1
|
Pedrazzini C, Rehner SA, Stewart-Smith F, Boschi S, Widmer F, Enkerli J. Partial ecological niche partitioning between Beauveria brongniartii and Beauveria pseudobassiana entomopathogens at Melolontha melolontha infested sites. J Invertebr Pathol 2025; 211:108356. [PMID: 40379203 DOI: 10.1016/j.jip.2025.108356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/22/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Beauveria brongniartii specifically infects the insect pest Melolontha melolontha and is commonly isolated from soil and larvae. Since 1990, it has been used commercially as a biological control agent (BCA) against the larvae. Recent research revealed that B. pseudobassiana was the most frequently isolated pathogen from adult beetles collected aboveground across 35 alpine sites. This led us to hypothesize that B. pseudobassiana primarily infects adults aboveground, while B. brongniartii mainly targets larvae in soil. To test these hypotheses, we investigated the occurrence and distribution of both species at two M. melolontha-infested sites in Switzerland using a combination of phylogenetic analyses and microsatellite markers. Species-specific microsatellite markers were developed for B. pseudobassiana, and existing markers were applied to B. brongniartii. From 399 Beauveria spp. isolates collected from adult beetles, soil, grassland plants, and tree leaves, 362 were identified as B. brongniartii, which was present in all sources except tree leaves, and 37 as B. pseudobassiana, found in all sources including tree leaves, except soil. The most common B. brongniartii multilocus genotypes (MLGs) were those of the BCAs BIPESCO 2 and BIPESCO 4, perhaps reflecting previous BCA applications at these locations. One B. pseudobassiana microsatellite-based MLG was isolated from both tree leaves and M. melolontha in the tree canopy. Additionally, B. pseudobassiana isolated from the phylloplane exhibited pathogenicity toward M. melolontha adults, suggesting the possibility of acquiring infections aboveground. To detail B. pseudobassiana intraspecific diversity, a sequence dataset was constructed including 13 unique haplotypes of the nuclear intergenic region Bloc sequenced in this study, 58 Bloc sequences downloaded from GenBank, and sphyngomyelin phosphodiesterase, glycosyl hydrolase, and AAA-ATPase midasin I sequences from 18 isolates illustrative of B. pseudobassiana genome diversity accessioned in GenBank. Phylogenetic analysis of this data reveals the species to comprise a cryptic complex with distinct genetic clusters that group isolates independently of their geographic origin and isolation substrate. Overall, this study shows B. brongniartii predominates in soil, while B. pseudobassiana occurs in the phylloplane, suggesting its potential as a complementary biological control for adult beetles aboveground.
Collapse
Affiliation(s)
| | - Stephen A Rehner
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Beltsville, United States
| | | | - Sara Boschi
- Dipartimento di Scienze della vita, Università di Siena, Italy
| | | | - Jürg Enkerli
- Molecular Ecology, Agroscope, Zürich, Switzerland.
| |
Collapse
|
2
|
Shapkin V, Caboň M, Kolařík M, Adamčíková K, Baldrian P, Michalková T, Větrovský T, Adamčík S. Protein Coding Low-Copy rpb2 and ef1-α Regions Are Viable Fungal Metabarcoding DNA Markers Which Can Supplement ITS for Better Accuracy. Ecol Evol 2025; 15:e71352. [PMID: 40260151 PMCID: PMC12011493 DOI: 10.1002/ece3.71352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
The nuclear ribosomal DNA Internal Transcribed Spacer (ITS) region is used as a universal fungal barcode marker, but often lacks a significant DNA barcoding gap between sister taxa. Here we tested the reliability of protein coding low-copy genes as alternative barcode markers. Mock communities of three unrelated agaric genera (Dermoloma, Hodophilus, and Russula) representing lineages of closely related species were sequenced by the Illumina platform targeting the ITS1, ITS2, the second largest subunit of RNA polymerase II gene (rpb2) and the transcription elongation factor 1-alpha gene (ef1-α) regions. Species representation and their relative abundances were similar across all tested barcode regions, despite a lower copy number in protein coding markers. ITS1 and ITS2 required more sophisticated sequence filtering because they produced a high number of chimeric sequences requiring reference-based chimera removal and had a higher number of sequence variants per species. Although clustering of filtered ITS sequences resulted in an average higher number of correctly clustered units at optimal similarity thresholds, these thresholds varied substantially among genera. Best-fitted thresholds of low-copy markers were more consistent across genera but frequently lacked species resolution due to low intraspecific variability. At some thresholds, we observed multiple species lumped together, and at the same time, species split into multiple partial clusters, which should be taken into consideration when assessing the best clustering thresholds and taxonomic identity of clusters. To achieve the best taxonomic resolution and improve species detection, we recommend combining different markers and applying additional reference-based sorting of clusters. The current availability of rpb2 and ef1-α reference sequences in public databases is far from being complete for all fungal groups, but a combined marker approach can be used for group-specific studies that can build reference data for their own purposes.
