1
|
Long C, Du Y, Guan Y, Liu S, Xie J. Transposon-Associated Small RNAs Involved in Plant Defense in Poplar. PLANTS (BASEL, SWITZERLAND) 2025; 14:1265. [PMID: 40284152 PMCID: PMC12030527 DOI: 10.3390/plants14081265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Utilizing high-throughput Illumina sequencing, we examined how small RNA (sRNA) profiles vary in Chinese white poplar (Populus tomentosa) across two pivotal infection stages by the rust fungus Melampsora larici-populina: the biotrophic growth phase (T02; 48 h post infection) and the urediniospore development and dispersal phase (T03; 168 h), both essential for plant colonization and prolonged biotrophic engagement. Far exceeding random expectations, siRNA clusters predominantly arose from transposon regions, with pseudogenes also contributing significantly, and infection-stage-specific variations were notably tied to these transposon-derived siRNAs. As the infection advanced, clusters of 24 nt siRNAs in transposon and intergenic regions exhibited pronounced abundance shifts. An analysis of targets indicated that Populus sRNAs potentially regulate 95% of Melampsora larici-populina genes, with pathogen effector genes showing heightened targeting by sRNAs during the biotrophic and urediniospore phases compared to controls, pointing to selective sRNA-target interactions. In contrast to conserved miRNAs across plant species, Populus-specific miRNAs displayed a markedly greater tendency to target NB-LRR genes. These observations collectively highlight the innovative roles of sRNAs in plant defense, their evolutionary roots, and their dynamic interplay with pathogen coevolution.
Collapse
Affiliation(s)
- Cui Long
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China (J.X.)
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yuxin Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China (J.X.)
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yumeng Guan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China (J.X.)
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Sijia Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China (J.X.)
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jianbo Xie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China (J.X.)
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
2
|
Estrada R, Rodriguez L, Romero Y, Arteaga L, Ruelas-Calloapaza D, Oha-Humpiri F, Flores N, Coila P, Arbizu CI. Profiling of Known and Novel microRNAs in an Oleaginous Crop Native to the Amazon Basin, Sacha Inchi ( Plukenetia volubilis), Through smallRNA-Seq. Genes (Basel) 2025; 16:417. [PMID: 40282379 PMCID: PMC12026887 DOI: 10.3390/genes16040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play crucial roles in regulating tissue-specific gene expression and plant development. This study explores the identification and functional characterization of miRNAs in Plukenetia volubilis (sacha inchi), an economically and nutritionally significant crop native to the Amazon basin, across three organs: root, stem, and leaf. METHODS Small RNA libraries were sequenced on the Illumina Novaseq 6000 platform, yielding high-quality reads that facilitated the discovery of known and novel miRNAs using miRDeep-P. RESULTS A total of 277 miRNAs were identified, comprising 71 conserved and 206 novel miRNAs, across root, stem, and leaf tissues. In addition, differential expression analysis using DESeq2 identified distinct miRNAs exhibiting tissue-specific regulation. Notably, novel miRNAs like novel_1, novel_88, and novel_189 showed significant roles in processes such as auxin signaling, lignin biosynthesis, and stress response. Functional enrichment analysis of miRNA target genes revealed pathways related to hormonal regulation, structural reinforcement, and environmental adaptation, highlighting tissue-specific functions. The Principal Component Analysis and PERMANOVA confirmed clear segregation of miRNA expression profiles among tissues, underlining organ-specific regulation. Differential expression patterns emphasized unique regulatory roles in each organ: roots prioritized stress response and nutrient uptake, leaves focused on photosynthesis and UV protection, and stems contributed to structural integrity and nutrient transport, suggesting evolutionary adaptations in P. volubilis. CONCLUSIONS This study identified novel miRNA-mediated networks that regulate developmental and adaptive processes in P. volubilis, underscoring its molecular adaptations for resilience and productivity. By characterizing both conserved and novel miRNAs, the findings lay a foundation for genetic improvement and molecular breeding strategies aimed at enhancing agronomic traits, stress tolerance, and the production of bioactive compounds.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Lila Rodriguez
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Linda Arteaga
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (L.R.); (Y.R.); (L.A.)
