1
|
Serrie M, Segura V, Blanc A, Brun L, Dlalah N, Gilles F, Heurtevin L, Le Pans M, Signoret V, Viret S, Audergon JM, Quilot B, Roth M. Multi-environment GWAS uncovers markers associated to biotic stress response and genotype-by-environment interactions in stone fruit trees. HORTICULTURE RESEARCH 2025; 12:uhaf088. [PMID: 40352285 PMCID: PMC12064953 DOI: 10.1093/hr/uhaf088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/10/2025] [Indexed: 05/14/2025]
Abstract
While breeding for improved immunity is essential to achieve sustainable fruit production, it also requires to account for genotype-by-environment interactions (G × E), which still represent a major challenge. To tackle this issue, we conducted a comprehensive study to identify genetic markers with main and environment-specific effects on pest and disease response in peach (Prunus persica) and apricot (Prunus armeniaca). Leveraging multienvironment trials (MET), we assessed the genetic architecture of resistance and tolerance to seven major pests and diseases through visual scoring of symptoms in naturally infected core collections, repeated within and between years and sites. We applied a series of genome-wide association models (GWAS) to both maximum of symptom severity and kinetic disease progression. These analyses lead to the identification of environment-shared quantitative trait loci (QTLs), environment-specific QTLs, and interactive QTLs with antagonist or differential effects across environments. We mapped 60 high-confidence QTLs encompassing a total of 87 candidate genes involved in both basal and host-specific responses, mostly consisting of the Leucine-Rich Repeat Containing Receptors (LRR-CRs) gene family. The most promising disease resistance candidate genes were found for peach leaf curl on LG4 and for apricot and peach rust on LG2 and LG4. These findings underscore the critical role of G × E in shaping the phenotypic response to biotic pressure, especially for blossom blight. Last, models including dominance effects revealed 123 specific QTLs, emphasizing the significance of non-additive genetic effects, therefore warranting further investigation. These insights will support the development of marker-assisted selection to improve the immunity of Prunus varieties in diverse environmental conditions.
Collapse
Affiliation(s)
| | - Vincent Segura
- AGAP Institut, CIRAD, INRAE, Institut Agro, Université Montpellier, 34000 Montpellier, France
- Geno-Vigne®, IFV, INRAE, Institut Agro, 34000 Montpellier, France
| | | | - Laurent Brun
- INRAE, UERI Gotheron, 26320 Saint-Marcel-Lès-Valence, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zadokar A, Sharma P, Sharma R. Comprehensive insights on association mapping in perennial fruit crops breeding - Its implications, current status and future perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112281. [PMID: 39426735 DOI: 10.1016/j.plantsci.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In order to provide food and nutritional security for the world's rapidly expanding population, fruit crop researchers have identified two critical priorities: increasing production and preserving fruit quality during the pre- and post-harvest periods. The genetic basis of these complex, commercially important fruit traits which are uniquely regulated by polygenes or multi-allelic genes that interact with one another and the environment can be analyzed with the aid of trait mapping tools. The most interesting trait mapping approach that offers the genetic level investigation for marker-trait associations (MTAs) for these complex fruit traits, without the development of mapping population, is association mapping. This approach was used during the genetic improvement program, emphasizing the obstacles (breeding strategies adopted, generation interval, and their genomic status) pertaining to perennial fruit crops. This method of studying population diversity and linkage disequilibrium in perennial fruit crops has been made possible by recent developments in genotyping, phenotyping, and statistical analysis. Thus, the purpose of this review is to provide an overview of different trait mapping techniques, with a focus on association mapping (method, essential components, viability, constraints, and future perspective) and its advantages, disadvantages, and possibilities for breeding perennial fruit crops.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173 230, India.
| |
Collapse
|
3
|
Tricon D, Faivre d'Arcier J, Eyquard JP, Liu S, Decroocq S, Chague A, Liu W, Balakishiyeva G, Mammadov A, Turdiev T, Kostritsyna T, Asma BM, Akparov Z, Decroocq V. Allele mining of eukaryotic translation initiation factor genes in Prunus for the identification of new sources of resistance to sharka. Sci Rep 2023; 13:15247. [PMID: 37709842 PMCID: PMC10502034 DOI: 10.1038/s41598-023-42215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Members of the eukaryotic translation initiation complex are co-opted in viral infection, leading to susceptibility in many crop species, including stone fruit trees (Prunus spp.). Therefore, modification of one of those eukaryotic translation initiation factors or changes in their gene expression may result in resistance. We searched the crop and wild Prunus germplasm from the Armeniaca and Amygdalus taxonomic sections for allelic variants in the eIF4E and eIFiso4E genes, to identify alleles potentially linked to resistance to Plum pox virus (PPV). Over one thousand stone fruit accessions (1397) were screened for variation in eIF4E and eIFiso4E transcript sequences which are in single copy within the diploid Prunus genome. We identified new alleles for both genes differing from haplotypes associated with PPV susceptible accessions. Overall, analyses showed that eIFiso4E is genetically more constrained since it displayed less polymorphism than eIF4E. We also demonstrated more variations at both loci in the related wild species than in crop species. As the eIFiso4E translation initiation factor was identified as indispensable for PPV infection, a selection of ten different eIFiso4E haplotypes along 13 accessions were tested by infection with PPV and eight of them displayed a range of reduced susceptibility to resistance, indicating new potential sources of resistance to sharka.
Collapse
Affiliation(s)
- David Tricon
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
- INRAE Unité de Recherches 1052 GAFL, 67 allee des Chênes, 84143, Montfavet, France
| | - Julie Faivre d'Arcier
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
- INRAE Unité Expérimentale Domaine des Jarres, 33210, Toulenne, France
| | - Jean-Philippe Eyquard
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Shuo Liu
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou, 115009, Liaoning, China
| | - Stéphane Decroocq
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Aurélie Chague
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Weisheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou, 115009, Liaoning, China
| | - Gulnara Balakishiyeva
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education, 11 Izzat Nabiev Str., 1073, Baku, Azerbaijan
| | - Alamdar Mammadov
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education, 11 Izzat Nabiev Str., 1073, Baku, Azerbaijan
| | - Timur Turdiev
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040, Almaty, Kazakhstan
| | - Tatiana Kostritsyna
- International Higher School of Medicine, 1F Intergelpo Street, 720054, Bishkek, Kyrgyzstan
| | - Bayram M Asma
- Department of Horticulture, Malatya Turgut Ozal University, Malatya, 44210, Turkey
| | - Zeynal Akparov
- Genetic Resources Institute of ANAS, Azadlig Ave. 155, 1106, Baku, Azerbaijan
| | - Véronique Decroocq
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.
| |
Collapse
|
4
|
Demirjian C, Vailleau F, Berthomé R, Roux F. Genome-wide association studies in plant pathosystems: success or failure? TRENDS IN PLANT SCIENCE 2023; 28:471-485. [PMID: 36522258 DOI: 10.1016/j.tplants.2022.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Harnessing natural genetic variation is an established alternative to artificial genetic variation for investigating the molecular dialog between partners in plant pathosystems. Herein, we review the successes of genome-wide association studies (GWAS) in both plants and pathogens. While GWAS in plants confirmed that the genetic architecture of disease resistance is polygenic, dynamic during the infection kinetics, and dependent on the environment, GWAS shortened the time of identification of quantitative trait loci (QTLs) and revealed both complex epistatic networks and a genetic architecture dependent upon the geographical scale. A similar picture emerges from the few GWAS in pathogens. In addition, the ever-increasing number of functionally validated QTLs has revealed new molecular plant defense mechanisms and pathogenicity determinants. Finally, we propose recommendations to better decode the disease triangle.
Collapse
Affiliation(s)
- Choghag Demirjian
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabienne Vailleau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| |
Collapse
|
5
|
Baccichet I, Chiozzotto R, Scaglione D, Bassi D, Rossini L, Cirilli M. Genetic dissection of fruit maturity date in apricot (P. armeniaca L.) through a Single Primer Enrichment Technology (SPET) approach. BMC Genomics 2022; 23:712. [PMID: 36258163 PMCID: PMC9580121 DOI: 10.1186/s12864-022-08901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Single primer enrichment technology (SPET) is an emerging and increasingly popular solution for high-throughput targeted genotyping in plants. Although SPET requires a priori identification of polymorphisms for probe design, this technology has potentially higher reproducibility and transferability compared to other reduced representation sequencing (RRS) approaches, also enabling the discovery of closely linked polymorphisms surrounding the target one. Results The potential for SPET application in fruit trees was evaluated by developing a 25K target SNPs assay to genotype a panel of apricot accessions and progenies. A total of 32,492 polymorphic sites were genotyped in 128 accessions (including 8,188 accessory non-target SNPs) with extremely low levels of missing data and a significant correlation of allelic frequencies compared to whole-genome sequencing data used for array design. Assay performance was further validated by estimating genotyping errors in two biparental progenies, resulting in an overall 1.8% rate. SPET genotyping data were used to infer population structure and to dissect the architecture of fruit maturity date (MD), a quantitative reproductive phenological trait of great agronomical interest in apricot species. Depending on the year, GWAS revealed loci associated to MD on several chromosomes. The QTLs on chromosomes 1 and 4 (the latter explaining most of the phenotypic variability in the panel) were the most consistent over years and were further confirmed by linkage mapping in two segregating progenies. Conclusions Besides the utility for marker assisted selection and for paving the way to in-depth studies to clarify the molecular bases of MD trait variation in apricot, the results provide an overview of the performance and reliability of SPET for fruit tree genetics. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08901-1.
