintain the homeostasis of phosphate and energy and the balance between generation and scavenging of reactive oxygen species and aldehydes; and elevated accumulation of secondary metabolites such as polyphenol, proanthocyanidins and phenolamides and adaptations of cell wall and plasma membrane to Al-toxicity.
Collapse
Affiliation(s)
- Bi-Sha Wu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
| | - Jiang Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei-Lin Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiuxin Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jincheng Wu
- College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
21
|
Molecular and Physiological Responses of Citrus sinensis Leaves to Long-Term Low pH Revealed by RNA-Seq Integrated with Targeted Metabolomics. Int J Mol Sci 2022; 23:ijms23105844. [PMID: 35628662 PMCID: PMC9142915 DOI: 10.3390/ijms23105844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Low pH-induced alterations in gene expression profiles and organic acids (OA) and free amino acid (FAA) abundances were investigated in sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] leaves. We identified 503 downregulated and 349 upregulated genes in low pH-treated leaves. Further analysis indicated that low pH impaired light reaction and carbon fixation in photosynthetic organisms, thereby lowering photosynthesis in leaves. Low pH reduced carbon and carbohydrate metabolisms, OA biosynthesis and ATP production in leaves. Low pH downregulated the biosynthesis of nitrogen compounds, proteins, and FAAs in leaves, which might be conducive to maintaining energy homeostasis during ATP deprivation. Low pH-treated leaves displayed some adaptive responses to phosphate starvation, including phosphate recycling, lipid remodeling, and phosphate transport, thus enhancing leaf acid-tolerance. Low pH upregulated the expression of some reactive oxygen species (ROS) and aldehyde detoxifying enzyme (peroxidase and superoxidase) genes and the concentrations of some antioxidants (L-tryptophan, L-proline, nicotinic acid, pantothenic acid, and pyroglutamic acid), but it impaired the pentose phosphate pathway and VE and secondary metabolite biosynthesis and downregulated the expression of some ROS and aldehyde detoxifying enzyme (ascorbate peroxidase, aldo-keto reductase, and 2-alkenal reductase) genes and the concentrations of some antioxidants (pyridoxine and γ-aminobutyric acid), thus disturbing the balance between production and detoxification of ROS and aldehydes and causing oxidative damage to leaves.
Collapse
|
22
|
Impact of Drought on Isoprene Fluxes Assessed Using Field Data, Satellite-Based GLEAM Soil Moisture and HCHO Observations from OMI. REMOTE SENSING 2022. [DOI: 10.3390/rs14092021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), primarily emitted by terrestrial vegetation, are highly reactive and have large effects on the oxidizing potential of the troposphere, air quality and climate. In terms of global emissions, isoprene is the most important BVOC. Droughts bring about changes in the surface emission of biogenic hydrocarbons mainly because plants suffer water stress. Past studies report that the current parameterization in the state-of-the-art Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.1, which is a function of the soil water content and the permanent wilting point, fails at representing the strong reduction in isoprene emissions observed in field measurements conducted during a severe drought. Since the current algorithm was originally developed based on potted plants, in this study, we update the parameterization in the light of recent ecosystem-scale measurements of isoprene conducted during natural droughts in the central U.S. at the Missouri Ozarks AmeriFlux (MOFLUX) site. The updated parameterization results in stronger reductions in isoprene emissions. Evaluation using satellite formaldehyde (HCHO), a proxy for BVOC emissions, and a chemical-transport model, shows that the adjusted parameterization provides a better agreement between the modelled and observed HCHO temporal variability at local and regional scales in 2011–2012, even if it worsens the model agreement in a global, long-term evaluation. We discuss the limitations of the current parameterization, a function of highly uncertain soil properties such as porosity.
Collapse
|
23
|
Isoprene Emission Influences the Proteomic Profile of Arabidopsis Plants under Well-Watered and Drought-Stress Conditions. Int J Mol Sci 2022; 23:ijms23073836. [PMID: 35409196 PMCID: PMC8998555 DOI: 10.3390/ijms23073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Isoprene is a small lipophilic molecule synthesized in plastids and abundantly released into the atmosphere. Isoprene-emitting plants are better protected against abiotic stresses, but the mechanism of action of isoprene is still under debate. In this study, we compared the physiological responses and proteomic profiles of Arabidopsis which express the isoprene synthase (ISPS) gene and emit isoprene with those of non-emitting plants under both drought-stress (DS) and well-watered (WW) conditions. We aimed to investigate whether isoprene-emitting plants displayed a different proteomic profile that is consistent with the metabolic changes already reported. Only ISPS DS plants were able to maintain the same photosynthesis and fresh weight of WW plants. LC-MS/MS-based proteomic analysis revealed changes in protein abundance that were dependent on the capacity for emitting isoprene in addition to those caused by the DS. The majority of the proteins changed in response to the interaction between DS and isoprene emission. These include proteins that are associated with the activation of secondary metabolisms leading to ABA, trehalose, and proline accumulations. Overall, our proteomic data suggest that isoprene exerts its protective mechanism at different levels: under drought stress, isoprene affects the abundance of chloroplast proteins, confirming a strong direct or indirect antioxidant action and also modulates signaling and hormone pathways, especially those controlling ABA synthesis. Unexpectedly, isoprene also alters membrane trafficking.
Collapse
|
24
|
Loreto F, D'Auria S. How do plants sense volatiles sent by other plants? TRENDS IN PLANT SCIENCE 2022; 27:29-38. [PMID: 34544607 DOI: 10.1016/j.tplants.2021.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Plants communicate via the emission of volatile organic compounds (VOCs) with many animals as well as other plants. We still know little about how VOCs are perceived by receiving (eavesdropping) plants. Here we propose a multiple system of VOC perception, where stress-induced VOCs dock on odorant-binding proteins (OBPs) like in animals and are transported to as-yet-unknown receptors mediating downstream metabolic and/or behavioral changes. Constitutive VOCs that are broadly and lifelong emitted by plants do not bind OBPs but may directly change the metabolism of eavesdropping plants. Deciphering how plants listen to their talking neighbors could empower VOCs as a tool for bioinspired strategies of plant defense when challenged by abiotic and biotic stresses.