- Instituto de Investigación en Bioinformática y Bioestadística (BIOINFO), Lima 15024, Peru
| | - Domingo Ruelas-Calloapaza
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru; (D.R.-C.); (N.F.); (P.C.)
| | - Filiberto Oha-Humpiri
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Micaela Bastidas de Apurímac, Abancay 03001, Peru;
| | - Nils Flores
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru; (D.R.-C.); (N.F.); (P.C.)
| | - Pedro Coila
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano de Puno, Puno 21001, Peru; (D.R.-C.); (N.F.); (P.C.)
| | - Carlos I. Arbizu
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas 01001, Peru
- Centro de Investigación en Germoplasma Vegetal y Mejoramiento Genético de Plantas (CIGEMP), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas 01001, Peru
| |
Collapse
|
3
|
Niu MX, Feng CH, He F, Zhang H, Bao Y, Liu SJ, Liu X, Su Y, Liu C, Wang HL, Yin W, Xia X. The miR6445-NAC029 module regulates drought tolerance by regulating the expression of glutathione S-transferase U23 and reactive oxygen species scavenging in Populus. THE NEW PHYTOLOGIST 2024; 242:2043-2058. [PMID: 38515251 DOI: 10.1111/nph.19703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
MicroRNAs are essential in plant development and stress resistance, but their specific roles in drought stress require further investigation. Here, we have uncovered that a Populus-specific microRNAs (miRNA), miR6445, targeting NAC (NAM, ATAF, and CUC) family genes, is involved in regulating drought tolerance of poplar. The expression level of miR6445 was significantly upregulated under drought stress; concomitantly, seven targeted NAC genes showed significant downregulation. Silencing the expression of miR6445 by short tandem target mimic technology significantly decreased the drought tolerance in poplar. Furthermore, 5' RACE experiments confirmed that miR6445 directly targeted NAC029. The overexpression lines of PtrNAC029 (OE-NAC029) showed increased sensitivity to drought compared with knockout lines (Crispr-NAC029), consistent with the drought-sensitive phenotype observed in miR6445-silenced strains. PtrNAC029 was further verified to directly bind to the promoters of glutathione S-transferase U23 (GSTU23) and inhibit its expression. Both Crispr-NAC029 and PtrGSTU23 overexpressing plants showed higher levels of PtrGSTU23 transcript and GST activity while accumulating less reactive oxygen species (ROS). Moreover, poplars overexpressing GSTU23 demonstrated enhanced drought tolerance. Taken together, our research reveals the crucial role of the miR6445-NAC029-GSTU23 module in enhancing poplar drought tolerance by regulating ROS homeostasis. This finding provides new molecular targets for improving the drought resistance of trees.
Collapse
Affiliation(s)
- Meng-Xue Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Cong-Hua Feng
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Fang He
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Han Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yu Bao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shu-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiao Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanyan Su
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
4
|
Zhang X, Du M, Yang Z, Wang Z, Lim KJ. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int J Mol Sci 2023; 24:10664. [PMID: 37445841 DOI: 10.3390/ijms241310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mingjun Du
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
5
|
Niu H, Pang Y, Xie L, Yu Q, Shen Y, Li J, Xu X. Clustering pattern and evolution characteristic of microRNAs in grass carp (Ctenopharyngodon idella). BMC Genomics 2023; 24:73. [PMID: 36782132 PMCID: PMC9926789 DOI: 10.1186/s12864-023-09159-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND A considerable fraction of microRNAs (miRNAs) are highly conserved, and certain miRNAs correspond to genomic clusters. The clustering of miRNAs can be advantageous, possibly by allowing coordinated expression. However, little is known about the evolutionary forces responsible for the loss and acquisition of miRNA and miRNA clusters. RESULTS The results demonstrated that several novel miRNAs arose throughout grass carp evolution. Duplication and de novo production were critical strategies for miRNA cluster formation. Duplicates accounted for a smaller fraction of the expansion in the grass carp miRNA than de novo creation. Clustered miRNAs are more conserved and change slower, whereas unique miRNAs usually have high evolution rates and low expression levels. The expression level of miRNA expression in clusters is strongly correlated. CONCLUSIONS This study examines the genomic distribution, evolutionary background, and expression regulation of grass carp miRNAs. Our findings provide novel insights into the genesis and development of miRNA clusters in teleost.
Collapse
Affiliation(s)
- Huiqin Niu
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yifan Pang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qiaozhen Yu
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China ,grid.412514.70000 0000 9833 2433Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
6
|
He R, Tang Y, Wang D. Coordinating Diverse Functions of miRNA and lncRNA in Fleshy Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:411. [PMID: 36679124 PMCID: PMC9866404 DOI: 10.3390/plants12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Non-coding RNAs play vital roles in the diverse biological processes of plants, and they are becoming key topics in horticulture research. In particular, miRNAs and long non-coding RNAs (lncRNAs) are receiving increased attention in fruit crops. Recent studies in horticulture research provide both genetic and molecular evidence that miRNAs and lncRNAs regulate biological function and stress responses during fruit development. Here, we summarize multiple regulatory modules of miRNAs and lncRNAs and their biological roles in fruit sets and stress responses, which would guide the development of molecular breeding techniques on horticultural crops.