Collapse
Affiliation(s)
| | | | | | - Daniele Bassi
- Università degli Studi di Milan - DiSAA, Milano, Italy
| | - Laura Rossini
- Università degli Studi di Milan - DiSAA, Milano, Italy.
| | - Marco Cirilli
- Università degli Studi di Milan - DiSAA, Milano, Italy.
| |
Collapse
|
6
|
Zahid G, Aka Kaçar Y, Dönmez D, Küden A, Giordani T. Perspectives and recent progress of genome-wide association studies (GWAS) in fruits. Mol Biol Rep 2022; 49:5341-5352. [PMID: 35064403 DOI: 10.1007/s11033-021-07055-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Earlier next-generation sequencing technologies are being vastly used to explore, administer, and investigate the gene space with accurate profiling of nucleotide variations in the germplasm. OVERVIEW AND PROGRESS: Recently, novel advancements in high-throughput sequencing technologies allow a genotyping-by-sequencing approach that has opened up new horizons for extensive genotyping exploiting single-nucleotide-polymorphisms (SNPs). This method acts as a bridge to support and minimize a genotype to phenotype gap allowing genetic selection at the genome-wide level, named genomic selection that could facilitate the selection of traits also in the pomology sector. In addition to this, genome-wide genotyping is a prerequisite for genome-wide association studies that have been used successfully to discover the genes, which control polygenic traits including the genetic loci, associated with the trait of interest in fruit crops. AIMS AND PROSPECTS This review article emphasizes the role of genome-wide approaches to unlock and explore the genetic potential along with the detection of SNPs affecting the phenotype of fruit crops and highlights the prospects of genome-wide association studies in fruits.
Collapse
Affiliation(s)
- Ghassan Zahid
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey.
| | - Yıldız Aka Kaçar
- Department of Horticulture, Faculty of Agriculture, Çukurova University, 01330, Adana, Turkey
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, 01330, Adana, Turkey
| | - Ayzin Küden
- Department of Horticulture, Faculty of Agriculture, Çukurova University, 01330, Adana, Turkey
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| |
Collapse
|
7
|
Development of Novel Markers for Yield in Hevea brasiliensis Muell. Arg. Based on Candidate Genes from Biosynthetic Pathways Associated with Latex Production. Biochem Genet 2022; 60:2171-2199. [PMID: 35296963 DOI: 10.1007/s10528-022-10211-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/24/2022] [Indexed: 12/22/2022]
Abstract
Scarcity of functional genetic markers associated with candidate genes (CGs) is a serious constraint for marker-assisted selection in the natural rubber producing tree, Hevea brasiliensis. In order to develop markers associated with rubber yield, five CGs involved in latex biosynthesis were characterized from 16 popular Hevea varieties. Novel SNPs and indels were identified and developed into markers using simple genotyping techniques like allele-specific PCR, CAPS, etc. A progeny population was genotyped using these markers to validate them, to understand their segregation pattern and to map them to a genetic linkage map. Parent-specific maps were constructed using pseudo-test cross strategy with the help of additional markers. The sequence structure information generated will be useful for future studies on gene mapping, functional relevance of coding SNPs and evolution of rubber biosynthesis genes in Hevea. Concurrently, the markers developed may serve as powerful tools for yield-based selection and for genetic diversity and pedigree studies in Hevea. Above all, the marker assays designed for genotyping could be economically carried out in any laboratory having basic molecular biology infrastructure and expertise.
Collapse
|
8
|
Xu W, Bao W, Liu H, Chen C, Bai H, Huang M, Zhu G, Zhao H, Gou N, Chen Y, Wang L, Wuyun TN. Insights Into the Molecular Mechanisms of Late Flowering in Prunus sibirica by Whole-Genome and Transcriptome Analyses. FRONTIERS IN PLANT SCIENCE 2022; 12:802827. [PMID: 35145534 PMCID: PMC8821173 DOI: 10.3389/fpls.2021.802827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Freezing during the flowering of Prunus sibirica is detrimental to fruit production. The late flowering (LF) type, which is delayed by 7-15 days compared with the normal flowering (NF) type, avoids damages at low temperature, but the molecular mechanism of LF remains unclear. Therefore, this study was conducted to comprehensively characterize floral bud differentiation. A histological analysis showed that initial floral bud differentiation was delayed in the LF type compared to the NF type. Genome-wide associated studies (GWAS) showed that a candidate gene (PaF106G0600023738.01) was significantly associated with LF type. It was identified as trehalose-6-phosphate phosphatase (PsTPPF), which is involved in trehalose-6-phosphate (Tre6P) signaling pathway and acts on floral transition. A whole-transcriptome RNA sequencing analysis was conducted, and a total of 6,110 differential expression (DE) mRNAs, 1,351 DE lncRNAs, and 148 DE miRNAs were identified. In addition, 24 DE mRNAs related with floral transition were predicted, and these involved the following: three interactions between DE lncRNAs and DE mRNAs of photoperiod pathway with two mRNAs (COP1, PaF106G0400018289.01 and CO3, MXLOC_025744) and three lncRNAs (CCLR, LTCONS_00031803, COCLR1, LTCONS_00046726, and COCLR2, LTCONS_00046731); one interaction between DE miRNAs and DE mRNAs with one mRNA, encoding trehalose-6-phosphate synthase (PsTPS1, PaF106G0100001132.01), and one miRNA (miRNA167h). Combined with the expression profiles and Tre6P levels, functions of PsTPPF and PsTPS1 in Tre6P regulation were considered to be associated with flowering time. A new network of ceRNAs correlated with LF was constructed, and it consisted of one mRNA (PsTPS1), one lncRNA (TCLR, LTCONS_00034157), and one miRNA (miR167h). This study provided insight into the molecular regulatory mechanism of LF in Prunus sibirica.
Collapse
Affiliation(s)
- Wanyu Xu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Wenquan Bao
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China
| | - Huimin Liu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Haikun Bai
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Mengzhen Huang
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Gaopu Zhu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Han Zhao
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Ningning Gou
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Yixiao Chen
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Ta-Na Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| |
Collapse
|
9
|
Li J, Zhang M, Li X, Khan A, Kumar S, Allan AC, Lin-Wang K, Espley RV, Wang C, Wang R, Xue C, Yao G, Qin M, Sun M, Tegtmeier R, Liu H, Wei W, Ming M, Zhang S, Zhao K, Song B, Ni J, An J, Korban SS, Wu J. Pear genetics: Recent advances, new prospects, and a roadmap for the future. HORTICULTURE RESEARCH 2022; 9:uhab040. [PMID: 35031796 PMCID: PMC8778596 DOI: 10.1093/hr/uhab040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Pear, belonging to the genus Pyrus, is one of the most economically important temperate fruit crops. Pyrus is an important genus of the Rosaceae family, subfamily Maloideae, and has at least 22 different species with over 5000 accessions maintained or identified worldwide. With the release of draft whole-genome sequences for Pyrus, opportunities for pursuing studies on the evolution, domestication, and molecular breeding of pear, as well as for conducting comparative genomics analyses within the Rosaceae family, have been greatly expanded. In this review, we highlight key advances in pear genetics, genomics, and breeding driven by the availability of whole-genome sequences, including whole-genome resequencing efforts, pear domestication, and evolution. We cover updates on new resources for undertaking gene identification and molecular breeding, as well as for pursuing functional validation of genes associated with desirable economic traits. We also explore future directions for "pear-omics".
