1
|
Yu Q, Ni X, Hagedorn F, Penuelas J, Sardans J, Li MH, Ma S, Zhu J, Tian D, Zheng C, Zhu J, Ji C, Tang Z, Fang J. Field Experiments and a Meta-Analysis Reveal a Minor Influence of Nitrogen Addition on Phosphorus Fractions in Forests. GLOBAL CHANGE BIOLOGY 2025; 31:e70156. [PMID: 40237226 DOI: 10.1111/gcb.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
Anthropogenic nitrogen (N) inputs can significantly impact nutrient cycling and ecosystem functioning in terrestrial ecosystems. However, the effects of N addition on phosphorus (P) cycling processes in forest ecosystems remain unclear. In this study, we combined data from a long-term (11-year) N addition experiment across seven different forests ranging from temperate to tropical biomes, with a global meta-analysis from 88 relevant publications, to investigate the responses of P cycling-related variables to N inputs in forest ecosystems. We found that N addition had little effect on most P cycling-related variables (e.g., leaf P, soil total P, soil available P, soil P fractions, and microbial biomass P) across the studied forest ecosystems. The meta-analysis highlighted that N-induced changes in P cycling were highly variable. Only a few variables, such as the leaf P concentration and the activity of soil acid phosphatase, presented significant responses to N addition and changed with climatic zone and the amount and duration of N inputs. Our study suggests that P cycling processes in forest ecosystems remain largely unaffected by N inputs. Our findings contribute to a better understanding and prediction of biogeochemical cycles in the context of N deposition related to anthropogenic activities and global climate change.
Collapse
Affiliation(s)
- Qingshui Yu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Xiaofeng Ni
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Frank Hagedorn
- Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Josep Penuelas
- Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit CREAF-CSIC-UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Jordi Sardans
- Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit CREAF-CSIC-UAB, Universitat Autònoma de Barcelona, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Mai-He Li
- Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- College of Life Science, Hebei University, Baoding, China
| | - Suhui Ma
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jianxiao Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Di Tian
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Chengyang Zheng
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jiangling Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Zhiyao Tang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
2
|
Vishwakarma K, Buckley S, Plett JM, Lundberg-Felten J, Jämtgård S, Plett KL. Pisolithus microcarpus isolates with contrasting abilities to colonise Eucalyptus grandis exhibit significant differences in metabolic signalling. Fungal Biol 2024; 128:2157-2166. [PMID: 39384285 DOI: 10.1016/j.funbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Biotic factors in fungal exudates impact plant-fungal symbioses establishment. Mutualistic ectomycorrhizal fungi play various ecological roles in forest soils by interacting with trees. Despite progress in understanding secreted fungal signals, dynamics of signal production in situ before or during direct host root contact remain unclear. We need to better understand how variability in intra-species fungal signaling at these stages impacts symbiosis with host tissues. Using the ECM model Pisolithus microcarpus, we selected two isolates (Si9 and Si14) with different abilities to colonize Eucalyptus grandis roots. Hypothesizing that distinct early signalling and metabolite profiles between these isolates would influence colonization and symbiosis, we used microdialysis to non-destructively collect secreted metabolites from either the fungus, host, or both, capturing the dynamic interplay of pre-symbiotic signalling over 48 hours. Our findings revealed significant differences in metabolite profiles between Si9 and Si14, grown alone or with a host root. Si9, with lower colonization efficiency than Si14, secreted a more diverse range of compounds, including lipids, oligopeptides, and carboxylic acids. In contrast, Si14's secretions, similar to the host's, included more aminoglycosides. This study emphasizes the importance of intra-specific metabolomic diversity in ectomycorrhizal fungi, suggesting that early metabolite secretion is crucial for establishing successful mutualistic relationships.
Collapse
Affiliation(s)
- Kanchan Vishwakarma
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Scott Buckley
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Judith Lundberg-Felten
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden.
| | - Krista L Plett
- NSW Department of Primary Industries and Regional Development, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| |
Collapse
|
3
|
Shi H, Lipka U, Polle A. Different ectomycorrhizal fungal species impact poplar growth but not phosphorus utilization under low P supply. TREE PHYSIOLOGY 2024; 44:tpae074. [PMID: 38916255 DOI: 10.1093/treephys/tpae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Tree growth is often limited by phosphorus (P) availability. The trade-off between P homeostasis and growth is unknown. Ectomycorrhizal fungi (EMF) facilitate P availability but this trait varies among different fungal species and isolates. Here, we tested the hypotheses that (i) colonization with EMF boosts plant growth under P-limited conditions and that (ii) the poplars show P homeostasis because increased P uptake is used for growth and not for P accumulation in the tissues. We used two P treatments (high phosphate [HP]: 64 μM Pi, low phosphate [LP]: 0.64 μM Pi in the nutrient solution) and four fungal treatments (Paxillus involutus MAJ, Paxillus involutus NAU, Laccaria bicolor dikaryon LBD, Laccaria bicolor monokaryon LBM) in addition to non-inoculated poplar plants (NI) to measure growth, biomass, gas exchange and P contents. High phosphate (HP) stimulated growth compared with LP conditions. Poplars colonized with MAJ, NAU and NI showed higher growth and biomass production than those with LBD or LBM. Photosynthesis rates of poplars with lower biomass production were similar to or higher than those of plants with higher growth rates. The tissue concentrations of P were higher under HP than LP conditions and rarely affected by ectomycorrhizal colonization. Under LP, the plants produced 44% greater biomass per unit of P than under HP. At a given P supply, the tissue concentration was stable irrespective of the growth rate indicating P homeostasis. Laccaria bicolor caused growth inhibition, irrespective of P availability. These results suggest that in young poplars distinct species-specific ectomycorrhizal traits overshadowed potential growth benefits.
Collapse
Affiliation(s)
- Huili Shi
- Forest Botany and Tree Physiology, Georg-August University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany
| | - Ulrike Lipka
- Forest Botany and Tree Physiology, Georg-August University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany
- Laboratory for Radioisotopes, Georg-August University of Göttingen, Büsgenweg 2, Göttingen 37077, Germany
| |
Collapse
|
4
|
Durodola B, Blumenstein K, Akinbobola A, Kolehmainen A, Chano V, Gailing O, Terhonen E. Beyond the surface: exploring the mycobiome of Norway spruce under drought stress and with Heterobasidion parviporum. BMC Microbiol 2023; 23:350. [PMID: 37978432 PMCID: PMC10655427 DOI: 10.1186/s12866-023-03099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The mycobiome, comprising fungi inhabiting plants, potentially plays a crucial role in tree health and survival amidst environmental stressors like climate change and pathogenic fungi. Understanding the intricate relationships between trees and their microbial communities is essential for developing effective strategies to bolster the resilience and well-being of forest ecosystems as we adopt more sustainable forest management practices. The mycobiome can be considered an integral aspect of a tree's biology, closely linked to its genotype. To explore the influence of host genetics and environmental factors on fungal composition, we examined the mycobiome associated with phloem and roots of Norway spruce (Picea abies (L.) Karst.) cuttings under varying watering conditions. To test the "mycobiome-associated-fitness" hypothesis, we compared seedlings artificially inoculated with Heterobasidion parviporum and control plants to evaluate mycobiome interaction on necrosis development. We aimed to 1) identify specific mycobiome species for the Norway spruce genotypes/families within the phloem and root tissues and their interactions with H. parviporum and 2) assess stability in the mycobiome species composition under abiotic disturbances (reduced water availability). The mycobiome was analyzed by sequencing the ribosomal ITS2 region. Our results revealed significant variations in the diversity and prevalence of the phloem mycobiome among different Norway spruce genotypes, highlighting the considerable impact of genetic variation on the composition and diversity of the phloem mycobiome. Additionally, specific mycobiome genera in the phloem showed variations in response to water availability, indicating the influence of environmental conditions on the relative proportion of certain fungal genera in Norway spruce trees. In the root mycobiome, key fungi such as Phialocephala fortinii and Paraphaeosphaeria neglecta were identified as conferring inhibitory effects against H. parviporum growth in Norway spruce genotypes. Furthermore, certain endophytes demonstrated greater stability in root ecosystems under low water conditions than ectomycorrhizal fungi. This knowledge can contribute to developing sustainable forest management practices that enhance the well-being of trees and their ecosystems, ultimately bolstering forest resilience.
