1
|
Xue T, Feng T, Liang Y, Yang X, Qin F, Yu J, Janssens SB, Yu S. Radiating diversification and niche conservatism jointly shape the inverse latitudinal diversity gradient of Potentilla L. (Rosaceae). BMC PLANT BIOLOGY 2024; 24:443. [PMID: 38778263 PMCID: PMC11112792 DOI: 10.1186/s12870-024-05083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The latitudinal diversity gradient (LDG), characterized by an increase in species richness from the poles to the equator, is one of the most pervasive biological patterns. However, inverse LDGs, in which species richness peaks in extratropical regions, are also found in some lineages and their causes remain unclear. Here, we test the roles of evolutionary time, diversification rates, and niche conservatism in explaining the inverse LDG of Potentilla (ca. 500 species). We compiled the global distributions of ~ 90% of Potentilla species, and reconstructed a robust phylogenetic framework based on whole-plastome sequences. Next, we analyzed the divergence time, ancestral area, diversification rate, and ancestral niche to investigate the macroevolutionary history of Potentilla. RESULTS The genus originated in the Qinghai-Tibet Plateau during the late Eocene and gradually spread to other regions of the Northern Hemisphere posterior to the late Miocene. Rapid cooling after the late Pliocene promoted the radiating diversification of Potentilla. The polyploidization, as well as some cold-adaptive morphological innovations, enhanced the adaptation of Potentilla species to the cold environment. Ancestral niche reconstruction suggests that Potentilla likely originated in a relatively cool environment. The species richness peaks at approximately 45 °N, a region characterized by high diversification rates, and the environmental conditions are similar to the ancestral climate niche. Evolutionary time was not significantly correlated with species richness in the latitudinal gradient. CONCLUSIONS Our results suggest that the elevated diversification rates in middle latitude regions and the conservatism in thermal niches jointly determined the inverse LDG in Potentilla. This study highlights the importance of integrating evolutionary and ecological approaches to explain the diversity pattern of biological groups on a global scale.
Collapse
Affiliation(s)
- Tiantian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Feng
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, Gelderland, the Netherlands
| | - Yunfen Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Fei Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianghong Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, Meise, BE-1860, Belgium.
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven, BE-3001, Belgium.
| | - Shengxiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Tian Q, Stull GW, Kellermann J, Medan D, Nge FJ, Liu SY, Kates HR, Soltis DE, Soltis PS, Guralnick RP, Folk RA, Onstein RE, Yi TS. Rapid in situ diversification rates in Rhamnaceae explain the parallel evolution of high diversity in temperate biomes from global to local scales. THE NEW PHYTOLOGIST 2024; 241:1851-1865. [PMID: 38229185 DOI: 10.1111/nph.19504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The macroevolutionary processes that have shaped biodiversity across the temperate realm remain poorly understood and may have resulted from evolutionary dynamics related to diversification rates, dispersal rates, and colonization times, closely coupled with Cenozoic climate change. We integrated phylogenomic, environmental ordination, and macroevolutionary analyses for the cosmopolitan angiosperm family Rhamnaceae to disentangle the evolutionary processes that have contributed to high species diversity within and across temperate biomes. Our results show independent colonization of environmentally similar but geographically separated temperate regions mainly during the Oligocene, consistent with the global expansion of temperate biomes. High global, regional, and local temperate diversity was the result of high in situ diversification rates, rather than high immigration rates or accumulation time, except for Southern China, which was colonized much earlier than the other regions. The relatively common lineage dispersals out of temperate hotspots highlight strong source-sink dynamics across the cosmopolitan distribution of Rhamnaceae. The proliferation of temperate environments since the Oligocene may have provided the ecological opportunity for rapid in situ diversification of Rhamnaceae across the temperate realm. Our study illustrates the importance of high in situ diversification rates for the establishment of modern temperate biomes and biodiversity hotspots across spatial scales.