Collapse
Affiliation(s)
- Vasilii Shapkin
- Laboratory of Molecular Ecology and MycologyInstitute of Botany, Plant Science and Biodiversity Center, Slovak Academy of SciencesBratislavaSlovakia
| | - Miroslav Caboň
- Laboratory of Molecular Ecology and MycologyInstitute of Botany, Plant Science and Biodiversity Center, Slovak Academy of SciencesBratislavaSlovakia
- Department of Plant PathologyUniversity of FloridaGainesvilleFloridaUSA
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech RepublicPragueCzech Republic
- Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Katarína Adamčíková
- Department of Plant Pathology and MycologyInstitute of Forest Ecology, Slovak Academy of Sciences ZvolenNitraSlovakia
| | - Petr Baldrian
- Institute of Microbiology, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Tereza Michalková
- Institute of Microbiology, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Tomáš Větrovský
- Institute of Microbiology, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Slavomír Adamčík
- Laboratory of Molecular Ecology and MycologyInstitute of Botany, Plant Science and Biodiversity Center, Slovak Academy of SciencesBratislavaSlovakia
- Department of Botany, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
| |
Collapse
|
3
|
Bielčik M, Schlägel UE, Schäfer M, Aguilar-Trigueros CA, Lakovic M, Sosa-Hernández MA, Hammer EC, Jeltsch F, Rillig MC. Aligning spatial ecological theory with the study of clonal organisms: the case of fungal coexistence. Biol Rev Camb Philos Soc 2024; 99:2211-2233. [PMID: 39073180 DOI: 10.1111/brv.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.
Collapse
Affiliation(s)
- Miloš Bielčik
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str.84, Müncheberg, 15374, Germany
| | - Ulrike E Schlägel
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Merlin Schäfer
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
- Federal Agency for Nature Conservation, Alte Messe 6, Leipzig, 04103, Germany
| | - Carlos A Aguilar-Trigueros
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Building R2, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Seminaarinkatu 15, Jyväskylä, 40014, Finland
| | - Milica Lakovic
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Moisés A Sosa-Hernández
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| | - Edith C Hammer
- Department of Biology, Microbial Ecology, Lund University, Ekologihuset, Sölvegatan 37, Lund, 22362, Sweden
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Am Mühlenberg 3, House 60, Potsdam-Golm, 14476, Germany
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr.34, Berlin, 14195, Germany
| |
Collapse
|
4
|
Xia M, McCormack ML, Suseela V, Kennedy PG, Tharayil N. Formations of mycorrhizal symbiosis alter the phenolic heteropolymers in roots and leaves of four temperate woody species. THE NEW PHYTOLOGIST 2024; 242:1476-1485. [PMID: 38659127 DOI: 10.1111/nph.19731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/05/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Mengxue Xia
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, Lisle, IL, 60523, USA
| | - Vidya Suseela
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Nishanth Tharayil
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
5
|
Smith AH, Bogar LM, Moeller HV. Fungal Fight Club: phylogeny and growth rate predict competitive outcomes among ectomycorrhizal fungi. FEMS Microbiol Ecol 2023; 99:fiad108. [PMID: 37697652 PMCID: PMC10516346 DOI: 10.1093/femsec/fiad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Ectomycorrhizal fungi are among the most prevalent fungal partners of plants and can constitute up to one-third of forest microbial biomass. As mutualistic partners that supply nutrients, water, and pathogen defense, these fungi impact host plant health and biogeochemical cycling. Ectomycorrhizal fungi are also extremely diverse, and the community of fungal partners on a single plant host can consist of dozens of individuals. However, the factors that govern competition and coexistence within these communities are still poorly understood. In this study, we used in vitro competitive assays between five ectomycorrhizal fungal strains to examine how competition and pH affect fungal growth. We also tested the ability of evolutionary history to predict the outcomes of fungal competition. We found that the effects of pH and competition on fungal performance varied extensively, with changes in growth media pH sometimes reversing competitive outcomes. Furthermore, when comparing the use of phylogenetic distance and growth rate in predicting competitive outcomes, we found that both methods worked equally well. Our study further highlights the complexity of ectomycorrhizal fungal competition and the importance of considering phylogenetic distance, ecologically relevant traits, and environmental conditions in predicting the outcomes of these interactions.
Collapse
Affiliation(s)
- Alexander H Smith
- Department of Integrative Biology, University of Colorado, Denver Auraria Campus Science Building 1150 12th St, Denver CO 80204, USA
| | - Laura M Bogar
- Department of Plant Biology, University of California, Davis, 605 Hutchison Dr Green Hall rm 1002 Davis CA 95616-5720, USA
| | - Holly V Moeller
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara CA 93106-9620, USA
| |
Collapse
|
6
|
Wu D, Bai H, Zhao C, Peng M, Chi Q, Dai Y, Gao F, Zhang Q, Huang M, Niu B. The characteristics of soil microbial co-occurrence networks across a high-latitude forested wetland ecotone in China. Front Microbiol 2023; 14:1160683. [PMID: 37025633 PMCID: PMC10072330 DOI: 10.3389/fmicb.2023.1160683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