Collapse
Affiliation(s)
- Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; Institute for Sustainable Plant Protection, National Research Council of Italy (CNR-IPSP), Sesto Fiorentino, Italy.
| | - Sabato D'Auria
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Institute for Food Science, National Research Council of Italy (CNR-ISA), Avellino, Italy.
| |
Collapse
|
25
|
Brilli F, Dani KGS, Pasqualini S, Costarelli A, Cannavò S, Paolocci F, Zittelli GC, Mugnai G, Baraldi R, Loreto F. Exposure to different light intensities affects emission of volatiles and accumulations of both pigments and phenolics in Azolla filiculoides. PHYSIOLOGIA PLANTARUM 2022; 174:e13619. [PMID: 34988977 PMCID: PMC9305523 DOI: 10.1111/ppl.13619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 06/01/2023]
Abstract
Many agronomic trials demonstrated the nitrogen-fixing ability of the ferns Azolla spp. and its obligate cyanobiont Trichormus azollae. In this study, we have screened the emission of volatile organic compounds (VOCs) and analyzed pigments (chlorophylls, carotenoids) as well as phenolic compounds in Azolla filiculoides-T. azollae symbionts exposed to different light intensities. Our results revealed VOC emission mainly comprising isoprene and methanol (~82% and ~13% of the overall blend, respectively). In particular, by dissecting VOC emission from A. filiculoides and T. azollae, we found that the cyanobacterium does not emit isoprene, whereas it relevantly contributes to the methanol flux. Enhanced isoprene emission capacity (15.95 ± 2.95 nmol m-2 s-1 ), along with increased content of both phenolic compounds and carotenoids, was measured in A. filiculoides grown for long-term under high (700 μmol m-2 s-1 ) rather than medium (400 μmol m-2 s-1 ) and low (100 μmol m-2 s-1 ) light intensity. Moreover, light-responses of chlorophyll fluorescence demonstrated that A. filiculoides was able to acclimate to high growth light. However, exposure of A. filiculoides from low (100 μmol m-2 s-1 ) to very high light (1000 μmol m-2 s-1 ) did not affect, in the short term, photosynthesis, but slightly decreased isoprene emission and leaf pigment content whereas, at the same time, dramatically raised the accumulation of phenolic compounds (i.e. deoxyanthocyanidins and phlobaphenes). Our results highlight a coordinated photoprotection mechanism consisting of isoprene emission and phenolic compounds accumulation employed by A. filiculoides to cope with increasing light intensities.
Collapse
Affiliation(s)
- Federico Brilli
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - K. G. Srikanta Dani
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Stefania Pasqualini
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Alma Costarelli
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Sara Cannavò
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Francesco Paolocci
- Institute of Biosciences and BioResources (IBBR)National Research Council of Italy (CNR)PerugiaItaly
| | | | - Gianmarco Mugnai
- Institute of BioEconomy (IBE)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Rita Baraldi
- Institute of BioEconomy (IBE)National Research Council of Italy (CNR)BolognaItaly
| | - Francesco Loreto
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
- Department of BiologyThe University of Naples Federico IINaplesItaly
| |
Collapse
|
26
|
Dong T, Sha Y, Liu H, Sun L. Altitudinal Variation of Metabolites, Mineral Elements and Antioxidant Activities of Rhodiola crenulata (Hook.f. & Thomson) H.Ohba. Molecules 2021; 26:7383. [PMID: 34885966 PMCID: PMC8658832 DOI: 10.3390/molecules26237383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Rhodiolacrenulata (Hook.f. & Thomson) H.Ohba is an alpine medicinal plant that can survive in extreme high altitude environments. However, its changes to extreme high altitude are not yet clear. In this study, the response of Rhodiola crenulata to differences in altitude gradients was investigated through chemical, ICP-MS and metabolomic methods. A targeted study of Rhodiola crenulata growing at three vertical altitudes revealed that the contents of seven elements Ca, Sr, B, Mn, Ni, Cu, and Cd, the phenolic components, the ascorbic acid, the ascorbic acid/dehydroascorbate ratio, and the antioxidant capacity were positively correlated with altitude, while the opposite was true for total ascorbic acid content. Furthermore, 1165 metabolites were identified: flavonoids (200), gallic acids (30), phenylpropanoids (237), amino acids (100), free fatty acids and glycerides (56), nucleotides (60), as well as other metabolites (482). The differential metabolite and biomarker analyses suggested that, with an increasing altitude: (1) the shikimic acid-phenylalanine-phenylpropanoids-flavonoids pathway was enhanced, with phenylpropanoids upregulating biomarkers much more than flavonoids; phenylpropanes and phenylmethanes upregulated, and phenylethanes downregulated; the upregulation of quercetin was especially significant in flavonoids; upregulation of condensed tannins and downregulation of hydrolyzed tannins; upregulation of shikimic acids and amino acids including phenylalanine. (2) significant upregulation of free fatty acids and downregulation of glycerides; and (3) upregulation of adenosine phosphates. Our findings provide new insights on the responses of Rhodiola crenulata to extreme high altitude adversity.
Collapse
Affiliation(s)
| | | | | | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (T.D.); (Y.S.); (H.L.)
| |
Collapse
|
27
|
Yang Z, Bai C, Wang P, Fu W, Wang L, Song Z, Xi X, Wu H, Zhang G, Wu J. Sandbur Drought Tolerance Reflects Phenotypic Plasticity Based on the Accumulation of Sugars, Lipids, and Flavonoid Intermediates and the Scavenging of Reactive Oxygen Species in the Root. Int J Mol Sci 2021; 22:ijms222312615. [PMID: 34884421 PMCID: PMC8657935 DOI: 10.3390/ijms222312615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
The perennial grass Cenchrus spinifex (common sandbur) is an invasive species that grows in arid and semi-arid regions due to its remarkable phenotypic plasticity, which confers the ability to withstand drought and other forms of abiotic stress. Exploring the molecular mechanisms of drought tolerance in common sandbur could lead to the development of new strategies for the protection of natural and agricultural environments from this weed. To determine the molecular basis of drought tolerance in C. spinifex, we used isobaric tags for relative and absolute quantitation (iTRAQ) to identify proteins differing in abundance between roots growing in normal soil and roots subjected to moderate or severe drought stress. The analysis of these proteins revealed that drought tolerance in C. spinifex primarily reflects the modulation of core physiological activities such as protein synthesis, transport and energy utilization as well as the accumulation of flavonoid intermediates and the scavenging of reactive oxygen species. Accordingly, plants subjected to drought stress accumulated sucrose, fatty acids, and ascorbate, shifted their redox potential (as determined by the NADH/NAD ratio), accumulated flavonoid intermediates at the expense of anthocyanins and lignin, and produced less actin, indicating fundamental reorganization of the cytoskeleton. Our results show that C. spinifex responds to drought stress by coordinating multiple metabolic pathways along with other adaptations. It is likely that the underlying metabolic plasticity of this species plays a key role in its invasive success, particularly in semi-arid and arid environments.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
| | - Chao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Peng Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
- The State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Weidong Fu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
| | - Le Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
| | - Xin Xi
- Beijing Plant Protection Station, Beijing 100029, China;
| | - Hanwen Wu
- E.H. Graham Centre for Agricultural Innovation (A Collaborative Alliance between Charles Sturt University and the NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia;
| | - Guoliang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Y.); (C.B.); (W.F.); (Z.S.)