Collapse
Affiliation(s)
- Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yajun Tang
- Shandong Laboratory of Advanced Agricultural Sciences, Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
7
|
Ascorbate-Glutathione Cycle Genes Families in Euphorbiaceae: Characterization and Evolutionary Analysis. BIOLOGY 2022; 12:biology12010019. [PMID: 36671712 PMCID: PMC9855080 DOI: 10.3390/biology12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Ascorbate peroxidase (APX), Monodehydroascorbate Reductase (MDAR), Dehydroascorbate Reductase (DHAR) and Glutathione Reductase (GR) enzymes participate in the ascorbate-glutathione cycle, which exerts a central role in the antioxidant metabolism in plants. Despite the importance of this antioxidant system in different signal transduction networks related to development and response to environmental stresses, the pathway has not yet been comprehensively characterized in many crop plants. Among different eudicotyledons, the Euphorbiaceae family is particularly diverse with some species highly tolerant to drought. Here the APX, MDAR, DHAR, and GR genes in Ricinus communis, Jatropha curcas, Manihot esculenta, and Hevea brasiliensis were identified and characterized. The comprehensive phylogenetic and genomic analyses allowed the classification of the genes into different classes, equivalent to cytosolic, peroxisomal, chloroplastic, and mitochondrial enzymes, and revealed the duplication events that contribute to the expansion of these families within plant genomes. Due to the high drought stress tolerance of Ricinus communis, the expression patterns of ascorbate-glutathione cycle genes in response to drought were also analyzed in leaves and roots, indicating a differential expression during the stress. Altogether, these data contributed to the characterization of the expression pattern and evolutionary analysis of these genes, filling the gap in the proposed functions of core components of the antioxidant mechanism during stress response in an economically relevant group of plants.
Collapse
|
8
|
Identification and Comparative Analysis of Conserved and Species-Specific microRNAs in Four Populus Sections. FORESTS 2022. [DOI: 10.3390/f13060873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The conservation and diversity of microRNA (miRNA) families provide insights into the evolution of miRNA genes. However, there are few studies to explore the miRNA genes at the genus level in plants. Here, we identified 1194 miRNA loci in four Populus species P. deltoides, P. euphratica, P. tremula, and P. trichocarpa from Aigeiros, Turanga, Populus, and Tacamahaca sections, respectively, by combining de novo and homolog-based approaches. Our results indicated that a similar number of miRNA loci exist in each species (296–301 miRNA loci). Among the identified 143 miRNA families, 68 families are shared by the studied four species, and 31 families are species-specific, which might be related to local adaptation. Additionally, multiple miRNA-related single nucleotide polymorphisms (SNPs) were found, indicating that polymorphisms in pre-miRNA hairpins were likely to affect miRNA biogenesis. This study expanded the breadth and depth of miRNA annotations and provided valuable resources for further exploring the diversity and function of poplar miRNAs.
Collapse
|
9
|
Xiao L, Man L, Yang L, Zhang J, Liu B, Quan M, Lu W, Fang Y, Wang D, Du Q, Zhang D. Association Study and Mendelian Randomization Analysis Reveal Effects of the Genetic Interaction Between PtoMIR403b and PtoGT31B-1 on Wood Formation in Populus tomentosa. FRONTIERS IN PLANT SCIENCE 2021; 12:704941. [PMID: 34527007 PMCID: PMC8435637 DOI: 10.3389/fpls.2021.704941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs), important posttranscriptional regulators of gene expression, play a crucial role in plant growth and development. A single miRNA can regulate numerous target genes, making the determination of its function and interaction with targets challenging. We identified PtomiR403b target to PtoGT31B-1, which encodes a galactosyltransferase responsible for the biosynthesis of cell wall polysaccharides. We performed an association study and epistasis and Mendelian randomization (MR) analyses to explore how the genetic interaction between PtoMIR403b and its target PtoGT31B-1 underlies wood formation. Single nucleotide polymorphism (SNP)-based association studies identified 25 significant associations (P < 0.01, Q < 0.05), and PtoMIR403b and PtoGT31B-1 were associated with five traits, suggesting a role for PtomiR403b and PtoGT31B-1 in wood formation. Epistasis analysis identified 93 significant pairwise epistatic associations with 10 wood formation traits, and 37.89% of the SNP-SNP pairs indicated interactions between PtoMIR403b and PtoGT31B-1. We performed an MR analysis to demonstrate the causality of the relationships between SNPs in PtoMIR403b and wood property traits and that PtoMIR403b modulates wood formation by regulating expression of PtoGT31B-1. Therefore, our findings will facilitate dissection of the functions and interactions with miRNA-targets.