To understand the effect of seasonal variations on soil microbial communities in a forested wetland ecotone, here, we investigated the dynamics of the diversities and functions of both soil bacterial and fungal communities inhabiting three wetland types (forested wetland, shrub wetland and herbaceous vegetation wetland) from forest-wetland ecotone of northern Xiaoxing'an Mountains spanning different seasons. β-diversity of soil microbial communities varied significantly among different vegetation types (Betula platyphylla-Larix gmelinii, Alnus sibirica, Betula ovalifolia, and Carex schmidtii wetlands). We totally detected 34 fungal and 14 bacterial indicator taxa among distinctive groups by using Linear discriminant analysis effect size (LEfSe) analysis, and identified nine network hubs as the most important nodes detected in whole fungi, bacteria, and fungi-bacteria networks. At the vegetation type-level, bacterial and fungal microbiome living in C. schmidtii wetland soil possessed fewer positive interactions and lower modularity than those in other types of wetland soil. Furthermore, we also discovered that ectomycorrhizal fungi were dominant in the fungal microbiota existing in forested and shrub wetland soils, whereas arbuscular mycorrhizal fungi were predominated in those residing in herbaceous vegetation wetland soil. The distribution of the predicted bacterial functional enzymes also obviously varied among different vegetation-types. In addition, the correlation analysis further revealed that the key fungal network modules were significantly affected by the contents of total N and soil water-soluble K, whereas most of the bacterial network modules were remarkably positively driven by the contents of total N, soil water-soluble K, Mg and Na. Our study suggested that vegetation type are substantive factors controlling the diversity, composition and functional group of soil microbiomes from forest-wetland ecotone of northern Xiaoxing'an Mountains.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hui Bai
- Key Laboratory of Fast-Growing Tree Cultivating of Heilongjiang Province, Forestry Science Research Institute of Heilongjiang Province, Harbin, China
| | - Caihong Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Mu Peng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Qi Chi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yaping Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fei Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Qiang Zhang
- Institute of Economic Forest of Xinjiang Academy of Forestry Sciences, Urumqi, China
| | - Minmin Huang
- Institute of Economic Forest of Xinjiang Academy of Forestry Sciences, Urumqi, China
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Suetsugu K, Hirota SK, Hsu TC, Kurogi S, Imamura A, Suyama Y. Monotropastrum kirishimense (Ericaceae), a new mycoheterotrophic plant from Japan based on multifaceted evidence. JOURNAL OF PLANT RESEARCH 2023; 136:3-18. [PMID: 36445504 PMCID: PMC9832082 DOI: 10.1007/s10265-022-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 05/10/2023]
Abstract
Due to their reduced morphology, non-photosynthetic plants have been one of the most challenging groups to delimit to species level. The mycoheterotrophic genus Monotropastrum, with the monotypic species M. humile, has been a particularly taxonomically challenging group, owing to its highly reduced vegetative and root morphology. Using integrative species delimitation, we have focused on Japanese Monotropastrum, with a special focus on an unknown taxon with rosy pink petals and sepals. We investigated its flowering phenology, morphology, molecular identity, and associated fungi. Detailed morphological investigation has indicated that it can be distinguished from M. humile by its rosy pink tepals and sepals that are generally more numerous, elliptic, and constantly appressed to the petals throughout its flowering period, and by its obscure root balls that are unified with the surrounding soil, with root tips that hardly protrude. Based on genome-wide single-nucleotide polymorphisms, molecular data has provided clear genetic differentiation between this unknown taxon and M. humile. Monotropastrum humile and this taxon are associated with different Russula lineages, even when they are sympatric. Based on this multifaceted evidence, we describe this unknown taxon as the new species M. kirishimense. Assortative mating resulting from phenological differences has likely contributed to the persistent sympatry between these two species, with distinct mycorrhizal specificity.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
- The Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan
| | - Tian-Chuan Hsu
- Botanical Garden Division, Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei, 100, Taiwan
| | - Shuichi Kurogi
- Miyazaki Prefectural Museum of Nature and History, 2-4-4, Jingû, Miyazaki, 880-0053, Japan
| | - Akio Imamura
- Hokkaido University of Education, Sapporo, 002-8501, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan
| |
Collapse
|
8
|
Policelli N, Vietorisz C, Bhatnagar JM, Nuñez MA. Ectomycorrhizal Fungi Invasions in Southern South America. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Ectomycorrhizal Stands Accelerate Decomposition to a Greater Extent than Arbuscular Mycorrhizal Stands in a Northern Deciduous Forest. Ecosystems 2021. [DOI: 10.1007/s10021-021-00712-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Dauphin B, de Freitas Pereira M, Kohler A, Grigoriev IV, Barry K, Na H, Amirebrahimi M, Lipzen A, Martin F, Peter M, Croll D. Cryptic genetic structure and copy-number variation in the ubiquitous forest symbiotic fungus Cenococcum geophilum. Environ Microbiol 2021; 23:6536-6556. [PMID: 34472169 PMCID: PMC9293092 DOI: 10.1111/1462-2920.15752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
Ectomycorrhizal (ECM) fungi associated with plants constitute one of the most successful symbiotic interactions in forest ecosystems. ECM support trophic exchanges with host plants and are important factors for the survival and stress resilience of trees. However, ECM clades often harbour morpho-species and cryptic lineages, with weak morphological differentiation. How this relates to intraspecific genome variability and ecological functioning is poorly known. Here, we analysed 16 European isolates of the ascomycete Cenococcum geophilum, an extremely ubiquitous forest symbiotic fungus with no known sexual or asexual spore-forming structures but with a massively enlarged genome. We carried out whole-genome sequencing to identify single-nucleotide polymorphisms. We found no geographic structure at the European scale but divergent lineages within sampling sites. Evidence for recombination was restricted to specific cryptic lineages. Lineage differentiation was supported by extensive copy-number variation. Finally, we confirmed heterothallism with a single MAT1 idiomorph per genome. Synteny analyses of the MAT1 locus revealed substantial rearrangements and a pseudogene of the opposite MAT1 idiomorph. Our study provides the first evidence for substantial genome-wide structural variation, lineage-specific recombination and low continent-wide genetic differentiation in C. geophilum. Our study provides a foundation for targeted analyses of intra-specific functional variation in this major symbiosis.
