1
|
Cazabonne J, Walker AK, Lesven J, Haelewaters D. Singleton-based species names and fungal rarity: Does the number really matter? IMA Fungus 2024; 15:7. [PMID: 38504339 PMCID: PMC10953280 DOI: 10.1186/s43008-023-00137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/13/2023] [Indexed: 03/21/2024] Open
Abstract
Fungi are among the least known organisms on earth, with an estimated number of species between 1.5 and 10 million. This number is expected to be refined, especially with increasing knowledge about microfungi in undersampled habitats and increasing amounts of data derived from environmental DNA sequencing. A significant proportion of newly generated sequences fail to match with already named species, and thus represent what has been referred to as fungal "dark taxa". Due to the challenges associated with observing, identifying, and preserving sporophores, many macro- and microfungal species are only known from a single collection, specimen, isolate, and/or sequence-a singleton. Mycologists are consequently used to working with "rare" sequences and specimens. However, rarity and singleton phenomena lack consideration and valorization in fungal studies. In particular, the practice of publishing new fungal species names based on a single specimen remains a cause of debate. Here, we provide some elements of reflection on this issue in the light of the specificities of the fungal kingdom and global change context. If multiple independent sources of data support the existence of a new taxon, we encourage mycologists to proceed with formal description, irrespective of the number of specimens at hand. Although the description of singleton-based species may not be considered best practice, it does represent responsible science in the light of closing the Linnean biodiversity shortfall.
Collapse
Affiliation(s)
- Jonathan Cazabonne
- Ecology Research Group of Abitibi RCM, Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Amos, QC, J9T 2L8, Canada.
- Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, H3C 3P8, Canada.
| | - Allison K Walker
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Jonathan Lesven
- Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Bourgogne Franche-Comté, 25000, Besançon, France
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, 9000, Ghent, Belgium.
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic.
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
2
|
Sokołowska B, Orłowska M, Okrasińska A, Piłsyk S, Pawłowska J, Muszewska A. What can be lost? Genomic perspective on the lipid metabolism of Mucoromycota. IMA Fungus 2023; 14:22. [PMID: 37932857 PMCID: PMC10629195 DOI: 10.1186/s43008-023-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Mucoromycota is a phylum of early diverging fungal (EDF) lineages, of mostly plant-associated terrestrial fungi. Some strains have been selected as promising biotechnological organisms due to their ability to produce polyunsaturated fatty acids and efficient conversion of nutrients into lipids. Others get their lipids from the host plant and are unable to produce even the essential ones on their own. Following the advancement in EDF genome sequencing, we carried out a systematic survey of lipid metabolism protein families across different EDF lineages. This enabled us to explore the genomic basis of the previously documented ability to produce several types of lipids within the fungal tree of life. The core lipid metabolism genes showed no significant diversity in distribution, however specialized lipid metabolic pathways differed in this regard among different fungal lineages. In total 165 out of 202 genes involved in lipid metabolism were present in all tested fungal lineages, while remaining 37 genes were found to be absent in some of fungal lineages. Duplications were observed for 69 genes. For the first time we demonstrate that ergosterol is not being produced by several independent groups of plant-associated fungi due to the losses of different ERG genes. Instead, they possess an ancestral pathway leading to the synthesis of cholesterol, which is absent in other fungal lineages. The lack of diacylglycerol kinase in both Mortierellomycotina and Blastocladiomycota opens the question on sterol equilibrium regulation in these organisms. Early diverging fungi retained most of beta oxidation components common with animals including Nudt7, Nudt12 and Nudt19 pointing at peroxisome divergence in Dikarya. Finally, Glomeromycotina and Mortierellomycotina representatives have a similar set of desaturases and elongases related to the synthesis of complex, polyunsaturated fatty acids pointing at an ancient expansion of fatty acid metabolism currently being explored by biotechnological studies.
Collapse
Affiliation(s)
- Blanka Sokołowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Alicja Okrasińska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Julia Pawłowska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
3
|
Djotan AKG, Matsushita N, Fukuda K. Paired Root-Soil Samples and Metabarcoding Reveal Taxon-Based Colonization Strategies in Arbuscular Mycorrhizal Fungi Communities in Japanese Cedar and Cypress Stands. MICROBIAL ECOLOGY 2023; 86:2133-2146. [PMID: 37115261 PMCID: PMC10497666 DOI: 10.1007/s00248-023-02223-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) in the roots and soil surrounding their hosts are typically independently investigated and little is known of the relationships between the communities of the two compartments. We simultaneously collected root and surrounding soil samples from Cryptomeria japonica (Cj) and Chamaecyparis obtusa (Co) at three environmentally different sites. Based on molecular and morphological analyses, we characterized their associated AMF communities. Cj was more densely colonized than Co and that root colonization intensity was significantly correlated with soil AMF diversity. The communities comprised 15 AMF genera dominated by Glomus and Paraglomus and 1443 operational taxonomic units (OTUs) of which 1067 and 1170 were in roots and soil, respectively. AMF communities were significantly different among sites, and the root AMF communities were significantly different from those of soil at each site. The root and soil AMF communities responded differently to soil pH. At the genus level, Glomus and Acaulospora were abundant in roots while Paraglomus and Redeckera were abundant in soil. Our findings suggest that AMF colonizing roots are protected from environmental stresses in soil. However, the root-soil-abundant taxa have adapted to both environments and represent a model AMF symbiont. This evidence of strategic exploitation of the rhizosphere by AMF supports prior hypotheses and provides insights into community ecology.
