1
|
Papp‐Rupar M, Grace ER, Korotania N, Ciusa M, Jackson RW, Rabiey M. Impact of Phage Therapy on Pseudomonas syringae pv. syringae and Plant Microbiome Dynamics Through Coevolution and Field Experiments. Environ Microbiol 2025; 27:e70076. [PMID: 40075541 PMCID: PMC11903928 DOI: 10.1111/1462-2920.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Bacteriophages (phages) are viruses that infect and lyse bacteria and have the potential for controlling bacterial diseases. Isolation of phages targeting the cherry pathogen Pseudomonas syringae pv. syringae (Pss) led to five distinct phage genotypes. Building on previous in vitro coevolution experiments, the coevolution of the five phages (individually and as a cocktail) with Pss on cherry leaves was conducted in glasshouse and field experiments. Phages effectively reduced Pss numbers on detached leaves, with no evidence of phage resistance emerging in the bacterial population. Field application of phages in a cherry orchard in Southeast England evaluated phage survival, viability and impact on bacterial populations and the microbial community. The bacterial population and phages persisted in the leaf and shoot environment as long as the bacterial host was present. In contrast to in vitro studies, the plant environment constrained the emergence of phage resistant Pss populations. Application of phage cocktail in the orchard did not affect the cherry leaf microbiome. These observations provide essential knowledge for using phage treatments to control bacterial diseases while minimising the impact on the plant microbiome, highlighting phages' potential to safely control bacterial diseases in trees.
Collapse
Affiliation(s)
| | - Emily R. Grace
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamEdgbastonUK
| | - Naina Korotania
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamEdgbastonUK
| | - Maria‐Laura Ciusa
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamEdgbastonUK
| | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamEdgbastonUK
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamEdgbastonUK
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUK
- School of Life SciencesUniversity of Warwick, Innovation CampusStratford‐upon‐AvonUK
| |
Collapse
|
2
|
Vlková-Žlebková M, Yuen FW, McCann HC. Evolving Archetypes: Learning from Pathogen Emergence on a Nonmodel Host. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:49-68. [PMID: 38885452 DOI: 10.1146/annurev-phyto-021622-095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Research initiatives undertaken in response to disease outbreaks accelerate our understanding of microbial evolution, mechanisms of virulence and resistance, and plant-pathogen coevolutionary interactions. The emergence and global spread of Pseudomonas syringae pv. actinidiae (Psa) on kiwifruit (Actinidia chinensis) showed that there are parallel paths to host adaptation and antimicrobial resistance evolution, accelerated by the movement of mobile elements. Significant progress has been made in identifying type 3 effectors required for virulence and recognition in A. chinensis and Actinidia arguta, broadening our understanding of how host-mediated selection shapes virulence. The rapid development of Actinidia genomics after the Psa3 pandemic began has also generated new insight into molecular mechanisms of immunity and resistance gene evolution in this recently domesticated, nonmodel host. These findings include the presence of close homologs of known resistance genes RPM1 and RPS2 as well as the novel expansion of CCG10-NLRs (nucleotide-binding leucine-rich repeats) in Actinidia spp. The advances and approaches developed during the pandemic response can be applied to new pathosystems and new outbreak events.
Collapse
Affiliation(s)
| | - Fang Wei Yuen
- Max Planck Institute for Biology, Tübingen, Germany;
| | | |
Collapse
|
3
|
Vadillo‐Dieguez A, Zeng Z, Mansfield JW, Grinberg NF, Lynn SC, Gregg A, Connell J, Harrison RJ, Jackson RW, Hulin MT. Genetic dissection of the tissue-specific roles of type III effectors and phytotoxins in the pathogenicity of Pseudomonas syringae pv. syringae to cherry. MOLECULAR PLANT PATHOLOGY 2024; 25:e13451. [PMID: 38590135 PMCID: PMC11002349 DOI: 10.1111/mpp.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche-specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644.
Collapse
Affiliation(s)
- Andrea Vadillo‐Dieguez
- NIABCambridgeUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | | | | | | | | | | | | | - Richard J. Harrison
- NIABCambridgeUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
- Faculty of Natural Sciences, Plant Science GroupWageningen University and ResearchWageningenNetherlands
- Present address:
Faculty of Natural Sciences, Plant Science GroupWageningen University and ResearchWageningenNetherlands
| | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Michelle T. Hulin
- NIABCambridgeUK
- Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingUSA
- Present address:
Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingUSA
| |
Collapse
|
4
|
Holtappels D, Abelson SA, Nouth SC, Rickus GEJ, Amare SZ, Giller JP, Jian DZ, Koskella B. Genomic characterization of Pseudomonas syringae pv. syringae from Callery pear and the efficiency of associated phages in disease protection. Microbiol Spectr 2024; 12:e0283323. [PMID: 38323825 PMCID: PMC10913373 DOI: 10.1128/spectrum.02833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 02/08/2024] Open
Abstract
The Pseudomonas syringae species complex is a heterogeneous group of plant pathogenic bacteria associated with a wide distribution of plant species. Advances in genomics are revealing the complex evolutionary history of this species complex and the wide array of genetic adaptations underpinning their diverse lifestyles. Here, we genomically characterize two P. syringae isolates collected from diseased Callery pears (Pyrus calleryana) in Berkeley, California in 2019 and 2022. We also isolated a lytic bacteriophage, which we characterized and evaluated for biocontrol efficiency. Using a multilocus sequence analysis and core genome alignment, we classified the P. syringae isolates as members of phylogroup 2, related to other strains previously isolated from Pyrus and Prunus. An analysis of effector proteins demonstrated an evolutionary conservation of effectoromes across isolates classified in PG2 and yet uncovered unique effector profiles for each, including the two newly identified isolates. Whole-genome sequencing of the associated phage uncovered a novel phage genus related to Pseudomonas syringae pv. actinidiae phage PHB09 and the Flaumdravirus genus. Finally, using in planta infection assays, we demonstrate that the phage was equally useful in symptom mitigation of immature pear fruit regardless of the Pss strain tested. Overall, this study demonstrates the diversity of P. syringae and their viruses associated with ornamental pear trees, posing spill-over risks to commercial pear trees and the possibility of using phages as biocontrol agents to reduce the impact of disease.IMPORTANCEGlobal change exacerbates the spread and impact of pathogens, especially in agricultural settings. There is a clear need to better monitor the spread and diversity of plant pathogens, including in potential spillover hosts, and for the development of novel and sustainable control strategies. In this study, we characterize the first described strains of Pseudomonas syringae pv. syringae isolated from Callery pear in Berkeley, California from diseased tissues in an urban environment. We show that these strains have divergent virulence profiles from previously described strains and that they can cause disease in commercial pears. Additionally, we describe a novel bacteriophage that is associated with these strains and explore its potential to act as a biocontrol agent. Together, the data presented here demonstrate that ornamental pear trees harbor novel P. syringae pv. syringae isolates that potentially pose a risk to local fruit production, or vice versa-but also provide us with novel associated phages, effective in disease mitigation.