Collapse
Affiliation(s)
| | - Maíra de Freitas Pereira
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.,INRAE, UMR 1136 INRAE-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE-Grand Est, Champenoux, France
| | - Annegret Kohler
- INRAE, UMR 1136 INRAE-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE-Grand Est, Champenoux, France
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, USA.,U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Hyunsoo Na
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Mojgan Amirebrahimi
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Francis Martin
- INRAE, UMR 1136 INRAE-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE-Grand Est, Champenoux, France
| | - Martina Peter
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
11
|
Petrolli R, Augusto Vieira C, Jakalski M, Bocayuva MF, Vallé C, Cruz EDS, Selosse MA, Martos F, Kasuya MCM. A fine-scale spatial analysis of fungal communities on tropical tree bark unveils the epiphytic rhizosphere in orchids. THE NEW PHYTOLOGIST 2021; 231:2002-2014. [PMID: 33983644 DOI: 10.1111/nph.17459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
Approximately 10% of vascular plants are epiphytes and, even though this has long been ignored in past research, are able to interact with a variety of fungi, including mycorrhizal taxa. However, the structure of fungal communities on bark, as well as their relationship with epiphytic plants, is largely unknown. To fill this gap, we conducted environmental metabarcoding of the ITS-2 region to understand the spatial structure of fungal communities of the bark of tropical trees, with a focus on epiphytic orchid mycorrhizal fungi, and tested the influence of root proximity. For all guilds, including orchid mycorrhizal fungi, fungal communities were more similar when spatially close on bark (i.e. they displayed positive spatial autocorrelation). They also showed distance decay of similarity with respect to epiphytic roots, meaning that their composition on bark increasingly differed, compared to roots, with distance from roots. We first showed that all of the investigated fungal guilds exhibited spatial structure at very small scales. This spatial structure was influenced by the roots of epiphytic plants, suggesting the existence of an epiphytic rhizosphere. Finally, we showed that orchid mycorrhizal fungi were aggregated around them, possibly as a result of reciprocal influence between the mycorrhizal partners.
Collapse
Affiliation(s)
- Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Conrado Augusto Vieira
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marcin Jakalski
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Melissa F Bocayuva
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| | - Clément Vallé
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Everaldo Da Silva Cruz
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, EPHE, Sorbonne Université, CP 39, 57 rue Cuvier, Paris, F-75005, France
| | - Maria Catarina M Kasuya
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
12
|
Carteron A, Beigas M, Joly S, Turner BL, Laliberté E. Temperate Forests Dominated by Arbuscular or Ectomycorrhizal Fungi Are Characterized by Strong Shifts from Saprotrophic to Mycorrhizal Fungi with Increasing Soil Depth. MICROBIAL ECOLOGY 2021; 82:377-390. [PMID: 32556393 DOI: 10.1007/s00248-020-01540-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
In temperate and boreal forests, competition for soil resources between free-living saprotrophs and ectomycorrhizal (EcM) fungi has been suggested to restrict saprotrophic fungal dominance to the most superficial organic soil horizons in forests dominated by EcM trees. By contrast, lower niche overlap with arbuscular mycorrhizal (AM) fungi could allow fungal saprotrophs to maintain this dominance into deeper soil horizons in AM-dominated forests. Here we used a natural gradient of adjacent forest patches that were dominated by either AM or EcM trees, or a mixture of both to determine how fungal communities characterized with high-throughput amplicon sequencing change across organic and mineral soil horizons. We found a general shift from saprotrophic to mycorrhizal fungal dominance with increasing soil depth in all forest mycorrhizal types, especially in organic horizons. Vertical changes in soil chemistry, including pH, organic matter, exchangeable cations, and extractable phosphorus, coincided with shifts in fungal community composition. Although fungal communities and soil chemistry differed among adjacent forest mycorrhizal types, variations were stronger within a given soil profile, pointing to the importance of considering horizons when characterizing soil fungal communities. Our results also suggest that in temperate forests, vertical shifts from saprotrophic to mycorrhizal fungi within organic and mineral horizons occur similarly in both ectomycorrhizal and arbuscular mycorrhizal forests.
Collapse
Affiliation(s)
- Alexis Carteron
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada.
| | - Marie Beigas
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
| | - Simon Joly
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
- Montreal Botanical Garden, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Etienne Laliberté
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
| |
Collapse
|
13
|
Rivera JA, Rich HN, Michelle Lawing A, Rosenberg MS, Martins EP. Occurrence data uncover patterns of allopatric divergence and interspecies interactions in the evolutionary history of Sceloporus lizards. Ecol Evol 2021; 11:2796-2813. [PMID: 33767837 PMCID: PMC7981219 DOI: 10.1002/ece3.7237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/06/2022] Open
Abstract
As shown from several long-term and time-intensive studies, closely related, sympatric species can impose strong selection on one another, leading to dramatic examples of phenotypic evolution. Here, we use occurrence data to identify clusters of sympatric Sceloporus lizard species and to test whether Sceloporus species tend to coexist with other species that differ in body size, as we would expect when there is competition between sympatric congeners. We found that Sceloporus species can be grouped into 16 unique bioregions. Bioregions that are located at higher latitudes tend to be larger and have fewer species, following Rapoport's rule and the latitudinal diversity gradient. Species richness was positively correlated with the number of biomes and elevation heterogeneity of each bioregion. Additionally, most bioregions show signs of phylogenetic underdispersion, meaning closely related species tend to occur in close geographic proximity. Finally, we found that although Sceloporus species that are similar in body size tend to cluster geographically, small-bodied Sceloporus species are more often in sympatry with larger-bodied Sceloporus species than expected by chance alone, whereas large-bodied species cluster with each other geographically and phylogenetically. These results suggest that community composition in extant Sceloporus species is the result of allopatric evolution, as closely related species move into different biomes, and interspecies interactions, with sympatry between species of different body sizes. Our phyloinformatic approach offers unique and detailed insights into how a clade composed of ecologically and morphologically disparate species are distributed over large geographic space and evolutionary time.