Collapse
Affiliation(s)
- Akotchiffor Kevin Geoffroy Djotan
- Graduate School of Agricultural and Life Sciences (Laboratory of Forest Botany), University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences (Laboratory of Forest Botany), University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kenji Fukuda
- Graduate School of Agricultural and Life Sciences (Laboratory of Forest Botany), University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
4
|
Arévalo-Granda V, Hickey-Darquea A, Prado-Vivar B, Zapata S, Duchicela J, van ‘t Hof P. Exploring the mycobiome and arbuscular mycorrhizal fungi associated with the rizosphere of the genus Inga in the pristine Ecuadorian Amazon. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1086194. [PMID: 37746118 PMCID: PMC10512398 DOI: 10.3389/ffunb.2023.1086194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/20/2023] [Indexed: 09/26/2023]
Abstract
This study explored the composition of the mycobiome in the rhizosphere of Inga seedlings in two different but neighboring forest ecosystems in the undisturbed tropical Amazon rainforest at the Tiputini Biodiversity Station in Ecuador. In terra firme plots, which were situated higher up and therefore typically outside of the influence of river floods, and in várzea plots, the lower part of the forest located near the riverbanks and therefore seasonally flooded, tree seedlings of the genus Inga were randomly collected and measured, and the rhizosphere soils surrounding the root systems was collected. Members of the Fabaceae family and the genus Inga were highly abundant in both forest ecosystems. Inga sp. seedlings collected in terra firme showed a lower shoot to root ratio compared to seedlings that were collected in várzea, suggesting that Inga seedlings which germinated in várzea soils could invest more resources in vegetative growth with shorter roots. Results of the physical-chemical properties of soil samples indicated higher proportions of N, Mo, and V in terra firme soils, whereas várzea soils present higher concentrations of all other macro- and micronutrients, which confirmed the nutrient deposition effect of seasonal flooding by the nearby river. ITS metabarcoding was used to explore the mycobiome associated with roots of the genus Inga. Bioinformatic analysis was performed using Qiime 2 to calculate the alpha and beta diversity, species taxonomy and the differential abundance of fungi and arbuscular mycorrhizal fungi. The fungal community represented 75% of the total ITS ASVs, and although present in all samples, the subphylum Glomeromycotina represented 1.42% of all ITS ASVs with annotations to 13 distinct families, including Glomeraceae (72,23%), Gigasporaceae (0,57%), Acaulosporaceae (0,49%). AMF spores of these three AMF families were morphologically identified by microscopy. Results of this study indicate that AMF surround the rhizosphere of Inga seedlings in relatively low proportions compared to other fungal groups but present in both terra firme and várzea Neotropical ecosystems.
Collapse
Affiliation(s)
- Valentina Arévalo-Granda
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Aileen Hickey-Darquea
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Belén Prado-Vivar
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Sonia Zapata
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Tiputini Biodiversity Station, Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| | - Jéssica Duchicela
- Department of Life Sciences and Agriculture, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Pieter van ‘t Hof
- Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Institute of Microbiology, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
- Tiputini Biodiversity Station, Department of Biological and Environmental Sciences - COCIBA, Universidad San Francisco de Quito-USFQ, Quito, Ecuador
| |
Collapse
|
5
|
Evaluation of the Presence of Arbuscular Mycorrhizae and Cadmium Content in the Plants and Soils of Cocoa Plantations in San Martin, Peru. DIVERSITY 2023. [DOI: 10.3390/d15020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cocoa (Theobroma cacao L.) is an important crop in Peru. International regulations require products derived from cocoa to be free of heavy metals (HMs), such as cadmium. Arbuscular mycorrhizae (AM) contribute to reduced HM content in the plant, preventing its accumulation in the fruit and facilitating the rhizodeposition of HMs through glomalin-related soil proteins (GRSP). We studied the presence of mycorrhizal symbiosis in cocoa plants and cadmium in three plantations in San Martín, Peru. The maximum Cd content detected in soils was 1.09 (mg/kg), an amount below the tolerable limit for agricultural soil (≥1.4 mg/kg). Cocoa roots showed 68–86% active mycorrhizal colonization; agronomic management did not cause differences between plantations. Levels of GRSP were between 7.67 (GRSP-EE) and 13.75 (GRSP-T) mg protein g soil−1. Morphological and molecular analysis of Glomeromycota fungi showed the presence of families Claroideoglomeraceae, Paraglomeraceae, Gigasporaceae, Glomeraceae, Acaulosporaceae, Archaeosporaceae, and Diversisporaceae. Our results show the presence of arbuscular mycorrhizal symbiosis in cocoa plantations and suggest that T. cacao may phytostabilize HM in its rhizosphere through the production of GRSP. The presence of mycorrhizal symbiosis indicates the potential for the preparation of biofertilizers for cocoa since the production of GRSP is promissory for the biostabilization of soil HMs.
Collapse
|
6
|
van Creij J, Auxier B, An J, Wijfjes RY, Bergin C, Rosling A, Bisseling T, Pan Z, Limpens E. Stochastic nuclear organization and host-dependent allele contribution in Rhizophagus irregularis. BMC Genomics 2023; 24:53. [PMID: 36709253 PMCID: PMC9883914 DOI: 10.1186/s12864-023-09126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi are arguably the most important symbionts of plants, offering a range of benefits to their hosts. However, the provisioning of these benefits does not appear to be uniform among AM fungal individuals, with genetic variation between fungal symbionts having a substantial impact on plant performance. Interestingly, genetic variation has also been reported within fungal individuals, which contain millions of haploid nuclei sharing a common cytoplasm. In the model AM fungus, Rhizophagus irregularis, several isolates have been reported to be dikaryotes, containing two genetically distinct types of nuclei recognized based on their mating-type (MAT) locus identity. However, their extremely coenocytic nature and lack of a known single nucleus stage has raised questions on the origin, distribution and dynamics of this genetic variation. RESULTS Here we performed DNA and RNA sequencing at the mycelial individual, single spore and single nucleus levels to gain insight into the dynamic genetic make-up of the dikaryote-like R. irregularis C3 isolate and the effect of different host plants on its genetic variation. Our analyses reveal that parallel spore and root culture batches can have widely variable ratios of two main genotypes in C3. Additionally, numerous polymorphisms were found with frequencies that deviated significantly from the general genotype ratio, indicating a diverse population of slightly different nucleotypes. Changing host plants did not show consistent host effects on nucleotype ratio's after multiple rounds of subculturing. Instead, we found a major effect of host plant-identity on allele-specific expression in C3. CONCLUSION Our analyses indicate a highly dynamic/variable genetic organization in different isolates of R. irregularis. Seemingly random fluctuations in nucleotype ratio's upon spore formation, recombination events, high variability of non-tandemly repeated rDNA sequences and host-dependent allele expression all add levels of variation that may contribute to the evolutionary success of these widespread symbionts.