Collapse
Affiliation(s)
- D. Holtappels
- Integrative Biology University of California, Berkeley, California, USA
| | - S. A. Abelson
- Integrative Biology University of California, Berkeley, California, USA
| | - S. C. Nouth
- Integrative Biology University of California, Berkeley, California, USA
| | - G. E. J. Rickus
- Integrative Biology University of California, Berkeley, California, USA
| | - S. Z. Amare
- Integrative Biology University of California, Berkeley, California, USA
| | - J. P. Giller
- Integrative Biology University of California, Berkeley, California, USA
| | - D. Z. Jian
- Integrative Biology University of California, Berkeley, California, USA
| | - B. Koskella
- Integrative Biology University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
5
|
McTavish KJ, Almeida RND, Tersigni J, Raimundi MK, Gong Y, Wang PW, Gontijo GF, de Souza RM, de Resende MLV, Desveaux D, Guttman DS. Pseudomonas syringae coffee blight is associated with the horizontal transfer of plasmid-encoded type III effectors. THE NEW PHYTOLOGIST 2024; 241:409-429. [PMID: 37953378 DOI: 10.1111/nph.19364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
The emergence of new pathogens is an ongoing threat to human health and agriculture. While zoonotic spillovers received considerable attention, the emergence of crop diseases is less well studied. Here, we identify genomic factors associated with the emergence of Pseudomonas syringae bacterial blight of coffee. Fifty-three P. syringae strains from diseased Brazilian coffee plants were sequenced. Comparative and evolutionary analyses were used to identify loci associated with coffee blight. Growth and symptomology assays were performed to validate the findings. Coffee isolates clustered in three lineages, including primary phylogroups PG3 and PG4, and secondary phylogroup PG11. Genome-wide association study of the primary PG strains identified 37 loci, including five effectors, most of which were encoded on a plasmid unique to the PG3 and PG4 coffee strains. Evolutionary analyses support the emergence of coffee blight in PG4 when the coffee-associated plasmid and associated effectors derived from a divergent plasmid carried by strains associated with other hosts. This plasmid was only recently transferred into PG3. Natural diversity and CRISPR-Cas9 plasmid curing were used to show that strains with the coffee-associated plasmid grow to higher densities and cause more severe disease symptoms in coffee. This work identifies possible evolutionary mechanisms underlying the emergence of a new lineage of coffee pathogens.
Collapse
Affiliation(s)
- Kathryn J McTavish
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Renan N D Almeida
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Jonathan Tersigni
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
| | - Melina K Raimundi
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Yunchen Gong
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - Pauline W Wang
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - Guilherme F Gontijo
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Ricardo M de Souza
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Mario L V de Resende
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, MG, CEP 37200-000, Brazil
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M6S 2Y1, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, M6S 2Y1, Canada
| |
Collapse
|
6
|
Fautt C, Hockett KL, Couradeau E. Evaluation of the taxonomic accuracy and pathogenicity prediction power of 16 primer sets amplifying single copy marker genes in the Pseudomonas syringae species complex. MOLECULAR PLANT PATHOLOGY 2023; 24:989-998. [PMID: 37132320 PMCID: PMC10346468 DOI: 10.1111/mpp.13337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 05/04/2023]
Abstract
The Pseudomonas syringae species complex is composed of several closely related species of bacterial plant pathogens. Here, we used in silico methods to assess 16 PCR primer sets designed for broad identification of isolates throughout the species complex. We evaluated their in silico amplification rate in 2161 publicly available genomes, the correlation between pairwise amplicon sequence distance and whole genome average nucleotide identity, and trained naive Bayes classification models to quantify classification resolution. Furthermore, we show the potential for using single amplicon sequence data to predict type III effector protein repertoires, which are important determinants of host specificity and range.
Collapse
Affiliation(s)
- Chad Fautt
- Department of Plant Pathology and Environmental MicrobiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Intercollege Graduate Degree Program in EcologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Kevin L. Hockett
- Department of Plant Pathology and Environmental MicrobiologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Intercollege Graduate Degree Program in EcologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Estelle Couradeau
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Intercollege Graduate Degree Program in EcologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
7
|
Jiu S, Chen B, Dong X, Lv Z, Wang Y, Yin C, Xu Y, Zhang S, Zhu J, Wang J, Liu X, Sun W, Yang G, Li M, Li S, Zhang Z, Liu R, Wang L, Manzoor MA, José QG, Wang S, Lei Y, Yang L, Dirlewanger E, Dong Y, Zhang C. Chromosome-scale genome assembly of Prunus pusilliflora provides novel insights into genome evolution, disease resistance, and dormancy release in Cerasus L. HORTICULTURE RESEARCH 2023; 10:uhad062. [PMID: 37220556 PMCID: PMC10200261 DOI: 10.1093/hr/uhad062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Prunus pusilliflora is a wild cherry germplasm resource distributed mainly in Southwest China. Despite its ornamental and economic value, a high-quality assembled P. pusilliflora genome is unavailable, hindering our understanding of its genetic background, population diversity, and evolutionary processes. Here, we de novo assembled a chromosome-scale P. pusilliflora genome using Oxford Nanopore, Illumina, and chromosome conformation capture sequencing. The assembled genome size was 309.62 Mb, with 76 scaffolds anchored to eight pseudochromosomes. We predicted 33 035 protein-coding genes, functionally annotated 98.27% of them, and identified repetitive sequences covering 49.08% of the genome. We found that P. pusilliflora is closely related to Prunus serrulata and Prunus yedoensis, having diverged from them ~41.8 million years ago. A comparative genomic analysis revealed that P. pusilliflora has 643 expanded and 1128 contracted gene families. Furthermore, we found that P. pusilliflora is more resistant to Colletotrichum viniferum, Phytophthora capsici, and Pseudomonas syringae pv. tomato (Pst) DC3000 infections than cultivated Prunus avium. P. pusilliflora also has considerably more nucleotide-binding site-type resistance gene analogs than P. avium, which explains its stronger disease resistance. The cytochrome P450 and WRKY families of 263 and 61 proteins were divided into 42 and 8 subfamilies respectively in P. pusilliflora. Furthermore, 81 MADS-box genes were identified in P. pusilliflora, accompanying expansions of the SVP and AGL15 subfamilies and loss of the TM3 subfamily. Our assembly of a high-quality P. pusilliflora genome will be valuable for further research on cherries and molecular breeding.
Collapse
Affiliation(s)
| | | | - Xiao Dong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunjin Yin
- Dali Bai Autonomous Prefecture Academy of Agricultural Sciences and Extension, Dali, Yunnan Province, 671600, P. R. China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Sen Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jijun Zhu
- Shanghai Botanical Garden, Shanghai, 200231, P. R. China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoqian Yang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Meng Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, 200037, P. R. China
| | - Shufeng Li
- Dali Bai Autonomous Prefecture Academy of Agricultural Sciences and Extension, Dali, Yunnan Province, 671600, P. R. China
| | - Zhuo Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Quero-García José
- INRAe, UMR 1332 de Biologie du Fruit et Pathologie, 33140 Villenave d'Ornon, France
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yahui Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | - Ling Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, P. R. China
| | | | | | | |
Collapse
|
8
|
Hulin MT, Rabiey M, Zeng Z, Vadillo Dieguez A, Bellamy S, Swift P, Mansfield JW, Jackson RW, Harrison RJ. Genomic and functional analysis of phage-mediated horizontal gene transfer in Pseudomonas syringae on the plant surface. THE NEW PHYTOLOGIST 2023; 237:959-973. [PMID: 36285389 PMCID: PMC10107160 DOI: 10.1111/nph.18573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Many strains of Pseudomonas colonise plant surfaces, including the cherry canker pathogens, Pseudomonas syringae pathovars syringae and morsprunorum. We have examined the genomic diversity of P. syringae in the cherry phyllosphere and focused on the role of prophages in transfer of genes encoding Type 3 secreted effector (T3SE) proteins contributing to the evolution of virulence. Phylogenomic analysis was carried out on epiphytic pseudomonads in the UK orchards. Significant differences in epiphytic populations occurred between regions. Nonpathogenic strains were found to contain reservoirs of T3SE genes. Members of P. syringae phylogroups 4 and 10 were identified for the first time from Prunus. Using bioinformatics, we explored the presence of the gene encoding T3SE HopAR1 within related prophage sequences in diverse P. syringae strains including cherry epiphytes and pathogens. Results indicated that horizontal gene transfer (HGT) of this effector between phylogroups may have involved phage. Prophages containing hopAR1 were demonstrated to excise, circularise and transfer the gene on the leaf surface. The phyllosphere provides a dynamic environment for prophage-mediated gene exchange and the potential for the emergence of new more virulent pathotypes. Our results suggest that genome-based epidemiological surveillance of environmental populations will allow the timely application of control measures to prevent damaging diseases.