Collapse
Affiliation(s)
- Blessing Durodola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Kathrin Blumenstein
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Chair of Pathology of Trees, Institute of Forestry, Faculty of Environment and Natural Resources, University of Freiburg, Bertoldstr. 17, 79098, Freiburg, Germany
| | - Adedolapo Akinbobola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Kolehmainen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Department of Cell Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Victor Chano
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Eeva Terhonen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity, Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
5
|
Fransson P, Robertson AHJ, Campbell CD. Carbon availability affects already large species-specific differences in chemical composition of ectomycorrhizal fungal mycelia in pure culture. MYCORRHIZA 2023; 33:303-319. [PMID: 37824023 PMCID: PMC10752919 DOI: 10.1007/s00572-023-01128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Although ectomycorrhizal (ECM) contribution to soil organic matter processes receives increased attention, little is known about fundamental differences in chemical composition among species, and how that may be affected by carbon (C) availability. Here, we study how 16 species (incl. 19 isolates) grown in pure culture at three different C:N ratios (10:1, 20:1, and 40:1) vary in chemical structure, using Fourier transform infrared (FTIR) spectroscopy. We hypothesized that C availability impacts directly on chemical composition, expecting increased C availability to lead to more carbohydrates and less proteins in the mycelia. There were strong and significant effects of ECM species (R2 = 0.873 and P = 0.001) and large species-specific differences in chemical composition. Chemical composition also changed significantly with C availability, and increased C led to more polysaccharides and less proteins for many species, but not all. Understanding how chemical composition change with altered C availability is a first step towards understanding their role in organic matter accumulation and decomposition.
Collapse
Affiliation(s)
- Petra Fransson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7026, SE-750 07, Uppsala, Sweden.
| | - A H Jean Robertson
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland
| | - Colin D Campbell
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland
| |
Collapse
|
6
|
Park KH, Oh SY, Cho Y, Seo CW, Kim JS, Yoo S, Lim J, Kim CS, Lim YW. Mycorrhizal Fungal Diversity Associated with Six Understudied Ectomycorrhizal Trees in the Republic of Korea. J Microbiol 2023; 61:729-739. [PMID: 37665554 DOI: 10.1007/s12275-023-00073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
Mycorrhizal fungi are key components of forest ecosystems and play essential roles in host health. The host specificity of mycorrhizal fungi is variable and the mycorrhizal fungi composition for the dominant tree species is largely known but remains unknown for the less common tree species. In this study, we collected soil samples from the roots of six understudied ectomycorrhizal tree species from a preserved natural park in the Republic of Korea over four seasons to investigate the host specificity of mycorrhizal fungi in multiple tree species, considering the abiotic factors. We evaluated the mycorrhizal fungal composition in each tree species using a metabarcoding approach. Our results revealed that each host tree species harbored unique mycorrhizal communities, despite close localization. Most mycorrhizal taxa belonged to ectomycorrhizal fungi, but a small proportion of ericoid mycorrhizal fungi and arbuscular mycorrhizal fungi were also detected. While common mycorrhizal fungi were shared between the plant species at the genus or higher taxonomic level, we found high host specificity at the species/OTU (operational taxonomic unit) level. Moreover, the effects of the seasons and soil properties on the mycorrhizal communities differed by tree species. Our results indicate that mycorrhizal fungi feature host-specificity at lower taxonomic levels.
Collapse
Affiliation(s)
- Ki Hyeong Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Yoonhee Cho
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Wan Seo
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Seon Kim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shinnam Yoo
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jisun Lim
- RetiMark Co. Ltd, Seoul, 04387, Republic of Korea
| | - Chang Sun Kim
- Forest Biodiversity Division, Korea National Arboretum, Pocheon, 11186, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Khokon AM, Janz D, Polle A. Ectomycorrhizal diversity, taxon-specific traits and root N uptake in temperate beech forests. THE NEW PHYTOLOGIST 2023. [PMID: 37229659 DOI: 10.1111/nph.18978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Roots of forest trees are colonized by a diverse spectrum of ectomycorrhizal (EM) fungal species differing in their nitrogen (N) acquisition abilities. Here, we hypothesized that root N gain is the result of EM fungal diversity or related to taxon-specific traits for N uptake. To test our hypotheses, we traced 15 N enrichment in fine roots, coarse roots and taxon-specific ectomycorrhizas in temperate beech forests in two regions and three seasons, feeding 1 mM NH4 NO3 labelled with either 15 NH4 + or 15 NO3 - . We morphotyped > 45 000 vital root tips and identified 51 of 53 detected EM species by sequencing. EM root tips exhibited strong, fungal taxon-specific variation in 15 N enrichment with higher NH4 + than NO3 - enrichment. The translocation of N into the upper parts of the root system increased with increasing EM fungal diversity. Across the growth season, influential EM species predicting root N gain were not identified, probably due to high temporal dynamics of the species composition of EM assemblages. Our results support that root N acquisition is related to EM fungal community-level traits and highlight the importance of EM diversity for tree N nutrition.
Collapse
Affiliation(s)
- Anis Mahmud Khokon
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Göttingen, 37077, Germany
| |
Collapse
|
8
|
Dahl MB, Kreyling J, Petters S, Wang H, Mortensen MS, Maccario L, Sørensen SJ, Urich T, Weigel R. Warmer winters result in reshaping of the European beech forest soil microbiome (bacteria, archaea and fungi)-With potential implications for ecosystem functioning. Environ Microbiol 2023. [PMID: 36752534 DOI: 10.1111/1462-2920.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Sebastian Petters
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Martin Steen Mortensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lorrie Maccario
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Robert Weigel
- Plant Ecology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
9
|
Sisti D, Donati Zeppa S, Amicucci A, Vittori Antisari L, Vianello G, Puliga F, Leonardi P, Iotti M, Zambonelli A. The bianchetto truffle (Tuber borchii) a lead-resistant ectomycorrhizal fungus increases Quercus cerris phytoremediation potential. Environ Microbiol 2022; 24:6439-6452. [PMID: 36325818 DOI: 10.1111/1462-2920.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Tuber borchii is a European edible truffle which forms ectomycorrhizas with several soft- and hardwood plants. In this article, the effects of high level of Pb on the in vitro growth of five T. borchii strains and the molecular mechanisms involved in Pb tolerance were studied. Moreover, the effects of the Pb treatment on T. borchii ectomycorrhizas and on the growth, element uptake and distribution in different organs of Quercus cerris seedlings were investigated. The results showed an extraordinary tolerance of T. borchii mycelium to Pb: all the tested strains were able to grow at Pb concentration over 4000 mg L-1 . The mechanisms of tolerance seem related to Pb sequestration in the vacuole and its immobilization as crystal of Pb oxalate outside the hyphae rather than detoxification processes, considering the low expression of glutaredoxin and thioredoxin genes. T. borchii-Q. cerris mycorrhizas tolerate a soil concentration of Pb from 1869 to 4030 mg kg-1 although, at these Pb concentrations, T. borchii showed a reduced ability to colonize roots. T. borchii mycorrhization increased the uptake of Pb by Q. cerris. Mycorrhization and Pb treatment also significantly influenced the uptake and translocation in the plant of other elements.