Collapse
Affiliation(s)
- Qin Tian
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing, 100093, China
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR, Leiden, the Netherlands
| | - Gregory W Stull
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jürgen Kellermann
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA, 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Diego Medan
- Cátedra de Botánica General, Facultad de Agronomía, Universidad de Buenos Aires, Ave San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Francis J Nge
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA, 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- IRD - Institut de Recherche pour le Développement, Ave Agropolis BP 64501, Montpellier, 34394, France
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing, 100093, China
| | - Heather R Kates
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi, MS, 39762, USA
| | - Renske E Onstein
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR, Leiden, the Netherlands
- Evolution and Adaptation, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Leipzig University, Leipzig, 04013, Germany
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory of Plant Diversity and Specialty Crops, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
3
|
Zhang XY, Dai JM, Fan Q, Chen ZX, Tang GD, Liao WB. Lysimachiadanxiashanensis, a new species of Primulaceae from Guangdong, China. PHYTOKEYS 2024; 237:257-268. [PMID: 38333592 PMCID: PMC10851162 DOI: 10.3897/phytokeys.237.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Lysimachiadanxiashanensis, a new Primulaceae species, endemic to the Danxia landscape in Guangdong Province, China, is described and illustrated. This new species is morphologically similar to L.pseudohenryi, L.phyllocephala, L.congestiflora and L.kwangtungensis, but it differs from the similar species by its purplish-red plants, petiole without wings, calyx with orange glandular and the corolla margin serrated on upper half with orange-red glandular punctates. This new species belongs to Lysimachiasubgen.Lysimachiasect.Nummularia. Phylogenetic analysis confirmed that L.danxiashanensis is a distinct clade, based on the combined data of ITS and rbcL sequences. The conservation status of the new species was evaluated as Endangered (EN) according to IUCN Red List Categories and Criteria.
Collapse
Affiliation(s)
- Xing-Yue Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing-Min Dai
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zai-Xiong Chen
- National Park and Nature Education Research Institute, Sun Yat-sen University, Guangzhou 510275, China
| | - Guang-Da Tang
- Administrative Commission of Danxiashan National Park, Shaoguan 512300, China
| | - Wen-Bo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Zhang SY, Yan HF, Wei L, Liu TJ, Chen L, Hao G, Wu X, Zhang QL. Plastid genome and its phylogenetic implications of Asiatic Spiraea (Rosaceae). BMC PLANT BIOLOGY 2024; 24:23. [PMID: 38166728 PMCID: PMC10763413 DOI: 10.1186/s12870-023-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Spiraea L. is a genus comprising approximately 90 species that are distributed throughout the northern temperate regions. China is recognized as the center of species diversity for this genus, hosting more than 70 species, including 47 endemic species. While Spiraea is well-known for its ornamental value, its taxonomic and phylogenetic studies have been insufficient. RESULTS In this study, we conducted sequencing and assembly of the plastid genomes (plastomes) of 34 Asiatic Spiraea accessions (representing 27 Asiatic Spiraea species) from China and neighboring regions. The Spiraea plastid genome exhibits typical quadripartite structures and encodes 113-114 genes, including 78-79 protein-coding genes (PCGs), 30 tRNA genes, and 4 rRNA genes. Linear regression analysis revealed a significant correlation between genome size and the length of the SC region. By the sliding windows method, we identified several hypervariable hotspots within the Spiraea plastome, all of which were localized in the SC regions. Our phylogenomic analysis successfully established a robust phylogenetic framework for Spiraea, but it did not support the current defined section boundaries. Additionally, we discovered that the genus underwent diversification after the Early Oligocene (~ 30 Ma), followed by a rapid speciation process during the Pliocene and Pleistocene periods. CONCLUSIONS The plastomes of Spiraea provided us invaluable insights into its phylogenetic relationships and evolutionary history. In conjunction with plastome data, further investigations utilizing other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of this genus.
Collapse
Affiliation(s)
- Shu-Yan Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lin Chen
- Hangzhou Xixi National Wetland Park Service Center (Hangzhou Xixi National Wetland Park Ecology & Culture Research Center), Hangzhou, 310013, China
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Qiao-Ling Zhang
- Hangzhou Xixi National Wetland Park Service Center (Hangzhou Xixi National Wetland Park Ecology & Culture Research Center), Hangzhou, 310013, China.