Collapse
Affiliation(s)
- Michelle T. Hulin
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- The Sainsbury LaboratoryNorwichNR4 7UHUK
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Ziyue Zeng
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
| | | | | | - Phoebe Swift
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Richard J. Harrison
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- Present address:
Plant Science GroupWageningen University and ResearchWageningen6708WBthe Netherlands
| |
Collapse
|
9
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
10
|
Correa F, Beltrán MF, Millas P, Moreno Z, Hinrichsen P, Meza P, Sagredo B. Genome Sequence Resources of Pseudomonas syringae Strains Isolated from Sweet Cherry Orchards in Chile. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:933-937. [PMID: 36176216 DOI: 10.1094/mpmi-04-22-0092-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Francisco Correa
- Instituto de Investigaciones Agropecuarias (INIA), INIA Rayentué. Avenida Salamanca s/n, Rengo, Chile
| | - M Francisca Beltrán
- Instituto de Investigaciones Agropecuarias (INIA), INIA Rayentué. Avenida Salamanca s/n, Rengo, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Paz Millas
- Instituto de Investigaciones Agropecuarias (INIA), INIA Quilamapu. Avenida Vicente Méndez 515, Chillán, Chile
| | - Zoe Moreno
- Instituto de Investigaciones Agropecuarias (INIA), INIA Rayentué. Avenida Salamanca s/n, Rengo, Chile
| | - Patricio Hinrichsen
- Instituto de Investigaciones Agropecuarias (INIA), INIA La Platina. Avenida Santa Rosa 11610, La Pintana, Santiago, Chile
| | - Pablo Meza
- Instituto de Investigaciones Agropecuarias (INIA), INIA La Platina. Avenida Santa Rosa 11610, La Pintana, Santiago, Chile
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias (INIA), INIA Rayentué. Avenida Salamanca s/n, Rengo, Chile
| |
Collapse
|
11
|
Bundalovic-Torma C, Lonjon F, Desveaux D, Guttman DS. Diversity, Evolution, and Function of Pseudomonas syringae Effectoromes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:211-236. [PMID: 35537470 DOI: 10.1146/annurev-phyto-021621-121935] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pseudomonas syringae is an evolutionarily diverse bacterial species complex and a preeminent model for the study of plant-pathogen interactions due in part to its remarkably broad host range. A critical feature of P. syringae virulence is the employment of suites of type III secreted effector (T3SE) proteins, which vary widely in composition and function. These effectors act on a variety of plant intracellular targets to promote pathogenesis but can also be avirulence factors when detected by host immune complexes. In this review, we survey the phylogenetic diversity (PD) of the P. syringae effectorome, comprising 70 distinct T3SE families identified to date, and highlight how avoidance of host immune detection has shaped effectorome diversity through functional redundancy, diversification, and horizontal transfer. We present emerging avenues for research and novel insights that can be gained via future investigations of plant-pathogen interactions through the fusion of large-scale interaction screens and phylogenomic approaches.
Collapse
Affiliation(s)
| | - Fabien Lonjon
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada; ,
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Almeida RND, Greenberg M, Bundalovic-Torma C, Martel A, Wang PW, Middleton MA, Chatterton S, Desveaux D, Guttman DS. Predictive modeling of Pseudomonas syringae virulence on bean using gradient boosted decision trees. PLoS Pathog 2022; 18:e1010716. [PMID: 35877772 PMCID: PMC9352200 DOI: 10.1371/journal.ppat.1010716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/04/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae is a genetically diverse bacterial species complex responsible for numerous agronomically important crop diseases. Individual P. syringae isolates are assigned pathovar designations based on their host of isolation and the associated disease symptoms, and these pathovar designations are often assumed to reflect host specificity although this assumption has rarely been rigorously tested. Here we developed a rapid seed infection assay to measure the virulence of 121 diverse P. syringae isolates on common bean (Phaseolus vulgaris). This collection includes P. syringae phylogroup 2 (PG2) bean isolates (pathovar syringae) that cause bacterial spot disease and P. syringae phylogroup 3 (PG3) bean isolates (pathovar phaseolicola) that cause the more serious halo blight disease. We found that bean isolates in general were significantly more virulent on bean than non-bean isolates and observed no significant virulence difference between the PG2 and PG3 bean isolates. However, when we compared virulence within PGs we found that PG3 bean isolates were significantly more virulent than PG3 non-bean isolates, while there was no significant difference in virulence between PG2 bean and non-bean isolates. These results indicate that PG3 strains have a higher level of host specificity than PG2 strains. We then used gradient boosting machine learning to predict each strain’s virulence on bean based on whole genome k-mers, type III secreted effector k-mers, and the presence/absence of type III effectors and phytotoxins. Our model performed best using whole genome data and was able to predict virulence with high accuracy (mean absolute error = 0.05). Finally, we functionally validated the model by predicting virulence for 16 strains and found that 15 (94%) had virulence levels within the bounds of estimated predictions. This study strengthens the hypothesis that P. syringae PG2 strains have evolved a different lifestyle than other P. syringae strains as reflected in their lower level of host specificity. It also acts as a proof-of-principle to demonstrate the power of machine learning for predicting host specific adaptation. Pseudomonas syringae is a genetically diverse Gammaproteobacterial species complex responsible for numerous agronomically important crop diseases. Strains in the P. syringae species complex are frequently categorized into pathovars depending on pathogenic characteristics such as host of isolation and disease symptoms. Common bean pathogens from P. syringae are known to cause two major diseases: (1) pathovar phaseolicola strains from phylogroup 3 cause halo blight disease, characterized by large necrotic lesions surrounded by a chlorotic zone or halo of yellow tissue; and (2) pathovar syringae strains from phylogroup 2 causes bacterial spot disease, characterized by brown leaf spots. While halo blight can cause serious crop losses, bacterial spot disease is generally of minor agronomic concern. Recently, statistical genetic and machine learning approaches have been applied to genomic data to identify genes underlying traits of interest or predict the outcome of host-microbe interactions. Here, we apply machine learning to P. syringae genomic data to predict virulence on bean. We first characterized the virulence of P. syringae isolates on common bean using a seed infection assay and then applied machine learning to the genomic data from the same strains to generate a predictive model for virulence on bean. We found that machine learning models built with k-mers from either full genome data or virulence factors could predict bean virulence with high accuracy. We also confirmed prior work showing that phylogroup 3 halo blight pathogens display a stronger degree of phylogenetic clustering and host specificity compared to phylogroup 2 brown spot pathogens. This works serves as a proof-of-principle for the power of machine learning for predicting host specificity and may find utility in agricultural diagnostic microbiology.