Collapse
Affiliation(s)
- Jiaming Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Awais Khan
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Satish Kumar
- Hawke’s Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Andrew Charles Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Richard Victor Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Mengfan Qin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Manyi Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Tegtmeier
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Hainan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weilin Wei
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Ming
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kejiao Zhao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangping Ni
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Schuyler S Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Lin Y, Wang Q, Chen H, Yan N, Wu F, Wang Z, Li C, Liu Y. Genome-wide association mapping of Fusarium crown rot resistance in Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2022; 13:998622. [PMID: 36247594 PMCID: PMC9562832 DOI: 10.3389/fpls.2022.998622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 05/13/2023]
Abstract
Fusarium crown rot (FCR), caused by various Fusarium species, is a primary fungal disease in most wheat-growing regions worldwide. A. tauschii, the diploid wild progenitor of the D-genome of common wheat, is a reservoir of genetic diversity for improving bread wheat biotic and abiotic resistance/tolerance. A worldwide collection of 286 A. tauschii accessions was used to evaluate FCR resistance. Population structure analysis revealed that 115 belonged to the A. tauschii ssp. strangulata subspecies, and 171 belonged to the A. tauschii ssp. tauschii subspecies. Five accessions with disease index values lower than 20 showed moderate resistance to FCR. These five originated from Afghanistan, China, Iran, Uzbekistan, and Turkey, all belonging to the tauschii subspecies. Genome-wide association mapping using 6,739 single nucleotide polymorphisms (SNPs) revealed that two SNPs on chromosome 2D and four SNPs on chromosome 7D were significantly associated with FCR resistance. Almost all FCR resistance alleles were presented in accessions from the tauschii subspecies, and only 4, 11, and 19 resistance alleles were presented in accessions from the strangulata subspecies. Combining phenotypic correlation analysis and genome-wide association mapping confirmed that FCR resistance loci were independent of flowering time, heading date, and plant height in this association panel. Six genes encoding disease resistance-related proteins were selected as candidates for further validation. The identified resistant A. tauschii accessions will provide robust resistance gene sources for breeding FCR-resistant cultivars. The associated loci/genes will accelerate and improve FCR in breeding programs by deploying marker-assisted selection.
Collapse
Affiliation(s)
- Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ning Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangkun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yaxi Liu, ;
| |
Collapse
|
11
|
Jiang X, Zhang W, Fernie AR, Wen W. Combining novel technologies with interdisciplinary basic research to enhance horticultural crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:35-46. [PMID: 34699639 DOI: 10.1111/tpj.15553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Horticultural crops mainly include fruits, vegetables, ornamental trees and flowers, and tea trees (Melaleuca alternifolia). They produce a variety of nutrients for the daily human diet in addition to the nutrition provided by staple crops, and some of them additionally possess ornamental and medicinal features. As such, horticultural crops make unique and important contributions to both food security and a colorful lifestyle. Under the current climate change scenario, the growing population and limited arable land means that agriculture, and especially horticulture, has been facing unprecedented challenges to meet the diverse demands of human daily life. Breeding horticultural crops with high quality and adaptability and establishing an effective system that combines cultivation, post-harvest handling, and sales becomes increasingly imperative for horticultural production. This review discusses characteristic and recent research highlights in horticultural crops, focusing on the breeding of quality traits and the mechanisms that underpin them. It additionally addresses challenges and potential solutions in horticultural production and post-harvest practices. Finally, we provide a prospective as to how emerging technologies can be implemented alongside interdisciplinary basic research to enhance our understanding and exploitation of horticultural crops.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Provincial Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
12
|
Monnot S, Desaint H, Mary-Huard T, Moreau L, Schurdi-Levraud V, Boissot N. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells 2021; 10:3080. [PMID: 34831303 PMCID: PMC8625838 DOI: 10.3390/cells10113080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
Growing virus resistant varieties is a highly effective means to avoid yield loss due to infection by many types of virus. The challenge is to be able to detect resistance donors within plant species diversity and then quickly introduce alleles conferring resistance into elite genetic backgrounds. Until now, mainly monogenic forms of resistance with major effects have been introduced in crops. Polygenic resistance is harder to map and introduce in susceptible genetic backgrounds, but it is likely more durable. Genome wide association studies (GWAS) offer an opportunity to accelerate mapping of both monogenic and polygenic resistance, but have seldom been implemented and described in the plant-virus interaction context. Yet, all of the 48 plant-virus GWAS published so far have successfully mapped QTLs involved in plant virus resistance. In this review, we analyzed general and specific GWAS issues regarding plant virus resistance. We have identified and described several key steps throughout the GWAS pipeline, from diversity panel assembly to GWAS result analyses. Based on the 48 published articles, we analyzed the impact of each key step on the GWAS power and showcase several GWAS methods tailored to all types of viruses.
Collapse
Affiliation(s)
- Severine Monnot
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143 Montfavet, France
- Bayer Crop Science, Chemin de Roque Martine, 13670 Saint-Andiol, France
| | - Henri Desaint
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143 Montfavet, France
| | - Tristan Mary-Huard
- INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, Ferme du Moulon, 91190 Gif-sur-Yvette, France
- Mathématiques et Informatique Appliquées (MIA)-Paris, INRAE, AgroParisTech, Université Paris-Saclay, 75231 Paris, France
| | - Laurence Moreau
- INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | | | - Nathalie Boissot
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143 Montfavet, France
| |
Collapse
|
13
|
Ferik F, Ates D, Ercisli S, Erdogan A, Orhan E, Tanyolac MB. Genome-wide association links candidate genes to fruit firmness, fruit flesh color, flowering time, and soluble solid content in apricot (Prunus armeniaca L.). Mol Biol Rep 2021; 49:5283-5291. [PMID: 34741707 DOI: 10.1007/s11033-021-06856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Apricots originated from China, Central Asia and the Near East and arrived in Anatolia, and particularly in their second homeland of Malatya province in Turkey. Apricots are outstanding summer fruits, with their beautiful attractive color, delicious sweet taste, aroma and high vitamin and mineral content. METHODS AND RESULTS In the current study, a total of 259 apricots genotypes from different geographical origins in Turkey were used. Significant variations were detected in fruit firmness (FF), fruit flesh color (FFC), flowering time (FT), and soluble solid content (SSC). A total of 11,532 SNPs based on DArT were developed and used in the analyses of population structure and association mapping (AM). According to the STRUCTURE (v.2.2) analysis, the apricot genotypes were divided into three groups. The mixed linear model with Q and K matrixes were used to detect the associations between the SNPs and four traits. A total of 131 SNPs were associated with FF, FFC and SSC. No SNP marker was detected associated with FT. CONCLUSION The results demonstrated that AM had high potential of revealing the markers associated with economically important traits in apricot. The SNPs identified in the study can be used in future breeding programs for marker-assisted selection in apricot.
Collapse
Affiliation(s)
- Filiz Ferik
- Engineering Faculty, Department of Bioengineering, Ege University, Bornova, 35040, Izmir, Turkey
| | - Duygu Ates
- Engineering Faculty, Department of Bioengineering, Ege University, Bornova, 35040, Izmir, Turkey
| | - Sezai Ercisli
- Agriculture Faculty, Department of Horticulture, Ataturk University, Yakutiye, 25030, Erzurum, Turkey
| | - Abdullah Erdogan
- Institute for Apricot Research of Malatya, 44090, Malatya, Turkey
| | - Emine Orhan
- Agriculture Faculty, Department of Horticulture, Ataturk University, Yakutiye, 25030, Erzurum, Turkey
| | | |
Collapse
|
14
|
Chen P, Li Z, Zhang D, Shen W, Xie Y, Zhang J, Jiang L, Li X, Shen X, Geng D, Wang L, Niu C, Bao C, Yan M, Li H, Li C, Yan Y, Zou Y, Micheletti D, Koot E, Ma F, Guan Q. Insights into the effect of human civilization on Malus evolution and domestication. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2206-2220. [PMID: 34161653 PMCID: PMC8541786 DOI: 10.1111/pbi.13648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 05/09/2023]
Abstract
The evolutionary history of the Malus genus has not been well studied. In the current study, we presented genetic evidence on the origin of the Malus genus based on genome sequencing of 297 Malus accessions, revealing the genetic relationship between wild species and cultivated apples. Our results demonstrated that North American and East Asian wild species are closer to the outgroup (pear) than Central Asian species, and hybrid species including natural (separated before the Pleistocene, about 2.5 Mya) and artificial hybrids (including ornamental trees and rootstocks) are between East and Central Asian wild species. Introgressions from M. sylvestris in cultivated apples appeared to be more extensive than those from M. sieversii, whose genetic background flowed westward across Eurasia and eastward to wild species including M. prunifolia, M. × asiatica, M. × micromalus, and M. × robust. Our results suggested that the loss of ancestral gene flow from M. sieversii in cultivated apples accompanied the movement of European traders around the world since the Age of Discovery. Natural SNP variations showed that cultivated apples had higher nucleotide diversity than wild species and more unique SNPs than other apple groups. An apple ERECTA-like gene that underwent selection during domestication on 15th chromosome was identified as a likely major determinant of fruit length and diameter, and an NB-ARC domain-containing gene was found to strongly affect anthocyanin accumulation using a genome-wide association approach. Our results provide new insights into the origin and domestication of apples and will be useful in new breeding programmes and efforts to increase fruit crop productivity.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jing Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Liping Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Haiyan Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yan Yan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | | | - Emily Koot
- The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
15
|
Groppi A, Liu S, Cornille A, Decroocq S, Bui QT, Tricon D, Cruaud C, Arribat S, Belser C, Marande W, Salse J, Huneau C, Rodde N, Rhalloussi W, Cauet S, Istace B, Denis E, Carrère S, Audergon JM, Roch G, Lambert P, Zhebentyayeva T, Liu WS, Bouchez O, Lopez-Roques C, Serre RF, Debuchy R, Tran J, Wincker P, Chen X, Pétriacq P, Barre A, Nikolski M, Aury JM, Abbott AG, Giraud T, Decroocq V. Population genomics of apricots unravels domestication history and adaptive events. Nat Commun 2021; 12:3956. [PMID: 34172741 PMCID: PMC8233370 DOI: 10.1038/s41467-021-24283-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot genomes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots. Our study provides clues to the biology of selected traits and targets for fruit tree research and breeding.