| |
Collapse
|
5
|
Boyko JD, Hagen ER, Beaulieu JM, Vasconcelos T. The evolutionary responses of life-history strategies to climatic variability in flowering plants. THE NEW PHYTOLOGIST 2023; 240:1587-1600. [PMID: 37194450 DOI: 10.1111/nph.18971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
The evolution of annual or perennial strategies in flowering plants likely depends on a broad array of temperature and precipitation variables. Previous documented climate life-history correlations in explicit phylogenetic frameworks have been limited to certain clades and geographic regions. To gain insights which generalize to multiple lineages we employ a multi-clade approach analyzing 32 groups of angiosperms across eight climatic variables. We utilize a recently developed method that accounts for the joint evolution of continuous and discrete traits to evaluate two hypotheses: annuals tend to evolve in highly seasonal regions prone to extreme heat and drought; and annuals tend to have faster rates of climatic niche evolution than perennials. We find that temperature, particularly highest temperature of the warmest month, is the most consistent climatic factor influencing the evolution of annual strategy in flowering plants. Unexpectedly, we do not find significant differences in rates of climatic niche evolution between perennial and annual lineages. We propose that annuals are consistently favored in areas prone to extreme heat due to their ability to escape heat stress as seeds, but they tend to be outcompeted by perennials in regions where extreme heat is uncommon or nonexistent.
Collapse
Affiliation(s)
- James D Boyko
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Michigan Institute of Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric R Hagen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Liu TJ, Zhang SY, Wei L, Lin W, Yan HF, Hao G, Ge XJ. Plastome evolution and phylogenomic insights into the evolution of Lysimachia (Primulaceae: Myrsinoideae). BMC PLANT BIOLOGY 2023; 23:359. [PMID: 37452336 PMCID: PMC10347800 DOI: 10.1186/s12870-023-04363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Lysimachia L., the second largest genus within the subfamily Myrsinoideae of Primulaceae, comprises approximately 250 species worldwide. China is the species diversity center of Lysimachia, containing approximately 150 species. Despite advances in the backbone phylogeny of Lysimachia, species-level relationships remain poorly understood due to limited genomic information. This study analyzed 50 complete plastomes for 46 Lysimachia species. We aimed to identify the plastome structure features and hypervariable loci of Lysimachia. Additionally, the phylogenetic relationships and phylogenetic conflict signals in Lysimachia were examined. RESULTS These fifty plastomes within Lysimachia had the typical quadripartite structure, with lengths varying from 152,691 to 155,784 bp. Plastome size was positively correlated with IR and intron length. Thirteen highly variable regions in Lysimachia plastomes were identified. Additionally, ndhB, petB and ycf2 were found to be under positive selection. Plastid ML trees and species tree strongly supported that L. maritima as sister to subg. Palladia + subg. Lysimachia (Christinae clade), while the nrDNA ML tree clearly placed L. maritima and subg. Palladia as a sister group. CONCLUSIONS The structures of these plastomes of Lysimachia were generally conserved, but potential plastid markers and signatures of positive selection were detected. These genomic data provided new insights into the interspecific relationships of Lysimachia, including the cytonuclear discordance of the position of L. maritima, which may be the result of ghost introgression in the past. Our findings have established a basis for further exploration of the taxonomy, phylogeny and evolutionary history within Lysimachia.
Collapse
Affiliation(s)
- Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Shu-Yan Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Lei Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
7
|
Zhou P, Li JH, Liu YZ, Zhu ZW, Luo Y, Xiang XG. Species richness disparity in tropical terrestrial herbaceous floras: evolutionary insight from Collabieae (Orchidaceae). Mol Phylogenet Evol 2023:107860. [PMID: 37329932 DOI: 10.1016/j.ympev.2023.107860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Species richness is spatially heterogeneous even in the hyperdiverse tropical floras. The main cause of uneven species richness among the four tropical regions are hot debated. To date, higher net diversification rates and/or longer colonization time have been usually proposed to contribute to this pattern. However, there are few studies to clarify the species richness patterns in tropical terrestrial floras. The terrestrial tribe Collabieae (Orchidaceae) unevenly distributes in the tropical regions with a diverse and endemic center in Asia. Twenty-one genera 127 species of Collabieae and 26 DNA regions were used to reconstruct the phylogeny and infer the biogeographical processes. We compared the topologies, diversification rates and niche rates of Collabieae and regional lineages on empirical samplings and different simulated samplings fractions respectively. Our results suggested that the Collabieae originated in Asia at the earliest Oligocene, and then independently spread to Africa, Central America, and Oceania since the Miocene via long-distance dispersal. These results based on empirical data and simulated data were similar. BAMM, GeoSSE and niche analyses inferred that the Asian lineages had higher net diversification and niche rates than those of Oceanian and African lineages on the empirical and simulated analyses. Precipitation is the most important factor for Collabieae, and the Asian lineage has experienced more stable and humid climate, which may promote the higher net diversification rate. Besides, the longer colonization time may also be associated with the Asian lineages' diversity. These findings provided a better understanding of the regional diversity heterogeneity in tropical terrestrial herbaceous floras.