Collapse
Affiliation(s)
- Renan N. D. Almeida
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Michael Greenberg
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | | | - Alexandre Martel
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Pauline W. Wang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Maggie A. Middleton
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| | - Syama Chatterton
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
13
|
Ruinelli M, Blom J, Smits THM, Pothier JF. Comparative Genomics of Prunus-Associated Members of the Pseudomonas syringae Species Complex Reveals Traits Supporting Co-evolution and Host Adaptation. Front Microbiol 2022; 13:804681. [PMID: 35592008 PMCID: PMC9111521 DOI: 10.3389/fmicb.2022.804681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the Pseudomonas syringae species complex cause symptoms that are ranging from leaf spots to cankers on a multitude of plant species, including some of the genus Prunus. To date, a total of two species of the P. syringae species complex and six different pathovars have been associated with diseases on Prunus spp., which were shown to belong to different phylogenetic units (phylogroups, PG) based on sequence similarity of housekeeping genes or whole genomes, suggesting that virulence to Prunus spp. may be the result of convergent pathoadaptation. In this study, a comparative genomics approach was used to determine genes significantly associated with strains isolated from Prunus spp. across a phylogeny of 97 strains belonging to the P. syringae species complex. Our study revealed the presence of a set of orthologous proteins which were significantly associated with strains isolated from Prunus spp. than in strains isolated from other hosts or from non-agricultural environments. Among them, the type III effector HopAY predicted to encode for a C58 cysteine protease was found to be highly associated with strains isolated from Prunus spp. and revealed patterns supporting co-evolution and host adaptation.
Collapse
Affiliation(s)
- Michela Ruinelli
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
14
|
Hulin MT, Vadillo Dieguez A, Cossu F, Lynn S, Russell K, Neale HC, Jackson RW, Arnold DL, Mansfield JW, Harrison RJ. Identifying resistance in wild and ornamental cherry towards bacterial canker caused by Pseudomonas syringae. PLANT PATHOLOGY 2022; 71:949-965. [PMID: 35909801 PMCID: PMC9305585 DOI: 10.1111/ppa.13513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 05/31/2023]
Abstract
Bacterial canker is a major disease of stone fruits and is a critical limiting factor to sweet cherry (Prunus avium) production worldwide. One important strategy for disease control is the development of resistant varieties. Partial varietal resistance in sweet cherry is discernible using shoot or whole tree inoculations; however, these quantitative differences in resistance are not evident in detached leaf assays. To identify novel sources of resistance to canker, we used a rapid leaf pathogenicity test to screen a range of wild cherry, ornamental Prunus species and sweet cherry × ornamental cherry hybrids with the canker pathogens, Pseudomonas syringae pvs syringae, morsprunorum races 1 and 2, and avii. Several Prunus accessions exhibited limited symptom development following inoculation with each of the pathogens, and this resistance extended to 16 P. syringae strains pathogenic on sweet cherry and plum. Resistance was associated with reduced bacterial multiplication after inoculation, a phenotype similar to that of commercial sweet cherry towards nonhost strains of P. syringae. Progeny resulting from a cross of a resistant ornamental species Prunus incisa with susceptible sweet cherry (P. avium) exhibited resistance indicating it is an inherited trait. Identification of accessions with resistance to the major bacterial canker pathogens is the first step towards characterizing the underlying genetic mechanisms of resistance and introducing these traits into commercial germplasm.
Collapse
Affiliation(s)
- Michelle T. Hulin
- NIAB EMREast MallingUK
- Present address:
The Sainsbury LaboratoryNorwichUK
| | | | | | | | | | - Helen C. Neale
- Centre for Research in BioscienceFaculty of Health and Applied SciencesThe University of the West of EnglandFrenchay CampusBristolUK
| | - Robert W. Jackson
- Birmingham Institute of Forest Research (BIFoR)University of BirminghamBirminghamUK
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Dawn L. Arnold
- Centre for Research in BioscienceFaculty of Health and Applied SciencesThe University of the West of EnglandFrenchay CampusBristolUK
- Harper Adams UniversityNewportShropshireUK
| | | | | |
Collapse
|
15
|
Yi B, Dalpke AH. Revisiting the intrageneric structure of the genus Pseudomonas with complete whole genome sequence information: Insights into diversity and pathogen-related genetic determinants. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105183. [PMID: 34920102 DOI: 10.1016/j.meegid.2021.105183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/09/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Pseudomonas spp. exhibit considerable differences in host specificity and virulence. Most Pseudomonas species were isolated exclusively from environmental sources, ranging from soil to plants, but some Pseudomonas species have been detected from versatile sources, including both human host and environmental sources. Understanding genome variations that generate the tremendous diversity in Pseudomonas biology is important in controlling the incidence of infections. With a data set of 704 Pseudomonas complete whole genome sequences representing 186 species, Pseudomonas intrageneric structure was investigated by hierarchical clustering based on average nucleotide identity, and by phylogeny analysis based on concatenated core-gene alignment. Further comparative functional analyses indicated that Pseudomonas species only living in natural habitats lack multiple functions that are important in the regulation of bacterial pathogenesis, indicating the possession of these functions might be characteristic of Pseudomonas human pathogens. Moreover, we have performed pan-genome based homogeneity analyses, and detected genes with conserved structures but diversified functions across the Pseudomonas genomes, suggesting these genes play a role in driving diversity. In summary, this study provided insights into the dynamics of genome diversity and pathogen-related genetic determinants in Pseudomonas, which might help the development of more targeted antibiotics for the treatment of Pseudomonas infections.
Collapse
Affiliation(s)
- Buqing Yi
- Institute of Medical Microbiology and Virology, Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| | - Alexander H Dalpke
- Institute of Medical Microbiology and Virology, Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
16
|
Martel A, Ruiz-Bedoya T, Breit-McNally C, Laflamme B, Desveaux D, Guttman DS. The ETS-ETI cycle: evolutionary processes and metapopulation dynamics driving the diversification of pathogen effectors and host immune factors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102011. [PMID: 33677388 DOI: 10.1016/j.pbi.2021.102011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 05/13/2023]
Abstract
The natural diversity of pathogen effectors and host immune components represents a snapshot of the underlying evolutionary processes driving the host-pathogen arms race. In plants, this arms race is manifested by an ongoing cycle of disease and resistance driven by pathogenic effectors that promote disease (effector-triggered susceptibility; ETS) and plant resistance proteins that recognize effector activity to trigger immunity (effector-triggered immunity; ETI). Here we discuss how this ongoing ETS-ETI cycle has shaped the natural diversity of both plant resistance proteins and pathogen effectors. We focus on the evolutionary forces that drive the diversification of the molecules that determine the outcome of plant-pathogen interactions and introduce the concept of metapopulation dynamics (i.e., the introduction of genetic variation from conspecific organisms in different populations) as an alternative mechanism that can introduce and maintain diversity in both host and pathogen populations.
Collapse
Affiliation(s)
- Alexandre Martel
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Clare Breit-McNally
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Bradley Laflamme
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada; Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario M6S2Y1, Canada.
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M6S2Y1, Canada; Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario M6S2Y1, Canada.
| |
Collapse
|
17
|
Dillon MM, Ruiz-Bedoya T, Bundalovic-Torma C, Guttman KM, Kwak H, Middleton MA, Wang PW, Horuz S, Aysan Y, Guttman DS. Comparative genomic insights into the epidemiology and virulence of plant pathogenic pseudomonads from Turkey. Microb Genom 2021; 7:000585. [PMID: 34227931 PMCID: PMC8477409 DOI: 10.1099/mgen.0.000585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Present address: Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin M. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Haejin Kwak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Maggie A. Middleton
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Pauline W. Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sumer Horuz
- Department of Plant Protection, Erciyes University, Kayseri, Turkey
| | - Yesim Aysan
- Department of Plant Protection, University of Çukurova, Adana, Turkey
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Transposon Mutagenesis of Pseudomonas syringae Pathovars syringae and morsprunorum to Identify Genes Involved in Bacterial Canker Disease of Cherry. Microorganisms 2021; 9:microorganisms9061328. [PMID: 34207283 PMCID: PMC8234094 DOI: 10.3390/microorganisms9061328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial canker of Prunus, affecting economically important stone fruit crops including cherry, peach, apricot and plum, is caused by the plant pathogen Pseudomonas syringae (P.s.). Strains from two pathovars—P.s. pv. syringae (Pss) and P.s. pv. morsprunorum race 1 (PsmR1) and 2 (PsmR2)—in three phylogenetically distant clades have convergently evolved to infect Prunus. The bacteria enter woody tissues through wounds and leaf scars, causing black necrotic cankers. Symptoms are also produced on blossom, fruit and leaves. Little is known about the mechanisms P.s. uses to colonise tree hosts such as Prunus. Here, we created transposon (Tn) mutant libraries in one strain of P.s. from each of the three clades and screened the mutants on immature cherry fruit to look for changes in virulence. Mutants (242) with either reduced or enhanced virulence were detected and further characterised by in vitro screens for biofilm formation, swarming ability, and pathogenicity on leaves and cut shoots. In total, 18 genes affecting virulence were selected, and these were involved in diverse functions including motility, type III secretion, membrane transport, amino acid synthesis, DNA repair and primary metabolism. Interestingly, mutation of the effector gene, hopAU1, led to an increase in virulence of Psm R2.