Collapse
Affiliation(s)
| | | | - A. Michelle Lawing
- Department of Ecosystem and Science ManagementTexas A&M UniversityCollege StationTXUSA
| | - Michael S. Rosenberg
- Center for the Study of Biological ComplexityVirginia Commonwealth UniversityRichmondVAUSA
| | | |
Collapse
|
14
|
Kalsoom Khan F, Kluting K, Tångrot J, Urbina H, Ammunet T, Eshghi Sahraei S, Rydén M, Ryberg M, Rosling A. Naming the untouchable - environmental sequences and niche partitioning as taxonomical evidence in fungi. IMA Fungus 2020; 11:23. [PMID: 33292867 PMCID: PMC7607712 DOI: 10.1186/s43008-020-00045-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
Due to their submerged and cryptic lifestyle, the vast majority of fungal species are difficult to observe and describe morphologically, and many remain known to science only from sequences detected in environmental samples. The lack of practices to delimit and name most fungal species is a staggering limitation to communication and interpretation of ecology and evolution in kingdom Fungi. Here, we use environmental sequence data as taxonomical evidence and combine phylogenetic and ecological data to generate and test species hypotheses in the class Archaeorhizomycetes (Taphrinomycotina, Ascomycota). Based on environmental amplicon sequencing from a well-studied Swedish pine forest podzol soil, we generate 68 distinct species hypotheses of Archaeorhizomycetes, of which two correspond to the only described species in the class. Nine of the species hypotheses represent 78% of the sequenced Archaeorhizomycetes community, and are supported by long read data that form the backbone for delimiting species hypothesis based on phylogenetic branch lengths. Soil fungal communities are shaped by environmental filtering and competitive exclusion so that closely related species are less likely to co-occur in a niche if adaptive traits are evolutionarily conserved. In soil profiles, distinct vertical horizons represent a testable niche dimension, and we found significantly differential distribution across samples for a well-supported pair of sister species hypotheses. Based on the combination of phylogenetic and ecological evidence, we identify two novel species for which we provide molecular diagnostics and propose names. While environmental sequences cannot be automatically translated to species, they can be used to generate phylogenetically distinct species hypotheses that can be further tested using sequences as ecological evidence. We conclude that in the case of abundantly and frequently observed species, environmental sequences can support species recognition in the absences of physical specimens, while rare taxa remain uncaptured at our sampling and sequencing intensity.
Collapse
Affiliation(s)
- Faheema Kalsoom Khan
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.,Department of Organismal Biology, Systematic Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Kerri Kluting
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Jeanette Tångrot
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Umeå University, Umeå, Sweden
| | - Hector Urbina
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.,Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, Florida, 32608, USA
| | - Tea Ammunet
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Shadi Eshghi Sahraei
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Martin Rydén
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Systematic Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Anna Rosling
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| |
Collapse
|
15
|
Kennedy PG, Gagne J, Perez-Pazos E, Lofgren LA, Nguyen NH. Does fungal competitive ability explain host specificity or rarity in ectomycorrhizal symbioses? PLoS One 2020; 15:e0234099. [PMID: 32810132 PMCID: PMC7433872 DOI: 10.1371/journal.pone.0234099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022] Open
Abstract
Two common ecological assumptions are that host generalist and rare species are poorer competitors relative to host specialist and more abundant counterparts. While these assumptions have received considerable study in both plant and animals, how they apply to ectomycorrhizal fungi remains largely unknown. To investigate how interspecific competition may influence the anomalous host associations of the rare ectomycorrhizal generalist fungus, Suillus subaureus, we conducted a seedling bioassay. Pinus strobus seedlings were inoculated in single- or two-species treatments of three Suillus species: S. subaureus, S. americanus, and S. spraguei. After 4 and 8 months of growth, seedlings were harvested and scored for mycorrhizal colonization as well as dry biomass. At both time points, we found a clear competitive hierarchy among the three ectomycorrhizal fungal species: S. americanus > S. subaureus > S. spraguei, with the competitive inferior, S. spraguei, having significantly delayed colonization relative to S. americanus and S. subaureus. In the single-species treatments, we found no significant differences in the dry biomasses of P. strobus seedlings colonized by each Suillus species, suggesting none was a more effective plant symbiont. Taken together, these results indicate that the rarity and anomalous host associations exhibited by S. subaureus in natural settings are not driven by inherently poor competitive ability or host growth promotion, but that the timing of colonization is a key factor determining the outcome of ectomycorrhizal fungal competitive interactions.
Collapse
Affiliation(s)
- Peter G. Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joe Gagne
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eduardo Perez-Pazos
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, United States of America
| | - Nhu H. Nguyen
- Department of Tropical Plant & Soil Sciences, University of Hawai’i, Manoa, Manoa, Honolulu, Hawai’i, United States of America
| |
Collapse
|
16
|
Van Dorp CH, Simard SW, Durall DM. Resilience of Rhizopogon-Douglas-fir mycorrhizal networks 25 years after selective logging. MYCORRHIZA 2020; 30:467-474. [PMID: 32556666 DOI: 10.1007/s00572-020-00968-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Rhizopogon vesiculosus and R. vinicolor are sister fungal species; they form ectomycorrhizas exclusively with Douglas-fir roots, and they are important in forming relatively large mycorrhizal networks, but they may be vulnerable to disturbance caused by logging practices. The main objective was to determine the resilience of mycorrhizal networks 25 years following removal of large hub trees. We predicted that the targeted removal of mature trees would reduce network connectedness compared with a non-harvested neighboring forest. Rhizopogon vesiculosus was nearly absent in the non-harvested plots, whereas both species were prominent in the harvested plots. Initially, network analysis was based only on networks formed by R. vinicolor because they were well represented in both treatments. These analyses showed that the R. vinicolor-Douglas-fir MN was more densely linked in the non-harvested plots than the harvested plots. When we accounted for differences in link and node density, there was still an edge difference and a greater vulnerability to fragmentation in harvested forests than in non-harvested forests. When both Rhizopogon sister species were included in the analysis, both treatments had similar connectivity and limited vulnerability to fragmentation. This suggests that when these forests transition from a regenerating to a non-regenerating state, the Rhizopogon network will lose R. vesiculosus but will maintain link density due to the colonization with R. vinicolor.