Collapse
Affiliation(s)
- Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liting Man
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Xining Forestry Science Research Institute, Xining, China
| | - Lina Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinmei Zhang
- Xining Forestry Science Research Institute, Xining, China
| | - Baoyao Liu
- Xining Forestry Science Research Institute, Xining, China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Dan Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
|
11
|
Chen S, Wu J, Zhang Y, Zhao Y, Xu W, Li Y, Xie J. Genome-Wide Analysis of Coding and Non-coding RNA Reveals a Conserved miR164-NAC-mRNA Regulatory Pathway for Disease Defense in Populus. Front Genet 2021; 12:668940. [PMID: 34122520 PMCID: PMC8195341 DOI: 10.3389/fgene.2021.668940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) contribute to plant defense responses by increasing the overall genetic diversity; however, their origins and functional importance in plant defense remain unclear. Here, we employed Illumina sequencing technology to assess how miRNA and messenger RNA (mRNA) populations vary in the Chinese white poplar (Populus tomentosa) during a leaf black spot fungus (Marssonina brunnea) infection. We sampled RNAs from infective leaves at conidia germinated stage [12 h post-inoculation (hpi)], infective vesicles stage (24 hpi), and intercellular infective hyphae stage (48 hpi), three essential stages associated with plant colonization and biotrophic growth in M. brunnea fungi. In total, 8,938 conserved miRNA-target gene pairs and 3,901 Populus-specific miRNA-target gene pairs were detected. The result showed that Populus-specific miRNAs (66%) were more involved in the regulation of the disease resistance genes. By contrast, conserved miRNAs (>80%) target more whole-genome duplication (WGD)-derived transcription factors (TFs). Among the 1,023 WGD-derived TF pairs, 44.9% TF pairs had only one paralog being targeted by a miRNA that could be due to either gain or loss of a miRNA binding site after the WGD. A conserved hierarchical regulatory network combining promoter analyses and hierarchical clustering approach uncovered a miR164–NAM, ATAF, and CUC (NAC) transcription factor–mRNA regulatory module that has potential in Marssonina defense responses. Furthermore, analyses of the locations of miRNA precursor sequences reveal that pseudogenes and transposon contributed a certain proportion (∼30%) of the miRNA origin. Together, these observations provide evolutionary insights into the origin and potential roles of miRNAs in plant defense and functional innovation.
Collapse
Affiliation(s)
- Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanfeng Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Zhao Y, Xie J, Wang S, Xu W, Chen S, Song X, Lu M, El-Kassaby YA, Zhang D. Synonymous mutation in Growth Regulating Factor 15 of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4502-4519. [PMID: 34865000 DOI: 10.1093/jxb/erab120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 05/04/2023]
Abstract
Abstract
Heat stress damages plant tissues and induces multiple adaptive responses. Complex and spatiotemporally specific interactions among transcription factors (TFs), microRNAs (miRNAs), and their targets play crucial roles in regulating stress responses. To explore these interactions and to identify regulatory networks in perennial woody plants subjected to heat stress, we integrated time-course RNA-seq, small RNA-seq, degradome sequencing, weighted gene correlation network analysis, and multi-gene association approaches in poplar. Results from Populus trichocarpa enabled us to construct a three-layer, highly interwoven regulatory network involving 15 TFs, 45 miRNAs, and 77 photosynthetic genes. Candidate gene association studies in a population of P. tomentosa identified 114 significant associations and 696 epistatic SNP–SNP pairs that were linked to 29 photosynthetic and growth traits (P<0.0001, q<0.05). We also identified miR396a and its target, Growth-Regulating Factor 15 (GRF15) as an important regulatory module in the heat-stress response. Transgenic plants of hybrid poplar (P. alba × P. glandulosa) overexpressing a GRF15 mRNA lacking the miR396a target sites exhibited enhanced heat tolerance and photosynthetic efficiency compared to wild-type plants. Together, our observations demonstrate that GRF15 plays a crucial role in responding to heat stress, and they highlight the power of this new, multifaceted approach for identifying regulatory nodes in plants.