Collapse
|
19
|
Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future. Microorganisms 2021; 9:microorganisms9051056. [PMID: 34068401 PMCID: PMC8153558 DOI: 10.3390/microorganisms9051056] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Xanthomonads, members of the family Xanthomonadaceae, are economically important plant pathogenic bacteria responsible for infections of over 400 plant species. Bacteriophage-based biopesticides can provide an environmentally friendly, effective solution to control these bacteria. Bacteriophage-based biocontrol has important advantages over chemical pesticides, and treatment with these biopesticides is a minor intervention into the microflora. However, bacteriophages’ agricultural application has limitations rooted in these viruses’ biological properties as active substances. These disadvantageous features, together with the complicated registration process of bacteriophage-based biopesticides, means that there are few products available on the market. This review summarizes our knowledge of the Xanthomonas-host plant and bacteriophage-host bacterium interaction’s possible influence on bacteriophage-based biocontrol strategies and provides examples of greenhouse and field trials and products readily available in the EU and the USA. It also details the most important advantages and limitations of the agricultural application of bacteriophages. This paper also investigates the legal background and industrial property right issues of bacteriophage-based biopesticides. When appropriately applied, bacteriophages can provide a promising tool against xanthomonads, a possibility that is untapped. Information presented in this review aims to explore the potential of bacteriophage-based biopesticides in the control of xanthomonads in the future.
Collapse
|
20
|
Inoue Y, Fujikawa T, Takikawa Y. Detection and identification of Xanthomonas campestris pv. campestris and pv. raphani by multiplex polymerase chain reaction using specific primers. Appl Microbiol Biotechnol 2021; 105:1991-2002. [PMID: 33576884 DOI: 10.1007/s00253-021-11159-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Black rot and bacterial spots threaten the cultivation of cruciferous vegetables worldwide, and the development of a method that can easily detect, identify, and distinguish their respective pathogens Xanthomonas campestris pv. campestris (Xcc) and X. campestris pv. raphani (Xcr) is required. Multiple whole-genome sequences of Xcc and Xcr were aligned to identify specific regions and subsequently design gene markers. A region present in Xcr, but absent in Xcc, was detected, which was approximately 11.5 kbp in length, sandwiched between the serine protease homolog (SPH) and nicotinate phosphoribosyltransferase gene (pncB). It contained putative cellulose synthesis-related genes, whereas Xcc only had a modified cellulose synthase gene. Designed primers were pncB_fw1 and pncB_fw2 (from the pncB gene), Xcc_rv1 and Xcc_rv2 (from the modified cellulose synthesis gene), and Xcr_rv1 and Xcr_rv2 (from the putative first and second open reading frames of the gene cluster). PCR using pncB_fw1 and Xcc_rv1, or pncB_fw2 and Xcc_rv2, amplified DNA fragments only in Xcc and X. campestris pv. incanae (Xci). Xci is the causal agent of black rot of garden stock and closely related to Xcc. PCR using pncB_fw1 and Xcr_rv1, or pncB_2 and Xcr_rv2, amplified DNA fragments only in Xcr. Multiplex PCR analysis easily distinguished Xcc and Xcr from bacterial colonies isolated on growth media and detected the pathogen in symptomatic leaves. Multiplex nested PCR detected the contamination of one seed with Xcc and/or Xcr infection from 1000 seeds. Therefore, the PCR primers designed in this study therefore helped detect and discriminate between Xcc and Xcr. KEY POINTS: • Xanthomonas campestris pv. campestris (Xcc) and pv. raphani (Xcr) were investigated. • Novel primers were designed following whole-genome comparison analyses. • Multiplex PCR with new primers distinguished Xcc and Xcr simultaneously.
Collapse
Affiliation(s)
- Yasuhiro Inoue
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki, Japan
| | - Yuichi Takikawa
- Laboratory of Plant Pathology, Graduate School of Agriculture, and Graduate School of Science and Technology, Shizuoka University, Shizuoka, Shizuoka, Japan
| |
Collapse
|
21
|
Abstract
Population genomics is transforming our understanding of pathogen biology and evolution, and contributing to the prevention and management of disease in diverse crops. We provide an overview of key methods in bacterial population genomics and describe recent work focusing on three topics of critical importance to plant pathology: (i) resolving pathogen origins and transmission pathways during outbreak events, (ii) identifying the genetic basis of host specificity and virulence, and (iii) understanding how pathogens evolve in response to changing agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Christina Straub
- Institute of Environmental Science and Research, Health and Environment, Auckland, New Zealand
- Genomics Aotearoa, New Zealand
| | - Elena Colombi
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Honour C McCann
- New Zealand Institute for Advanced Study, Massey University, Albany, New Zealand
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
22
|
Bakhshi Ganje M, Mackay J, Nicolaisen M, Shams-Bakhsh M. Comparative Genomics, Pangenome, and Phylogenomic Analyses of Brenneria spp., and Delineation of Brenneria izadpanahii sp. nov. PHYTOPATHOLOGY 2021; 111:78-95. [PMID: 32407252 DOI: 10.1094/phyto-04-20-0129-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brenneria species are bacterial plant pathogens mainly affecting woody plants. Association of all members with devastating disorders (e.g., acute oak decline in Iran and United Kingdom) are due to adaptation and pathogenic behavior in response to host and environmental factors. Some species, including B. goodwinii, B. salicis, and B. nigrifluens, also show endophytic residence. Here we show that all species including novel Brenneria sp. are closely related. Gene-based and genome/pangenome-based phylogeny divide the genus into two distinct lineages, Brenneria clades A and B. The two clades were functionally distinct and were consistent with their common and special potential activities as determined via annotation of functional domains. Pangenome analysis demonstrated that the core pathogenicity factors were highly conserved, an hrp gene cluster encoding a type III secretion system was found in all species except B. corticis. An extensive repertoire of candidate virulence factors was identified. Comparative genomics indicated a repertoire of plant cell wall degrading enzymes, metabolites/antibiotics, and numerous prophages providing new insights into Brenneria-host interactions and appropriate targets for further characterization. This work not only documented the genetic differentiation of Brenneria species but also delineates a more functionally driven understanding of Brenneria by comparison with relevant Pectobacteriaceae thereby substantially enriching the extent of information available for functional genomic investigations.