- Correspondence: (G.Z.); (J.W.); Tel.: +86-82109570 (G.Z.); +86-64807375 (J.W.)
| | - Jiahe Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (L.W.)
- Correspondence: (G.Z.); (J.W.); Tel.: +86-82109570 (G.Z.); +86-64807375 (J.W.)
| |
Collapse
|
28
|
Huang HY, Ren QQ, Lai YH, Peng MY, Zhang J, Yang LT, Huang ZR, Chen LS. Metabolomics combined with physiology and transcriptomics reveals how Citrus grandis leaves cope with copper-toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112579. [PMID: 34352583 DOI: 10.1016/j.ecoenv.2021.112579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Limited data are available on metabolic responses of plants to copper (Cu)-toxicity. Firstly, we investigated Cu-toxic effects on metabolomics, the levels of free amino acids, NH4+-N, NO3--N, total nitrogen, total soluble proteins, total phenolics, lignin, reduced glutathione (GSH) and malondialdehyde, and the activities of nitrogen-assimilatory enzymes in 'Shatian' pummelo (Citrus grandis) leaves. Then, a conjoint analysis of metabolomics, physiology and transcriptomics was performed. Herein, 59 upregulated [30 primary metabolites (PMs) and 29 secondary metabolites (SMs)] and 52 downregulated (31 PMs and 21 SMs) metabolites were identified in Cu-toxic leaves. The toxicity of Cu to leaves was related to the Cu-induced accumulation of NH4+ and decrease of nitrogen assimilation. Metabolomics combined with physiology and transcriptomics revealed some adaptive responses of C. grandis leaves to Cu-toxicity, including (a) enhancing tryptophan metabolism and the levels of some amino acids and derivatives (tryptophan, phenylalanine, 5-hydroxy-l-tryptophan, 5-oxoproline and GSH); (b) increasing the accumulation of carbohydrates and alcohols and upregulating tricarboxylic acid cycle and the levels of some organic acids and derivatives (chlorogenic acid, quinic acid, d-tartaric acid and gallic acid o-hexoside); (c) reducing phospholipid (lysophosphatidylcholine and lysophosphatidylethanolamine) levels, increasing non-phosphate containing lipid [monoacylglycerol ester (acyl 18:2) isomer 1] levels, and inducing low-phosphate-responsive gene expression; and (d) triggering the biosynthesis of some chelators (total phenolics, lignin, l-trytamine, indole, eriodictyol C-hexoside, quercetin 5-O-malonylhexosyl-hexoside, N-caffeoyl agmatine, N'-p-coumaroyl agmatine, hydroxy-methoxycinnamate and protocatechuic acid o-glucoside) and vitamins and derivatives (nicotinic acid-hexoside, B1 and methyl nicotinate). Cu-induced upregulation of many antioxidants could not protect Cu-toxic leaves from oxidative damage. To conclude, our findings corroborated the hypothesis that extensive reprogramming of metabolites was carried out in Cu-toxic C. grandis leaves in order to cope with Cu-toxicity.
Collapse
Affiliation(s)
- Hui-Yu Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian-Qian Ren
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yin-Hua Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Yi Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
29
|
Li N, Wang X, Ma B, Wu Z, Zheng L, Qi Z, Wang Y. A leucoanthocyanidin dioxygenase gene (RtLDOX2) from the feral forage plant Reaumuria trigyna promotes the accumulation of flavonoids and improves tolerance to abiotic stresses. JOURNAL OF PLANT RESEARCH 2021; 134:1121-1138. [PMID: 34037878 DOI: 10.1007/s10265-021-01315-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 05/27/2023]
Abstract
Reaumuria trigyna, a Tamaricaceae archaic recretohalophyte, is an important feral forage plant in the desert steppe of northwestern China. We identified two significantly differentially expressed leucoanthocyanidin dioxygenase genes (RtLDOX/RtLDOX2) and investigated the function and characteristics of RtLDOX2. RtLDOX2 from R. trigyna was rapidly upregulated by salt, drought, and abscisic acid, consistent with the stress-related cis-regulatory elements in the promoter region. Recombinant RtLDOX2 converted dihydrokaempferol to kaempferol in vitro, and was thus interchangeable with flavonol synthase, a dioxygenase in the flavonoid pathway. Transgenic plants overexpressing RtLDOX2 accumulated more anthocyanin and flavonols under abiotic stresses, speculating that RtLDOX2 may act as a multifunctional dioxygenase in the synthesis of anthocyanins and flavonols. Overexpression of RtLDOX2 enhanced the primary root length, biomass accumulation, and chlorophyll content of salt-, drought-, and ultraviolet-B-stressed transgenic Arabidopsis. Antioxidant enzyme activity; proline content; and expression of antioxidant enzyme, proline biosynthesis, and ion-transporter genes were increased in transgenic plants. Therefore, RtLDOX2 confers tolerance to abiotic stress on transgenic Arabidopsis by promoting the accumulation of anthocyanins and flavonols. This in turn increases reactive oxygen species scavenging and activates other stress responses, such as osmotic adjustment and ion transport, and so improves tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Ningning Li
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, 010019, China
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Xue Wang
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Binjie Ma
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Zhigang Wu
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Linlin Zheng
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Zhi Qi
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China
| | - Yingchun Wang
- The Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, the State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, and College of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, 010070, China.
| |
Collapse
|
30
|
Rahimi Y, Ingvarsson PK, Bihamta MR, Alipour H, Taleei A, Khoshnoodi Jabar Abadi S. Characterization of Dynamic Regulatory Gene and Protein Networks in Wheat Roots Upon Perceiving Water Deficit Through Comparative Transcriptomics Survey. FRONTIERS IN PLANT SCIENCE 2021; 12:710867. [PMID: 34484273 PMCID: PMC8415571 DOI: 10.3389/fpls.2021.710867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
A well-developed root system benefits host plants by optimizing water absorption and nutrient uptake and thereby increases plant productivity. In this study we have characterized the root transcriptome using RNA-seq and subsequential functional analysis in a set of drought tolerant and susceptible genotypes. The goal of the study was to elucidate and characterize water deficit-responsive genes in wheat landraces that had been through long-term field and biochemical screening for drought tolerance. The results confirm genotype differences in water-deficit tolerance in line with earlier results from field trials. The transcriptomics survey highlighted a total of 14,187 differentially expressed genes (DEGs) that responded to water deficit. The characterization of these genes shows that all chromosomes contribute to water-deficit tolerance, but to different degrees, and the B genome showed higher involvement than the A and D genomes. The DEGs were mainly mapped to flavonoid, phenylpropanoid, and diterpenoid biosynthesis pathways, as well as glutathione metabolism and hormone signaling. Furthermore, extracellular region, apoplast, cell periphery, and external encapsulating structure were the main water deficit-responsive cellular components in roots. A total of 1,377 DEGs were also predicted to function as transcription factors (TFs) from different families regulating downstream cascades. TFs from the AP2/ERF-ERF, MYB-related, B3, WRKY, Tify, and NAC families were the main genotype-specific regulatory factors. To further characterize the dynamic biosynthetic pathways, protein-protein interaction (PPI) networks were constructed using significant KEGG proteins and putative TFs. In PPIs, enzymes from the CYP450, TaABA8OH2, PAL, and GST families play important roles in water-deficit tolerance in connection with MYB13-1, MADS-box, and NAC transcription factors.