Collapse
Affiliation(s)
- Alexis Groppi
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Shuo Liu
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Stéphane Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Quynh Trang Bui
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - David Tricon
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sandrine Arribat
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - William Marande
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Jérôme Salse
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Cécile Huneau
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Nathalie Rodde
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Wassim Rhalloussi
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Stéphane Cauet
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Benjamin Istace
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Erwan Denis
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Jean-Marc Audergon
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Guillaume Roch
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
- CEP INNOVATION, 23 Rue Jean Baldassini, Lyon, 69364, Cedex 07, France
| | - Patrick Lambert
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Tetyana Zhebentyayeva
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Wei-Sheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | | | - Rémy-Félix Serre
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Joseph Tran
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, Villenave d'Ornon, 33882, France
| | - Patrick Wincker
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Xilong Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Aurélien Barre
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
| | - Macha Nikolski
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Albert Glenn Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, USA
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay AgroParisTech, Orsay, 91400, France.
| | - Véronique Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France.
| |
Collapse
|
16
|
Zhuo X, Zheng T, Li S, Zhang Z, Zhang M, Zhang Y, Ahmad S, Sun L, Wang J, Cheng T, Zhang Q. Identification of the PmWEEP locus controlling weeping traits in Prunus mume through an integrated genome-wide association study and quantitative trait locus mapping. HORTICULTURE RESEARCH 2021; 8:131. [PMID: 34059642 PMCID: PMC8167129 DOI: 10.1038/s41438-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Weeping Prunus mume (mei) has long been cultivated in East Asia for its specific ornamental value. However, little is known about the regulatory mechanism of the weeping trait in mei, which limits molecular breeding for the improvement of weeping-type cultivars. Here, we quantified the weeping trait in mei using nested phenotyping of 214 accessions and 342 F1 hybrids. Two major associated loci were identified from the genome-wide association study (GWAS), which was conducted using 3,014,409 single nucleotide polymorphisms (SNPs) derived from resequencing, and 8 QTLs and 55 epistatic loci were identified from QTL mapping using 7,545 specific lengths amplified fragment (SLAF) markers. Notably, an overlapping PmWEEP major QTL was fine mapped within a 0.29 Mb region on chromosome 7 (Pa7), and a core SNP locus closely associated with the weeping trait was screened and validated. Furthermore, a total of 22 genes in the PmWEEP QTL region were expressed in weeping or upright mei based on RNA-seq analysis. Among them, only a novel gene (Pm024213) containing a thioredoxin (Trx) domain was found to be close to the core SNP and specifically expressed in buds and branches of weeping mei. Co-expression analysis of Pm024213 showed that most of the related genes were involved in auxin and lignin biosynthesis. These findings provide insights into the regulatory mechanism of the weeping trait and effective molecular markers for molecular-assisted breeding in Prunus mume.
Collapse
Affiliation(s)
- Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| | - Suzhen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Zhiyong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Yichi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Lidan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
17
|
Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. PLANTS 2021; 10:plants10020415. [PMID: 33672381 PMCID: PMC7926561 DOI: 10.3390/plants10020415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Several recent national and international projects have focused on large-scale genotyping of plant genetic resources in vegetatively propagated crops like fruit and berries, potatoes and woody ornamentals. The primary goal is usually to identify true-to-type plant material, detect possible synonyms, and investigate genetic diversity and relatedness among accessions. A secondary goal may be to create sustainable databases that can be utilized in research and breeding for several years ahead. Commonly applied DNA markers (like microsatellite DNA and SNPs) and next-generation sequencing each have their pros and cons for these purposes. Methods for large-scale phenotyping have lagged behind, which is unfortunate since many commercially important traits (yield, growth habit, storability, and disease resistance) are difficult to score. Nevertheless, the analysis of gene action and development of robust DNA markers depends on environmentally controlled screening of very large sets of plant material. Although more time-consuming, co-operative projects with broad-scale data collection are likely to produce more reliable results. In this review, we will describe some of the approaches taken in genotyping and/or phenotyping projects concerning a wide variety of vegetatively propagated crops.
Collapse
|
18
|
Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nat Commun 2021; 12:1144. [PMID: 33602909 PMCID: PMC7892570 DOI: 10.1038/s41467-021-21378-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Pear is a major fruit tree crop distributed worldwide, yet its breeding is a very time-consuming process. To facilitate molecular breeding and gene identification, here we have performed genome-wide association studies (GWAS) on eleven fruit traits. We identify 37 loci associated with eight fruit quality traits and five loci associated with three fruit phenological traits. Scans for selective sweeps indicate that traits including fruit stone cell content, organic acid and sugar contents might have been under continuous selection during breeding improvement. One candidate gene, PbrSTONE, identified in GWAS, has been functionally verified to be involved in the regulation of stone cell formation, one of the most important fruit quality traits in pear. Our study provides insights into the complex fruit related biology and identifies genes controlling important traits in pear through GWAS, which extends the genetic resources and basis for facilitating molecular breeding in perennial trees.
Collapse
|
19
|
Numaguchi K, Akagi T, Kitamura Y, Ishikawa R, Ishii T. Interspecific introgression and natural selection in the evolution of Japanese apricot (Prunus mume). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1551-1567. [PMID: 33048374 DOI: 10.1111/tpj.15020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Domestication and population differentiation in crops involve considerable phenotypic changes. The logs of these evolutionary paths, including natural/artificial selection, can be found in the genomes of the current populations. However, these profiles have been little studied in tree crops, which have specific characters, such as long generation time and clonal propagation, maintaining high levels of heterozygosity. We conducted exon-targeted resequencing of 129 genomes in the genus Prunus, mainly Japanese apricot (Prunus mume), and apricot (Prunus armeniaca), plum (Prunus salicina), and peach (Prunus persica). Based on their genome-wide single-nucleotide polymorphisms merged with published resequencing data of 79 Chinese P. mume cultivars, we inferred complete and ongoing population differentiation in P. mume. Sliding window characterization of the indexes for genetic differentiation identified interspecific fragment introgressions between P. mume and related species (plum and apricot). These regions often exhibited strong selective sweeps formed in the paths of establishment or formation of substructures of P. mume, suggesting that P. mume has frequently imported advantageous genes from other species in the subgenus Prunus as adaptive evolution. These findings shed light on the complicated nature of adaptive evolution in a tree crop that has undergone interspecific exchange of genome fragments with natural/artificial selections.
Collapse
Affiliation(s)
- Koji Numaguchi
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Minabe, Higashi-honjo 1416-7, Wakayama, 645-0021, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Tsushima-naka 1-1-1, Okayama, 700-8530, Japan
| | - Yuto Kitamura
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Minabe, Higashi-honjo 1416-7, Wakayama, 645-0021, Japan
| | - Ryo Ishikawa
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
| | - Takashige Ishii
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
| |
Collapse
|
20
|
Bourguiba H, Scotti I, Sauvage C, Zhebentyayeva T, Ledbetter C, Krška B, Remay A, D’Onofrio C, Iketani H, Christen D, Krichen L, Trifi-Farah N, Liu W, Roch G, Audergon JM. Genetic Structure of a Worldwide Germplasm Collection of Prunus armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming From the Species' Center of Origin. FRONTIERS IN PLANT SCIENCE 2020; 11:638. [PMID: 32523597 PMCID: PMC7261834 DOI: 10.3389/fpls.2020.00638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
The characterization of the largest worldwide representative data set of apricot (Prunus armeniaca L.) germplasm was performed using molecular markers. Genetic diversity and structure of the cultivated apricot genetic resources were analyzed to decipher the history of diffusion of this species around the world. A common set of 25 microsatellite markers was used for genotyping a total of 890 apricot accessions in different collections from the center of origin to the more recent regions of apricot culture. Using a Bayesian model-based clustering approach, the apricot genotypes can be structured into five different genetic clusters (FST = 0.174), correlated with the geographical regions of origin of the accessions. Accessions from China and Central Asia were clustered together and exhibited the highest levels of diversity, confirming an origin in this region. A loss of genetic diversity was observed from the center of origin to both western and eastern zones of recent apricot culture. Altogether, our results revealed that apricot spread from China and Central Asia, defined as the center of origin, following three major diffusion routes with a decreasing gradient of genetic variation in each geographical group. The identification of specific alleles outside the center of origin confirmed the existence of different secondary apricot diversification centers. The present work provides more understanding of the worldwide history of apricot species diffusion as well as the field of conservation of the available genetic resources. Data have been used to define an apricot core collection based on molecular marker diversity which will be useful for further identification of genomic regions associated with commercially important horticultural traits through genome-wide association studies to sustain apricot breeding programs.