Collapse
Affiliation(s)
- Jelle van Creij
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Ben Auxier
- grid.4818.50000 0001 0791 5666Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| | - Jianyong An
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.411626.60000 0004 1798 6793Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
| | - Raúl Y. Wijfjes
- grid.4818.50000 0001 0791 5666Laboratory of Bioinformatics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.5252.00000 0004 1936 973XCurrent affiliation: Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Claudia Bergin
- grid.8993.b0000 0004 1936 9457Department of Cell and Molecular Biology, Uppsala University, and Microbial Single Cell Genomics Facility, Science for Life Laboratory, Uppsala, Sweden
| | - Anna Rosling
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236 Uppsala, Sweden
| | - Ton Bisseling
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands ,grid.411626.60000 0004 1798 6793Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206 China
| | - Zhiyong Pan
- grid.35155.370000 0004 1790 4137Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Erik Limpens
- grid.4818.50000 0001 0791 5666Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, The Netherlands
| |
Collapse
|
7
|
Fu W, Chen B, Rillig MC, Jansa J, Ma W, Xu C, Luo W, Wu H, Hao Z, Wu H, Zhao A, Yu Q, Han X. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. THE NEW PHYTOLOGIST 2022; 234:2003-2017. [PMID: 34449895 DOI: 10.1111/nph.17692] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Climate extremes pose enormous threats to natural ecosystems. Arbuscular mycorrhizal (AM) fungi are key plant symbionts that can affect plant community dynamics and ecosystem stability. However, knowledge about how AM fungal communities respond to climate extremes in natural ecosystems remains elusive. Based on a grassland extreme drought experiment in Inner Mongolia, we investigated the response of AM fungal communities to extreme drought in association with plant communities. The experiment simulated two types of extreme drought (chronic/intense) of once-in-20-year occurrence. AM fungal richness and community composition exhibited high sensitivity to extreme drought and were more sensitive to intense drought than chronic drought. This community sensitivity (i.e. decline in richness and shifts in community composition) of AM fungi can be jointly explained by soil moisture, plant richness, and aboveground productivity. Notably, the robustness of the plant-AM fungal community co-response increased with drought intensity. Our results indicate that AM fungal communities are sensitive to climate extremes, and we propose that the plant community mediates AM fungal community responses. Given the ubiquitous nature of AM associations, their climate sensitivity may have profound consequences on plant communities and ecosystem stability under climate change.
Collapse
Affiliation(s)
- Wei Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14220, Czech Republic
| | - Wang Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Chong Xu
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wentao Luo
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Honghui Wu
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hui Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihua Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| | - Xingguo Han
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
8
|
Perez‐Lamarque B, Öpik M, Maliet O, Afonso Silva AC, Selosse M, Martos F, Morlon H. Analysing diversification dynamics using barcoding data: The case of an obligate mycorrhizal symbiont. Mol Ecol 2022; 31:3496-3512. [PMID: 35451535 PMCID: PMC9321572 DOI: 10.1111/mec.16478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022]
Abstract
Analysing diversification dynamics is key to understanding the past evolutionary history of clades that led to present-day biodiversity patterns. While such analyses are widespread in well-characterized groups of species, they are much more challenging in groups for which diversity is mostly known through molecular techniques. Here, we use the largest global database on the small subunit (SSU) rRNA gene of Glomeromycotina, a subphylum of microscopic arbuscular mycorrhizal fungi that provide mineral nutrients to most land plants by forming one of the oldest terrestrial symbioses, to analyse the diversification dynamics of this clade in the past 500 million years. We perform a range of sensitivity analyses and simulations to control for potential biases linked to the nature of the data. We find that Glomeromycotina tend to have low speciation rates compared to other eukaryotes. After a peak of speciations between 200 and 100 million years ago, they experienced an important decline in speciation rates toward the present. Such a decline could be at least partially related to a shrinking of their mycorrhizal niches and to their limited ability to colonize new niches. Our analyses identify patterns of diversification in a group of obligate symbionts of major ecological and evolutionary importance and illustrate that short molecular markers combined with intensive sensitivity analyses can be useful for studying diversification dynamics in microbial groups.
Collapse
Affiliation(s)
- Benoît Perez‐Lamarque
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum National d’histoire NaturelleCNRSSorbonne UniversitéEPHE, UA, CP39ParisFrance
| | | | - Odile Maliet
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
| | - Ana C. Afonso Silva
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
- University of LilleCNRS, UMR 8198 ‐ Evo‐Eco‐PaleoLilleFrance
| | - Marc‐André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum National d’histoire NaturelleCNRSSorbonne UniversitéEPHE, UA, CP39ParisFrance
- Department of Plant Taxonomy and Nature ConservationUniversity of GdanskGdanskPoland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum National d’histoire NaturelleCNRSSorbonne UniversitéEPHE, UA, CP39ParisFrance
| | - Hélène Morlon
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
| |
Collapse
|
9
|
Chen J, Tang Y, Kohler A, Lebreton A, Xing Y, Zhou D, Li Y, Martin FM, Guo S. Comparative Transcriptomics Analysis of the Symbiotic Germination of D. officinale (Orchidaceae) With Emphasis on Plant Cell Wall Modification and Cell Wall-Degrading Enzymes. FRONTIERS IN PLANT SCIENCE 2022; 13:880600. [PMID: 35599894 PMCID: PMC9120867 DOI: 10.3389/fpls.2022.880600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Orchid seed germination in nature is an extremely complex physiological and ecological process involving seed development and mutualistic interactions with a restricted range of compatible mycorrhizal fungi. The impact of the fungal species' partner on the orchids' transcriptomic and metabolic response is still unknown. In this study, we performed a comparative transcriptomic analysis between symbiotic and asymbiotic germination at three developmental stages based on two distinct fungi (Tulasnella sp. and Serendipita sp.) inoculated to the same host plant, Dendrobium officinale. Differentially expressed genes (DEGs) encoding important structural proteins of the host plant cell wall were identified, such as epidermis-specific secreted glycoprotein, proline-rich receptor-like protein, and leucine-rich repeat (LRR) extensin-like protein. These DEGs were significantly upregulated in the symbiotic germination stages and especially in the protocorm stage (stage 3) and seedling stage (stage 4). Differentially expressed carbohydrate-active enzymes (CAZymes) in symbiotic fungal mycelium were observed, they represented 66 out of the 266 and 99 out of the 270 CAZymes annotated in Tulasnella sp. and Serendipita sp., respectively. These genes were speculated to be involved in the reduction of plant immune response, successful colonization by fungi, or recognition of mycorrhizal fungi during symbiotic germination of orchid seed. Our study provides important data to further explore the molecular mechanism of symbiotic germination and orchid mycorrhiza and contribute to a better understanding of orchid seed biology.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjing Tang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est - Nancy, Champenoux, France
| | - Annie Lebreton
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est - Nancy, Champenoux, France
| | - Yongmei Xing
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongyu Zhou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est - Nancy, Champenoux, France
| | - Shunxing Guo
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Stengel A, Stanke KM, Quattrone AC, Herr JR. Improving Taxonomic Delimitation of Fungal Species in the Age of Genomics and Phenomics. Front Microbiol 2022; 13:847067. [PMID: 35250961 PMCID: PMC8892103 DOI: 10.3389/fmicb.2022.847067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
Species concepts have long provided a source of debate among biologists. These lively debates have been important for reaching consensus on how to communicate across scientific disciplines and for advancing innovative strategies to study evolution, population biology, ecology, natural history, and disease epidemiology. Species concepts are also important for evaluating variability and diversity among communities, understanding biogeographical distributions, and identifying causal agents of disease across animal and plant hosts. While there have been many attempts to address the concept of species in the fungi, there are several concepts that have made taxonomic delimitation especially challenging. In this review we discuss these major challenges and describe methodological approaches that show promise for resolving ambiguity in fungal taxonomy by improving discrimination of genetic and functional traits. We highlight the relevance of eco-evolutionary theory used in conjunction with integrative taxonomy approaches to improve the understanding of interactions between environment, ecology, and evolution that give rise to distinct species boundaries. Beyond recent advances in genomic and phenomic methods, bioinformatics tools and modeling approaches enable researchers to test hypothesis and expand our knowledge of fungal biodiversity. Looking to the future, the pairing of integrative taxonomy approaches with multi-locus genomic sequencing and phenomic techniques, such as transcriptomics and proteomics, holds great potential to resolve many unknowns in fungal taxonomic classification.