Collapse
Affiliation(s)
- Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sha Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
13
|
Di R, Liu QY, Song SH, Tian DM, He JN, Ge Y, Wang XY, Hu WP, Mwacharo JM, Pan ZY, Wang JD, Ma Q, Cao GL, Jin HH, Liang XJ, Chu MX. Expression characteristics of pineal miRNAs at ovine different reproductive stages and the identification of miRNAs targeting the AANAT gene. BMC Genomics 2021; 22:217. [PMID: 33765915 PMCID: PMC7992348 DOI: 10.1186/s12864-021-07536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Background Many recent studies have shown that miRNAs play important roles in the regulation of animal reproduction, including seasonal reproduction. The pineal gland is a crucial hub in the regulation of seasonal reproduction. However, little is known about the expression characteristics of pineal miRNAs in different reproductive seasons (anestrus and breeding season). Therefore, the expression profiles and regulatory roles of ovine pineal miRNAs were investigated during different reproductive stages using Solexa sequencing technology and dual luciferase reporter assays. Results A total of 427 miRNAs were identified in the sheep pineal gland. Significant differences in miRNA expression were demonstrated between anestrus and the breeding season in terms of the frequency distributions of miRNA lengths, number of expressed miRNAs, and specifically and highly expressed miRNAs in each reproductive stage. KEGG analysis of the differentially expressed (DE) miRNAs between anestrus and the breeding season indicated that they are significantly enriched in pathways related to protein synthesis, secretion and uptake. Furthermore, transcriptome analysis revealed that many target genes of DE miRNAs in the ribosome pathway showed relatively low expression in the breeding season. On the other hand, analyses combining miRNA-gene expression data with target relationship validation in vitro implied that miR-89 may participate in the negative regulation of aralkylamine N-acetyltransferase (AANAT) mRNA expression by targeting its 3’UTR at a unique binding site. Conclusions Our results provide new insights into the expression characteristics of sheep pineal miRNAs at different reproductive stages and into the negative regulatory effects of pineal miRNAs on AANAT mRNA expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07536-y.
Collapse
Affiliation(s)
- Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qiu-Yue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Shu-Hui Song
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Dong-Mei Tian
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Jian-Ning He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ying Ge
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiang-Yu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Wen-Ping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Joram-Mwashigadi Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Zhang-Yuan Pan
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jian-Dong Wang
- Research Center of Grass and Livestock, NingXia Academy of Agricultural and Forestry Sciences, No. 590, East Yellow River Road, Yinchuan, 750002, China
| | - Qing Ma
- Research Center of Grass and Livestock, NingXia Academy of Agricultural and Forestry Sciences, No. 590, East Yellow River Road, Yinchuan, 750002, China
| | - Gui-Ling Cao
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Hui-Hui Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Jun Liang
- Research Center of Grass and Livestock, NingXia Academy of Agricultural and Forestry Sciences, No. 590, East Yellow River Road, Yinchuan, 750002, China.
| | - Ming-Xing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
14
|
Liu Y, Teng C, Xia R, Meyers BC. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction. THE PLANT CELL 2020; 32:3059-3080. [PMID: 32817252 PMCID: PMC7534485 DOI: 10.1105/tpc.20.00335] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 05/08/2023]
Abstract
Phased secondary small interfering RNAs (phasiRNAs) constitute a major category of small RNAs in plants, but most of their functions are still poorly defined. Some phasiRNAs, known as trans-acting siRNAs, are known to target complementary mRNAs for degradation and to function in development. However, the targets or biological roles of other phasiRNAs remain speculative. New insights into phasiRNA biogenesis, their conservation, and their variation across the flowering plants continue to emerge due to the increased availability of plant genomic sequences, deeper and more sophisticated sequencing approaches, and improvements in computational biology and biochemical/molecular/genetic analyses. In this review, we survey recent progress in phasiRNA biology, with a particular focus on two classes associated with male reproduction: 21-nucleotide (accumulate early in anther ontogeny) and 24-nucloetide (produced in somatic cells during meiosis) phasiRNAs. We describe phasiRNA biogenesis, function, and evolution and define the unanswered questions that represent topics for future research.