Collapse
Affiliation(s)
- Carrie H Van Dorp
- Biology Department, University of British Columbia, Okanagan campus, 1177 Research Road, Science Building, Kelowna, BC, V1V 1V7, Canada
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Daniel M Durall
- Biology Department, University of British Columbia, Okanagan campus, 1177 Research Road, Science Building, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
17
|
Rog I, Rosenstock NP, Körner C, Klein T. Share the wealth: Trees with greater ectomycorrhizal species overlap share more carbon. Mol Ecol 2020; 29:2321-2333. [PMID: 31923325 PMCID: PMC7116085 DOI: 10.1111/mec.15351] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/24/2019] [Accepted: 01/05/2020] [Indexed: 01/03/2023]
Abstract
The mutualistic symbiosis between forest trees and ectomycorrhizal fungi (EMF) is among the most ubiquitous and successful interactions in terrestrial ecosystems. Specific species of EMF are known to colonize specific tree species, benefitting from their carbon source, and in turn, improving their access to soil water and nutrients. EMF also form extensive mycelial networks that can link multiple root-tips of different trees. Yet the number of tree species connected by such mycelial networks, and the traffic of material across them, are just now under study. Recently we reported substantial belowground carbon transfer between Picea, Pinus, Larix and Fagus trees in a mature forest. Here, we analyze the EMF community of these same individual trees and identify the most likely taxa responsible for the observed carbon transfer. Among the nearly 1,200 EMF root-tips examined, 50%-70% belong to operational taxonomic units (OTUs) that were associated with three or four tree host species, and 90% of all OTUs were associated with at least two tree species. Sporocarp 13 C signals indicated that carbon originating from labelled Picea trees was transferred among trees through EMF networks. Interestingly, phylogenetically more closely related tree species exhibited more similar EMF communities and exchanged more carbon. Our results show that belowground carbon transfer is well orchestrated by the evolution of EMFs and tree symbiosis.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Christian Körner
- Department of Environmental Sciences -Botany, University of Basel, Basel, Switzerland
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Stephens RB, Trowbridge AM, Ouimette AP, Knighton WB, Hobbie EA, Stoy PC, Rowe RJ. Signaling from below: rodents select for deeper fruiting truffles with stronger volatile emissions. Ecology 2020; 101:e02964. [PMID: 31872867 DOI: 10.1002/ecy.2964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 11/11/2022]
Abstract
Many plant and fungal species use volatile organic compounds (VOCs) as chemical signals to convey information about the location or quality of their fruits or fruiting bodies to animal dispersers. Identifying the environmental factors and biotic interactions that shape fruit selection by animals is key to understanding the evolutionary processes that underpin chemical signaling. Using four Elaphomyces truffle species, we explored the role of fruiting depth, VOC emissions, and protein content in selection by five rodent species. We used stable isotope analysis of nitrogen (δ15 N) in truffles to estimate fruiting depth, proton-transfer-reaction mass spectrometry to determine volatile emission composition, and nitrogen concentrations to calculate digestible protein of truffles. We coupled field surveys of truffle availability with truffle spore loads in rodent scat to determine selection by rodents. Despite presumably easier access to the shallow fruiting species, E. americanus (0.5-cm depth) and E. verruculosus (2.5-cm depth), most rodents selected for truffles fruiting deeper in the soil, E. macrosporus (4.1-cm depth) and E. bartlettii (5.0-cm depth). The deeper fruiting species had distinct VOC profiles and produced significantly higher quantities of odiferous compounds. Myodes gapperi (southern red-backed vole), a fungal specialist, also selected for truffles with high levels of digestible protein, E. verruculosus and E. macrosporus. Our results highlight the importance of chemical signals in truffle selection by rodents and suggest that VOCs are under strong selective pressures relative to protein rewards. Strong chemical signals likely allow detection of truffles deep within the soil and reduce foraging effort by rodents. For rodents that depend on fungi as a major food source, protein content may also be important in selecting truffles.
Collapse
Affiliation(s)
- Ryan B Stephens
- Natural Resources and the Environment, University of New Hampshire, 114 James Hall, 56 College Road, Durham, New Hampshire, 03824, USA
| | - Amy M Trowbridge
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Andrew P Ouimette
- Earth Systems Research Center, University of New Hampshire, Morse Hall, 8 College Road, Durham, New Hampshire, 03824, USA
| | - W Berk Knighton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, 59717, USA
| | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Morse Hall, 8 College Road, Durham, New Hampshire, 03824, USA
| | - Paul C Stoy
- Department of Biological Systems Engineering, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Rebecca J Rowe
- Natural Resources and the Environment, University of New Hampshire, 114 James Hall, 56 College Road, Durham, New Hampshire, 03824, USA
| |
Collapse
|
19
|
Kluting K, Clemmensen K, Jonaitis S, Vasaitis R, Holmström S, Finlay R, Rosling A. Distribution patterns of fungal taxa and inferred functional traits reflect the non-uniform vertical stratification of soil microhabitats in a coastal pine forest. FEMS Microbiol Ecol 2019; 95:fiz149. [PMID: 31539041 PMCID: PMC6835140 DOI: 10.1093/femsec/fiz149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/19/2019] [Indexed: 11/24/2022] Open
Abstract
In boreal systems, soil profiles typically consist of distinct stratified horizons, with organic layers at the surface overlying deeper mineral horizons providing microhabitat variation along a depth gradient, and vertical stratification of fungal communities along such soil profiles is commonly observed. We studied fungal community structure in a coastal pine forest along a gradient of decreasing influence from the coast. In this system, the vertical stratification pattern of soil microhabitats (defined here as organic, mineral with roots and mineral without roots: O, MR and MN, respectively) is non-uniform; organic horizons are sometimes buried under drifting sand dunes. Our results show that soil microhabitats are distinct with respect to physiochemical characteristics, community composition and OTU richness. While community composition was partly related to depth and distance from the coastal forest edge, microhabitat appeared to have the strongest influence. A closer inspection of the OTUs with the highest relative sequence abundance within each microhabitat revealed that microhabitats support functionally distinct fungal communities with respect to trophic mode and growth morphology. These results suggest that in coastal pine forests, variation in soil microhabitats contributes to the high fungal diversity found belowground and may play an important role in optimizing nutrient cycling.