Collapse
Affiliation(s)
- Peng Zhou
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Ji-Hong Li
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong, China
| | - Yi-Zhen Liu
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zi-Wei Zhu
- Jiangxi Academy of Forest, Nanchang, Jiangxi, China
| | - Yan Luo
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Yan HF, Li JX, Liu TJ, Hao G. Lysimachiafenghwaiana (Primulaceae), a new species from Hunan Province, China. PHYTOKEYS 2023; 220:75-82. [PMID: 37215490 PMCID: PMC10196811 DOI: 10.3897/phytokeys.220.99556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/04/2023] [Indexed: 05/24/2023]
Abstract
A new species, Lysimachiafenghwaiana G.Hao & H.F.Yan (Primulaceae), from Hunan Province, China, is described and illustrated. This new species belongs to Lysimachiasubgen.Lysimachiasect.Nummularia and is morphologically similar to L.crista-galli and L.carinata, but is distinctive in its leaf shape and arrangement of flowers. It can be further distinguished from L.crista-galli by the absence of calyx lobule spur, and from L.carinata by the black glandular striates in the corolla lobes, rather than punctate.
Collapse
Affiliation(s)
- Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, ChinaSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
- South China National Botanical Garden, Guangzhou 510650, ChinaSouth China National Botanical GardenGuangzhouChina
| | - Jia-Xiang Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, ChinaCentral South University of Forestry and TechnologyChangshaChina
| | - Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, ChinaSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
- South China National Botanical Garden, Guangzhou 510650, ChinaSouth China National Botanical GardenGuangzhouChina
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, ChinaSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
9
|
Phylogenomics and diversification drivers of the Eastern Asian – Eastern North American disjunct Podophylloideae. Mol Phylogenet Evol 2022; 169:107427. [DOI: 10.1016/j.ympev.2022.107427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022]
|
10
|
Xue C, Geng FD, Li JJ, Zhang DQ, Gao F, Huang L, Zhang XH, Kang JQ, Zhang JQ, Ren Y. Divergence in the Aquilegia ecalcarata complex is correlated with geography and climate oscillations: Evidence from plastid genome data. Mol Ecol 2021; 30:5796-5813. [PMID: 34448283 DOI: 10.1111/mec.16151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/03/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
Quaternary climate oscillations and geographical heterogeneity play important roles in determining species and genetic diversity distribution patterns, but how these factors affect the migration and differentiation of East Asian plants species at the population level remains poorly understood. The Aquilegia ecalcarata complex, a group that originated in the Late Tertiary and is widely distributed throughout East Asia, displays high genetic variation that is suitable for studying elaborate phylogeographic patterns and demographic history related to the impact of Quaternary climate and geography. We used plastid genome data from 322 individuals in 60 populations of the A. ecalcarata complex to thoroughly explore the impact of Quaternary climate oscillations and geography on the phylogeographic patterns and demographic history of the A. ecalcarata complex through a series of phylogenetic, divergence time estimation, and demographic history analyses. The dry, cold climate and frequent climate oscillations that occurred during the early Pleistocene and the Mid-Pleistocene transition led to the differentiation of the A. ecalcarata complex, which was isolated in various areas. Geographically, the A. ecalcarata complex can be divided into Eastern and Western Clades and five subclades, which conform to the divergence of the East Asian flora. Our results clearly show the impact of Quaternary climate and geography on evolutionary history at the population level. These findings promote the understanding of the relationship between plant genetic differentiation and climate and geographical factors of East Asia at the population level.