Collapse
Affiliation(s)
- Ashley Stengel
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kimberly M. Stanke
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda C. Quattrone
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Joshua R. Herr
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
11
|
Yildirir G, Sperschneider J, Malar C M, Chen ECH, Iwasaki W, Cornell C, Corradi N. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2022; 233:1097-1107. [PMID: 34747029 DOI: 10.1111/nph.17842] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains. In mammals, these undergo preferential interactions and regulate gene expression. However, their role in fungal genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome and epigenetic diversity in a group of obligate plant symbionts: the arbuscular mycorrhizal fungi (AMF). We find that five phylogenetically distinct strains of the model AMF Rhizophagus irregularis carry 33 chromosomes with substantial within-species variability in size, as well as in gene and repeat content. Strain-specific Hi-C contact maps reveal a 'checkerboard' pattern that underline two dominant euchromatin (A) and heterochromatin (B) compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation frequencies. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta upregulated candidate effectors, suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of model plant symbionts, and opens avenues to study the epigenetic mechanisms that modify chromosome folding during host-microbe interactions.
Collapse
Affiliation(s)
- Gökalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 260, Australia
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 1113-0033, Japan
| | - Calvin Cornell
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
12
|
Gao C, Courty PE, Varoquaux N, Cole B, Montoya L, Xu L, Purdom E, Vogel J, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW. Successional adaptive strategies revealed by correlating arbuscular mycorrhizal fungal abundance with host plant gene expression. Mol Ecol 2022; 32:2674-2687. [PMID: 35000239 DOI: 10.1111/mec.16343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
The shifts in adaptive strategies revealed by ecological succession and the mechanisms that facilitate these shifts are fundamental to ecology. These adaptive strategies could be particularly important in communities of arbuscular mycorrhizal fungi (AMF) mutualistic with sorghum where strong AMF succession replaces initially ruderal species with competitive ones and where the strongest plant response to drought is to manage these AMF. Although most studies of agriculturally important fungi focus on parasites, the mutualistic symbionts, AMF, constitute a research system of human-associated fungi whose relative simplicity and synchrony are conducive to experimental ecology. First, we hypothesize that, when irrigation is stopped to mimic drought, competitive AMF species should be replaced by AMF species tolerant to drought stress. We then, for the first time, correlate AMF abundance and host plant transcription to test two novel hypotheses about the mechanisms behind the shift from ruderal to competitive AMF. Surprisingly, despite imposing drought stress, we found no stress tolerant AMF, likely due to our agricultural system having been irrigated for nearly six decades. Remarkably, we found strong and differential correlation between the successional shift from ruderal to competitive AMF and sorghum genes whose products (i) produce and release strigolactone signals, (ii) perceive mycorrhizal-lipochitinoligosaccharide (Myc-LCO) signals, (iii) provide plant lipid and sugar to AMF and, (iv) import minerals and water provided by AMF. These novel insights frame new hypotheses about AMF adaptive evolution and suggest a rationale for selecting AMF to reduce inputs and maximize yields in commercial agriculture.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, 100101.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Nelle Varoquaux
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Benjamin Cole
- Department of Energy Joint Genome Institute, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Ling Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.,Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, 94710, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - John Vogel
- Department of Energy Joint Genome Institute, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Robert B Hutmacher
- University of California West Side Research & Extension Center, UC Davis, Department of Plant Sciences, Five Points, CA, 93624, USA
| | - Jeffery A Dahlberg
- University of California Kearney Agricultural Research & Extension Center, Parlier, CA, 93648, USA
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.,Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, 94710, USA
| | - Peggy G Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Etesami H, Jeong BR, Glick BR. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate-Solubilizing Bacteria, and Silicon to P Uptake by Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:699618. [PMID: 34276750 PMCID: PMC8280758 DOI: 10.3389/fpls.2021.699618] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 05/22/2023]
Abstract
Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21+ Program), Graduate School, Gyeongsang National University, Jinju, South Korea
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
14
|
Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:111-123. [PMID: 33011084 DOI: 10.1016/j.tplants.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live as obligate root symbionts on almost all land plants. They have long been regarded as ancient asexuals that have propagated clonally for millions of years. However, genomic studies in Rhizophagus irregularis and other AMF revealed many features indicative of sex. Surprisingly, comparative genomics of conspecific isolates of R. irregularis revealed an unexpected interstrain diversity, suggesting that AMF carry a high number of lineage-specific (LS) genes. Intriguingly, cryptic sex and LS genomic regions have previously been reported in a number of fungal pathogens of plants and humans. Here, we discuss these genomic similarities and highlight their potential relevance for AMF adaptation to the environment and for symbiotic functioning.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan 31326, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
15
|
O Omomowo I, E Fadiji A, I Omomowo O. Exploiting Potential of <i>Trichoderma harzianum</i> and <i>Glomus versiforme</i> in Mitigating <i>Cercospora</i> Leaf Spot Disease and Improving Cowpea Growth. Pak J Biol Sci 2020; 23:1276-1284. [PMID: 32981261 DOI: 10.3923/pjbs.2020.1276.1284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Trichoderma species are of utmost importance in agro-biotechnological applications because, in their interactions with plant hosts, they out-compete most pathogenic microorganisms. This study aimed at exploiting the potential of Trichoderma harzianum together with Glomus versiforme and its mutants, in inhibiting cowpea leaf spot rot induced due to Cercospora canescens infestation and improving agronomic growth parameter in a screen house experiment. MATERIALS AND METHODS The experiment was designed using single and co-inoculation of the bioagents: in all, eleven treatments were applied, consisting of Glom_verwild, Glom_ver30, Glom_ver60, Glom_ver90, Trich_h, Glom_verwild+Trich_h, Glom_ver30+Trich_h, Glom_ver60+Trich_h, Glom_ver90+Trich_h, Pathogen alone and control. Cowpea growth yield parameters and disease severity were assessed after 7 weeks. RESULTS The deployed treatments improved agronomic growth parameters substantially (p<0.05) relative to control. Glom_ver 60+Trich_h treatment exerted the highest agronomic growth improvement yield. In addition, the best reduction in the incidence and severity of cowpea leaf spot disease was obtained using Glom_ver 60+Trich_h. A significantly higher germination rate in seeding, confirms both inhibitory and growth improvement potency of the bio inoculants treatment. CONCLUSION This study's findings confirmed the beneficial impacts of the treatment of seed and soil with dual T. harzianum and G. versiforme, in improving the immunity of cowpea to Cercospora canescens leaf spot infection and improve cowpea growth.