Collapse
Affiliation(s)
- Hedia Bourguiba
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ivan Scotti
- INRA Centre PACA, UR 629 URFM, Avignon, France
| | | | - Tetyana Zhebentyayeva
- Schatz Center for Tree Molecular Genetics, The Pennsylvania State University, University Park, PA, United States
| | - Craig Ledbetter
- San Joaquin Valley Agricultural Sciences Center, Crop Diseases, Pests & Genetics, Parlier, CA, United States
| | - Boris Krška
- Department of Fruit Growing, Faculty of Horticulture, Mendel University, Lednice, Czechia
| | | | - Claudio D’Onofrio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Pisa, Italy
| | - Hiroyuki Iketani
- National Agriculture and Food Research Organization (NARO) Institute of Fruit Tree Science, Tsukuba, Japan
| | - Danilo Christen
- Département Fédéral de L’économie DFE, Station de Recherche Agroscope Changins-Wädenswil ACW, Centre de Recherche Conthey, Conthey, Switzerland
| | - Lamia Krichen
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Neila Trifi-Farah
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Weisheng Liu
- Liaoning Institute of Pomology, Yingkou City, China
| | - Guillaume Roch
- INRA Centre PACA, UR 1052 GAFL, Montfavet, France
- CEP Innovation, Lyon, France
| | | |
Collapse
|
21
|
Xanthopoulou A, Manioudaki M, Bazakos C, Kissoudis C, Farsakoglou AM, Karagiannis E, Michailidis M, Polychroniadou C, Zambounis A, Kazantzis K, Tsaftaris A, Madesis P, Aravanopoulos F, Molassiotis A, Ganopoulos I. Whole genome re-sequencing of sweet cherry ( Prunus avium L.) yields insights into genomic diversity of a fruit species. HORTICULTURE RESEARCH 2020; 7:60. [PMID: 32377351 PMCID: PMC7193578 DOI: 10.1038/s41438-020-0281-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 02/18/2020] [Indexed: 05/30/2023]
Abstract
Sweet cherries, Prunus avium L. (Rosaceae), are gaining importance due to their perenniallity and nutritional attributes beneficial for human health. Interestingly, sweet cherry cultivars exhibit a wide range of phenotypic diversity in important agronomic traits, such as flowering time and defense reactions against pathogens. In this study, whole-genome resequencing (WGRS) was employed to characterize genetic variation, population structure and allelic variants in a panel of 20 sweet cherry and one wild cherry genotypes, embodying the majority of cultivated Greek germplasm and a representative of a local wild cherry elite phenotype. The 21 genotypes were sequenced in an average depth of coverage of 33.91×. and effective mapping depth, to the genomic reference sequence of 'Satonishiki' cultivar, between 22.21× to 36.62×. Discriminant analysis of principal components (DAPC) with SNPs revealed two clusters of genotypes. There was a rapid linkage disequilibrium decay, as the majority of SNP pairs with r2 in near complete disequilibrium (>0.8) were found at physical distances less than 10 kb. Functional analysis of the variants showed that the genomic ratio of non-synonymous/synonymous (dN/dS) changes was 1.78. The higher dN frequency in the Greek cohort of sweet cherry could be the result of artificial selection pressure imposed by breeding, in combination with the vegetative propagation of domesticated cultivars through grafting. The majority of SNPs with high impact (e.g., stop codon gaining, frameshift), were identified in genes involved in flowering time, dormancy and defense reactions against pathogens, providing promising resources for future breeding programs. Our study has established the foundation for further large scale characterization of sweet cherry germplasm, enabling breeders to incorporate diverse germplasm and allelic variants to fine tune flowering and maturity time and disease resistance in sweet cherry cultivars.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Thermi, Thessaloniki, 570001 Greece
| | | | - Anna-Maria Farsakoglou
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Polychroniadou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Department of Deciduous Fruit Growing, Naoussa, 59035 Greece
| | - Konstantinos Kazantzis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Department of Deciduous Fruit Growing, Naoussa, 59035 Greece
| | | | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki, 570 01 Greece
| | - Filippos Aravanopoulos
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Thermi, Thessaloniki, 570001 Greece
| |
Collapse
|
22
|
Rodamilans B, Valli A, García JA. Molecular Plant-Plum Pox Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:6-17. [PMID: 31454296 DOI: 10.1094/mpmi-07-19-0189-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
23
|
De Mori G, Falchi R, Testolin R, Bassi D, Savazzini F, Dondini L, Tartarini S, Palmisano F, Minafra A, Spadotto A, Scalabrin S, Geuna F. Resistance to Sharka in Apricot: Comparison of Phase-Reconstructed Resistant and Susceptible Haplotypes of 'Lito' Chromosome 1 and Analysis of Candidate Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1576. [PMID: 31867032 PMCID: PMC6905379 DOI: 10.3389/fpls.2019.01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Sharka, a common disease among most stone fruit crops, is caused by the Plum Pox Virus (PPV). Resistant genotypes have been found in apricot (Prunus armeniaca L.), one of which-the cultivar 'Lito' heterozygous for the resistance-has been used to map a major quantitative trait locus (QTL) on linkage group 1, following a pseudo-test-cross mating design with 231 individuals. In addition, 19 SNP markers were selected from among the hundreds previously developed, which allowed the region to be limited to 236 kb on chromosome 1. A 'Lito' bacterial artificial chromosome (BAC) library was produced, screened with markers of the region, and positive BAC clones were sequenced. Resistant (R) and susceptible (S) haplotypes were assembled independently. To refine the assembly, the whole genome of 'Lito' was sequenced to high coverage (98×) using PacBio technology, enabling the development of a detailed assembly of the region that was able to predict and annotate the genes in the QTL region. The selected cultivar 'Lito' allowed not only to discriminate structural variants between the two haplotypic regions but also to distinguish specific allele expression, contributing towards mining the PPVres locus. In light of these findings, genes previously indicated (i.e., MATHd genes) to have a possible role in PPV resistance were further analyzed, and new candidates were discussed. Although the results are not conclusive, the accurate and independent assembly of R and S haplotypes of 'Lito' is a valuable resource to predict and test alternative transcription and regulation mechanisms underpinning PPV resistance.
Collapse
Affiliation(s)
- Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Rachele Falchi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy
| | - Federica Savazzini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Luca Dondini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Francesco Palmisano
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura “Basile Caramia”, Locorotondo, Italy
| | - Angelantonio Minafra
- National Research Council, Institute for Sustainable Plant Protection, Bari, Italy
| | | | - Simone Scalabrin
- IGA Technology Services, Science and Technology Park, ZIU, Udine, Italy
| | - Filippo Geuna
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy
| |
Collapse
|
24
|
Cuevas HE, Fermin-Pérez RA, Prom LK, Cooper EA, Bean S, Rooney WL. Genome-Wide Association Mapping of Grain Mold Resistance in the US Sorghum Association Panel. THE PLANT GENOME 2019; 12. [PMID: 31290917 DOI: 10.3835/plantgenome2018.09.0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sorghum [ (L.) Moench] production in warm and humid regions is limited by grain mold disease, which can be caused by a complex of >40 pathogenic and opportunistic fungi. The identification of resistant plants within temperate-adapted germplasm is imperative for the development of better-adapted varieties. The performance of 331 accessions from the previously genotyped sorghum association panel (SAP) was evaluated in four tropical environments. Only 18 accessions showed low seed deterioration and high emergence rates. The resistant accessions showed high variation in seed tannin contents and panicle shape, indicating that grain mold resistance is not associated with a single phenotypic trait. Seed mycoflora analysis recovered pathogenic fungi , , and in both resistant and susceptible accessions. By genome-wide association scans using 268,289 single nucleotide polymorphisms (SNPs), we identified two loci associated with low seed deterioration and another associated with emergence rate. Candidate genes within these loci included one gene () and two genes ( and ) with domains associated with systemic acquired resistance, suggesting that resistance involved pathogen recognition and downstream signaling cascades. This study provides insight into the genetic control of grain mold resistance as well as valuable accessions for breeding programs in temperate environments.