Collapse
Affiliation(s)
- Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Antonella Amicucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Gilmo Vianello
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Federico Puliga
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Pamela Leonardi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Mirco Iotti
- Department of Life, Health and Environmental Science, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
10
|
Yang N, Hua J, Zhang J, Liu D, Bhople P, Li X, Zhang Y, Ruan H, Xing W, Mao L. Soil nutrients and plant diversity affect ectomycorrhizal fungal community structure and functional traits across three subalpine coniferous forests. Front Microbiol 2022; 13:1016610. [PMID: 36274721 PMCID: PMC9583403 DOI: 10.3389/fmicb.2022.1016610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
The symbiotic relationship between ectomycorrhizal fungi (EMF) and the roots of host plants is significantly important in regulating the health and stability of ecosystems, especially of those such as the climate warming affected subalpine forest ecosystems. Therefore, from the coniferous forest systems located in the Southern Qinghai-Tibetan Plateau, root tips from three forest tree species: Pinus wallichiana, Abies spectabilis and Picea spinulosa, were collected to look for the local causes of EMF community composition and diversity patterns. The EMF colonization rate, diversity and taxonomic community structure were determined by morphotyping and sanger sequencing of the fungal ITS gene from the root tip samples. Soil exploration types were identified based on the morphologies of the ectomycorrhizas, coupled with soil properties analysis and plant diversity survey. Contrasting patterns of EMF community and functional diversity were found across the studied three forests types dominated by different coniferous tree species. In terms of associations between soil and EMF properties, the total phosphorus (TP) and nitrate (NO3−) contents in soil negatively correlated with the colonization rate and the Shannon diversity index of EMF in contrast to the positive relationship between TP and EMF richness. The soil total nitrogen (TN), ammonium (NH4+) and plant diversity together caused 57.6% of the total variations in the EMF taxonomic community structure at the three investigated forest systems. Whereas based on the soil exploration types alone, NH4+ and TN explained 74.2% of variance in the EMF community structures. Overall, the findings of this study leverage our understanding of EMF dynamics and local influencing factors in coniferous forests dominated by different tree species within the subalpine climatic zone.
Collapse
Affiliation(s)
- Nan Yang
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiani Hua
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiangbao Zhang
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Parag Bhople
- Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Xiuxiu Li
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yan Zhang
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Honghua Ruan
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wei Xing
- Jiangsu Academy of Forestry, Nanjing, China
- Yangzhou Urban Forest Ecosystem National Research Station, Jiangsu, Yangzhou, China
- *Correspondence: Wei Xing,
| | - Lingfeng Mao
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Lingfeng Mao,
| |
Collapse
|
11
|
Fungal–Bacterial Networks in the Habitat of SongRong (Tricholoma matsutake) and Driving Factors of Their Distribution Rules. J Fungi (Basel) 2022; 8:jof8060575. [PMID: 35736058 PMCID: PMC9225054 DOI: 10.3390/jof8060575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Soil origin, mycorrhizal plant partners and environmental factors affect the growth and development of SongRong (Tricholoma matsutake). In order to clarify the relationships of fungi–bacteria networks and various influence factors in the habitat of SongRong, we chose three collection sites with a Quercus mongolica pure forest (plot A without SongRong was used as the control sample site), Q. mongolica mixed Rhododendron dauricum (plot B) and Q. mongolica mixed with R. dauricum and Pinus densiflora (plot C). By using high-throughput sequencing, we obtained a total of 4930 fungal and 55501 bacterial amplicon sequence variants (ASVs) based on internally transcribed spacer ribosomal RNA (ITS rRNA) and 16S ribosomal RNA (16S rRNA) sequencing via the Illumina NovaSeq platform. In the habitat soil of SongRong (plot B and plot C), alpha or beta diversity and species compositions of fungi and bacteria were different from plot A. The fungal–bacterial networks follow the selection rule that few dominant genera account for the greater relative abundance. Forest types, but not the host itself, drove the fungal–bacterial networks of the forest soil, and soil physicochemical characteristics and texture affected their abundance. The abundance of Tricholoma was affected by the fungal and bacterial abundance in the habitat.
Collapse
|
12
|
Anthony MA, Crowther TW, van der Linde S, Suz LM, Bidartondo MI, Cox F, Schaub M, Rautio P, Ferretti M, Vesterdal L, De Vos B, Dettwiler M, Eickenscheidt N, Schmitz A, Meesenburg H, Andreae H, Jacob F, Dietrich HP, Waldner P, Gessler A, Frey B, Schramm O, van den Bulk P, Hensen A, Averill C. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. THE ISME JOURNAL 2022; 16:1327-1336. [PMID: 35001085 PMCID: PMC9038731 DOI: 10.1038/s41396-021-01159-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.
Collapse
Affiliation(s)
- Mark A Anthony
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Sietse van der Linde
- Netherlands Food and Consumer Product Safety Authority, National Reference Centre, Wageningen, The Netherlands
| | | | - Martin I Bidartondo
- Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK
| | - Filipa Cox
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pasi Rautio
- Natural Resources Institute Finland, Rovaniemi, Finland
| | - Marco Ferretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lars Vesterdal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Bruno De Vos
- Environment & Climate Unit, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Mike Dettwiler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nadine Eickenscheidt
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
- Thuenen Institut of Forest Ecosystems, 16225, Eberswalde, Germany
| | | | | | - Frank Jacob
- Sachsenforst State Forest, 01796, Pirna OT Graupa, Germany
| | | | - Peter Waldner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Oliver Schramm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pim van den Bulk
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Arjan Hensen
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Colin Averill
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Fine Root Growth Increases in Response to Nitrogen Addition in Phosphorus-limited Northern Hardwood Forests. Ecosystems 2022. [DOI: 10.1007/s10021-021-00735-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Jin J, Krohn C, Franks AE, Wang X, Wood JL, Petrovski S, McCaskill M, Batinovic S, Xie Z, Tang C. Elevated atmospheric CO 2 alters the microbial community composition and metabolic potential to mineralize organic phosphorus in the rhizosphere of wheat. MICROBIOME 2022; 10:12. [PMID: 35074003 PMCID: PMC8785599 DOI: 10.1186/s40168-021-01203-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Understanding how elevated atmospheric CO2 (eCO2) impacts on phosphorus (P) transformation in plant rhizosphere is critical for maintaining ecological sustainability in response to climate change, especially in agricultural systems where soil P availability is low. METHODS This study used rhizoboxes to physically separate rhizosphere regions (plant root-soil interface) into 1.5-mm segments. Wheat plants were grown in rhizoboxes under eCO2 (800 ppm) and ambient CO2 (400 ppm) in two farming soils, Chromosol and Vertosol, supplemented with phytate (organic P). Photosynthetic carbon flow in the plant-soil continuum was traced with 13CO2 labeling. Amplicon sequencing was performed on the rhizosphere-associated microbial community in the root-growth zone, and 1.5 mm and 3 mm away from the root. RESULTS Elevated CO2 accelerated the mineralization of phytate in the rhizosphere zones, which corresponded with increases in plant-derived 13C enrichment and the relative abundances of discreet phylogenetic clades containing Bacteroidetes and Gemmatimonadetes in the bacterial community, and Funneliformis affiliated to arbuscular mycorrhizas in the fungal community. Although the amplicon sequence variants (ASVs) associated the stimulation of phytate mineralization under eCO2 differed between the two soils, these ASVs belonged to the same phyla associated with phytase and phosphatase production. The symbiotic mycorrhizas in the rhizosphere of wheat under eCO2 benefited from increased plant C supply and increased P access from soil. Further supportive evidence was the eCO2-induced increase in the genetic pool expressing the pentose phosphate pathway, which is the central pathway for biosynthesis of RNA/DNA precursors. CONCLUSIONS The results suggested that an increased belowground carbon flow under eCO2 stimulated bacterial growth, changing community composition in favor of phylotypes capable of degrading aromatic P compounds. It is proposed that energy investments by bacteria into anabolic processes increase under eCO2 to level microbial P-use efficiencies and that synergies with symbiotic mycorrhizas further enhance the competition for and mineralization of organic P. Video Abstract.