Collapse
Affiliation(s)
- Kerri Kluting
- Evolutionary Biology program, Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Karina Clemmensen
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Box 7026, Sweden
| | | | - Rimvydas Vasaitis
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Box 7026, Sweden
| | - Sara Holmström
- Department of Geological Science, Stockholm University, SE-114 19 Stockholm, Sweden
| | - Roger Finlay
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Box 7026, Sweden
| | - Anna Rosling
- Evolutionary Biology program, Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
20
|
Lofgren L, Nguyen NH, Kennedy PG. Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations? THE NEW PHYTOLOGIST 2018; 220:1273-1284. [PMID: 29411381 DOI: 10.1111/nph.15008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Despite the importance of ectomycorrhizal (ECM) fungi in forest ecosystems, knowledge about the ecological and co-evolutionary mechanisms underlying ECM host associations remains limited. Using a widely distributed group of ECM fungi known to form tight associations with trees in the family Pinaceae, we characterized host specificity among three unique Suillus-host species pairs using a combination of field root tip sampling and experimental bioassays. We demonstrate that the ECM fungus S. subaureus can successfully colonize Quercus hosts in both field and glasshouse settings, making this species unique in an otherwise Pinaceae-specific clade. Importantly, however, we found that the colonization of Quercus by S. subaureus required co-planting with a Pinaceae host. While our experimental results indicate that gymnosperms are required for the establishment of new S. subaureus colonies, Pineaceae hosts are locally absent at both our field sites. Given the historical presence of Pineaceae hosts before human alteration, it appears the current S. subaureus-Quercus associations represent carryover from past host presence. Collectively, our results suggest that patterns of ECM specificity should be viewed not only in light of current forest community composition, but also as a legacy effect of host community change over time.
Collapse
Affiliation(s)
- Lotus Lofgren
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Nhu H Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| |
Collapse
|
21
|
Fungal guilds are evenly distributed along a vertical spruce forest soil profile while individual fungi show pronounced niche partitioning. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1405-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Mommer L, Cotton TEA, Raaijmakers JM, Termorshuizen AJ, van Ruijven J, Hendriks M, van Rijssel SQ, van de Mortel JE, van der Paauw JW, Schijlen EGWM, Smit‐Tiekstra AE, Berendse F, de Kroon H, Dumbrell AJ. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. THE NEW PHYTOLOGIST 2018; 218:542-553. [PMID: 29468690 PMCID: PMC5887887 DOI: 10.1111/nph.15036] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/03/2018] [Indexed: 05/17/2023]
Abstract
There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a 'black box' in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships.
Collapse
Affiliation(s)
- Liesje Mommer
- Plant Ecology and Nature Conservation GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| | - T. E. Anne Cotton
- School of Biological SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- Department of Animal and Plant SciencesUniversity of SheffieldSouth YorkshireS10 2TNUK
| | - Jos M. Raaijmakers
- Department of Microbial EcologyNetherlands Institute for Ecology (NIOO‐KNAW)PO Box 50Wageningen6700 ABthe Netherlands
| | | | - Jasper van Ruijven
- Plant Ecology and Nature Conservation GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| | - Marloes Hendriks
- Institute for Water and Wetland ResearchExperimental Plant EcologyRadboud University NijmegenPO Box 9010Nijmegen6500 GLthe Netherlands
| | - Sophia Q. van Rijssel
- Plant Ecology and Nature Conservation GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| | - Judith E. van de Mortel
- HAS University of Applied SciencesDepartment of Applied BiologyUniversity of Applied SciencesSpoorstraat 62Venlo5911 KJthe Netherlands
| | - Jan Willem van der Paauw
- Plant Ecology and Nature Conservation GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| | - Elio G. W. M. Schijlen
- Wageningen University and Research BU BiosciencePO Box 16Wageningen6700 AAthe Netherlands
| | - Annemiek E. Smit‐Tiekstra
- Institute for Water and Wetland ResearchExperimental Plant EcologyRadboud University NijmegenPO Box 9010Nijmegen6500 GLthe Netherlands
| | - Frank Berendse
- Plant Ecology and Nature Conservation GroupWageningen UniversityPO Box 47Wageningen6700 AAthe Netherlands
| | - Hans de Kroon
- Institute for Water and Wetland ResearchExperimental Plant EcologyRadboud University NijmegenPO Box 9010Nijmegen6500 GLthe Netherlands
| | - Alex J. Dumbrell
- School of Biological SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
| |
Collapse
|
23
|
Wang X, Liu J, Long D, Han Q, Huang J. The ectomycorrhizal fungal communities associated with Quercus liaotungensis in different habitats across northern China. MYCORRHIZA 2017; 27:441-449. [PMID: 28120112 DOI: 10.1007/s00572-017-0762-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Quercus liaotungensis is a major tree species in deciduous broad-leaved forests in northern China. In this study, we investigated ectomycorrhizal (ECM) communities associated with Q. liaotungensis from five typical habitats across northern China. We used internal transcribed spacer-polymerase chain reaction and DNA sequencing to identify ECM fungi, and we detected 220 operational taxonomic units. In general, at the regional scale, the dominant ECM lineages were /tomentella-thelephora, /cenococcum, /russula-lactarius, and /inocybe. Analysis of variance demonstrated significant differences in alpha diversity among these ECM communities, and the ECM fungal richness was positively correlated with elevation and soil organic matter. Analysis of similarity and a nonmetric multidimensional scaling analysis revealed that there were significant differences in community composition, and the geographical distance was correlated with the ECM fungal communities. Among the environmental factors we studied, soil parameters and climate factors were the primary direct driving factors of the ECM fungal communities. Our study primarily advances our understanding of environmental factors affecting ECM fungal communities at regional scale.