Collapse
Affiliation(s)
- Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Chong Teng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| |
Collapse
|
15
|
Xu W, Zhao Y, Chen S, Xie J, Zhang D. Evolution and Functional Divergence of the Fructokinase Gene Family in Populus. FRONTIERS IN PLANT SCIENCE 2020; 11:484. [PMID: 32499793 PMCID: PMC7243158 DOI: 10.3389/fpls.2020.00484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/31/2020] [Indexed: 05/06/2023]
Abstract
New kinase has emerged throughout evolution, but how new kinase evolve while maintaining their functions and acquiring new functions remains unclear. Fructokinase (FRK), the gateway kinase to fructose metabolism, plays essential roles in plant development, and stress tolerance. Here, we explored the evolution of FRK gene family in 20 plant species (from green algae to angiosperms) and their functional roles in Populus. We identified 125 putative FRK genes in the 20 plant species with an average of 6 members per species. Phylogenetic analysis separated these 125 genes into 8 clades including 3 conserved clades and 5 specific clades, the 5 of which only exist in green algae or angiosperms. Evolutionary analysis revealed that FRK genes in ancient land plants have the largest number of functional domains with the longest amino acid sequences, and the length of FRK genes became shorter during the transition to vascular plants. This was accompanied by loss, acquisition, and diversification of functional domains. In Populus, segmental duplication appears to be the main mechanism for the expansion of FRK genes. Specially, most FRK genes duplicated in salicoids are regulated by Populus-specific microRNAs. Furthermore, compared with common FRKs, Populus-specific FRKs have showed higher expression specificity and are associated with fewer growth and wood property traits, which suggests that these FRKs may have undergone functional divergence. Our study explores the specific roles of FRKs in the Populus genome and provides new insights for functional investigation of this gene family.
Collapse
Affiliation(s)
- Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| | - Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| | - Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Ministry of Education, Beijing, China
| |
Collapse
|
16
|
Si J, Quan M, Xiao L, Xie J, Du Q, Zhang D. Genetic interactions among Pto-miR319 family members and their targets influence growth and wood properties in Populus tomentosa. Mol Genet Genomics 2020; 295:855-870. [PMID: 32361785 DOI: 10.1007/s00438-020-01667-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in all aspects of plant growth and development, but the genetic interactions of miRNAs and their target genes in woody plants are largely unknown. Here, we integrated association genetics and expression profiling to decipher the allelic variations and interactions of the Pto-MIR319 family of miRNAs and 12 putative Pto-miR319 target genes related to wood formation in 435 unrelated individuals of Populus tomentosa Carrière (Chinese white poplar). Expression pattern analysis showed that among all pairings between expressions of pre-miRNA of Pto-MIR319 members and targets, 70.0% showed negative correlation of expression levels (r = - 0.944 to 0.674, P < 0.01) in eight tissues and organs of poplar, suggesting that Pto-miR319 may participate in the regulatory network of wood formation. Single SNP-based association studies identified 137 significant associations (P < 0.01, Q < 0.1), representing 126 unique SNPs from Pto-MIR319 members and their targets, with 10 tree growth traits, revealing that these genetic factors have common roles related to wood formation. Epistasis analysis uncovered 105 significant SNP-SNP associations (P < 0.01) influencing the 10 traits, demonstrating the close genetic interactions between Pto-MIR319 family members and the 12 Pto-miR319 target genes. Notably, one common SNP, in the precursor region of Pto-MIR319e, affected the stability of Pto-MIR319e's secondary structure by altering the stem-loop structure and minimum free energy, contributing to variations in the expression of Pto-MIR319e and Pto-miR319e target genes. This study enriches the understanding of the functions of miR319 family miRNAs in poplar and exemplifies a feasible approach to exploring the genetic effects underlying miRNA-mRNA interactions related to complex traits in trees.
Collapse
Affiliation(s)
- Jingna Si
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China. .,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China. .,Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
17
|
Hu Z, Liu T, Cao J. Functional Similarity and Difference among Bra-MIR319 Family in Plant Development. Genes (Basel) 2019; 10:genes10120952. [PMID: 31766424 PMCID: PMC6947622 DOI: 10.3390/genes10120952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/02/2022] Open
Abstract
miR319 was the first plant miRNA discovered via forward genetic mutation screening. In this study, we found that miR319 family members had similar sequences but different expression patterns in Brassica campestris and Arabidopsis thaliana. RT-PCR analysis revealed that Bra-MIR319a and Bra-MIR319c had similar expression patterns and were widely expressed in plant development, whereas Bra-MIR319b could only be detected in stems. The overexpression of each Bra-MIR319 family member in Arabidopsis could inhibit cell division and function in leaf and petal morphogenesis. Bra-miR319a formed a new regulatory relationship after whole genome triplication, and Bra-MIR319a overexpressing in Arabidopsis led to the degradation of pollen content and affected the formation of intine, thereby causing pollen abortion. Our results suggest that Bra-MIR319 family members have functional similarity and difference in plant development.