Collapse
Affiliation(s)
- Jian Jin
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Christian Krohn
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Xiaojuan Wang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Jennifer L Wood
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Malcolm McCaskill
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Victoria, 3300, Hamilton, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Zhihuang Xie
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
15
|
Reuter R, Ferlian O, Tarkka M, Eisenhauer N, Pritsch K, Simon J. Tree species rather than type of mycorrhizal association drive inorganic and organic nitrogen acquisition in tree-tree interactions. TREE PHYSIOLOGY 2021; 41:2096-2108. [PMID: 33929538 DOI: 10.1093/treephys/tpab059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species' mycorrhizal association, but their uptake rather depended on the competitor, indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that the inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.
Collapse
Affiliation(s)
- Robert Reuter
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, Leipzig 04103, Germany
| | - Mika Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 5, Halle 06120, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, Leipzig 04103, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, HelmholtzZentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Ingolstaedter Landstraße 1, Oberschleiβheim 85764, Germany
| | - Judy Simon
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| |
Collapse
|
16
|
Long-Term Nitrogen Deposition Alters Ectomycorrhizal Community Composition and Function in a Poplar Plantation. J Fungi (Basel) 2021; 7:jof7100791. [PMID: 34682213 PMCID: PMC8541514 DOI: 10.3390/jof7100791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
The continuous upsurge in soil nitrogen (N) enrichment has had strong impacts on the structure and function of ecosystems. Elucidating how plant ectomycorrhizal fungi (EMF) mutualists respond to this additional N will facilitate the rapid development and implementation of more broadly applicable management and remediation strategies. For this study, we investigated the responses of EMF communities to increased N, and how other abiotic environmental factors impacted them. Consequently, we conducted an eight-year N addition experiment in a poplar plantation in coastal eastern China that included five N addition levels: 0 (N0), 50 (N1), 100 (N2), 150 (N3), and 300 (N4) kg N ha−1 yr−1. We observed that excessive N inputs reduced the colonization rate and species richness of EMF, and altered its community structure and functional traits. The total carbon content of the humus layer and available phosphorus in the mineral soil were important drivers of EMF abundance, while the content of ammonium in the humus layer and mineral soil determined the variations in the EMF community structure and mycelium foraging type. Our findings indicated that long-term N addition induced soil nutrient imbalances that resulted in a severe decline in EMF abundance and loss of functional diversity in poplar plantations.
Collapse
|
17
|
Germain SJ, Lutz JA. Shared friends counterbalance shared enemies in old forests. Ecology 2021; 102:e03495. [PMID: 34309021 DOI: 10.1002/ecy.3495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is still unknown whether facilitation among plants arises primarily from these mycorrhizal networks or from physical and ecological attributes of plants themselves. Here, we tested the relative contributions of mycorrhizae and plants to both positive and negative biotic interactions to determine whether plant-soil feedbacks with mycorrhizae neutralize competition and enemies within multitrophic forest community networks. We used Bayesian hierarchical generalized linear modeling to examine mycorrhizal-guild-specific and mortality-cause-specific woody plant survival compiled from a spatially and temporally explicit data set comprising 101,096 woody plants from three mixed-conifer forests across western North America. We found positive plant-soil feedbacks for large-diameter trees: species-rich woody plant communities indirectly promoted large tree survival when connected via mycorrhizal networks. Shared mycorrhizae primarily counterbalanced apparent competition mediated by tree enemies (e.g., bark beetles, soil pathogens) rather than diffuse competition between plants. We did not find the same survival benefits for small trees or shrubs. Our findings suggest that lower large-diameter tree mortality susceptibility in species-rich temperate forests resulted from greater access to shared mycorrhizal networks. The interrelated importance of aboveground and belowground biodiversity to large tree survival may be critical for counteracting increasing pathogen, bark beetle, and density threats.
Collapse
Affiliation(s)
- Sara J Germain
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| |
Collapse
|
18
|
Li T, Yang W, Wu S, Selosse MA, Gao J. Progress and Prospects of Mycorrhizal Fungal Diversity in Orchids. FRONTIERS IN PLANT SCIENCE 2021; 12:646325. [PMID: 34025694 PMCID: PMC8138444 DOI: 10.3389/fpls.2021.646325] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/12/2021] [Indexed: 05/03/2023]
Abstract
Orchids form mycorrhizal symbioses with fungi in natural habitats that affect their seed germination, protocorm growth, and adult nutrition. An increasing number of studies indicates how orchids gain mineral nutrients and sometime even organic compounds from interactions with orchid mycorrhizal fungi (OMF). Thus, OMF exhibit a high diversity and play a key role in the life cycle of orchids. In recent years, the high-throughput molecular identification of fungi has broadly extended our understanding of OMF diversity, revealing it to be a dynamic outcome co-regulated by environmental filtering, dispersal restrictions, spatiotemporal scales, biogeographic history, as well as the distribution, selection, and phylogenetic spectrum width of host orchids. Most of the results show congruent emerging patterns. Although it is still difficult to extend them to all orchid species or geographical areas, to a certain extent they follow the "everything is everywhere, but the environment selects" rule. This review provides an extensive understanding of the diversity and ecological dynamics of orchid-fungal association. Moreover, it promotes the conservation of resources and the regeneration of rare or endangered orchids. We provide a comprehensive overview, systematically describing six fields of research on orchid-fungal diversity: the research methods of orchid-fungal interactions, the primer selection in high-throughput sequencing, the fungal diversity and specificity in orchids, the difference and adaptability of OMF in different habitats, the comparison of OMF in orchid roots and soil, and the spatiotemporal variation patterns of OMF. Further, we highlight certain shortcomings of current research methodologies and propose perspectives for future studies. This review emphasizes the need for more information on the four main ecological processes: dispersal, selection, ecological drift, and diversification, as well as their interactions, in the study of orchid-fungal interactions and OMF community structure.