Collapse
|
16
|
Community Structure of Arbuscular Mycorrhizal Fungi in Soils of Switchgrass Harvested for Bioenergy. Appl Environ Microbiol 2020; 86:AEM.00880-20. [PMID: 32709729 PMCID: PMC7499029 DOI: 10.1128/aem.00880-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
Learning more about the biodiversity and composition of arbuscular mycorrhizal fungi (AMF) under alternative agricultural management scenarios may be important to the sustainable intensification of switchgrass grown as a bioenergy crop. Using PacBio single-molecule sequencing and taxonomic resolution to the level of amplicon sequence variant (ASV), we assessed the effects of nitrogen amendment on AMF associating with switchgrass and explored relationships between AMF and switchgrass yield across three sites of various productivities in Wisconsin. Nitrogen amendment had little effect on AMF diversity metrics or community composition. While AMF ASV diversity was not correlated with switchgrass yield, AMF family richness and switchgrass yield had a strong, positive relationship at one of our three sites. Each of our sites was dominated by unique ASVs of the species Paraglomus brasilianum, indicating regional segregation of AMF at the intraspecific level. Our molecular biodiversity survey identified putative core members of the switchgrass microbiome, as well as novel clades of AMF, especially in the order Paraglomerales and the genus Nanoglomus Furthermore, our phylogenies unite the cosmopolitan, soil-inhabiting clade deemed GS24 with Pervetustaceae, an enigmatic family prevalent in stressful environments. Future studies should isolate and characterize the novel genetic diversity found in switchgrass agroecosystems and explore the potential yield benefits of AMF richness.IMPORTANCE We assessed the different species of beneficial fungi living in agricultural fields of switchgrass, a large grass grown for biofuels, using high-resolution DNA sequencing. Contrary to our expectations, the fungi were not greatly affected by fertilization. However, we found a positive relationship between plant productivity and the number of families of beneficial fungi at one site. Furthermore, we sequenced many species that could not be identified with existing reference databases. One group of fungi was highlighted in an earlier study for being widely distributed but of unknown taxonomy. We discovered that this group belonged to a family called Pervetustaceae, which may benefit switchgrass in stressful environments. To produce higher-yielding switchgrass in a more sustainable manner, it could help to study these undescribed fungi and the ways in which they may contribute to greater switchgrass yield in the absence of fertilization.
Collapse
|
17
|
Tedersoo L, Anslan S, Bahram M, Kõljalg U, Abarenkov K. Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00456-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
19
|
Řezáčová V, Slavíková R, Konvalinková T, Zemková L, Řezáč M, Gryndler M, Šmilauer P, Gryndlerová H, Hršelová H, Bukovská P, Jansa J. Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows. MYCORRHIZA 2019; 29:567-579. [PMID: 31724087 DOI: 10.1007/s00572-019-00921-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Despite the crucial importance of arbuscular mycorrhizal fungi (AMF) for numerous processes within terrestrial ecosystems, knowledge of the determinants of AMF community structure still is limited, mainly because of the limited scope of the available individual case studies which often only include a few environmental variables. Here, we describe the AMF diversity of mid-European meadows (mown or regularly cut grasslands, or recently abandoned lands where grasslands established spontaneously) within a considerably heterogeneous landscape over a scale of several hundred kilometers with regard to macroclimatic, microclimatic, and soil parameters. We include data describing the habitat (including vegetation type), geography, and climate, and test their contribution to the structure of the AMF communities at a regional scale. We amplified and sequenced the ITS 2 region of the ribosomal DNA operon of the AMF from soil samples using nested PCR and Illumina pair-end amplicon sequencing. Habitat (especially soil pH) and geographical parameters (spatial distance, altitude, and longitude) were the main determinants of the structure of the AMF communities in the meadows at a regional scale, with the abundance of genera Septoglomus, Paraglomus, Archaeospora, Funneliformis, and Dominikia driving the main response. The effects of climate and vegetation type were not significant and were mainly encompassed within the geography and/or soil pH effects. This study illustrates how important it is to have a large set of environmental metadata to compare the importance of different factors influencing the AMF community structure at large spatial scales.