Collapse
|
25
|
Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott AG, Arús P. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. HORTICULTURE RESEARCH 2019; 6:58. [PMID: 30962943 PMCID: PMC6450939 DOI: 10.1038/s41438-019-0140-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/04/2023]
Abstract
Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and ongoing work on the sequence structure and diversity of the genomes; (3) the analyses of Prunus genome evolution driven by natural and man-made selection; and (4) provide insight into haploblocking genomes as a means to define genome-scale patterns of evolution that can be leveraged for trait selection in pedigree-based Prunus tree breeding programs worldwide. Functionally, we summarize recent and ongoing work that leverages whole-genome sequences to identify and characterize genes controlling 22 agronomically important Prunus traits. These include phenology, fruit quality, allergens, disease resistance, tree architecture, and self-incompatibility. Translationally, we explore the application of sequence-based marker-assisted breeding technologies and other sequence-guided biotechnological approaches for Prunus crop improvement. Finally, we present the current status of publically available Prunus genomics and genetics data housed mainly in the Genome Database for Rosaceae (GDR) and its updated functionalities for future bioinformatics-based Prunus genetics and genomics inquiry.
Collapse
Affiliation(s)
- Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Véronique Decroocq
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Elisabeth Dirlewanger
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Iban Eduardo
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Zhong Shan Gao
- Allergy Research Center, Zhejiang University, 310058 Hangzhou, China
| | | | - Amy Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1325 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, 11610 La Pintana, Santiago Chile
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) – Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Rome, Italy
| | - Albert G. Abbott
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY 40546-0073 USA
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
26
|
Omrani M, Roth M, Roch G, Blanc A, Morris CE, Audergon JM. Genome-wide association multi-locus and multi-variate linear mixed models reveal two linked loci with major effects on partial resistance of apricot to bacterial canker. BMC PLANT BIOLOGY 2019; 19:31. [PMID: 30665361 PMCID: PMC6341767 DOI: 10.1186/s12870-019-1631-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/04/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Diseases caused by Pseudomonas syringae (Ps) are recognized as the most damaging factors in fruit trees with a significant economic and sanitary impact on crops. Among them, bacterial canker of apricot is exceedingly difficult to control due to a lack of efficient prophylactic measures. Several sources of partial resistance have been identified among genetic resources but the underlying genetic pattern has not been elucidated thus far. In this study, we phenotyped bacterial canker susceptibility in an apricot core-collection of 73 accessions over 4 years by measuring canker and superficial browning lengths issued from artificial inoculations in the orchard. In order to investigate the genetic architecture of partial resistance, we performed a genome-wide association study using best linear unbiased predictors on genetic (G) and genetic x year (G × Y) interaction effects extracted from linear mixed models. Using a set of 63,236 single-nucleotide polymorphism markers genotyped in the germplasm over the whole genome, multi-locus and multi-variate mixed models aimed at mapping the resistance while controlling for relatedness between individuals. RESULTS We detected 11 significant associations over 7 candidate loci linked to disease resistance under the two most severe years. Colocalizations between G and G × Y terms indicated a modulation on allelic effect depending on environmental conditions. Among the candidate loci, two loci on chromosomes 5 and 6 had a high impact on both canker length and superficial browning, explaining 41 and 26% of the total phenotypic variance, respectively. We found unexpected long-range linkage disequilibrium (LD) between these two markers revealing an inter-chromosomal LD block linking the two underlying genes. This result supports the hypothesis of a co-adaptation effect due to selection through population demography. Candidate genes annotations suggest a functional pathway involving abscisic acid, a hormone mainly known for mediating abiotic stress responses but also reported as a potential factor in plant-pathogen interactions. CONCLUSIONS Our study contributed to the first detailed characterization of the genetic determinants of partial resistance to bacterial canker in a Rosaceae species. It provided tools for fruit tree breeding by identifying progenitors with favorable haplotypes and by providing major-effect markers for a marker-assisted selection strategy.
Collapse
Affiliation(s)
- Mariem Omrani
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- INRA, UR407 Pathologie Végétale, Centre de Recherche PACA, Montfavet, France
- ENGREF, AgroParisTech, Paris, France
| | - Morgane Roth
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- Present Address: Agroscope, Research Division Plant Breeding, Wädenswil, Switzerland
| | - Guillaume Roch
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- CEP Innovation, Lyon, France
| | - Alain Blanc
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Cindy E. Morris
- INRA, UR407 Pathologie Végétale, Centre de Recherche PACA, Montfavet, France
| | - Jean-Marc Audergon
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| |
Collapse
|
27
|
Uncovering Genomic Regions Associated with Trypanosoma Infections in Wild Populations of the Tsetse Fly Glossina fuscipes. G3-GENES GENOMES GENETICS 2018; 8:887-897. [PMID: 29343494 PMCID: PMC5844309 DOI: 10.1534/g3.117.300493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vector-borne diseases are responsible for > 1 million deaths every year but genomic resources for most species responsible for their transmission are limited. This is true for neglected diseases such as sleeping sickness (Human African Trypanosomiasis), a disease caused by Trypanosoma parasites vectored by several species of tseste flies within the genus Glossina. We describe an integrative approach that identifies statistical associations between trypanosome infection status of Glossina fuscipes fuscipes (Gff) flies from Uganda, for which functional studies are complicated because the species cannot be easily maintained in laboratory colonies, and ∼73,000 polymorphic sites distributed across the genome. Then, we identify candidate genes involved in Gff trypanosome susceptibility by taking advantage of genomic resources from a closely related species, G. morsitans morsitans (Gmm). We compiled a comprehensive transcript library from 72 published and unpublished RNAseq experiments of trypanosome-infected and uninfected Gmm flies, and improved the current Gmm transcriptome assembly. This new assembly was then used to enhance the functional annotations on the Gff genome. As a consequence, we identified 56 candidate genes in the vicinity of the 18 regions associated with Trypanosoma infection status in Gff. Twenty-nine of these genes were differentially expressed (DE) among parasite-infected and uninfected Gmm, suggesting that their orthologs in Gff may correlate with disease transmission. These genes were involved in DNA regulation, neurophysiological functions, and immune responses. We highlight the power of integrating population and functional genomics from related species to enhance our understanding of the genetic basis of physiological traits, particularly in nonmodel organisms.
Collapse
|
28
|
Zuriaga E, Romero C, Blanca JM, Badenes ML. Resistance to Plum Pox Virus (PPV) in apricot (Prunus armeniaca L.) is associated with down-regulation of two MATHd genes. BMC PLANT BIOLOGY 2018; 18:25. [PMID: 29374454 PMCID: PMC5787289 DOI: 10.1186/s12870-018-1237-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/16/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Plum pox virus (PPV), causing Sharka disease, is one of the main limiting factors for Prunus production worldwide. In apricot (Prunus armeniaca L.) the major PPV resistance locus (PPVres), comprising ~ 196 kb, has been mapped to the upper part of linkage group 1. Within the PPVres, 68 genomic variants linked in coupling to PPV resistance were identified within 23 predicted transcripts according to peach genome annotation. Taking into account the predicted functions inferred from sequence homology, some members of a cluster of meprin and TRAF-C homology domain (MATHd)-containing genes were pointed as PPV resistance candidate genes. RESULTS Here, we have characterized the global apricot transcriptome response to PPV-D infection identifying six PPVres locus genes (ParP-1 to ParP-6) differentially expressed in resistant/susceptible cultivars. Two of them (ParP-3 and ParP-4), that encode MATHd proteins, appear clearly down-regulated in resistant cultivars, as confirmed by qRT-PCR. Concurrently, variant calling was performed using whole-genome sequencing data of 24 apricot cultivars (10 PPV-resistant and 14 PPV-susceptible) and 2 wild relatives (PPV-susceptible). ParP-3 and ParP-4, named as Prunus armeniaca PPVres MATHd-containing genes (ParPMC), are the only 2 genes having allelic variants linked in coupling to PPV resistance. ParPMC1 has 1 nsSNP, while ParPMC2 has 15 variants, including a 5-bp deletion within the second exon that produces a frameshift mutation. ParPMC1 and ParPMC2 are adjacent and highly homologous (87.5% identity) suggesting they are paralogs originated from a tandem duplication. Cultivars carrying the ParPMC2 resistant (mutated) allele show lack of expression in both ParPMC2 and especially ParPMC1. CONCLUSIONS Accordingly, we hypothesize that ParPMC2 is a pseudogene that mediates down-regulation of its functional paralog ParPMC1 by silencing. As a whole, results strongly support ParPMC1 and/or ParPMC2 as host susceptibility genes required for PPV infection which silencing may confer PPV resistance trait. This finding may facilitate resistance breeding by marker-assisted selection and pave the way for gene edition approaches in Prunus.