Collapse
Affiliation(s)
- Yousef Rahimi
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pär K. Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Alireza Taleei
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | | |
Collapse
|
31
|
Photoprotective Role of Photosynthetic and Non-Photosynthetic Pigments in Phillyrea latifolia: Is Their "Antioxidant" Function Prominent in Leaves Exposed to Severe Summer Drought? Int J Mol Sci 2021; 22:ijms22158303. [PMID: 34361067 PMCID: PMC8347396 DOI: 10.3390/ijms22158303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Carotenoids and phenylpropanoids play a dual role of limiting and countering photooxidative stress. We hypothesize that their “antioxidant” function is prominent in plants exposed to summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a field study on Phillyrea latifolia, a Mediterranean evergreen shrub, carrying out daily physiological and biochemical analyses in spring and summer. We also investigated the functional role of the major phenylpropanoids in different leaf tissues. Summer leaves underwent the most severe drought stress concomitantly with a reduction in radiation use efficiency upon being exposed to intense photooxidative stress, particularly during the central hours of the day. In parallel, a significant daily variation in both carotenoids and phenylpropanoids was observed. Our data suggest that the morning-to-midday increase in zeaxanthin derived from the hydroxylation of ß-carotene to sustain non-photochemical quenching and limit lipid peroxidation in thylakoid membranes. We observed substantial spring-to-summer and morning-to-midday increases in quercetin and luteolin derivatives, mostly in the leaf mesophyll. These findings highlight their importance as antioxidants, countering the drought-induced photooxidative stress. We concluded that seasonal and daily changes in photosynthetic and non-photosynthetic pigments may allow P. latifolia leaves to avoid irreversible photodamage and to cope successfully with the Mediterranean harsh climate.
Collapse
|
32
|
Pasquini D, Gori A, Ferrini F, Brunetti C. An Improvement of SPME-Based Sampling Technique to Collect Volatile Organic Compounds from Quercus ilex at the Environmental Level. Metabolites 2021; 11:388. [PMID: 34198607 PMCID: PMC8232123 DOI: 10.3390/metabo11060388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Biogenic Volatile Organic Compounds (BVOCs) include many chemical compounds emitted by plants into the atmosphere. These compounds have a great effect on biosphere-atmosphere interactions and may affect the concentration of atmospheric pollutants, with further consequences on human health and forest ecosystems. Novel methods to measure and determine BVOCs in the atmosphere are of compelling importance considering the ongoing climate changes. In this study, we developed a fast and easy-to-handle analytical methodology to sample these compounds in field experiments using solid-phase microextraction (SPME) fibers at the atmospheric level. An improvement of BVOCs adsorption from SPME fibers was obtained by coupling the fibers with fans to create a dynamic sampling system. This innovative technique was tested sampling Q. ilex BVOCs in field conditions in comparison with the conventional static SPME sampling technique. The results showed a great potential of this dynamic sampling system to collect BVOCs at the atmosphere level, improving the efficiency and sensitivity of SPME fibers. Indeed, our novel device was able to reduce the sampling time, increase the amount of BVOCs collected through the fibers and add information regarding the emissions of these compounds at the environmental level.
Collapse
Affiliation(s)
- Dalila Pasquini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (A.G.); (F.F.); (C.B.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), 50019 Sesto Fiorentino, Italy
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (A.G.); (F.F.); (C.B.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), 50019 Sesto Fiorentino, Italy
| | - Francesco Ferrini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (A.G.); (F.F.); (C.B.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), 50019 Sesto Fiorentino, Italy
- VALUE Laboratory on Green, Health & Wellbeing, University of Florence and the Italian Horticultural Society, 50019 Sesto Fiorentino, Italy
| | - Cecilia Brunetti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (A.G.); (F.F.); (C.B.)
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Antioxidant Defenses in Plants: A Dated Topic of Current Interest. Antioxidants (Basel) 2021; 10:antiox10060855. [PMID: 34071788 PMCID: PMC8228735 DOI: 10.3390/antiox10060855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
|
34
|
Isoprene: An Antioxidant Itself or a Molecule with Multiple Regulatory Functions in Plants? Antioxidants (Basel) 2021; 10:antiox10050684. [PMID: 33925614 PMCID: PMC8146742 DOI: 10.3390/antiox10050684] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Isoprene (C5H8) is a small lipophilic, volatile organic compound (VOC), synthesized in chloroplasts of plants through the photosynthesis-dependent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Isoprene-emitting plants are better protected against thermal and oxidative stresses but only about 20% of the terrestrial plants are able to synthesize isoprene. Many studies have been performed to understand the still elusive isoprene protective mechanism. Isoprene reacts with, and quenches, many harmful reactive oxygen species (ROS) like singlet oxygen (1O2). A role for isoprene as antioxidant, made possible by its reduced state and conjugated double bonds, has been often suggested, and sometimes demonstrated. However, as isoprene is present at very low concentrations compared to other molecules, its antioxidant role is still controversial. Here we review updated evidences on the function(s) of isoprene, and outline contrasting indications on whether isoprene is an antioxidant directly scavenging ROS, or a membrane strengthener, or a modulator of genomic, proteomic and metabolomic profiles (perhaps as a secondary effect of ROS removal) eventually leading to priming of antioxidant plant defenses, or a signal of stress for neighbor plants alike other VOCs, or a hormone-like molecule, controlling the metabolic flux of other hormones made by the MEP pathway, or acting itself as a growth and development hormone.