Collapse
Affiliation(s)
- Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Wenke Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shimao Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Marc-André Selosse
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne Universités, Paris, France
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| |
Collapse
|
19
|
Chen L, Jiang C, Wang X, Feng Q, Liu X, Tang Z, Sun OJ. Nutrient trade-offs mediated by ectomycorrhizal strategies in plants: Evidence from an Abies species in subalpine forests. Ecol Evol 2021; 11:5281-5294. [PMID: 34026006 PMCID: PMC8131813 DOI: 10.1002/ece3.7417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
Ectomycorrhizal (ECM) symbiosis is an evolutionary biological trait of higher plants for effective nutrient uptakes. However, little is known that how the formation and morphological differentiations of ECM roots mediate the nutrients of below- and aboveground plant tissues and the balance among nutrient elements across environmental gradients. Here, we investigated the effects of ECM foraging strategies on root and foliar N and P concentrations and N:P ratio Abies faxoniana under variations of climate and soil conditions.The ECM symbionts preferentially mediated P uptake under both N and P limitations. The uptake efficiency of N and P was primarily associated with the ECM root traits, for example, ECM root tip density, superficial area of ECM root tips, and the ratio of living to dead root tips, and was affected by the ECM proliferations and morphological differentiations. The tissue N and P concentrations were positively associated with the abundance of the contact exploration type and negatively with that of the short-distance exploration type.Our findings indicate that the nutritional status of both below- and aboveground plant tissues can be strongly affected by ECM symbiosis in natural environments. Variations in the ECM strategies in response to varying environmental conditions significantly influence plant nutrient uptakes and trade-offs.
Collapse
Affiliation(s)
- Lulu Chen
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Institute of Forestry and Climate Change ResearchBeijing Forestry UniversityBeijingChina
| | - Chao Jiang
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Institute of Forestry and Climate Change ResearchBeijing Forestry UniversityBeijingChina
| | - Xiangping Wang
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Institute of Forestry and Climate Change ResearchBeijing Forestry UniversityBeijingChina
| | - Qiuhong Feng
- Sichuan Wolong Forest Ecosystem Research StationSichuan Academy of ForestryChengduChina
- Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan ProvinceSichuan Academy of ForestryChengduChina
| | - Xingliang Liu
- Sichuan Wolong Forest Ecosystem Research StationSichuan Academy of ForestryChengduChina
- Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan ProvinceSichuan Academy of ForestryChengduChina
| | - Zuoxin Tang
- College of Agricultural and Life SciencesKunming UniversityKunmingChina
| | - Osbert Jianxin Sun
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Institute of Forestry and Climate Change ResearchBeijing Forestry UniversityBeijingChina
| |
Collapse
|
20
|
Sun Y, Wang M, Mur LAJ, Shen Q, Guo S. The cross-kingdom roles of mineral nutrient transporters in plant-microbe relations. PHYSIOLOGIA PLANTARUM 2021; 171:771-784. [PMID: 33341944 DOI: 10.1111/ppl.13318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/27/2020] [Indexed: 05/23/2023]
Abstract
The regulation of plant physiology by plant mineral nutrient transporter (MNT) is well understood. Recently, the extensive characterization of beneficial and pathogenic plant-microbe interactions has defined the roles for MNTs in such relationships. In this review, we summarize the roles of diverse nutrient transporters in the symbiotic or pathogenic relationships between plants and microorganisms. In doing so, we highlight how MNTs of plants and microbes can act in a coordinated manner. In symbiotic relationships, MNTs play key roles in the establishment of the interaction between the host plant and rhizobium or mycorrhizae as well in the subsequent coordinated transport of nutrients. Additionally, MNTs may also regulate the colonization or degeneration of symbiotic microorganisms by reflecting the nutrient status of the plant and soil. This allows the host plant obtain nutrients from the soil in the most optimal manner. With pathogenic-interactions, MNTs influence pathogen proliferation, the efficacy of the host's biochemical defense and related signal transduction mechanisms. We classify the MNT effects in plant-pathogen interactions as either indirect by influencing the nutrient status and fitness of the pathogen, or direct by initiating host defense mechanisms. While such observations indicate the fundamental importance of MNTs in governing the interactions with a range of microorganisms, further work is needed to develop an integrative understanding of their functions.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Pereira APDA, Santana MC, Zagatto MRG, Brandani CB, Wang JT, Verma JP, Singh BK, Cardoso EJBN. Nitrogen-fixing trees in mixed forest systems regulate the ecology of fungal community and phosphorus cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143711. [PMID: 33223162 DOI: 10.1016/j.scitotenv.2020.143711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The fungal community plays an important role in forest ecosystems via the provision of resources to plant nutrition and productivity. However, the ecology of the fungal network and its relationship with phosphorus (P) dynamics remain poorly understood in mixed forest plantations. Here, we analyzed the fungal community using the amplicon sequencing in plantations of pure Eucalyptus grandis, with (E + N) and without N fertilization (E), besides pure Acacia mangium (A), and in a consortium of E. grandis and A. mangium (E + A), at 27 and 39 months after planting. We analyzed chemical, physical and biochemical soil and litter attributes related to P cycling, and the fungal community structure to find out if mixed plantations can increase fungal connections and to identify their role in the P dynamics in the soil-litter system. Soil organic fraction (OF), phosphorus in OF, total-P and acid phosphatase activity were significantly higher in E + A and A treatments regardless of the sampling period. Total N and P, richness, and Shannon diversity of the fungi in the litter was significantly higher in the treatments E + A and A. The fungal community structure in litter differed between treatments and sampling periods, and E + A showed an intermediate structure between the two pure treatments (E) and (A). E + A correlated highly with P dynamics when evaluated by both Pearson and redundancy analyses, particularly in the litter layer. Co-occurrence networks of fungal taxa became simpler in pure E. grandis plantations, whereas mixed system (E + A) showed a more connected and complex network. Our findings provide novel evidence that mixed forest plantations promote positive responses in the fungal community connections, which are closely related to P availability in the system, prominently in the litter layer. This indicates that the litter layer represents a specific niche to improve nutrient cycling by fungi in mixed forest ecosystems.
Collapse
Affiliation(s)
| | - Maiele C Santana
- 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Maurício R G Zagatto
- 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Carolina B Brandani
- New Mexico State University, College of Agricultural, Consumer and Environmental Sciences, Clayton Livestock Research Center, NM, United States
| | - Jun-Tao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Jay P Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Uttar Pradesh, India
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Sydney, Australia
| | - Elke J B N Cardoso
- 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
22
|
Meeds JA, Marty Kranabetter J, Zigg I, Dunn D, Miros F, Shipley P, Jones MD. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME JOURNAL 2021; 15:1478-1489. [PMID: 33420298 PMCID: PMC8114911 DOI: 10.1038/s41396-020-00864-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022]
Abstract
Ectomycorrhizal (EM) fungi can acquire phosphorus (P) through the production of extracellular hydrolytic enzymes (exoenzymes), but it is unclear as to the manner and extent native EM fungal communities respond to declining soil P availability. We examined the activity of six exoenzymes (xylosidase, N-acetyl glucosaminidase, β-glucosidase, acid phosphomonoesterase, acid phosphodiesterase [APD], laccase) from EM roots of Pseudotsuga menzesii across a soil podzolization gradient of coastal British Columbia. We found that APD activity increased fourfold in a curvilinear association with declining inorganic P. Exoenzyme activity was not related to organic P content, but at a finer resolution using 31P-NMR, there was a strong positive relationship between APD activity and the ratio of phosphodiesters to orthophosphate of surface organic horizons (forest floors). Substantial increases (two- to fivefold) in most exoenzymes were aligned with declining foliar P concentrations of P. menzesii, but responses were statistically better in relation to foliar nitrogen (N):P ratios. EM fungal species with consistently high production of key exoenzymes were exclusive to Podzol plots. Phosphorus deficiencies in relation to N limitations may provide the best predictor of exoenzyme investment, reflecting an optimal allocation strategy for EM fungi. Resource constraints contribute to species turnover and the assembly of distinct, well-adapted EM fungal communities.