Collapse
Affiliation(s)
- Elena Zuriaga
- Citriculture and Plant Production Center, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km. 10.7, Moncada, 46113 Valencia, Spain
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio, s/n 46022, Valencia, Spain
| | - Jose Miguel Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ingeniero Fausto Elio, s/n 46022, Valencia, Spain
| | - Maria Luisa Badenes
- Citriculture and Plant Production Center, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km. 10.7, Moncada, 46113 Valencia, Spain
| |
Collapse
|
29
|
Cirilli M, Rossini L, Geuna F, Palmisano F, Minafra A, Castrignanò T, Gattolin S, Ciacciulli A, Babini AR, Liverani A, Bassi D. Genetic dissection of Sharka disease tolerance in peach (P. persica L. Batsch). BMC PLANT BIOLOGY 2017; 17:192. [PMID: 29100531 PMCID: PMC5670703 DOI: 10.1186/s12870-017-1117-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/09/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plum pox virus (PPV), agent of Sharka disease, is the most important quarantine pathogen of peach (P. persica L. Batsch). Extensive evaluation of peach germplasm has highlighted the lack of resistant sources, while suggesting the presence of a quantitative disease resistance, expressed as reduction in the intensity of symptoms. Unravelling the genetic architecture of peach response to PPV infection is essential for pyramiding resistant genes and for developing more tolerant varieties. For this purpose, a genome-wide association (GWA) approach was applied in a panel of accessions phenotyped for virus susceptibility and genotyped with the IPSC peach 9 K SNP Array, and coupled with an high-coverage resequencing of the tolerant accession 'Kamarat'. RESULTS Genome-wide association identified three highly significant associated loci on chromosome 2 and 3, accounting for most of the reduction in PPV-M susceptibility within the analysed peach population. The exploration of associated intervals through whole-genome comparison of the tolerant accession 'Kamarat' and other susceptible accessions, including the PPV-resistant wild-related species P. davidiana, allow the identification of allelic variants in promising candidate genes, including an RTM2-like gene already characterized in A. thaliana. CONCLUSIONS The present study is the first effort to identify genetic factors involved in Sharka disease in peach germplasm through a GWA approach. We provide evidence of the presence of quantitative resistant loci in a collection of peach accessions, identifying major loci and highly informative SNPs that could be useful for marker assisted selection. These results could serve as reference bases for future research aimed at the comprehension of genetic mechanism regulating the complex peach-PPV interaction.
Collapse
Affiliation(s)
- Marco Cirilli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, Lodi, Italy
| | - Filippo Geuna
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| | - Francesco Palmisano
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile-Caramia (CRSFA), via Cisternino, 281 Locorotondo, Bari, Italy
| | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), via Amendola 122/D, Bari, Italy
| | - Tiziana Castrignanò
- CINECA, SCAI Super Computing Applications and Innovation, via dei Tizii 6, Rome, Italy
| | - Stefano Gattolin
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, Lodi, Italy
| | - Angelo Ciacciulli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| | | | - Alessandro Liverani
- CREA, Research Centre for Olive, Citrus and Tree Fruit, via La Canapona 1 bis, Forlì, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| |
Collapse
|
30
|
Muñoz-Sanz JV, Zuriaga E, Badenes ML, Romero C. A disulfide bond A-like oxidoreductase is a strong candidate gene for self-incompatibility in apricot (Prunus armeniaca) pollen. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5069-5078. [PMID: 29036710 PMCID: PMC5853662 DOI: 10.1093/jxb/erx336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/14/2017] [Indexed: 05/21/2023]
Abstract
S-RNase based gametophytic self-incompatibility (SI) is a widespread prezygotic reproductive barrier in flowering plants. In the Solanaceae, Plantaginaceae and Rosaceae gametophytic SI is controlled by the pistil-specific S-RNases and the pollen S-locus F-box proteins but non-S-specific factors, namely modifiers, are also required. In apricot, Prunus armeniaca (Rosaceae), we previously mapped two pollen-part mutations that confer self-compatibility in cultivars Canino and Katy at the distal end of chromosome 3 (M-locus) unlinked to the S-locus. Here, we used high-resolution mapping to identify the M-locus with an ~134 kb segment containing ParM-1-16 genes. Gene expression analysis identified four genes preferentially expressed in anthers as modifier gene candidates, ParM-6, -7, -9 and -14. Variant calling of WGS Illumina data from Canino, Katy, and 10 self-incompatible cultivars detected a 358 bp miniature inverted-repeat transposable element (MITE) insertion in ParM-7 shared only by self-compatible apricots, supporting ParM-7 as strong candidate gene required for SI. ParM-7 encodes a disulfide bond A-like oxidoreductase protein, which we named ParMDO. The MITE insertion truncates the ParMDO ORF and produces a loss of SI function, suggesting that pollen rejection in Prunus is dependent on redox regulation. Based on phylogentic analyses we also suggest that ParMDO may have originated from a tandem duplication followed by subfunctionalization and pollen-specific expression.
Collapse
Affiliation(s)
- Juan Vicente Muñoz-Sanz
- Fruit Tree Breeding Department. Instituto Valenciano de Investigaciones Agrarias (IVIA). CV-315, Km. 10, Moncada (Valencia), Spain
| | - Elena Zuriaga
- Fruit Tree Breeding Department. Instituto Valenciano de Investigaciones Agrarias (IVIA). CV-315, Km. 10, Moncada (Valencia), Spain
| | - María L Badenes
- Fruit Tree Breeding Department. Instituto Valenciano de Investigaciones Agrarias (IVIA). CV-315, Km. 10, Moncada (Valencia), Spain
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas. C/Ingeniero Fausto Elio s/n, Valencia, Spain
- Correspondence:
| |
Collapse
|
31
|
Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, Guisnel R, Feugey L, Aubourg S, Celton JM, Daccord N, Dondini L, Gregori R, Lateur M, Houben P, Ordidge M, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Troggio M, Bianco L, Velasco R, Poncet C, Théron A, Moriya S, Bink MCAM, Laurens F, Tartarini S, Durel CE. Genome-Wide Association Mapping of Flowering and Ripening Periods in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:1923. [PMID: 29176988 PMCID: PMC5686452 DOI: 10.3389/fpls.2017.01923] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 05/17/2023]
Abstract
Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.
Collapse
Affiliation(s)
- Jorge Urrestarazu
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
- Department of Agricultural Sciences, Public University of Navarre, Pamplona, Spain
- *Correspondence: Jorge Urrestarazu
| | - Hélène Muranty
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Caroline Denancé
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Diane Leforestier
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Elisa Ravon
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Arnaud Guyader
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Rémi Guisnel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Laurence Feugey
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Sébastien Aubourg
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Jean-Marc Celton
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Nicolas Daccord
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Luca Dondini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Roberto Gregori
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Marc Lateur
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Patrick Houben
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | | | - Jiri Sedlak
- Research and Breeding Institute of Pomology Holovousy Ltd., Horice, Czechia
| | - Hilde Nybom
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Kristianstad, Sweden
| | | | | | - Luca Bianco
- Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Charles Poncet
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Anthony Théron
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Shigeki Moriya
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Apple Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Morioka, Japan
| | - Marco C. A. M. Bink
- Wageningen UR, Biometris, Wageningen, Netherlands
- Hendrix Genetics, Boxmeer, Netherlands
| | - François Laurens
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Charles-Eric Durel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Charles-Eric Durel
| |
Collapse
|
32
|
Badenes ML, Fernández I Martí A, Ríos G, Rubio-Cabetas MJ. Application of Genomic Technologies to the Breeding of Trees. Front Genet 2016; 7:198. [PMID: 27895664 PMCID: PMC5109026 DOI: 10.3389/fgene.2016.00198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022] Open
Abstract
The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species.