Collapse
|
35
|
Effects of plant growth-promoting rhizobacteria strains producing ACC deaminase on photosynthesis, isoprene emission, ethylene formation and growth of Mucuna pruriens (L.) DC. in response to water deficit. J Biotechnol 2021; 331:53-62. [PMID: 33727083 DOI: 10.1016/j.jbiotec.2021.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/06/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022]
Abstract
Agricultural sustainability is an increasing need considering the challenges posed by climate change and rapid human population growth. The use of plant growth-promoting rhizobacteria (PGPR) may represent an excellent, new agriculture practice to improve soil quality while promoting growth and yield of important crop species subjected to water stress conditions. In this study, two PGPR strains with 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase activity were co-inoculated in velvet bean plants to verify the physiological, biochemical and molecular responses to progressive water stress. The results of our study show that the total biomass and the water use efficiency of inoculated plants were higher than uninoculated plants at the end of the water stress period. These positive effects may be derived from a lower root ACC content (-45 %) in water-stressed inoculated plants than in uninoculated ones resulting in lower root ethylene emission. Furthermore, the ability of inoculated plants to maintain higher levels of both isoprene emission, a priming compound that may help to protect leaves from oxidative damage, and carbon assimilation during water stress progression may indicate the underlining metabolic processes conferring water stress tolerance. Overall, the experimental results show that co-inoculation with ACC deaminase PGPR positively affects tolerance to water deficit, confirming the potential for biotechnological applications in water-stressed agricultural areas.
Collapse
|
36
|
Role of Suillus placidus in Improving the Drought Tolerance of Masson Pine (Pinus massoniana Lamb.) Seedlings. FORESTS 2021. [DOI: 10.3390/f12030332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Masson pine is an important afforestation species in southern China, where seasonal drought is common. The present study focused on the effects of Suillus placidus, an ectomycorrhizal fungus, inoculation on the growth and physiological and biochemical performance of masson pine seedlings under four different watering treatments (well-watered, mild drought, moderate drought, and severe drought) to evaluate the symbiotic relationship between S. placidus and masson pine seedlings. Ectomycorrhizal-inoculated (ECM) and non-inoculated (NM) seedlings were grown in pots and maintained for 60 days using the weighing method. Results showed that seedlings’ growth, dry weight, RWC, chlorophyll content, PSII efficiency, and photosynthesis decreased as drought stress intensified in both ECM and NM plants. This suggests that drought stress significantly limits the growth and photosynthetic performance of masson pine seedlings. Nevertheless, increased An/gs and proline contents in both NM and ECM prevented oxidative damage caused by drought stress. In addition, increased peroxidase (POD) activity is an essential defense mechanism of ECM seedling under drought stress. Compared with NM, ECM seedlings showed faster growth, higher RWC, and photosynthetic performance, and lower lipid peroxidation in cell membranes under drought stress, as indicated by higher POD activity and lower proline and malondialdehyde (MDA). Our experiment found that S. placidus inoculation can enhance the drought resistance of masson pine seedlings by increasing antioxidant enzyme activity, water use efficiency, and proline content, thereby enhancing growth under water-deficiency conditions. S. placidus can be used to cultivate high-quality seedlings and improve their survival in regions that experience seasonal droughts.
Collapse
|
37
|
Bertamini M, Faralli M, Varotto C, Grando MS, Cappellin L. Leaf Monoterpene Emission Limits Photosynthetic Downregulation under Heat Stress in Field-Grown Grapevine. PLANTS 2021; 10:plants10010181. [PMID: 33478116 PMCID: PMC7835969 DOI: 10.3390/plants10010181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Rising temperature is among the most remarkably stressful phenomena induced by global climate changes with negative impacts on crop productivity and quality. It has been previously shown that volatiles belonging to the isoprenoid family can confer protection against abiotic stresses. In this work, two Vitis vinifera cv. 'Chardonnay' clones (SMA130 and INRA809) differing due to a mutation (S272P) of the DXS gene encoding for 1-deoxy-D-xylulose-5-phosphate (the first dedicated enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway) and involved in the regulation of isoprenoids biosynthesis were investigated in field trials and laboratory experiments. Leaf monoterpene emission, chlorophyll fluorescence and gas-exchange measurements were assessed over three seasons at different phenological stages and either carried out in in vivo or controlled conditions under contrasting temperatures. A significant (p < 0.001) increase in leaf monoterpene emission was observed in INRA809 when plants were experiencing high temperatures and over two experiments, while no differences were recorded for SMA130. Significant variation was observed for the rate of leaf CO2 assimilation under heat stress, with INRA809 maintaining higher photosynthetic rates and stomatal conductance values than SMA130 (p = 0.003) when leaf temperature increased above 30 °C. At the same time, the maximum photochemical quantum yield of PSII (Fv/Fm) was affected by heat stress in the non-emitting clone (SMA130), while the INRA809 showed a significant resilience of PSII under elevated temperature conditions. Consistent data were recorded between field seasons and temperature treatments in controlled environment conditions, suggesting a strong influence of monoterpene emission on heat tolerance under high temperatures. This work provides further insights on the photoprotective role of isoprenoids in heat-stressed Vitis vinifera, and additional studies should focus on unraveling the mechanisms underlying heat tolerance on the monoterpene-emitter grapevine clone.
Collapse
Affiliation(s)
- Massimo Bertamini
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010 San Michele all’Adige, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
- Correspondence: (M.B.); (M.F.)
| | - Michele Faralli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
- Correspondence: (M.B.); (M.F.)
| | - Claudio Varotto
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
| | - Maria Stella Grando
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010 San Michele all’Adige, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
38
|
Telagathoti A, Probst M, Khomenko I, Biasioli F, Peintner U. High-Throughput Volatilome Fingerprint Using PTR-ToF-MS Shows Species-Specific Patterns in Mortierella and Closely Related Genera. J Fungi (Basel) 2021; 7:66. [PMID: 33478017 PMCID: PMC7835917 DOI: 10.3390/jof7010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
In ecology, Volatile Organic Compounds (VOCs) have a high bioactive and signaling potential. VOCs are not only metabolic products, but are also relevant in microbial cross talk and plant interaction. Here, we report the first large-scale VOC study of 13 different species of Mortierella sensu lato (s. l.) isolated from a range of different alpine environments. Proton Transfer Reaction-Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was applied for a rapid, high-throughput and non-invasive VOC fingerprinting of 72 Mortierella s. l. isolates growing under standardized conditions. Overall, we detected 139 mass peaks in the headspaces of all 13 Mortierella s. l. species studied here. Thus, Mortierella s. l. species generally produce a high number of different VOCs. Mortierella species could clearly be discriminated based on their volatilomes, even if only high-concentration mass peaks were considered. The volatilomes were partially phylogenetically conserved. There were no VOCs produced by only one species, but the relative concentrations of VOCs differed between species. From a univariate perspective, we detected mass peaks with distinctively high concentrations in single species. Here, we provide initial evidence that VOCs may provide a competitive advantage and modulate Mortierella s. l. species distribution on a global scale.
Collapse
Affiliation(s)
- Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;
| | - Iuliia Khomenko
- Fondazione Edmund Mach, Research and Innovation Centre, Food Quality and Nutrition Department, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy; (I.K.); (F.B.)
| | - Franco Biasioli
- Fondazione Edmund Mach, Research and Innovation Centre, Food Quality and Nutrition Department, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy; (I.K.); (F.B.)