Collapse
Affiliation(s)
- Justin A Meeds
- Biology Department, University of British Columbia, Okanagan Campus 1177 Research Road, Kelowna, BC, V4V 1V7, Canada
| | - J Marty Kranabetter
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, P.O. Box 9536, Stn Prov Govt, Victoria, BC, V8W 9C4, Canada.
| | - Ieva Zigg
- Biology Department, University of British Columbia, Okanagan Campus 1177 Research Road, Kelowna, BC, V4V 1V7, Canada.,Chemistry Department, University of British Columbia, Okanagan Campus 3187 University Way, Kelowna, BC, V4V 1V7, Canada
| | - Dave Dunn
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada
| | - François Miros
- Chemistry Department, University of British Columbia, Okanagan Campus 3187 University Way, Kelowna, BC, V4V 1V7, Canada
| | - Paul Shipley
- Chemistry Department, University of British Columbia, Okanagan Campus 3187 University Way, Kelowna, BC, V4V 1V7, Canada
| | - Melanie D Jones
- Biology Department, University of British Columbia, Okanagan Campus 1177 Research Road, Kelowna, BC, V4V 1V7, Canada
| |
Collapse
|
23
|
Gehring C, Sevanto S, Patterson A, Ulrich DEM, Kuske CR. Ectomycorrhizal and Dark Septate Fungal Associations of Pinyon Pine Are Differentially Affected by Experimental Drought and Warming. FRONTIERS IN PLANT SCIENCE 2020; 11:582574. [PMID: 33193530 PMCID: PMC7606852 DOI: 10.3389/fpls.2020.582574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Changing climates can cause shifts in temperature and precipitation, resulting in warming and drought in some regions. Although each of these factors has been shown to detrimentally affect forest ecosystems worldwide, information on the impacts of the combined effects of warming and drought is lacking. Forest trees rely on mutualistic root-associated fungi that contribute significantly to plant health and protection against climate stresses. We used a six-year, ecosystem-scale temperature and precipitation manipulation experiment targeted to simulate the climate in 2100 in the Southwestern United States to quantify the effects of drought, warming and combined drought and warming on the root colonization (abundance), species composition and diversity of ectomycorrhizal fungi (EMF), and dark septate fungal endophytes in a widespread woodland tree, pinyon pine (Pinus edulis E.). Our results show that pinyon shoot growth after 6 years of these treatments was reduced more by drought than warming. The combined drought and warming treatment reduced the abundance and diversity of EMF more than either treatment alone. Individual ectomycorrhizal fungal taxa, including the drought tolerant Cenococcum geophilum, were present in all treatments but the combined drought and warming treatment. The combined drought and warming treatment also reduced the abundance of dark septate endophytes (DSE), but did not affect their diversity or species composition. The current year shoot growth of the trees correlated positively with ectomycorrhizal fungal diversity, highlighting the importance of diversity in mutualistic relationships to plant growth. Our results suggest that EMF may be more important than DSE to aboveground growth in P. edulis, but also more susceptible to the negative effects of combined climate stressors.
Collapse
Affiliation(s)
- Catherine Gehring
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, United States
| | - Sanna Sevanto
- Earth and Environmental Science Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Adair Patterson
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, United States
| | | | - Cheryl R. Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
24
|
Zhang X, Li X, Ye L, Huang Y, Kang Z, Zhang B, Zhang X. Colonization by Tuber melanosporum and Tuber indicum affects the growth of Pinus armandii and phoD alkaline phosphatase encoding bacterial community in the rhizosphere. Microbiol Res 2020; 239:126520. [PMID: 32526628 DOI: 10.1016/j.micres.2020.126520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022]
Abstract
The synthesis of truffle ectomycorrhizae and the ecology of truffle-colonized seedlings in the early symbiotic stage are important for the successful truffle cultivation. In this study, two black truffle species, Tuber melanosporum and Tuber indicum, were selected to colonize Pinus armandii seedlings. 2, 4, 6 and 8 months after inoculation, the growth performance of the host and the rhizosphere soil properties were detected. The dynamic changes of two mating type genes in substrate were also monitored to assess the sexual distribution of truffles. Additionally, the variation of soil bacterial communities encoded by phoD alkaline phosphatase genes was investigated through next-generation sequencing. The results indicated that both T. melanosporum and T. indicum colonization promoted the growth of P. armandii seedlings to some extent, including improving their biomass, total root surface area, root superoxide dismutases and peroxidase activity. The organic matter and available phosphorus in rhizosphere soil were also significantly enhanced by two truffles' colonization. The phoD-harboring bacterial community structure was altered by both truffles, and T. melanosporum decreased their diversity or richness on the 6th and 8th month after inoculation. Pseudomonas, Xanthomonas, and Sinorhizobium, a N2-fixer with phoD genes, were found more abundant in truffle-colonized treatments. The mating type distribution of the two truffles was uneven, with MAT1-1-1 gene occupying the majority. Overall, T. melanosporum and T. indicum colonization affected the micro-ecology of truffle symbionts during the early symbiotic stage. These results could give us a better understanding on the truffle-plant-soil-microbe interactions, which would be beneficial to the subsequent truffle cultivation.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yue Huang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zongjing Kang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
25
|
Ectomycorrhizal Fungi: Participation in Nutrient Turnover and Community Assembly Pattern in Forest Ecosystems. FORESTS 2020. [DOI: 10.3390/f11040453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ectomycorrhizal fungi (EcMF) are involved in soil nutrient cycling in forest ecosystems. These fungi can promote the uptake of nutrients (e.g., nitrogen (N) and phosphorus (P)) and water by host plants, as well as facilitate host plant growth and resistance to stresses and diseases, thereby maintaining the aboveground primary productivity of forest ecosystems. Moreover, EcMF can acquire the carbon (C) sources needed for their growth from the host plants. The nutrient regulation mechanisms of EcMF mainly include the decay of soil organic matter via enzymatic degradation, nonenzymatic mechanism (Fenton chemistry), and priming effects, which in turn promote C and N cycling. At the same time, EcMF can secrete organic acids and phosphatases to improve the availability of soil P, or increase mycelium inputs to facilitate plant acquisition of P. The spatiotemporal distribution of EcMF is influenced by a combination of historical factors and contemporary environmental factors. The community of EcMF is associated with various factors, such as climate change, soil conditions, and host distribution. Under global climate change, investigating the relationships between the nutrient cycling functions of EcMF communities and their distribution patterns under various spatiotemporal scales is conducive to more accurate assessments of the ecological effects of EcMF on the sustainable development of forest.