Collapse
Affiliation(s)
- Veronika Řezáčová
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
- Biodiversity Lab, Crop Research Institute, Prague, Czech Republic.
| | - Renata Slavíková
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Konvalinková
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Zemková
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Řezáč
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Biodiversity Lab, Crop Research Institute, Prague, Czech Republic
| | - Milan Gryndler
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Šmilauer
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hana Gryndlerová
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Hršelová
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Bukovská
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
20
|
Roy J, Mazel F, Sosa-Hernández MA, Dueñas JF, Hempel S, Zinger L, Rillig MC. The relative importance of ecological drivers of arbuscular mycorrhizal fungal distribution varies with taxon phylogenetic resolution. THE NEW PHYTOLOGIST 2019; 224:936-948. [PMID: 31355954 DOI: 10.1111/nph.16080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The phylogenetic depth at which arbuscular mycorrhizal (AM) fungi harbor a coherent ecological niche is unknown, which has consequences for operational taxonomic unit (OTU) delineation from sequence data and the study of their biogeography. We tested how changes in AM fungi community composition across habitats (beta diversity) vary with OTU phylogenetic resolution. We inferred exact sequence variants (ESVs) to resolve phylotypes at resolutions finer than provided by traditional sequence clustering and analyzed beta diversity profiles up to order-level sequence clusters. At the ESV level, we detected the environmental predictors revealed with traditional OTUs or at higher genetic distances. However, the correlation between environmental predictors and community turnover steeply increased at a genetic distance of c. 0.03 substitutions per site. Furthermore, we observed a turnover of either closely or distantly related taxa (respectively at or above 0.03 substitutions per site) along different environmental gradients. This study suggests that different axes of AM fungal ecological niche are conserved at different phylogenetic depths. Delineating AM fungal phylotypes using DNA sequences should screen different phylogenetic resolutions to better elucidate the factors that shape communities and predict the fate of AM symbioses in a changing environment.
Collapse
Affiliation(s)
- Julien Roy
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Florent Mazel
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Moisés A Sosa-Hernández
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Juan F Dueñas
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Stefan Hempel
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Lucie Zinger
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, F-75005, Paris, France
| | - Matthias C Rillig
- Institut für Biologie, Ökologie der Pflanzen, Freie Universität Berlin, D-14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|
21
|
Zhang S, Yu J, Wang S, Singh RP, Fu D. Nitrogen fertilization altered arbuscular mycorrhizal fungi abundance and soil erosion of paddy fields in the Taihu Lake region of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27987-27998. [PMID: 31352598 DOI: 10.1007/s11356-019-06005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi were of importance in mitigating soil erosion, which was highly influenced by biotic and abiotic factors, such as host plant growth and soil nutrient. To investigate the impact of nitrogen (N) fertilization on seasonal variance in AM colonization and soil erosion, we conducted a field experiment with rice cultivation under four N fertilizer levels (0 kg N ha-1, 270 kg N ha-1, 300 kg N ha-1, and 375 kg N ha-1 plus organic fertilizers) in the Taihu Lake region, China. We investigated AM colonization before rice transplantation, during rice growth, and after rice harvest. We also assessed soil splash erosion of intact soil cores sampled at tillering and after rice harvest. We found that AM colonization (indicated by percentage of root length colonization) varied from 15 to 73%, which was attributed to rice growth, N fertilization, and their interaction. Soil loss due to splash erosion was cut down by organic N fertilizer at tillering, while higher inorganic N fertilization significantly increased soil loss after rice harvest. Additionally, we found significantly negative relationships of AM colonization to soil loss but positive relationships to soil aggregate stability. We highlighted the potential role of AM fungi in decreasing soil erosion and suggested that high N fertilization should be considered carefully when seeking after high yields.
Collapse
Affiliation(s)
- Shujuan Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Jiazheng Yu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Shuwei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Rajendra Prasad Singh
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Dafang Fu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
22
|
Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A, de la Providencia I, Ndikumana S, Beaudet D, Hainaut M, Drula E, Kuo A, Tang N, Roy S, Viala J, Henrissat B, Grigoriev IV, Corradi N, Roux C, Martin FM. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. THE NEW PHYTOLOGIST 2019; 222:1584-1598. [PMID: 30636349 DOI: 10.1111/nph.15687] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 05/21/2023]
Abstract
Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.
Collapse
Affiliation(s)
- Emmanuelle Morin
- Institut National de la Recherche Agronomique, Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| | - Shingo Miyauchi
- Institut National de la Recherche Agronomique, Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 Chemin de Borde Rouge-Auzeville, 31320, Castanet-Tolosan, France
| | - Eric C H Chen
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Adrian Pelin
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | - Steve Ndikumana
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Denis Beaudet
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Mathieu Hainaut
- CNRS, UMR 7257, Aix-Marseille Université, 13007, Marseille, France
| | - Elodie Drula
- CNRS, UMR 7257, Aix-Marseille Université, 13007, Marseille, France
| | - Alan Kuo
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Nianwu Tang
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 Chemin de Borde Rouge-Auzeville, 31320, Castanet-Tolosan, France
| | - Sébastien Roy
- Agronutrition- rue Pierre et Marie Curie, Immeuble BIOSTEP, 31670, Labège, France
| | - Julie Viala
- Agronutrition- rue Pierre et Marie Curie, Immeuble BIOSTEP, 31670, Labège, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille Université, 13007, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, 13007, Marseille, France
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 Chemin de Borde Rouge-Auzeville, 31320, Castanet-Tolosan, France
| | - Francis M Martin
- Institut National de la Recherche Agronomique, Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forest University, 100080, Beijing, China
| |
Collapse
|
23
|
Luis P, Saint-Genis G, Vallon L, Bourgeois C, Bruto M, Marchand C, Record E, Hugoni M. Contrasted ecological niches shape fungal and prokaryotic community structure in mangroves sediments. Environ Microbiol 2019; 21:1407-1424. [PMID: 30807675 DOI: 10.1111/1462-2920.14571] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
Abstract
Mangroves are forest ecosystems located at the interface between land and sea where sediments presented a variety of contrasted environmental conditions (i.e. oxic/anoxic, non-sulfidic/sulfidic, organic matter content) providing an ideal ecosystem to study microbial communities with niche differentiation and distinct community structures. In this work, prokaryotic and fungal compositions were investigated during both wet and dry seasons in New Caledonian mangrove sediments, from the surface to deeper horizons under the two most common tree species in this region (Avicennia marina and Rhizophora stylosa), using high-throughput sequencing. Our results showed that Bacteria and Archaea communities were mainly shaped by sediment depth while the fungal community was almost evenly distributed according to sediment depth, vegetation cover and season. A detailed analysis of prokaryotic and fungal phyla showed a dominance of Ascomycota over Basidiomycota whatever the compartment, while there was a clear shift in prokaryotic composition. Some prokaryotic phyla were enriched in surface layers such as Proteobacteria, Euryarchaeota while others were mostly associated with deeper layers as Chloroflexi, Bathyarchaeota, Aminicenantes. Our results highlight the importance of considering fungal and prokaryotic counterparts for a better understanding of the microbial succession involved in plant organic matter decomposition in tropical coastal sediments.