Collapse
Affiliation(s)
- Cheng Xue
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Fang-Dong Geng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jiao-Jie Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Dan-Qing Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Fei Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Xiao-Hui Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Ju-Qing Kang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jian-Qiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yi Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
11
|
Ecological and biogeographic drivers of biodiversity cannot be resolved using clade age-richness data. Nat Commun 2021; 12:2945. [PMID: 34011982 PMCID: PMC8134473 DOI: 10.1038/s41467-021-23307-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
Estimates of evolutionary diversification rates - speciation and extinction - have been used extensively to explain global biodiversity patterns. Many studies have analyzed diversification rates derived from just two pieces of information: a clade's age and its extant species richness. This "age-richness rate" (ARR) estimator provides a convenient shortcut for comparative studies, but makes strong assumptions about the dynamics of species richness through time. Here we demonstrate that use of the ARR estimator in comparative studies is problematic on both theoretical and empirical grounds. We prove mathematically that ARR estimates are non-identifiable: there is no information in the data for a single clade that can distinguish a process with positive net diversification from one where net diversification is zero. Using paleontological time series, we demonstrate that the ARR estimator has no predictive ability for real datasets. These pathologies arise because the ARR inference procedure yields "point estimates" that have been computed under a saturated statistical model with zero degrees of freedom. Although ARR estimates remain useful in some contexts, they should be avoided for comparative studies of diversification and species richness.
Collapse
|
12
|
Zhang CY, Yan HF, Wang FY. Characterization of the complete plastid genome of Lysimachia christinae Hance (Primulaceae). Mitochondrial DNA B Resour 2021; 6:268-270. [PMID: 33553641 PMCID: PMC7850378 DOI: 10.1080/23802359.2020.1863873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Lysimachia christinae Hance is widely distributed in subtropical China at the elevational range from 500–2300 m. The species is an important medicinal herb for treating jaundice, urinary disorders, and the liver. Here, we sequenced and characterized the whole plastid genome of L. christinae. It is 154,810 bp in length, containing two copies of inverted repeat (IR) regions (26,034 bp, each), a large single-copy (LSC) region (84,809 bp), and a small single-copy (SSC) region (17,933 bp). It has 114 genes, of which 80 are protein-coding, 30 are tRNA, and 4 are rRNA genes. The ML tree indicates L. christinae is closely related to Lysimachia congestiflora Hemsl. This genome information can help us better construct a backbone phylogeny of Lysimachia in the future.
Collapse
Affiliation(s)
- Cai-Yun Zhang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | |
Collapse
|
13
|
Yu Y, Blair C, He X. RASP 4: Ancestral State Reconstruction Tool for Multiple Genes and Characters. Mol Biol Evol 2020; 37:604-606. [PMID: 31670774 DOI: 10.1093/molbev/msz257] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With the continual progress of sequencing techniques, genome-scale data are increasingly used in phylogenetic studies. With more data from throughout the genome, the relationship between genes and different kinds of characters is receiving more attention. Here, we present version 4 of RASP, a software to reconstruct ancestral states through phylogenetic trees. RASP can apply generalized statistical ancestral reconstruction methods to phylogenies, explore the phylogenetic signal of characters to particular trees, calculate distances between trees, and cluster trees into groups. RASP 4 has an improved graphic user interface and is freely available from http://mnh.scu.edu.cn/soft/blog/RASP (program) and https://github.com/sculab/RASP (source code).