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria;
| |
Collapse
|
39
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|
40
|
Sun Z, Shen Y, Niinemets Ü. Responses of isoprene emission and photochemical efficiency to severe drought combined with prolonged hot weather in hybrid Populus. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7364-7381. [PMID: 32996573 PMCID: PMC7906789 DOI: 10.1093/jxb/eraa415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Isoprene emissions have been considered as a protective response of plants to heat stress, but there is limited information of how prolonged heat spells affect isoprene emission capacity, particularly under the drought conditions that often accompany hot weather. Under combined long-term stresses, presence of isoprene emission could contribute to the maintenance of the precursor pool for rapid synthesis of essential isoprenoids to repair damaged components of leaf photosynthetic apparatus. We studied changes in leaf isoprene emission rate, photosynthetic characteristics, and antioxidant enzyme activities in two hybrid Populus clones, Nanlin 1388 (relatively high drought tolerance) and Nanlin 895 (relatively high thermotolerance) that were subjected to long-term (30 d) soil water stress (25% versus 90% soil field capacity) combined with a natural heat spell (day-time temperatures of 35-40 °C) that affected both control and water-stressed plants. Unexpectedly, isoprene emissions from both the clones were similar and the overall effects of drought on the emission characteristics were initially minor; however, treatment effects and clonal differences increased with time. In particular, the isoprene emission rate only increased slightly in the Nanlin 895 control plants after 15 d of treatment, whereas it decreased by more than 5-fold in all treatment × clone combinations after 30 d. The reduction in isoprene emission rate was associated with a decrease in the pool size of the isoprene precursor dimethylallyl diphosphate in all cases at 30 d after the start of treatment. Net assimilation rate, stomatal conductance, the openness of PSII centers, and the effective quantum yield all decreased, and non-photochemical quenching and catalase activity increased in both control and water-stressed plants. Contrary to the hypothesis of protection of leaf photosynthetic apparatus by isoprene, the data collectively indicated that prolonged stress affected isoprene emissions more strongly than leaf photosynthetic characteristics. This primarily reflected the depletion of isoprene precursor pools under long-term severe stress.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, Hangzhou, Zhejiang, China
| | - Yan Shen
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ülo Niinemets
- School of Forestry and Bio-Technology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu, Tallinn, Estonia
| |
Collapse
|
41
|
Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1195-1214. [PMID: 32920943 DOI: 10.1111/tpj.14988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought-responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.
Collapse
Affiliation(s)
- Susan M Moenga
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Yunpeng Gai
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Noelia Carrasquilla-Garcia
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Laura M Perilla-Henao
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Douglas R Cook
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
42
|
Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, Sebastiani F, Tattini M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants (Basel) 2020; 9:E1098. [PMID: 33182252 PMCID: PMC7695271 DOI: 10.3390/antiox9111098] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Whether flavonoids play significant antioxidant roles in plants challenged by photooxidative stress of different origin has been largely debated over the last few decades. A critical review of the pertinent literature and our experimentation as well, based on a free-of-scale approach, support an important antioxidant function served by flavonoids in plants exposed to a wide range of environmental stressors, the significance of which increases with the severity of stress. On the other side, some questions need conclusive answers when the putative antioxidant functions of plant flavonoids are examined at the level of both the whole-cell and cellular organelles. This partly depends upon a conclusive, robust, and unbiased definition of "a plant antioxidant", which is still missing, and the need of considering the subcellular re-organization that occurs in plant cells in response to severe stress conditions. This likely makes our deterministic-based approach unsuitable to unveil the relevance of flavonoids as antioxidants in extremely complex biological systems, such as a plant cell exposed to an ever-changing stressful environment. This still poses open questions about how to measure the occurred antioxidant action of flavonoids. Our reasoning also evidences the need of contemporarily evaluating the changes in key primary and secondary components of the antioxidant defense network imposed by stress events of increasing severity to properly estimate the relevance of the antioxidant functions of flavonoids in an in planta situation. In turn, this calls for an in-depth analysis of the sub-cellular distribution of primary and secondary antioxidants to solve this still intricate matter.
Collapse
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy;
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto F.no, Florence, Italy; (C.B.); (F.S.)
| | - Alessio Fini
- Department of Agriculural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, I-20133 Milan, Italy;
| | - Antonella Gori
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy;
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy; (L.G.); (M.L.)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy; (L.G.); (M.L.)
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto F.no, Florence, Italy; (C.B.); (F.S.)
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, I-50019, Sesto F.no, Florence, Italy; (C.B.); (F.S.)
| |
Collapse
|
43
|
Graziani G, Docimo T, Palma MD, Sparvoli F, Izzo L, Tucci M, Ritieni A. Changes in Phenolics and Fatty Acids Composition and Related Gene Expression during the Development from Seed to Leaves of Three Cultivated Cardoon Genotypes. Antioxidants (Basel) 2020; 9:antiox9111096. [PMID: 33171628 PMCID: PMC7695130 DOI: 10.3390/antiox9111096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Cultivated cardoon (Cynara cardunculus var. altilis) has long been used as a food and medicine remedy and nowadays is considered a functional food. Its leaf bioactive compounds are mostly represented by chlorogenic acids and coumaroyl derivatives, known for their nutritional value and bioactivity. Having antioxidant and hepatoprotective properties, these molecules are used for medicinal purposes. Apart from the phenolic compounds in green tissues, cultivated cardoon is also used for the seed oil, having a composition suitable for the human diet, but also valuable as feedstock for the production of biofuel and biodegradable bioplastics. Given the wide spectrum of valuable cardoon molecules and their numerous industrial applications, a detailed characterization of different organs and tissues for their metabolic profiles as well as an extensive transcriptional analysis of associated key biosynthetic genes were performed to provide a deeper insight into metabolites biosynthesis and accumulation sites. This study aimed to provide a comprehensive analysis of the phenylpropanoids profile through UHPLC-Q-Orbitrap HRMS analysis, of fatty acids content through GC-MS analysis, along with quantitative transcriptional analyses by qRT-PCR of hydroxycinnamoyl-quinate transferase (HQT), stearic acid desaturase (SAD), and fatty acid desaturase (FAD) genes in seeds, hypocotyls, cotyledons and leaves of the cardoon genotypes “Spagnolo”, “Bianco Avorio”, and “Gigante”. Both oil yield and total phenols accumulation in all the tissues and organs indicated higher production in “Bianco Avorio” and “Spagnolo” than in “Gigante”. Antioxidant activity evaluation by DPPH, ABTS, and FRAP assays mirrored total phenols content. Overall, this study provides a detailed analysis of tissue composition of cardoon, enabling to elucidate value-added product accumulation and distribution during plant development and hence contributing to better address and optimize the sustainable use of this natural resource. Besides, our metabolic and transcriptional screening could be useful to guide the selection of superior genotypes.