Collapse
Affiliation(s)
- Patricia Luis
- CNRS, UMR5557; Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Geoffroy Saint-Genis
- CNRS, UMR5557; Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Laurent Vallon
- CNRS, UMR5557; Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| | - Carine Bourgeois
- IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France
| | - Maxime Bruto
- UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, CS 90074, F-29688, Roscoff Cedex, France
| | - Cyril Marchand
- IMPMC, Institut de Recherche pour le Développement (IRD), UPMC, CNRS, MNHN, Noumea, New Caledonia, France.,ISEA, EA, Université de la Nouvelle-Calédonie (UNC), 3325, BP R4, 98851, Noumea, New Caledonia, France
| | - Eric Record
- INRA, Aix-Marseille Université, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Mylène Hugoni
- CNRS, UMR5557; Ecologie Microbienne, INRA, UMR1418, Université Lyon 1, 69220, Villeurbanne Cedex, France
| |
Collapse
|
24
|
Scott TW, Kiers ET, Cooper GA, dos Santos M, West SA. Evolutionary maintenance of genomic diversity within arbuscular mycorrhizal fungi. Ecol Evol 2019; 9:2425-2435. [PMID: 30891190 PMCID: PMC6405528 DOI: 10.1002/ece3.4834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 01/12/2023] Open
Abstract
Most organisms are built from a single genome. In striking contrast, arbuscular mycorrhizal fungi appear to maintain genomic variation within an individual fungal network. Arbuscular mycorrhizal fungi dwell in the soil, form mutualistic networks with plants, and bear multiple, potentially genetically diverse nuclei within a network. We explore, from a theoretical perspective, why such genetic diversity might be maintained within individuals. We consider selection acting within and between individual fungal networks. We show that genetic diversity could provide a benefit at the level of the individual, by improving growth in variable environments, and that this can stabilize genetic diversity even in the presence of nuclear conflict. Arbuscular mycorrhizal fungi complicate our understanding of organismality, but our findings offer a way of understanding such biological anomalies.
Collapse
Affiliation(s)
| | - E. Toby Kiers
- Institute of Ecological Sciences, Faculty of Earth and Life SciencesVrije UniversiteitAmsterdamThe Netherlands
| | | | - Miguel dos Santos
- Department of ZoologyUniversity of OxfordOxfordUK
- Department of Social Psychology and Social Neuroscience, Institute of PsychologyUniversity of BernBernSwitzerland
| | - Stuart A. West
- Department of ZoologyUniversity of OxfordOxfordUK
- Magdalen CollegeOxfordUK
| |
Collapse
|
25
|
Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, Charron P, St-Onge C, Giorgi J, Krüger M, Marton T, Ropars J, Grigoriev IV, Hainaut M, Henrissat B, Roux C, Martin F, Corradi N. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2018; 220:1161-1171. [PMID: 29355972 DOI: 10.1111/nph.14989] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/03/2017] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness.
Collapse
Affiliation(s)
- Eric C H Chen
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire D'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Grand Est-Nancy, Champenoux, 54280, France
| | - Denis Beaudet
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Jessica Noel
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Steve Ndikumana
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Philippe Charron
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Camille St-Onge
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - John Giorgi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Manuela Krüger
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Timea Marton
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Jeanne Ropars
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, F-13288, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, F-13288, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Francis Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire D'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Grand Est-Nancy, Champenoux, 54280, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| |
Collapse
|
26
|
Rasmussen PU, Hugerth LW, Blanchet FG, Andersson AF, Lindahl BD, Tack AJM. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. THE NEW PHYTOLOGIST 2018; 220:1248-1261. [PMID: 29573431 PMCID: PMC6282561 DOI: 10.1111/nph.15088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/11/2018] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form diverse communities and are known to influence above-ground community dynamics and biodiversity. However, the multiscale patterns and drivers of AM fungal composition and diversity are still poorly understood. We sequenced DNA markers from roots and root-associated soil from Plantago lanceolata plants collected across multiple spatial scales to allow comparison of AM fungal communities among neighbouring plants, plant subpopulations, nearby plant populations, and regions. We also measured soil nutrients, temperature, humidity, and community composition of neighbouring plants and nonAM root-associated fungi. AM fungal communities were already highly dissimilar among neighbouring plants (c. 30 cm apart), albeit with a high variation in the degree of similarity at this small spatial scale. AM fungal communities were increasingly, and more consistently, dissimilar at larger spatial scales. Spatial structure and environmental drivers explained a similar percentage of the variation, from 7% to 25%. A large fraction of the variation remained unexplained, which may be a result of unmeasured environmental variables, species interactions and stochastic processes. We conclude that AM fungal communities are highly variable among nearby plants. AM fungi may therefore play a major role in maintaining small-scale variation in community dynamics and biodiversity.
Collapse
Affiliation(s)
- Pil U. Rasmussen
- Department of EcologyEnvironment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| | - Luisa W. Hugerth
- School of BiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyPO Box 1031SE‐171 21SolnaSweden
- Centre for Translational Microbiome ResearchDepartment of Molecular, Tumor and Cell BiologyScience for Life LaboratoryKarolinska Institutet171 65SolnaSweden
| | - F. Guillaume Blanchet
- Département de BiologieFaculté des SciencesUniversité de Sherbrooke2500 Boulevard UniversitéSherbrookeQCJ1K 2R1Canada
| | - Anders F. Andersson
- School of BiotechnologyScience for Life LaboratoryKTH Royal Institute of TechnologyPO Box 1031SE‐171 21SolnaSweden
| | - Björn D. Lindahl
- Department of Soil and EnvironmentSwedish University of Agricultural SciencesBox 7014SE‐750 07UppsalaSweden
| | - Ayco J. M. Tack
- Department of EcologyEnvironment and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| |
Collapse
|
27
|
Sanders IR. Sex, plasticity, and biologically significant variation in one Glomeromycotina species. THE NEW PHYTOLOGIST 2018; 220:968-970. [PMID: 29480929 DOI: 10.1111/nph.15049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Ian R Sanders
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
28
|
Lanfranco L, Fiorilli V, Gutjahr C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2018; 220:1031-1046. [PMID: 29806959 DOI: 10.1111/nph.15230] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1031 I. Introduction 1031 II. Interkingdom communication enabling symbiosis 1032 III. Nutritional and regulatory roles for key metabolites in the AM symbiosis 1035 IV. The plant-fungus genotype combination determines the outcome of the symbiosis 1039 V. Perspectives 1039 Acknowledgements 1041 References 1041 SUMMARY: The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis relies on an efficient and multifactorial communication system for partner recognition, and on a fine-tuned and reciprocal metabolic regulation of each symbiont to reach an optimal functional integration. Besides strigolactones, N-acetylglucosamine-derivatives released by the plant were recently suggested to trigger fungal reprogramming at the pre-contact stage. Remarkably, N-acetylglucosamine-based diffusible molecules also are symbiotic signals produced by AM fungi (AMF) and clues on the mechanisms of their perception by the plant are emerging. AMF genomes and transcriptomes contain a battery of putative effector genes that may have conserved and AMF- or host plant-specific functions. Nutrient exchange is the key feature of AM symbiosis. A mechanism of phosphate transport inside fungal hyphae has been suggested, and first insights into the regulatory mechanisms of root colonization in accordance with nutrient transfer and status were obtained. The recent discovery of the dependency of AMF on fatty acid transfer from the host has offered a convincing explanation for their obligate biotrophism. Novel studies highlighted the importance of plant and fungal genotypes for the outcome of the symbiosis. These findings open new perspectives for fundamental research and application of AMF in agriculture.