Collapse
Affiliation(s)
- Xiaobing Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianjun Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Ningxia Helan Mountain Forest Ecosystem Orientational Research Station, Yinchuan, Ningxia, 750000, China.
| | - Dongfeng Long
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qisheng Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
24
|
Smith ME, Henkel TW, Williams GC, Aime MC, Fremier AK, Vilgalys R. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. THE NEW PHYTOLOGIST 2017; 215:443-453. [PMID: 28493414 DOI: 10.1111/nph.14570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Temperate ectomycorrhizal (ECM) fungi show segregation whereby some species dominate in organic layers and others favor mineral soils. Weak layering in tropical soils is hypothesized to decrease niche space and therefore reduce the diversity of ectomycorrhizal fungi. The Neotropical ECM tree Dicymbe corymbosa forms monodominant stands and has a distinct physiognomy with vertical crown development, adventitious roots and massive root mounds, leading to multi-stemmed trees with spatially segregated rooting environments: aerial litter caches, aerial decayed wood, organic root mounds and mineral soil. We hypothesized that these microhabitats host distinct fungal assemblages and therefore promote diversity. To test our hypothesis, we sampled D. corymbosa ectomycorrhizal root tips from the four microhabitats and analyzed community composition based on pyrosequencing of fungal internal transcribed spacer (ITS) barcode markers. Several dominant fungi were ubiquitous but analyses nonetheless suggested that communities in mineral soil samples were statistically distinct from communities in organic microhabitats. These data indicate that distinctive rooting zones of D. corymbosa contribute to spatial segregation of the fungal community and likely enhance fungal diversity.
Collapse
Affiliation(s)
- Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Terry W Henkel
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | | | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Alexander K Fremier
- School of the Environment, Washington State University, Pullman, WA, 99164, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
25
|
Mujic AB, Kuo A, Tritt A, Lipzen A, Chen C, Johnson J, Sharma A, Barry K, Grigoriev IV, Spatafora JW. Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus. G3 (BETHESDA, MD.) 2017; 7:1775-1789. [PMID: 28450370 PMCID: PMC5473757 DOI: 10.1534/g3.117.039396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 12/04/2022]
Abstract
Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales.
Collapse
Affiliation(s)
- Alija Bajro Mujic
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Alan Kuo
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Andrew Tritt
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Anna Lipzen
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Cindy Chen
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Jenifer Johnson
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Aditi Sharma
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Kerrie Barry
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Igor V Grigoriev
- Joint Genome Institute, United States Department of Energy, Walnut Creek, California 95458
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
26
|
Toju H, Kishida O, Katayama N, Takagi K. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons. PLoS One 2016; 11:e0165987. [PMID: 27861486 PMCID: PMC5115672 DOI: 10.1371/journal.pone.0165987] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023] Open
Abstract
Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Aza-Takaoka, Tomakomai, Hokkaido, Japan
| | - Noboru Katayama
- Center for Ecological Research, Kyoto University, 2-chome, Hirano, Otsu, Shiga, Japan
| | - Kentaro Takagi
- Teshio Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Aza-Toikanbetsu 131, Horonobe-cho, Teshio-gun, Hokkaido, Japan
| |
Collapse
|
27
|
Peay KG. The Mutualistic Niche: Mycorrhizal Symbiosis and Community Dynamics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032100] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The niche is generally viewed in terms of species' intrinsic physiological potential and limitations due to competition. Although DNA sequencing has revealed the ubiquity of beneficial microbial symbioses, the role of mutualisms in shaping species niches is not broadly recognized. In this review, I use a widespread terrestrial mutualism, the ectomycorrhizal symbiosis, to help develop the mutualistic niche concept. Using contemporary niche theory, I show how mycorrhizal symbioses expand environmental ranges (requirement niche) and influence resource use (impact niche) for both plants and fungi. Simple niche models for competition between resource specialists and generalists also predict a range of ecological phenomena, from unexpected monodominance by some tropical trees to the functional biogeography of mycorrhizal symbiosis. A niche-based view of mutualism may also help explain stability of mutualisms even in the absence of clear benefits. The niche is a central concept in ecology, and better integration of mutualism will more accurately reflect the positive interactions experienced by nearly all species.
Collapse
Affiliation(s)
- Kabir G. Peay
- Department of Biology, Stanford University, Stanford, California 94122
| |
Collapse
|
28
|
Bödeker ITM, Lindahl BD, Olson Å, Clemmensen KE. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12677] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Inga T. M. Bödeker
- Department of Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences Uppsala BioCenter Box 7026 SE‐750 07 Uppsala Sweden
- Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Box 49 SE‐230 53 Alnarp Sweden
| | - Björn D. Lindahl
- Department of Soil and Environment Swedish University of Agricultural Sciences Box 7014 SE‐750 07 Uppsala Sweden
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences Uppsala BioCenter Box 7026 SE‐750 07 Uppsala Sweden
| | - Karina E. Clemmensen
- Department of Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences Uppsala BioCenter Box 7026 SE‐750 07 Uppsala Sweden
| |
Collapse
|