Collapse
Affiliation(s)
- Meysam Bakhshi Ganje
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - John Mackay
- Department of Plant Sciences, University of Oxford, Oxford, U.K
| | - Mogens Nicolaisen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Rabiey M, Roy SR, Holtappels D, Franceschetti L, Quilty BJ, Creeth R, Sundin GW, Wagemans J, Lavigne R, Jackson RW. Phage biocontrol to combat Pseudomonas syringae pathogens causing disease in cherry. Microb Biotechnol 2020; 13:1428-1445. [PMID: 32383813 PMCID: PMC7415359 DOI: 10.1111/1751-7915.13585] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial canker is a major disease of Prunus species, such as cherry (Prunus avium). It is caused by Pseudomonas syringae pathovars, including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and the development of bacterial resistance to, traditional copper controls calls for new approaches to disease management. Bacteriophage-based biocontrol could provide a sustainable and natural alternative approach to combat bacterial pathogens. Therefore, seventy phages were isolated from soil, leaf and bark of cherry trees in six locations in the south east of England. Subsequently, their host range was assessed against strains of Pss, Psm1 and Psm2. While these phages lysed different Pss, Psm and some other P. syringae pathovar isolates, they did not infect beneficial bacteria such as Pseudomonas fluorescens. A subset of thirteen phages were further characterized by genome sequencing, revealing five distinct clades in which the phages could be clustered. No known toxins or lysogeny-associated genes could be identified. Using bioassays, selected phages could effectively reduce disease progression in vivo, both individually and in cocktails, reinforcing their potential as biocontrol agents in agriculture.
Collapse
Affiliation(s)
- Mojgan Rabiey
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | - Shyamali R. Roy
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | | | - Linda Franceschetti
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | - Billy J. Quilty
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | - Ryan Creeth
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | | | - Jeroen Wagemans
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenLeuvenBelgium
| | - Rob Lavigne
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenLeuvenBelgium
| | - Robert W. Jackson
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
- School of Biosciences and Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
24
|
Neale HC, Hulin MT, Harrison RJ, Jackson RW, Mansfield JW, Arnold DL. An improved conjugation method for Pseudomonas syringae. J Microbiol Methods 2020; 177:106025. [PMID: 32795634 DOI: 10.1016/j.mimet.2020.106025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 11/15/2022]
Abstract
In order to achieve saturating transposon mutagenesis of the genome of plant pathogenic strains of Pseudomonas syringae we needed to improve plasmid conjugation frequency. Manipulation of the growth stage of donor and recipient cells allowed the required increase in frequency and facilitated conjugation of otherwise recalcitrant strains.
Collapse
Affiliation(s)
- Helen C Neale
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol BS16 1QY, UK
| | | | | | - Robert W Jackson
- Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Birmingham, UK; School of Biosciences, University of Birmingham, Birmingham, UK
| | - John W Mansfield
- Faculty of Natural Sciences, Imperial College London, London, UK
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, The University of the West of England, Frenchay Campus, Bristol BS16 1QY, UK; Harper Adams University, Newport, Shropshire TF10 8NB, UK.
| |
Collapse
|
25
|
Hulin MT, Jackson RW, Harrison RJ, Mansfield JW. Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. PLANT PATHOLOGY 2020; 69:962-978. [PMID: 32742023 PMCID: PMC7386918 DOI: 10.1111/ppa.13189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
Bacterial canker disease is a major limiting factor in the growing of cherry and other Prunus species worldwide. At least five distinct clades within the bacterial species complex Pseudomonas syringae are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of P. syringae pv. syringae possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as hopAB, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.
Collapse
Affiliation(s)
| | - Robert W. Jackson
- Birmingham Institute of Forest Research (BIFoR), University of BirminghamBirminghamUK
- School of Biosciences, University of BirminghamBirminghamUK
| | | | | |
Collapse
|
26
|
Saint-Vincent PMB, Ridout M, Engle NL, Lawrence TJ, Yeary ML, Tschaplinski TJ, Newcombe G, Pelletier DA. Isolation, Characterization, and Pathogenicity of Two Pseudomonas syringae Pathovars from Populus trichocarpa Seeds. Microorganisms 2020; 8:microorganisms8081137. [PMID: 32731357 PMCID: PMC7465253 DOI: 10.3390/microorganisms8081137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas syringae is a ubiquitous plant pathogen, infecting both woody and herbaceous plants and resulting in devastating agricultural crop losses. Characterized by a remarkable specificity for plant hosts, P. syringae pathovars utilize a number of virulence factors including the type III secretion system and effector proteins to elicit disease in a particular host species. Here, two Pseudomonas syringae strains were isolated from diseased Populustrichocarpa seeds. The pathovars were capable of inhibiting poplar seed germination and were selective for the Populus genus. Sequencing of the newly described organisms revealed similarity to phylogroup II pathogens and genomic regions associated with woody host-associated plant pathogens, as well as genes for specific virulence factors. The host response to infection, as revealed through metabolomics, is the induction of the stress response through the accumulation of higher-order salicylates. Combined with necrosis on leaf surfaces, the plant appears to quickly respond by isolating infected tissues and mounting an anti-inflammatory defense. This study improves our understanding of the initial host response to epiphytic pathogens in Populus and provides a new model system for studying the effects of a bacterial pathogen on a woody host plant in which both organisms are fully genetically sequenced.
Collapse
Affiliation(s)
- Patricia MB Saint-Vincent
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
- Geologic and Environmental Systems Directorate, National Energy Technology Laboratory, Pittsburgh, PA 15236, USA
| | - Mary Ridout
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID 83844, USA; (M.R.); (G.N.)
| | - Nancy L. Engle
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
| | - Travis J. Lawrence
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
| | - Meredith L. Yeary
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
| | - Timothy J. Tschaplinski
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
| | - George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID 83844, USA; (M.R.); (G.N.)
| | - Dale A. Pelletier
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; (P.M.S.-V.); (N.L.E.); (T.J.L.); (M.L.Y.); (T.J.T.)
- Correspondence:
| |
Collapse
|
27
|
Moreno-Pérez A, Pintado A, Murillo J, Caballo-Ponce E, Tegli S, Moretti C, Rodríguez-Palenzuela P, Ramos C. Host Range Determinants of Pseudomonas savastanoi Pathovars of Woody Hosts Revealed by Comparative Genomics and Cross-Pathogenicity Tests. FRONTIERS IN PLANT SCIENCE 2020; 11:973. [PMID: 32714356 PMCID: PMC7343908 DOI: 10.3389/fpls.2020.00973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 05/02/2023]
Abstract
The study of host range determinants within the Pseudomonas syringae complex is gaining renewed attention due to its widespread distribution in non-agricultural environments, evidence of large variability in intra-pathovar host range, and the emergence of new epidemic diseases. This requires the establishment of appropriate model pathosystems facilitating integration of phenotypic, genomic and evolutionary data. Pseudomonas savastanoi pv. savastanoi is a model pathogen of the olive tree, and here we report a closed genome of strain NCPPB 3335, plus draft genome sequences of three strains isolated from oleander (pv. nerii), ash (pv. fraxini) and broom plants (pv. retacarpa). We then conducted a comparative genomic analysis of these four new genomes plus 16 publicly available genomes, representing 20 strains of these four P. savastanoi pathovars of woody hosts. Despite overlapping host ranges, cross-pathogenicity tests using four plant hosts clearly separated these pathovars and lead to pathovar reassignment of two strains. Critically, these functional assays were pivotal to reconcile phylogeny with host range and to define pathovar-specific genes repertoires. We report a pan-genome of 7,953 ortholog gene families and a total of 45 type III secretion system effector genes, including 24 core genes, four genes exclusive of pv. retacarpa and several genes encoding pathovar-specific truncations. Noticeably, the four pathovars corresponded with well-defined genetic lineages, with core genome phylogeny and hierarchical clustering of effector genes closely correlating with pathogenic specialization. Knot-inducing pathovars encode genes absent in the canker-inducing pv. fraxini, such as those related to indole acetic acid, cytokinins, rhizobitoxine, and a bacteriophytochrome. Other pathovar-exclusive genes encode type I, type II, type IV, and type VI secretion system proteins, the phytotoxine phevamine A, a siderophore, c-di-GMP-related proteins, methyl chemotaxis proteins, and a broad collection of transcriptional regulators and transporters of eight different superfamilies. Our combination of pathogenicity analyses and genomics tools allowed us to correctly assign strains to pathovars and to propose a repertoire of host range-related genes in the P. syringae complex.