Collapse
|
26
|
Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science 2020; 367:367/6480/eaba1223. [PMID: 32079744 DOI: 10.1126/science.aba1223] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycorrhizal fungi provide plants with a range of benefits, including mineral nutrients and protection from stress and pathogens. Here we synthesize current information about how the presence and type of mycorrhizal association affect plant communities. We argue that mycorrhizal fungi regulate seedling establishment and species coexistence through stabilizing and equalizing mechanisms such as soil nutrient partitioning, feedback to soil antagonists, differential mycorrhizal benefits, and nutrient trade. Mycorrhizal fungi have strong effects on plant population and community biology, with mycorrhizal type-specific effects on seed dispersal, seedling establishment, and soil niche differentiation, as well as interspecific and intraspecific competition and hence plant diversity.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum of Estonia, Tallinn, Estonia.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
27
|
Meier IC, Tückmantel T, Heitkötter J, Müller K, Preusser S, Wrobel TJ, Kandeler E, Marschner B, Leuschner C. Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. THE NEW PHYTOLOGIST 2020; 226:583-594. [PMID: 31868933 DOI: 10.1111/nph.16389] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Root exudation is a key plant function with a large influence on soil organic matter dynamics and plant-soil feedbacks in forest ecosystems. Yet despite its importance, the main ecological drivers of root exudation in mature forest trees remain to be identified. During two growing seasons, we analyzed the dependence of in situ collected root exudates on root morphology, soil chemistry and nutrient availability in six mature European beech (Fagus sylvatica L.) forests on a broad range of bedrock types. Root morphology was a major driver of root exudation across the nutrient availability gradient. A doubling of specific root length exponentially increased exudation rates of mature trees by c. 5-fold. Root exudation was also closely negatively related to soil pH and nitrogen (N) availability. At acidic and N-poor sites, where fungal biomass was reduced, exudation rates were c. 3-fold higher than at N- and base-richer sites and correlated negatively with the activity of enzymes degrading less bioavailable carbon (C) and N in the bulk soil. We conclude that root exudation increases on highly acidic, N-poor soils, in which fungal activity is reduced and a greater portion of the assimilated plant C is shifted to the external ecosystem C cycle.
Collapse
Affiliation(s)
- Ina C Meier
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Göttingen, Germany
| | - Timo Tückmantel
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Göttingen, Germany
| | - Julian Heitkötter
- Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Karolin Müller
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, 70599, Stuttgart, Germany
| | - Sebastian Preusser
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, 70599, Stuttgart, Germany
| | - Thomas J Wrobel
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, 70599, Stuttgart, Germany
| | - Bernd Marschner
- Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Göttingen, Germany
| |
Collapse
|
28
|
Xing P, Xu Y, Gao T, Li G, Zhou J, Xie M, Ji R. The community composition variation of Russulaceae associated with the Quercus mongolica forest during the growing season at Wudalianchi City, China. PeerJ 2020; 8:e8527. [PMID: 32095355 PMCID: PMC7023826 DOI: 10.7717/peerj.8527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Most species of the Russulaceae are ectomycorrhizal (ECM) fungi, which are widely distributed in different types of forest ecology and drive important ecological and economic functions. Little is known about the composition variation of the Russulaceae fungal community aboveground and in the root and soil during the growing season (June-October) from a Quercus mongolica forest. In this study, we investigated the changes in the composition of the Russulaceae during the growing season of this type of forest in Wudalianchi City, China. METHODS To achieve this, the Sanger sequencing method was used to identify the Russulaceae aboveground, and the high-throughput sequencing method was used to analyze the species composition of the Russulaceae in the root and soil. Moreover, we used the Pearson correlation analysis, the redundancy analysis and the multivariate linear regression analysis to analyze which factors significantly affected the composition and distribution of the Russulaceae fungal community. RESULTS A total of 56 species of Russulaceae were detected in the Q. mongolica forest, which included 48 species of Russula, seven species of Lactarius, and one species of Lactifluus. Russula was the dominant group. During the growing season, the sporocarps of Russula appeared earlier than those of Lactarius. The number of species aboveground exhibited a decrease after the increase and were significantly affected by the average monthly air temperature (r = -0.822, p = 0.045), average monthly relative humidity (r = -0.826, p = 0.043), monthly rainfall (r = 0.850, p = 0.032), soil moisture (r = 0.841, p = 0.036) and soil organic matter (r = 0.911, p = 0.012). In the roots and soils under the Q. mongolica forest, the number of species did not show an apparent trend. The number of species from the roots was the largest in September and the lowest in August, while those from the soils were the largest in October and the lowest in June. Both were significantly affected by the average monthly air temperature (r2 = 0.6083, p = 0.040) and monthly rainfall (r2 = 0.6354, p = 0.039). Moreover, the relative abundance of Russula and Lactarius in the roots and soils showed a linear correlation with the relative abundance of the other fungal genera.
Collapse
Affiliation(s)
- Pengjie Xing
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yang Xu
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Tingting Gao
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Guanlin Li
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Jijiang Zhou
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Mengle Xie
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Life Science College, Northeast Normal University, Changchun, China
| | - Ruiqing Ji
- Engineering Research Center of Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
29
|
Photosynthesis, Ecological Stoichiometry, and Non-Structural Carbohydrate Response to Simulated Nitrogen Deposition and Phosphorus Addition in Chinese Fir Forests. FORESTS 2019. [DOI: 10.3390/f10121068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) deficiency in soil affects plant growth and primary production. Accelerated nitrogen (N) deposition can cause ecological carbon:nitrogen:phosphorus (C:N:P) stoichiometry imbalance and increase the degree of relative P deficiency in the soil. However, it remains unclear how N deposition affects P uptake and C:N:P stoichiometry in coniferous timber forests, and whether P addition diminishes the effect of N-induced P limitation on plant growth. From January 2017 to April 2018, we investigated the effects of nine different N and P addition treatments on 10-year old trees of Chinese fir, Cunninghamia lanceolata (Lamb.) Hook. Our results demonstrated that N and P additions at a high concentration could improve the photosynthetic capacity in Chinese fir by increasing the chlorophyll content and stimulating the photosynthesis activity. The C:N:P stoichiometry varied with the season under different N and P addition treatments, indicating that N addition at a moderate concentration could diminish the effect of the P limitation on the growth of Chinese fir. The soluble sugar content in the leaves displayed more stable seasonal variations, compared with those of starch. However, the non-structural carbohydrate (NSC) content in the leaves did not vary with the season under both P and N addition treatment. The data suggested that N and P combination treatment at moderate concentrations promoted carbon assimilation by accelerating the photosynthetic rate. Thus, our results provide new insights into the adaptation mechanisms of coniferous timber forest ecosystems to the effects of N deposition under P deficiency and can help to estimate the ecological effects of environmental changes linked to human management practices.