Collapse
Affiliation(s)
- Maria L Badenes
- Instituto Valenciano de Investigaciones Agrarias Valencia, Spain
| | - Angel Fernández I Martí
- Hortofruticulture Department, Agrifood Research and Technology Centre of AragonZaragoza, Spain; Genome Center, University of California, Davis, Davis, CAUSA
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias Valencia, Spain
| | - María J Rubio-Cabetas
- Hortofruticulture Department, Agrifood Research and Technology Centre of Aragon Zaragoza, Spain
| |
Collapse
|
33
|
Hashimoto M, Neriya Y, Yamaji Y, Namba S. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors. Front Microbiol 2016; 7:1695. [PMID: 27833593 PMCID: PMC5080351 DOI: 10.3389/fmicb.2016.01695] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
34
|
Verdu CF, Guichoux E, Quevauvillers S, De Thier O, Laizet Y, Delcamp A, Gévaudant F, Monty A, Porté AJ, Lejeune P, Lassois L, Mariette S. Dealing with paralogy in RADseq data: in silico detection and single nucleotide polymorphism validation in Robinia pseudoacacia L. Ecol Evol 2016; 6:7323-7333. [PMID: 28725400 PMCID: PMC5513258 DOI: 10.1002/ece3.2466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
The RADseq technology allows researchers to efficiently develop thousands of polymorphic loci across multiple individuals with little or no prior information on the genome. However, many questions remain about the biases inherent to this technology. Notably, sequence misalignments arising from paralogy may affect the development of single nucleotide polymorphism (SNP) markers and the estimation of genetic diversity. We evaluated the impact of putative paralog loci on genetic diversity estimation during the development of SNPs from a RADseq dataset for the nonmodel tree species Robinia pseudoacacia L. We sequenced nine genotypes and analyzed the frequency of putative paralogous RAD loci as a function of both the depth of coverage and the mismatch threshold allowed between loci. Putative paralogy was detected in a very variable number of loci, from 1% to more than 20%, with the depth of coverage having a major influence on the result. Putative paralogy artificially increased the observed degree of polymorphism and resulting estimates of diversity. The choice of the depth of coverage also affected diversity estimation and SNP validation: A low threshold decreased the chances of detecting minor alleles while a high threshold increased allelic dropout. SNP validation was better for the low threshold (4×) than for the high threshold (18×) we tested. Using the strategy developed here, we were able to validate more than 80% of the SNPs tested by means of individual genotyping, resulting in a readily usable set of 330 SNPs, suitable for use in population genetics applications.
Collapse
Affiliation(s)
- Cindy F Verdu
- Forest Management Unit Gembloux Agro-Bio Tech University of Liège Gembloux Belgium
| | | | - Samuel Quevauvillers
- Forest Management Unit Gembloux Agro-Bio Tech University of Liège Gembloux Belgium
| | - Olivier De Thier
- Forest Management Unit Gembloux Agro-Bio Tech University of Liège Gembloux Belgium
| | | | | | | | - Arnaud Monty
- Biodiversity and Landscape Unit Gembloux Agro-Bio Tech University of Liège Gembloux Belgium
| | | | - Philippe Lejeune
- Forest Management Unit Gembloux Agro-Bio Tech University of Liège Gembloux Belgium
| | - Ludivine Lassois
- Forest Management Unit Gembloux Agro-Bio Tech University of Liège Gembloux Belgium.,Biodiversity and Landscape Unit Gembloux Agro-Bio Tech University of Liège Gembloux Belgium
| | | |
Collapse
|
35
|
Decroocq S, Cornille A, Tricon D, Babayeva S, Chague A, Eyquard JP, Karychev R, Dolgikh S, Kostritsyna T, Liu S, Liu W, Geng W, Liao K, Asma BM, Akparov Z, Giraud T, Decroocq V. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol Ecol 2016; 25:4712-29. [PMID: 27480465 DOI: 10.1111/mec.13772] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 12/01/2022]
Abstract
Studying domesticated species and their wild relatives allows understanding of the mechanisms of population divergence and adaptation, and identifying valuable genetic resources. Apricot is an important fruit in the Northern hemisphere, where it is threatened by the Plum pox virus (PPV), causing the sharka disease. The histories of apricot domestication and of its resistance to sharka are however still poorly understood. We used 18 microsatellite markers to genotype a collection of 230 wild trees from Central Asia and 142 cultivated apricots as representatives of the worldwide cultivated apricot germplasm; we also performed experimental PPV inoculation tests. The genetic markers revealed highest levels of diversity in Central Asian and Chinese wild and cultivated apricots, confirming an origin in this region. In cultivated apricots, Chinese accessions were differentiated from more Western accessions, while cultivated apricots were differentiated from wild apricots. An approximate Bayesian approach indicated that apricots likely underwent two independent domestication events, with bottlenecks, from the same wild population. Central Asian native apricots exhibited genetic subdivision and high frequency of resistance to sharka. Altogether, our results contribute to the understanding of the domestication history of cultivated apricot and point to valuable genetic diversity in the extant genetic resources of wild apricots.
Collapse
Affiliation(s)
- Stéphane Decroocq
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Amandine Cornille
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Tricon
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Sevda Babayeva
- Genetic Resources Institute of ANAS, Azadlig ave. 155, AZ1106, Baku, Azerbaijan
| | - Aurélie Chague
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Jean-Philippe Eyquard
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Raul Karychev
- Kazakh Research Institute of Horticulture and Viticulture, 238-a Gagarin Avenue, 480060, Almaty, Kazakhstan
| | - Svetlana Dolgikh
- Kazakh Research Institute of Horticulture and Viticulture, 238-a Gagarin Avenue, 480060, Almaty, Kazakhstan
| | - Tatiana Kostritsyna
- Botanical Garden of National Academy of Sciences, Akhunbaeva street 1a, 720064, Bishkek, Kyrgyzstan
| | - Shuo Liu
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.,Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou City, Liaoning, 115009, China
| | - Weisheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou City, Liaoning, 115009, China
| | - Wenjuan Geng
- College of Horticulture & Forestry Sciences, Xinjiang Agricultural University, 311 NongDaDong Road, 830052, Urumqi City, Xinjiang, China
| | - Kang Liao
- College of Horticulture & Forestry Sciences, Xinjiang Agricultural University, 311 NongDaDong Road, 830052, Urumqi City, Xinjiang, China
| | - Bayram M Asma
- Department of Horticulture, Inonu University, Malatya, 44210, Turkey
| | - Zeynal Akparov
- Genetic Resources Institute of ANAS, Azadlig ave. 155, AZ1106, Baku, Azerbaijan
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.
| | - Véronique Decroocq
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France. .,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.
| |
Collapse
|
36
|
Gürcan K, Teber S, Ercisli S, Yilmaz KU. Genotyping by Sequencing (GBS) in Apricots and Genetic Diversity Assessment with GBS-Derived Single-Nucleotide Polymorphisms (SNPs). Biochem Genet 2016; 54:854-885. [PMID: 27465591 DOI: 10.1007/s10528-016-9762-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 11/27/2022]
Abstract
Genotyping by sequencing (GBS), which is a highly promising technique for molecular breeding, has been implemented in apricots, including Turkish, European, and Plum Pox Virus-resistant accessions. DNA samples were digested with the ApeKI restriction enzyme to construct a genome-complexity-reduced 90-plex GBS library. After filtering the raw sequences, approximately 28 G of clean data were generated, and 17,842 high-quality single-nucleotide polymorphism (SNP) loci were discovered. A total of 561 SNP loci with 0 or 1 missing reads for the 90 accessions produced 1162 markers that were used for the cluster and population structure analysis of the same collection. The results of the SNP analysis indicated that the relation of the European accessions with the western Turkish apricots was accurately positioned. The resistant accessions from different sources were clustered together, confirming the previous finding that SEO/Harlayne-type resistance probably originated from the same source. The Malatya accessions produce most of the world's dried apricots and are likely to be a genetically distinct group. Simple sequence repeat (SSR) and self-incompatibly (SI) locus characterization of the accessions was also included. SI genotyping supported the SNP findings, demonstrating both the reliability of SNP genotyping and the usefulness of SI genotyping for understanding the history of apricot breeding. The SSR genotyping revealed a characterization similar to that of SNP genotyping with a slightly lower resolution in the dendrogram. In conclusion, the GBS approach was validated in apricots, with the discovery of a large number of SNPs, and was demonstrated to be reliable by fingerprinting the accessions in a more informative manner.
Collapse
Affiliation(s)
- Kahraman Gürcan
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Turkey.
- Department of Agricultural Biotechnology, Erciyes University, Kayseri, Turkey.
| | - Saffet Teber
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Turkey
- Department of Agricultural Biotechnology, Erciyes University, Kayseri, Turkey
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
37
|
Rubio M, Ballester AR, Olivares PM, Castro de Moura M, Dicenta F, Martínez-Gómez P. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.). PLoS One 2015; 10:e0144670. [PMID: 26658051 PMCID: PMC4684361 DOI: 10.1371/journal.pone.0144670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, “Rojo Pasión” and “Z506-7”, resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.
Collapse
Affiliation(s)
- Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Ana Rosa Ballester
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino 7, 46980 Paterna (Valencia) Spain
| | - Pedro Manuel Olivares
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Manuel Castro de Moura
- aScidea Computational Biology Solutions, S.L. Parc de Reserca UAB, Edifici Eureka. 08193 Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Federico Dicenta
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
- * E-mail:
| |
Collapse
|