Collapse
Affiliation(s)
- Alba Moreno-Pérez
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Mutilva Baja, Spain
- *Correspondence: Jesús Murillo, ; Cayo Ramos,
| | - Eloy Caballo-Ponce
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Stefania Tegli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari Ambientali e Forestali (DAGRI), Laboratorio di Patologia Vegetale Molecolare, University of Florence, Firenze, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
- *Correspondence: Jesús Murillo, ; Cayo Ramos,
| |
Collapse
|
28
|
Biodiversity of epiphytic Pseudomonas strains isolated from leaves of pepper and lettuce. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00392-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
A Bacterial Effector Mimics a Host HSP90 Client to Undermine Immunity. Cell 2019; 179:205-218.e21. [PMID: 31522888 DOI: 10.1016/j.cell.2019.08.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/21/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023]
Abstract
The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.
Collapse
|
30
|
Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast. Proc Natl Acad Sci U S A 2019; 116:18900-18910. [PMID: 31484768 DOI: 10.1073/pnas.1908858116] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The foliar plant pathogen Pseudomonas syringae can establish large epiphytic populations on leaf surfaces before apoplastic colonization. However, the bacterial genes that contribute to these lifestyles have not been completely defined. The fitness contributions of 4,296 genes in P. syringae pv. syringae B728a were determined by genome-wide fitness profiling with a randomly barcoded transposon mutant library that was grown on the leaf surface and in the apoplast of the susceptible plant Phaseolus vulgaris Genes within the functional categories of amino acid and polysaccharide (including alginate) biosynthesis contributed most to fitness both on the leaf surface (epiphytic) and in the leaf interior (apoplast), while genes involved in type III secretion system and syringomycin synthesis were primarily important in the apoplast. Numerous other genes that had not been previously associated with in planta growth were also required for maximum epiphytic or apoplastic fitness. Fourteen hypothetical proteins and uncategorized glycosyltransferases were also required for maximum competitive fitness in and on leaves. For most genes, no relationship was seen between fitness in planta and either the magnitude of their expression in planta or degree of induction in planta compared to in vitro conditions measured in other studies. A lack of association of gene expression and fitness has important implications for the interpretation of transcriptional information and our broad understanding of plant-microbe interactions.
Collapse
|
31
|
Gerin D, Cariddi C, de Miccolis Angelini RM, Rotolo C, Dongiovanni C, Faretra F, Pollastro S. First Report of Pseudomonas Grapevine Bunch Rot Caused by Pseudomonas syringae pv. syringae. PLANT DISEASE 2019; 103:1954-1960. [PMID: 31169085 DOI: 10.1094/pdis-11-18-1992-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudomonas syringae pv. syringae, a Gammaproteobacterium belonging to genomospecies 2 within the P. syringae complex, is distributed worldwide, and it is responsible for bacterial canker on >100 different hosts, including the grapevine. P. syringae pv. syringae induces necrotic lesions in the leaf blades, veins, petioles, shoots, rachis, and tendrils on grapevine cultivars in different areas. P. syringae pv. syringae has been associated with severe economic losses in different grape cultivars in Australia, where it causes inflorescence rot. In midsummer to late summer 2017, symptoms of berry rots differing from those caused by the common berry rots agents were observed in different cultivar Red Globe vineyards of Apulia (southern Italy). As proven by fulfillment of Koch's postulates, these symptoms were caused by a bacterium that, according to the results of biochemical, physiological, nutritional, antimicrobial activity, and pathogenicity tests and sequencing of 16S ribosomal DNA, gyrB, rpoB, and rpoD genes, was identified as P. syringae pv. syringae. This is the first report of Pseudomonas grapevine bunch rot.
Collapse
Affiliation(s)
- D Gerin
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - C Cariddi
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - R M de Miccolis Angelini
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- 2Selge Network, University of Bari Aldo Moro, 70126 Bari, Italy
| | - C Rotolo
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - C Dongiovanni
- 3Centro di Ricerca, Sperimentazione e Formazione in Agricoltura "Basile Caramia," 70010 Locorotondo, Italy
| | - F Faretra
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- 2Selge Network, University of Bari Aldo Moro, 70126 Bari, Italy
| | - S Pollastro
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- 2Selge Network, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
32
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A. Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge" of the Pseudomonas syringae Complex. FRONTIERS IN PLANT SCIENCE 2019; 10:570. [PMID: 31139201 PMCID: PMC6518948 DOI: 10.3389/fpls.2019.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/15/2019] [Indexed: 05/29/2023]
Abstract
The Pseudomonas syringae complex comprises different genetic groups that include strains from both agricultural and environmental habitats. This complex group has been used for decades as a "hodgepodge," including many taxonomically related species. More than 60 pathovars of P. syringae have been described based on distinct host ranges and disease symptoms they cause. These pathovars cause disease relying on an array of virulence mechanisms. However, P. syringae pv. syringae (Pss) is the most polyphagous bacterium in the P. syringae complex, based on its wide host range, that primarily affects woody and herbaceous host plants. In early 1990s, bacterial apical necrosis (BAN) of mango trees, a critical disease elicited by Pss in Southern Spain was described for the first time. Pss exhibits important epiphytic traits and virulence factors, which may promote its survival and pathogenicity in mango trees and in other plant hosts. Over more than two decades, Pss strains isolated from mango trees have been comprehensively investigated to elucidate the mechanisms that governs their epiphytic and pathogenic lifestyles. In particular, the vast majority of Pss strains isolated from mango trees produce an antimetabolite toxin, called mangotoxin, whose leading role in virulence has been clearly demonstrated. Moreover, phenotypic, genetic and phylogenetic approaches support that Pss strains producers of BAN symptoms on mango trees all belong to a single phylotype within phylogroup 2, are adapted to the mango host, and produce mangotoxin. Remarkably, a genome sequencing project of the Pss model strain UMAF0158 revealed the presence of other factors that may play major roles in its different lifestyles, such as the presence of two different type III secretion systems, two type VI secretion systems and an operon for cellulose biosynthesis. The role of cellulose in increasing mango leaf colonization and biofilm formation, and impairing virulence of Pss, suggests that cellulose may play a pivotal role with regards to the balance of its different lifestyles. In addition, 62-kb plasmids belonging to the pPT23A-family of plasmids (PFPs) have been strongly associated with Pss strains that inhabit mango trees. Further, complete sequence and comparative genomic analyses revealed major roles of PFPs in detoxification of copper compounds and ultraviolet radiation resistance, both improving the epiphytic lifestyle of Pss on mango surfaces. Hence, in this review we summarize the research that has been conducted on Pss by our research group to elucidate the molecular mechanisms that underpin the epiphytic and pathogenic lifestyle on mango trees. Finally, future directions in this particular plant-pathogen story are discussed.