Collapse
Affiliation(s)
- Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China.,Bioinformatics Core, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, Brooklyn, NY.,Biology PhD Program, CUNY Graduate Center, New York, NY
| | - Xingjin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
14
|
Huang XC, German DA, Koch MA. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. ANNALS OF BOTANY 2020; 125:29-47. [PMID: 31314080 PMCID: PMC6948214 DOI: 10.1093/aob/mcz123] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/16/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Whole-genome duplication (WGD) events are considered important driving forces of diversification. At least 11 out of 52 Brassicaceae tribes had independent mesopolyploid WGDs followed by diploidization processes. However, the association between mesopolyploidy and subsequent diversification is equivocal. Herein we show the results from a family-wide diversification analysis on Brassicaceae, and elaborate on the hypothesis that polyploidization per se is a fundamental driver in Brassicaceae evolution. METHODS We established a time-calibrated chronogram based on whole plastid genomes comprising representative Brassicaceae taxa and published data spanning the entire Rosidae clade. This allowed us to set multiple calibration points and anchored various Brassicaceae taxa for subsequent downstream analyses. All major splits among Brassicaceae lineages were used in BEAST analyses of 48 individually analysed tribes comprising 2101 taxa in total using the internal transcribed spacers of nuclear ribosomal DNA. Diversification patterns were investigated on these tribe-wide chronograms using BAMM and were compared with family-wide data on genome size variation and species richness. KEY RESULTS Brassicaceae diverged 29.9 million years ago (Mya) during the Oligocene, and the majority of tribes started diversification in the Miocene with an average crown group age of about 12.5 Mya. This matches the cooling phase right after the Mid Miocene climatic optimum. Significant rate shifts were detected in 12 out of 52 tribes during the Mio- and Pliocene, decoupled from preceding mesopolyploid WGDs. Among the various factors analysed, the combined effect of tribal crown group age and net diversification rate (speciation minus extinction) is likely to explain sufficiently species richness across Brassicaceae tribes. CONCLUSIONS The onset of the evolutionary splits among tribes took place under cooler and drier conditions. Pleistocene glacial cycles may have contributed to the maintenance of high diversification rates. Rate shifts are not consistently associated with mesopolyploid WGD. We propose, therefore, that WGDs in general serve as a constant 'pump' for continuous and high species diversification.
Collapse
Affiliation(s)
- Xiao-Chen Huang
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
| | - Dmitry A German
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
- For correspondence. E-mail
| |
Collapse
|
15
|
Xue B, Guo X, Landis JB, Sun M, Tang CC, Soltis PS, Soltis DE, Saunders RMK. Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae. Mol Phylogenet Evol 2019; 142:106659. [PMID: 31639525 DOI: 10.1016/j.ympev.2019.106659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/04/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
A major goal of phylogenetic systematics is to understand both the patterns of diversification and the processes by which these patterns are formed. Few studies have focused on the ancient, species-rich Magnoliales clade and its diversification pattern. Within Magnoliales, the pantropically distributed Annonaceae are by far the most genus-rich and species-rich family-level clade, with c. 110 genera and c. 2,400 species. We investigated the diversification patterns across Annonaceae and identified traits that show varied associations with diversification rates using a time-calibrated phylogeny of 835 species (34.6% sampling) and 11,211 aligned bases from eight regions of the plastid genome (rbcL, matK, ndhF, psbA-trnH, trnL-F, atpB-rbcL, trnS-G, and ycf1). Twelve rate shifts were identified using BAMM: in Annona, Artabotrys, Asimina, Drepananthus, Duguetia, Goniothalamus, Guatteria, Uvaria, Xylopia, the tribes Miliuseae and Malmeeae, and the Desmos-Dasymaschalon-Friesodielsia-Monanthotaxis clade. TurboMEDUSA and method-of-moments estimator analyses showed largely congruent results. A positive relationship between species richness and diversification rate is revealed using PGLS. Our results show that the high species richness in Annonaceae is likely the result of recent increased diversification rather than the steady accumulation of species via the 'museum model'. We further explore the possible role of selected traits (habit, pollinator trapping, floral sex expression, pollen dispersal unit, anther septation, and seed dispersal unit) in shaping diversification patterns, based on inferences of BiSSE, MuSSE, HiSSE, and FiSSE analyses. Our results suggest that the liana habit, the presence of circadian pollinator trapping, androdioecy, and the dispersal of seeds as single-seeded monocarp fragments are closely correlated with higher diversification rates; pollen aggregation and anther septation, in contrast, are associated with lower diversification rates.