Collapse
Affiliation(s)
- Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
- Correspondence: (G.G.); (M.T.)
| | - Teresa Docimo
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
| | - Monica De Palma
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
| | - Marina Tucci
- Institute of Bioscience and Bioresources, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; (T.D.); (M.D.P.)
- Correspondence: (G.G.); (M.T.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.I.); (A.R.)
- Unesco Chair for Health Education and Sustainable Development, 80131 Naples, Italy
| |
Collapse
|
44
|
Alderotti F, Brunetti C, Marino G, Centritto M, Ferrini F, Giordano C, Tattini M, Moura BB, Gori A. Coordination of Morpho-Physiological and Metabolic Traits of Cistus incanus L. to Overcome Heatwave-Associated Summer Drought: A Two-Year On-Site Field Study. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.576296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Aliyeva DR, Aydinli LM, Zulfugarov IS, Huseynova IM. Diurnal changes of the ascorbate-glutathione cycle components in wheat genotypes exposed to drought. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:998-1006. [PMID: 32564782 DOI: 10.1071/fp19375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/17/2020] [Indexed: 05/19/2023]
Abstract
The ascorbate-glutathione (AsA-GSH) cycle is a major pathway of H2O2 scavenging in plants. The effect of diurnal variations in hydrogen peroxide (H2O2) content, the intensity of lipid peroxidation (malondialdehyde, MDA), photosynthesis, antioxidants and antioxidative enzyme activities involved in AsA-GSH metabolism has been studied comparatively in leaves of durum (Triticum durum Desf.) and bread (Triticum aestivum L.) wheat genotypes exposed to soil drought. Drought stress caused an increase in the content of H2O2, MDA, alterations in the activities of AsA-GSH cycle enzymes and quantitative changes in AsA and GSH content during the day. PSII efficiency was significantly lower in the control and drought exposed leaves at the highest temperature in the afternoon. The ascorbate peroxidase activity was found to increase and ascorbic acid amount decreased with increasing temperature during the day. Further, the glutathione amount and glutathione reductase activity increased at the expense of the regeneration of the oxidised form of glutathione. Our results revealed that wheat can tolerate drought stress by enhancing the antioxidant enzyme activities and alteration of the concentration of ascorbate and glutathione.
Collapse
Affiliation(s)
- Durna R Aliyeva
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev Str., Baku AZ 1073, Azerbaijan
| | - Lala M Aydinli
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev Str., Baku AZ 1073, Azerbaijan
| | - Ismayil S Zulfugarov
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev Str., Baku AZ 1073, Azerbaijan; and Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan 46241, Korea; and Department of Biology, North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677-027, Republic of Sakha (Yakutia), Russian Federation
| | - Irada M Huseynova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev Str., Baku AZ 1073, Azerbaijan; and Corresponding author.
| |
Collapse
|
46
|
Röhlen-Schmittgen S, Ellenberger J, Groher T, Hunsche M. Boosting leaf contents of rutin and solanesol in bio-waste of Solanum lycopersicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:888-897. [PMID: 32905983 DOI: 10.1016/j.plaphy.2020.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 05/10/2023]
Abstract
In tomato production, the accruing green biomass shows promising potential as source of health-promoting compounds, such as rutin and solanesol, that are of high interest due to their medicinal properties. Naturally, they accumulate in plants growing in suboptimal growing conditions, e.g. influenced by biotic and abiotic stressors. With the aim to evaluate the potential use of tomato residues as source, we analyzed both leaf metabolites during a complete cultivation cycle, while applying single and combined stresses practically realized in greenhouse production. In the late season, contents of both metabolites were significantly enhanced by nutrient deficit in combination with 2 °C colder nights for 4 weeks and prolonged for in total 9 weeks. Particularly, higher solanesol contents were achieved by salt stress and elevated temperature after one week, even stronger when combined with drought. At harvest, stressed plants consist of less green biomass reducing the overall economic potential. However, practicable abiotic stresses should be considered as potential tool to induce the accumulation of beneficial compounds. Extracting profitable metabolites from the green biomass of the model crop tomato supports the overall goal to promote sustainable approaches in horticultural production.
Collapse
Affiliation(s)
| | - Jan Ellenberger
- INRES Horticultural Science, University of Bonn, Auf dem Huegel 6, 53121, Bonn, Germany
| | - Tanja Groher
- INRES Horticultural Science, University of Bonn, Auf dem Huegel 6, 53121, Bonn, Germany; Agroscope, Taenikon, 8356, Ettenhausen, Switzerland
| | - Mauricio Hunsche
- INRES Horticultural Science, University of Bonn, Auf dem Huegel 6, 53121, Bonn, Germany; COMPO EXPERT International GmbH, 48155, Muenster, Germany
| |
Collapse
|
47
|
Zhao Y, Wei X, Long Y, Ji X. Transcriptional analysis reveals sodium nitroprusside affects alfalfa in response to PEG-induced osmotic stress at germination stage. PROTOPLASMA 2020; 257:1345-1358. [PMID: 32556557 DOI: 10.1007/s00709-020-01508-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Drought is one of the most common environmental factors that affect alfalfa germination and development. Nitric oxide (NO) could mediate stress tolerance in plants. The goal of this study was to determine exogenous NO donor-mediated drought adaption molecular mechanisms during the alfalfa germination stage. In this study, physiological and transcriptome analyses were performed on 7 days of the growth period seedlings by sodium nitroprusside (SNP) and polyethylene glycol (PEG) treatment. The results showed that SNP supplementation alleviated malondialdehyde accumulation, increased levels of proline and soluble sugars, and enhanced antioxidant enzyme activity under osmotic stress conditions. RNA-Seq experiments identified 5828 genes exhibiting differential expression in seedlings treated with PEG, SNP, or SNP+PEG relative to seedlings treated with distilled water. Of these DEGs, 3235 were upregulated, and 2593 were downregulated relative to the controls. Fifteen DEGs were amplified by qRT-PCR to verify the changes in expression determined by RNA-Seq, revealing that PIF3, glnA, PLCG1, and RP-S11e exhibited enhanced expression under the SNP+PEG treatment. SNP was found to modulate redox homeostasis-related genes such as GSTs, SOD2, GPX, and RBOH, and triggered calcium signaling transduction. It also induced some key genes relating to the abscisic acid, ethylene, and auxin signaling transduction in response to PEG stress. Conversely, genes associated with secondary metabolite biosynthesis and the metabolism of starch and sucrose during osmotic stress were downregulated by SNP. These results provide new insights into SNP-mediated drought adaption mechanisms at transcriptome-wide in alfalfa and reveal key drought tolerance pathways in this species.