Collapse
|
33
|
Ruinelli M, Blom J, Smits THM, Pothier JF. Comparative genomics and pathogenicity potential of members of the Pseudomonas syringae species complex on Prunus spp. BMC Genomics 2019; 20:172. [PMID: 30836956 PMCID: PMC6402114 DOI: 10.1186/s12864-019-5555-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/22/2019] [Indexed: 11/22/2022] Open
Abstract
Background Diseases on Prunus spp. have been associated with a large number of phylogenetically different pathovars and species within the P. syringae species complex. Despite their economic significance, there is a severe lack of genomic information of these pathogens. The high phylogenetic diversity observed within strains causing disease on Prunus spp. in nature, raised the question whether other strains or species within the P. syringae species complex were potentially pathogenic on Prunus spp. Results To gain insight into the genomic potential of adaptation and virulence in Prunus spp., a total of twelve de novo whole genome sequences of P. syringae pathovars and species found in association with diseases on cherry (sweet, sour and ornamental-cherry) and peach were sequenced. Strains sequenced in this study covered three phylogroups and four clades. These strains were screened in vitro for pathogenicity on Prunus spp. together with additional genome sequenced strains thus covering nine out of thirteen of the currently defined P. syringae phylogroups. Pathogenicity tests revealed that most of the strains caused symptoms in vitro and no obvious link was found between presence of known virulence factors and the observed pathogenicity pattern based on comparative genomics. Non-pathogenic strains were displaying a two to three times higher generation time when grown in rich medium. Conclusion In this study, the first set of complete genomes of cherry associated P. syringae strains as well as the draft genome of the quarantine peach pathogen P. syringae pv. persicae were generated. The obtained genomic data were matched with phenotypic data in order to determine factors related to pathogenicity to Prunus spp. Results of this study suggest that the inability to cause disease on Prunus spp. in vitro is not the result of host specialization but rather linked to metabolic impairments of individual strains. Electronic supplementary material The online version of this article (10.1186/s12864-019-5555-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michela Ruinelli
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences, CH-8820, Wädenswil, Switzerland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences, CH-8820, Wädenswil, Switzerland.
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences, CH-8820, Wädenswil, Switzerland
| |
Collapse
|
34
|
Newberry EA, Ebrahim M, Timilsina S, Zlatković N, Obradović A, Bull CT, Goss EM, Huguet-Tapia JC, Paret ML, Jones JB, Potnis N. Inference of Convergent Gene Acquisition Among Pseudomonas syringae Strains Isolated From Watermelon, Cantaloupe, and Squash. Front Microbiol 2019; 10:270. [PMID: 30837979 PMCID: PMC6390507 DOI: 10.3389/fmicb.2019.00270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas syringae sensu stricto (phylogroup 2; referred to as P. syringae) consists of an environmentally ubiquitous bacterial population associated with diseases of numerous plant species. Recent studies using multilocus sequence analysis have indicated the clonal expansion of several P. syringae lineages, located in phylogroups 2a and 2b, in association with outbreaks of bacterial spot disease of watermelon, cantaloupe, and squash in the United States. To investigate the evolutionary processes that led to the emergence of these epidemic lineages, we sequenced the genomes of six P. syringae strains that were isolated from cucurbits grown in the United States, Europe, and China over a period of more than a decade, as well as eight strains that were isolated from watermelon and squash grown in six different Florida counties during the 2013 and 2014 seasons. These data were subjected to comparative analyses along with 42 previously sequenced genomes of P. syringae stains collected from diverse plant species and environments available from GenBank. Maximum likelihood reconstruction of the P. syringae core genome revealed the presence of a hybrid phylogenetic group, comprised of cucurbit strains collected in Florida, Italy, Serbia, and France, which emerged through genome-wide homologous recombination between phylogroups 2a and 2b. Functional analysis of the recombinant core genome showed that pathways involved in the ATP-dependent transport and metabolism of amino acids, bacterial motility, and secretion systems were enriched for recombination. A survey of described virulence factors indicated the convergent acquisition of several accessory type 3 secreted effectors (T3SEs) among phylogenetically distinct lineages through integrative and conjugative element and plasmid loci. Finally, pathogenicity assays on watermelon and squash showed qualitative differences in virulence between strains of the same clonal lineage, which correlated with T3SEs acquired through various mechanisms of horizontal gene transfer (HGT). This study provides novel insights into the interplay of homologous recombination and HGT toward pathogen emergence and highlights the dynamic nature of P. syringae sensu lato genomes.
Collapse
Affiliation(s)
- Eric A Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Mohamed Ebrahim
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States.,Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Nevena Zlatković
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Aleksa Obradović
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, State College, PA, United States
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Mathews L Paret
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
35
|
Jayaraman J, Halane MK, Choi S, McCann HC, Sohn KH. Using Bioinformatics and Molecular Biology to Streamline Construction of Effector Libraries for Phytopathogenic Pseudomonas syringae Strains. Methods Mol Biol 2019; 1991:1-12. [PMID: 31041757 DOI: 10.1007/978-1-4939-9458-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The war between plants and their pathogens is endless, with plant resistance genes offering protection against pathogens until the pathogen evolves a way to overcome this resistance. Given how quickly new pathogen strains can arise and defeat plant defenses, it is critical to more rapidly identify and examine the specific genomic characteristics new virulent strains have gained which give them the upper hand. An indispensable tool is bioinformatics. Genome sequencing has advanced rapidly in the last decade, and labs are frequently uploading high-quality genomes of various organisms, including plant pathogenic bacteria such as Pseudomonas syringae. Pseudomonas syringae strains inject several effector proteins into host cells which often overcome host defenses. Probing online genomes provides a way to quickly and accurately predict effector repertoires of Pseudomonas, enabling the cloning of complete effector libraries of newly emerged strains. Here, we describe detailed protocols to rapidly clone bioinformatically predicted P. syringae effectors for various screening applications.
Collapse
Affiliation(s)
- Jay Jayaraman
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Morgan K Halane
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Honour C McCann
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
36
|
Marcelletti S, Scortichini M. Some strains that have converged to infect Prunus spp. trees are members of distinct Pseudomonas syringae genomospecies and ecotypes as revealed by in silico genomic comparison. Arch Microbiol 2018; 201:67-80. [PMID: 30229267 DOI: 10.1007/s00203-018-1573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 11/29/2022]
Abstract
A complementary taxonomic and population genetic study was performed to delineate genetically and ecologically distinct species within the Pseudomonas syringae complex by assessing 16 strains including pathovar strains that have converged to infect Prunus spp. trees, and two outgroups. Both average nucleotide identity and genome-to-genome distance comparison methods revealed the occurrence of distinct genomospecies, namely 1, 2, 3 and 8 (sensu Gardan et al.), with the latter two being closely related. Strains classified as P. s. pv. morsprunorum clustered into two distinct genomospecies, namely 2 and 8. Both the AdaptML and hierarchical Bayesian analysis of population structure methods highlighted the presence of three ecotypes, and the taxonomically related genomospecies 3 and 8 strains were members of the same ecotype. The distribution of pathogenic and virulence-associated genetic traits among Pseudomonas strains did not reveal any distinct type III secretion system effector or phytotoxin distribution pattern that characterized single genomospecies and strains that infect Prunus spp. The complete WHOP (Woody HOst and Pseudomonas spp.) genomic region and the entire β-ketoadipate gene cluster, including the catBCA operon, were found only in the members of genomospecies 2 and in the two P. s. pv. morsprunorum strains of genomospecies 8. A reduced gene flow between the three ecotypes suggested that point mutations played a larger role during the evolution of the strains than recombination. Our data support the idea that Prunus trees can be infected by different strains of distinct Pseudomonas genomospecies/ecotypes through diverse mechanisms of host colonization and infection. Such strains may represent particular lineages that emerged from environments other than that of the infected plant upon acquiring genetic traits that gave them the ability to cause plant diseases. The complementary assessment of bacterial strains using both taxonomic approaches and methods that reveal ecologically homogeneous populations has proven useful in confirming the cohesion of bacterial clusters.
Collapse
Affiliation(s)
- Simone Marcelletti
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Via di Fioranello, 52, 00134, Rome, Italy
| | - Marco Scortichini
- Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Via di Fioranello, 52, 00134, Rome, Italy.
| |
Collapse
|
37
|
Baltrus DA, Orth KN. Understanding genomic diversity in Pseudomonas syringae throughout the forest and on the trees. THE NEW PHYTOLOGIST 2018; 219:482-484. [PMID: 29927494 DOI: 10.1111/nph.15269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kelly N Orth
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|