Collapse
Affiliation(s)
- Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (Z.H.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (Z.H.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (Z.H.); (T.L.)
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2597
| |
Collapse
|
18
|
Rigoulot SB, Petzold HE, Williams SP, Brunner AM, Beers EP. Populus trichocarpa clade A PP2C protein phosphatases: their stress-induced expression patterns, interactions in core abscisic acid signaling, and potential for regulation of growth and development. PLANT MOLECULAR BIOLOGY 2019; 100:303-317. [PMID: 30945147 DOI: 10.1007/s11103-019-00861-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/26/2019] [Indexed: 05/26/2023]
Abstract
Overexpression of the poplar PP2C protein phosphatase gene PtrHAB2 resulted in increased tree height and altered leaf morphology and phyllotaxy, implicating PP2C phosphatases as growth regulators functioning under favorable conditions. We identified and studied Populus trichocarpa genes, PtrHAB1 through PtrHAB15, belonging to the clade A PP2C family of protein phosphatases known to regulate abscisic acid (ABA) signaling. PtrHAB1 through PtrHAB3 and PtrHAB12 through PtrHAB15 were the most highly expressed genes under non-stress conditions. The poplar PP2C genes were differentially regulated by drought treatments. Expression of PtrHAB1 through PtrHAB3 was unchanged or downregulated in response to drought, while all other PtrHAB genes were weakly to strongly upregulated in response to drought stress treatments. Yeast two-hybrid assays involving seven ABA receptor proteins (PtrRCAR) against 12 PtrHAB proteins detected 51 interactions involving eight PP2Cs and all PtrRCAR proteins with 22 interactions requiring the addition of ABA. PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 also interacted with the sucrose non-fermenting related kinase 2 proteins PtrSnRK2.10 and PtrSnRK2.11, supporting conservation of a SnRK2 signaling cascade regulated by PP2C in poplar. Additionally, PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 interacted with the mitogen-activated protein kinase protein PtrMPK7. Due to its interactions with PtrSnRK2 and PtrMPK7 proteins, and its reduced expression during drought stress, PtrHAB2 was overexpressed in poplar to test its potential as a growth regulator under non-stress conditions. 35S::PtrHAB2 transgenics exhibited increased growth rate for a majority of transgenic events and alterations in leaf phyllotaxy and morphology. These results indicate that PP2Cs have additional roles which extend beyond canonical ABA signaling, possibly coordinating plant growth and development in response to environmental conditions.
Collapse
Affiliation(s)
- Stephen B Rigoulot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - H Earl Petzold
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sarah P Williams
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biology, College of William and Mary, Williamsburg, VA, 23187, USA
| | - Amy M Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eric P Beers
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
19
|
Quan M, Du Q, Xiao L, Lu W, Wang L, Xie J, Song Y, Xu B, Zhang D. Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and transcription factors for growth and wood properties in Populus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:302-315. [PMID: 29947466 PMCID: PMC6330548 DOI: 10.1111/pbi.12978] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 05/18/2023]
Abstract
Lignin provides structural support in perennial woody plants and is a complex phenolic polymer derived from phenylpropanoid pathway. Lignin biosynthesis is regulated by coordinated networks involving transcription factors (TFs), microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). However, the genetic networks underlying the lignin biosynthesis pathway for tree growth and wood properties remain unknown. Here, we used association genetics (additive, dominant and epistasis) and expression quantitative trait nucleotide (eQTN) mapping to decipher the genetic networks for tree growth and wood properties in 435 unrelated individuals of Populus tomentosa. We detected 124 significant associations (P ≤ 6.89E-05) for 10 growth and wood property traits using 30 265 single nucleotide polymorphisms from 203 lignin biosynthetic genes, 81 TF genes, 36 miRNA genes and 71 lncRNA loci, implying their common roles in wood formation. Epistasis analysis uncovered 745 significant pairwise interactions, which helped to construct proposed genetic networks of lignin biosynthesis pathway and found that these regulators might affect phenotypes by linking two lignin biosynthetic genes. eQTNs were used to interpret how causal genes contributed to phenotypes. Lastly, we investigated the possible functions of the genes encoding 4-coumarate: CoA ligase and cinnamate-4-hydroxylase in wood traits using epistasis, eQTN mapping and enzymatic activity assays. Our study provides new insights into the lignin biosynthesis pathway in poplar and enables the novel genetic factors as biomarkers for facilitating genetic improvement of trees.