Collapse
Affiliation(s)
- Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Caroline Gutjahr
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, D-85354, Freising, Germany
| |
Collapse
|
29
|
Martin FM, Harrison MJ, Lennon S, Lindahl B, Öpik M, Polle A, Requena N, Selosse MA. Cross-scale integration of mycorrhizal function. THE NEW PHYTOLOGIST 2018; 220:941-946. [PMID: 30408219 DOI: 10.1111/nph.15493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Francis M Martin
- INRA, Université de Lorraine, UMR Interactions Arbres/Micro-Organismes, INRA-Centre Grand Est, Champenoux, 54280, France
| | | | - Sarah Lennon
- New Phytologist Central Office, Bailrigg House, Lancaster University, Lancaster, LA1 4YE, UK
| | - Björn Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, SE-750 07, Sweden
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, 40 Lai St., Tartu, 51005, Estonia
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Goettingen, 37077, Germany
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology, Fritz Haber-Weg 4, Geb. 30.43, 2. OG, Karlsruhe, D-76131, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution, Muséum national d'Histoire naturelle, UMR 7205 ISYEB, CP 50, 45 rue Buffon, Paris, 75005, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
30
|
Mathieu S, Cusant L, Roux C, Corradi N. Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. THE NEW PHYTOLOGIST 2018; 220:1129-1134. [PMID: 29949657 DOI: 10.1111/nph.15275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1129 I. Introduction 1129 II. Intraspecific phenotypic variation and the plant host 1130 III. High inter-isolate genetic diversity in model AMF 1130 IV. Genome diversity within the model AM fungus Rhizophagus irregularis 1131 V. Pangenomes and the future of AMF ecological genomics 1131 Acknowledgements 1133 References 1133 SUMMARY: Arbuscular mycorrhizal fungi (AMF) are ubiquitous plant symbionts with an intriguing population biology. Conspecific AMF strains can vary substantially at the genetic and phenotypic levels, leading to direct and quantifiable variation in plant growth. Recent studies have shown that high intraspecific diversity is very common in AMF, and not only found in model species. Studies have also revealed how the phenotype of conspecific isolates varies depending on the plant host, highlighting the functional relevance of intraspecific phenotypic plasticity for the AMF ecology and mycorrhizal symbiosis. Recent work has also demonstrated that conspecific isolates of the model AMF Rhizophagus irregularis harbor large and highly variable pangenomes, highlighting the potential role of intraspecific genome diversity for the ecological adaptation of these symbionts.
Collapse
Affiliation(s)
- Stephanie Mathieu
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Loïc Cusant
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
31
|
Noë R, Kiers ET. Mycorrhizal Markets, Firms, and Co-ops. Trends Ecol Evol 2018; 33:777-789. [PMID: 30177306 DOI: 10.1016/j.tree.2018.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
The nutrient exchange mutualism between arbuscular mycorrhizal fungi (AMFs) and their host plants qualifies as a biological market, but several complications have hindered its appropriate use. First, fungal 'trading agents' are hard to identify because AMFs are potentially heterokaryotic, that is, they may contain large numbers of polymorphic nuclei. This means it is difficult to define and study a fungal 'individual' acting as an independent agent with a specific trading strategy. Second, because nutrient exchanges occur via communal structures (arbuscules), this temporarily reduces outbidding competition and transaction costs and hence resembles exchanges among divisions of firms, rather than traditional trade on markets. We discuss how fungal nuclei may coordinate their trading strategies, but nevertheless retain some independence, similar to human co-operatives (co-ops).
Collapse
Affiliation(s)
- Ronald Noë
- Department of Psychology, Université de Strasbourg, Strasbourg, France.
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW. Strong succession in arbuscular mycorrhizal fungal communities. ISME JOURNAL 2018; 13:214-226. [PMID: 30171254 PMCID: PMC6298956 DOI: 10.1038/s41396-018-0264-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/08/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
Abstract
The ecology of fungi lags behind that of plants and animals because most fungi are microscopic and hidden in their substrates. Here, we address the basic ecological process of fungal succession in nature using the microscopic, arbuscular mycorrhizal fungi (AMF) that form essential mutualisms with 70-90% of plants. We find a signal for temporal change in AMF community similarity that is 40-fold stronger than seen in the most recent studies, likely due to weekly samplings of roots, rhizosphere and soil throughout the 17 weeks from seedling to fruit maturity and the use of the fungal DNA barcode to recognize species in a simple, agricultural environment. We demonstrate the patterns of nestedness and turnover and the microbial equivalents of the processes of immigration and extinction, that is, appearance and disappearance. We also provide the first evidence that AMF species co-exist rather than simply co-occur by demonstrating negative, density-dependent population growth for multiple species. Our study shows the advantages of using fungi to test basic ecological hypotheses (e.g., nestedness v. turnover, immigration v. extinction, and coexistence theory) over periods as short as one season.
Collapse
Affiliation(s)
- Cheng Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
| | - Ling Xu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA.,Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, 94710, USA
| | - Mary Madera
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
| | - Joy Hollingsworth
- University of California Kearney Agricultural Research & Extension Center, Parlier, CA, 93648, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Robert B Hutmacher
- University of California West Side Research & Extension Center, UC Davis Department of Plant Sciences, Five Points, CA, 93624, USA
| | - Jeffery A Dahlberg
- University of California Kearney Agricultural Research & Extension Center, Parlier, CA, 93648, USA
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA.,Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, 94710, USA
| | - Peggy G Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA.
| |
Collapse
|