Collapse
Affiliation(s)
- B Xue
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China; Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - X Guo
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Current address: State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - J B Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - M Sun
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - C C Tang
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - P S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| | - D E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA
| | - R M K Saunders
- Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
16
|
Chloroplast Genomes and Comparative Analyses among Thirteen Taxa within Myrsinaceae s.str. Clade (Myrsinoideae, Primulaceae). Int J Mol Sci 2019; 20:ijms20184534. [PMID: 31540236 PMCID: PMC6769889 DOI: 10.3390/ijms20184534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023] Open
Abstract
The Myrsinaceae s.str. clade is a tropical woody representative in Myrsinoideae of Primulaceae and has ca. 1300 species. The generic limits and alignments of this clade are unclear due to the limited number of genetic markers and/or taxon samplings in previous studies. Here, the chloroplast (cp) genomes of 13 taxa within the Myrsinaceae s.str. clade are sequenced and characterized. These cp genomes are typical quadripartite circle molecules and are highly conserved in size and gene content. Three pseudogenes are identified, of which ycf15 is totally absent from five taxa. Noncoding and large single copy region (LSC) exhibit higher levels of nucleotide diversity (Pi) than other regions. A total of ten hotspot fragments and 796 chloroplast simple sequence repeats (SSR) loci are found across all cp genomes. The results of phylogenetic analysis support the notion that the monophyletic Myrsinaceae s.str. clade has two subclades. Non-synonymous substitution rates (dN) are higher in housekeeping (HK) genes than photosynthetic (PS) genes, but both groups have a nearly identical synonymous substitution rate (dS). The results indicate that the PS genes are under stronger functional constraints compared with the HK genes. Overall, the study provides hypervariable molecular markers for phylogenetic reconstruction and contributes to a better understanding of plastid gene evolution in Myrsinaceae s.str. clade.
Collapse
|
17
|
Huang YF, Dong LN, Xu WB. Lysimachia fanii, a new species of Primulaceae from limestone area of Guangxi, China. PHYTOKEYS 2019; 130:75-84. [PMID: 31534396 PMCID: PMC6728382 DOI: 10.3897/phytokeys.130.34655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/19/2019] [Indexed: 05/30/2023]
Abstract
Lysimachia fanii, a new species of Lysimachia (Subgen. Idiophyton, Primulaceae), is described and illustrated from Guangxi, China based on morphological and molecular data. Lysimachia fanii differs from L. verbascifolia, L. rupestris and L. alpestris mainly by the habit being nearly rosulate, leaves congested at the apex of the rhizome, leaf blades spatulate to narrowly oblanceolate and flowers solitary. Phylogenetic analyses supported L. verbascifolia as sister to L. fanii. This new species is endemic to limestone areas in Liucheng county of Guangxi, China.
Collapse
Affiliation(s)
- Yun-Feng Huang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Sciences, Nanning 530022, Guangxi, ChinaGuangxi Institute of Chinese Medicine & Pharmaceutical SciencesNanningChina
| | - Li-Na Dong
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, ChinaGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Wei-Bin Xu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, ChinaGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| |
Collapse
|
18
|
Johns CA, Toussaint EFA, Breinholt JW, Kawahara AY. Origin and macroevolution of micro-moths on sunken Hawaiian Islands. Proc Biol Sci 2018; 285:rspb.2018.1047. [PMID: 30158307 DOI: 10.1098/rspb.2018.1047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/02/2018] [Indexed: 11/12/2022] Open
Abstract
The origins and evolution of Hawaiian biodiversity are a matter of controversy, and the mechanisms of lineage diversification for many organisms on this remote archipelago remain unclear. Here we focus on the poorly known endemic leaf-mining moth genus Philodoria (Lepidoptera, Gracillariidae), whose species feed on a diversity of Hawaiian plant lineages, many of which are critically endangered. We use anchored hybrid enrichment to assemble the first phylogenomic dataset (507 loci) for any Hawaiian animal taxon. To uncover the timing and pattern of diversification of these moths, we apply two frequently used dating calibration strategies, biogeographic calibrations and secondary calibrations. Island calibrations on their own resulted in much younger and unrealistic dates compared to strategies that relied on secondary calibrations. Philodoria probably originated on the now partially sunken islands of Laysan or Lisianski, approximately 21 Ma, and were associated with host plants in the families Ebenaceae, Malvaceae or Primulaceae. Major feeding groups associated with specific host-plant families originated soon after the plants colonized the islands. Allopatric isolation and host shifts, in concert and independently, probably play major roles in the diversification of Philodoria Our dating results indicate that Philodoria is among the oldest known Hawaiian arthropod lineages, and that island calibrations alone can lead to unrealistically young dates.
Collapse
Affiliation(s)
- Chris A Johns
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA .,Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Jesse W Breinholt
- RAPiD Genomics, 747 SW 2nd Avenue IMB#14, Gainesville, FL 32601, USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA .,Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|