Collapse
Affiliation(s)
- Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Baohua Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
20
|
Conserved noncoding sequences conserve biological networks and influence genome evolution. Heredity (Edinb) 2018; 120:437-451. [PMID: 29396421 DOI: 10.1038/s41437-018-0055-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/14/2017] [Accepted: 01/08/2018] [Indexed: 01/24/2023] Open
Abstract
Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.
Collapse
|
21
|
Quan M, Xiao L, Lu W, Liu X, Song F, Si J, Du Q, Zhang D. Association Genetics in Populus Reveal the Allelic Interactions of Pto-MIR167a and Its Targets in Wood Formation. FRONTIERS IN PLANT SCIENCE 2018; 9:744. [PMID: 29946324 PMCID: PMC6005902 DOI: 10.3389/fpls.2018.00744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/15/2018] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) play crucial regulatory roles in plant growth and development by interacting with RNA molecules, including messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs); however, the genetic networks of miRNAs and their targets influencing the phenotypes of perennial trees remain to be investigated. Here, we integrated expression profiling and association analysis of underlying physiology and expression traits to dissect the allelic variations and genetic interactions of Pto-MIR167a and its targets, sponge lncRNA ARFRL, and Pto-ARF8, in 435 unrelated individuals of Populus tomentosa. Tissue-specific expression analysis in eight tissues, including stem, leaf, root, and shoot apex, revealed negative correlations between Pto-MIR167a and lncRNA ARFRL and Pto-ARF8 (r = -0.60 and -0.61, respectively, P < 0.01), and a positive correlation between sponge lncRNA ARFRL and Pto-ARF8 (r = 0.90, P < 0.01), indicating their potential regulatory roles in tree growth and wood formation. Single nucleotide polymorphism (SNP)-based association studies detected 53 significant associations (P < 0.01, Q < 0.1) representing 41 unique SNPs from the three genes and six traits, suggesting their potential roles in wood formation. Epistasis uncovered 88 pairwise interactions for 10 traits, which provided substantial evidence for genetic interactions among Pto-MIR167a, lncRNA ARFRL, and Pto-ARF8. Using gene expression-based association mapping, we also examined SNPs within the three genes that influence phenotypes by regulating the expression of Pto-ARF8. Interestingly, SNPs in the precursor region of Pto-MIR167a altered its secondary structure stability and transcription, thereby affecting the expression of its targets. In summary, we elucidated the genetic interactions between Pto-MIR167a and its targets, sponge lncRNA ARFRL, and Pto-ARF8, in tree growth and wood formation, and provide a feasible method for further investigation of multi-factor genetic networks influencing phenotypic variation in the population genetics of trees.
Collapse
Affiliation(s)
- Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fangyuan Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jingna Si
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Deqiang Zhang
| |
Collapse
|
22
|
Liu Y, Ke L, Wu G, Xu Y, Wu X, Xia R, Deng X, Xu Q. miR3954 is a trigger of phasiRNAs that affects flowering time in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:263-275. [PMID: 28749585 DOI: 10.1111/tpj.13650] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 05/27/2023]
Abstract
In plant, a few 22-nt miRNAs direct cleavages of their targets and trigger the biogenesis of phased small interfering RNAs (phasiRNAs) in plant. In this study, we characterized a miRNA triggering phasiRNAs generation, miR3954, and explored its downstream target genes and potential function. Our results demonstrated that miR3954 showed specific expression in the flowers of citrus species, and it targeted a NAC transcription factor (Cs7 g22460) and two non-coding RNA transcripts (lncRNAs, Cs1 g09600 and Cs1 g09635). The production of phasiRNAs was detected from transcripts targeted by miR3954, and was further verified in both sequencing data and transient expression experiments. PhasiRNAs derived from the two lncRNAs targeted not only miR3954-targeted NAC gene but also additional NAC homologous genes. No homologous genes of these two lncRNAs were found in plants other than citrus species, implying that this miR3954-lncRNAs-phasiRNAs-NAC pathway is likely citrus-specific. Transgenic analysis indicated that the miR3954-overexpressing lines showed decreased transcripts of lncRNA, elevated abundance of phasiRNAs and reduced expression of NAC genes. Interestingly, the overexpression of miR3954 leads to early flowering in citrus plants. In summary, our results illustrated a model of the regulatory network of miR3954-lncRNA-phasiRNAs-NAC, which may be functionally involved in flowering in citrus.
Collapse
Affiliation(s)
- Yuanlong Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Ke
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guizhi Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomeng Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, 510642, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
23
|
Corrigendum. THE NEW PHYTOLOGIST 2017; 213:470. [PMID: 27891641 DOI: 10.1111/nph.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|