Collapse
Affiliation(s)
- Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China.
| | - Yu Long
- College of Business Administration, Kent State University, Kent, OH, USA
| | - Xiangzhuo Ji
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
48
|
Kumar V, Hatan E, Bar E, Davidovich-Rikanati R, Doron-Faigenboim A, Spitzer-Rimon B, Elad Y, Alkan N, Lewinsohn E, Oren-Shamir M. Phenylalanine increases chrysanthemum flower immunity against Botrytis cinerea attack. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:226-240. [PMID: 32645754 DOI: 10.1111/tpj.14919] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 05/28/2023]
Abstract
Flowers are the most vulnerable plant organ to infection by the necrotrophic fungus Botrytis cinerea. Here we show that pre-treatment of chrysanthemum (Chrysanthemum morifolium) flowers with phenylalanine (Phe) significantly reduces their susceptibility to B. cinerea. To comprehend how Phe treatment induces resistance, we monitored the dynamics of metabolites (by GC/LC-MS) and transcriptomes (by RNAseq) in flowers after Phe treatment and B. cinerea infection. Phe treatment resulted in accumulation of 3-phenyllactate and benzaldehyde, and in particular induced the expression of genes related to Ca2+ signaling and receptor kinases, implicating an induction of the defense response. Interestingly, the main effects of Phe treatment were observed in flowers exposed to B. cinerea infection, stabilizing the global fluctuations in the levels of metabolites and transcripts while reducing susceptibility to the fungus. We suggest that Phe-induced resistance is associated to cell priming, enabling rapid and targeted reprogramming of cellular defense responses to resist disease development. After Phe pre-treatment, the levels of the anti-fungal volatiles phenylacetaldehyde and eugenol were maintained and the level of coniferin, a plausible monolignol precursor in cell wall lignification, was strongly increased. In addition, Phe pre-treatment reduced ROS generation, prevented ethylene emission, and caused changes in the expression of a minor number of genes related to cell wall biogenesis, encoding the RLK THESEUS1, or involved in Ca2+ and hormonal signaling processes. Our findings point to Phe pre-treatment as a potential orchestrator of a broad-spectrum defense response which may not only provide an ecologically friendly pest control strategy but also offers a promising way of priming plants to induce defense responses against B. cinerea.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Erel Hatan
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Einat Bar
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel
| | - Rachel Davidovich-Rikanati
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Ben Spitzer-Rimon
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Agriculture Research Organization, Newe Ya'ar Research Center, Ramat Yishay, 30095, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion, P.O.B 15159, Israel
| |
Collapse
|
49
|
Xu S, Sardans J, Zhang J, Peñuelas J. Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies. Sci Rep 2020; 10:12156. [PMID: 32699217 PMCID: PMC7376191 DOI: 10.1038/s41598-020-68487-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/20/2020] [Indexed: 12/01/2022] Open
Abstract
Foliar-level stoichiometry plays an important role in ecosystem elemental cycling. Shifts in foliar ratios of carbon to nitrogen (C:N) and nitrogen to phosphorus (N:P) in response to global change can therefore have a large impact upon ecosystem function. We conducted a meta-analysis with 2,236 paired observations from 123 published studies to investigate the responses of foliar C:N and N:P ratios to experimental global change treatments, i.e. warming, increased precipitation, drought, N addition and elevated carbon dioxide concentration (eCO2), in field conditions. Foliar C:N and N:P ratios were neither affected by warming nor by increased precipitation. Foliar C:N ratio increased with drought and eCO2, and decreased with N addition. Foliar N:P ratios declined with eCO2, and increased under drought and N addition. Our results suggested the responses of the C:N ratio to global change were mainly related to shifts in foliar [N], whereas changes in the N:P ratio were related to the responses of both [N] and [P]. Moreover, the response magnitude of foliar N:P ratio decreased with treatment duration under increased precipitation, N addition and eCO2. Our findings are important for our understanding of plant nutrient dynamic and modeling of nutrient biogeochemistry under global change.
Collapse
Affiliation(s)
- Shan Xu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, 510650, China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913, Bellaterra, Catalonia, Spain
- CREAF, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Jinlong Zhang
- Flora Conservation Department, Kadoorie Farm and Botanic Garden, Tai Po, New Territories, Hong Kong SAR, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913, Bellaterra, Catalonia, Spain
- CREAF, 08913, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
50
|
Geng D, Shen X, Xie Y, Yang Y, Bian R, Gao Y, Li P, Sun L, Feng H, Ma F, Guan Q. Regulation of phenylpropanoid biosynthesis by MdMYB88 and MdMYB124 contributes to pathogen and drought resistance in apple. HORTICULTURE RESEARCH 2020; 7:102. [PMID: 32637130 PMCID: PMC7327078 DOI: 10.1038/s41438-020-0324-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/16/2020] [Indexed: 05/12/2023]
Abstract
MdMYB88 and MdMYB124 have been demonstrated to be responsible for lignin accumulation in apple under drought stress. In this study, using a metabolomic approach, we identified differentially accumulated phenylpropanoid and flavonoid metabolites in MdMYB88/124 transgenic RNAi plants under control and long-term drought stress conditions in apple roots. We confirmed the regulation of phenylalanine by MdMYB88 and MdMYB124 via UPLC-MS in apple roots under both control and drought conditions. Using Electrophoretic Mobility Shift Assay (EMSA) and ChIP-quantitative PCR (qPCR) analyses, we found that MdMYB88 positively regulates the MdCM2 gene, which is responsible for phenylalanine biosynthesis, through binding to its promoter region. Under long-term drought conditions, MdMYB88/124 RNAi plants consistently accumulated increased amounts of H2O2 and MDA, while MdMYB88 and MdMYB124 overexpression plants accumulated decreased amounts of H2O2 and MDA. We also examined the accumulation of metabolites in the phenylpropanoid biosynthesis pathway in the leaves of MdMYB88 and MdMYB124 transgenic apple plants after long-term drought stress. We found that metabolites responsible for plant defense, including phenylpropanoids and flavonoids, accumulated less in the RNAi plants but more in the overexpression plants under both control and drought conditions. We further demonstrated that MdMYB88/124 RNAi plants were more sensitive to Alternaria alternata f. sp. mali and Valsa mali, two pathogens that currently severely threaten apple production. In contrast, MdMYB88 and MdMYB124 overexpression plants were more tolerant to these pathogens. The cumulative results of this study provided evidence for secondary metabolite regulation by MdMYB88 and MdMYB124, further explained the molecular roles of MdMYB88 and MdMYB124 in drought resistance, and provided information concerning molecular aspects of their roles in disease resistance.
Collapse
Affiliation(s)
- Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yusen Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|