Collapse
|
30
|
Zhang X, Li X, Wu C, Ye L, Kang Z, Zhang X. Exogenous Nitric Oxide and Phosphorus Stress Affect the Mycorrhization, Plant Growth, and Associated Microbes of Carya illinoinensis Seedlings Colonized by Tuber indicum. Front Microbiol 2019; 10:2634. [PMID: 31798561 PMCID: PMC6863891 DOI: 10.3389/fmicb.2019.02634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/29/2019] [Indexed: 11/13/2022] Open
Abstract
In the artificial cultivation of truffles, ectomycorrhizal colonization level, host plant quality, and the associated microbes in the rhizosphere soil are vitally important. To explore the effects of nitric oxide (NO) and phosphorus (P) stress on the early symbiosis of truffles and host plants, different concentrations of exogenous NO donor sodium nitroprusside (SNP) and P were applied to Carya illinoinensis seedlings inoculated with the Chinese black truffle (Tuber indicum). The growth of T. indicum-mycorrhized seedlings and their mycorrhizal colonization rate were investigated. Additionally, the denitrifying bacterial community harboring NO reductase (norB) genes and the fungal community in the rhizosphere of the host were analyzed by high-throughput sequencing. The results showed that the colonization rate of T. indicum was significantly influenced by SNP treatments and P stress, with the highest level being obtained when the SNP was 100 μmol/L under low P stress (5 μmol/L). Treatment with 100 μmol/L SNP alone also increased the colonization rate of T. indicum and had positive effects on the plant height, stem circumference, biomass, root-shoot ratio and root POD activity of the seedlings at different times after inoculation. Under low P stress, the 100 μmol/L SNP increased the richness of the norB-type denitrifying bacterial community. Interestingly, the diversity and richness of norB-type denitrifying bacteria were significantly positively correlated with the colonization rate of T. indicum. SNP treatments under low P stress altered the abundance of some dominant taxa such as Alphaproteobacteria, Gammaproteobacteria, Pseudomonas, Ensifer, and Sulfitobacter. Evaluation of the fungal community in the rhizosphere revealed that 100 μmol/L SNP treatment alone had no noticeable effect on their richness and diversity, but it did shape the abundance of some fungi. Buellia, Podospora, Phaeoisaria, Ascotaiwania, and Lophiostoma were more abundant following exogenous NO application, while the abundance of Acremonium, Monographella, and Penicillium were decreased. Network analysis indicated that T. indicum was positively and negatively correlated with some fungal genera when treated with 100 μmol/L SNP. Overall, these results revealed how exogenous NO and P stress influence the symbiosis of truffles and host plants, and indicate that application of SNP treatments has the potential for ectomycorrhizal synthesis and truffle cultivation.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chenguang Wu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zongjing Kang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Truong C, Gabbarini LA, Corrales A, Mujic AB, Escobar JM, Moretto A, Smith ME. Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia. THE NEW PHYTOLOGIST 2019; 222:1936-1950. [PMID: 30689219 DOI: 10.1111/nph.15714] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The biological and functional diversity of ectomycorrhizal (ECM) associations remain largely unknown in South America. In Patagonia, the ECM tree Nothofagus pumilio forms monospecific forests along mountain slopes without confounding effects of vegetation on plant-fungi interactions. To determine how fungal diversity and function are linked to elevation, we characterized fungal communities, edaphic variables, and eight extracellular enzyme activities along six elevation transects in Tierra del Fuego (Argentina and Chile). We also tested whether pairing ITS1 rDNA Illumina sequences generated taxonomic biases related to sequence length. Fungal community shifts across elevations were mediated primarily by soil pH with the most species-rich fungal families occurring mostly within a narrow pH range. By contrast, enzyme activities were minimally influenced by elevation but correlated with soil factors, especially total soil carbon. The activity of leucine aminopeptidase was positively correlated with ECM fungal richness and abundance, and acid phosphatase was correlated with nonECM fungal abundance. Several fungal lineages were undetected when using exclusively paired or unpaired forward ITS1 sequences, and these taxonomic biases need reconsideration for future studies. Our results suggest that soil fungi in N. pumilio forests are functionally similar across elevations and that these diverse communities help to maintain nutrient mobilization across the elevation gradient.
Collapse
Affiliation(s)
- Camille Truong
- Instituto de Biología, Universidad Nacional Autónoma de México, CP, 04510, Ciudad de México, México
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Luciano A Gabbarini
- Programa Interacciones Biológicas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, B1876BX, Argentina
| | - Adriana Corrales
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, DC, 111221, Colombia
| | - Alija B Mujic
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, California State University at Fresno, Fresno, CA, 93740, USA
| | - Julio M Escobar
- Centro Austral de Investigaciones Científicas (CONICET), Ushuaia, V9410BFD, Tierra del Fuego, Argentina
| | - Alicia Moretto
- Centro Austral de Investigaciones Científicas (CONICET), Ushuaia, V9410BFD, Tierra del Fuego, Argentina
- Universidad Nacional de Tierra del Fuego, Ushuaia, V9410BFD, Tierra del Fuego, Argentina
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
32
|
Defrenne CE, Philpott TJ, Guichon SHA, Roach WJ, Pickles BJ, Simard SW. Shifts in Ectomycorrhizal Fungal Communities and Exploration Types Relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada. FRONTIERS IN PLANT SCIENCE 2019; 10:643. [PMID: 31191571 PMCID: PMC6547044 DOI: 10.3389/fpls.2019.00643] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 05/20/2023]
Abstract
Large-scale studies that examine the responses of ectomycorrhizal fungi across biogeographic gradients are necessary to assess their role in mediating current and predicted future alterations in forest ecosystem processes. We assessed the extent of environmental filtering on interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) ectomycorrhizal fungal communities across regional gradients in precipitation, temperature, and soil fertility in interior Douglas-fir dominated forests of western Canada. We also examined relationships between fine-root traits and mycorrhizal fungal exploration types by combining root and fungal trait measurements with next-generation sequencing. Temperature, precipitation, and soil C:N ratio affected fungal community dissimilarity and exploration type abundance but had no effect on α-diversity. Fungi with rhizomorphs (e.g., Piloderma sp.) or proteolytic abilities (e.g., Cortinarius sp.) dominated communities in warmer and less fertile environments. Ascomycetes (e.g., Cenococcum geophilum) or shorter distance explorers, which potentially cost the plant less C, were favored in colder/drier climates where soils were richer in total nitrogen. Environmental filtering of ectomycorrhizal fungal communities is potentially related to co-evolutionary history between Douglas-fir populations and fungal symbionts, suggesting success of interior Douglas-fir as climate changes may be dependent on maintaining strong associations with local communities of mycorrhizal fungi. No evidence for a link between root and fungal resource foraging strategies was found at the regional scale. This lack of evidence further supports the need for a mycorrhizal symbiosis framework that is independent of root trait frameworks, to aid in understanding belowground plant uptake strategies across environments.
Collapse
Affiliation(s)
- Camille E. Defrenne
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Philpott
- Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Cariboo-Chilcotin Natural Resource District, Williams Lake, BC, Canada
| | - Shannon H. A. Guichon
- Stable Isotope Facility, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - W. Jean Roach
- Skyline Forestry Consultants Ltd., Kamloops, BC, Canada
| | - Brian J. Pickles
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Suzanne W. Simard
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Dirks I, Köhler J, Rachmilevitch S, Meier IC. The Phosphorus Economy of Mediterranean Oak Saplings Under Global Change. FRONTIERS IN PLANT SCIENCE 2019; 10:405. [PMID: 31024583 PMCID: PMC6459984 DOI: 10.3389/fpls.2019.00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 05/26/2023]
Abstract
While a severe decrease in phosphorus (P) availability is already taking place in a large number of ecosystems, drought and nitrogen (N) deposition will likely further decrease the availability of P under global change. Plants have developed physiological strategies to cope with decreasing P resources, but it is unclear how these strategies respond to elevated N deposition and summer droughts. We investigated the influence of N and P availability and soil drought on P uptake (H3 33PO4 feeding experiment) and use efficiencies in young Quercus calliprinos Webb. trees. We hypothesized that (H1) the expected increases in soil N:P ratios will increase the efficiencies of P uptake and use of oak saplings but will decrease the efficiencies of N uptake and use, whereas (H2) drought will affect P uptake efficiency more than N uptake efficiency. In confirmation of (H1) we found that a sharp increase of the soil N:P ratio from 4 to 42 g g-1 significantly increased the instantaneous 33P uptake efficiency (33PUptakeE) by five-fold and long-term P uptake efficiency (PUptakeE) by six-fold, while it decreased N uptake efficiency (NUptakeE) and N use efficiency (NUE). In contradiction to (H1), P use efficiency (PUE) did not respond to the simulated extended gradient of soil N:P ratios but remained relatively constant. (H2) was only partially confirmed as soil drought reduced PUptakeE by up to a fourth at high soil N:P ratios but had no significant effect on NUptakeE. As a consequence, increasing summer droughts may decrease the response of PUptakeE to increasing P limitation, which - in the absence of adjustments of the efficiency of P use - can aggravate growth reductions in this eastern Mediterranean tree species under global change.
Collapse
Affiliation(s)
- Inga Dirks
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Beersheba, Israel
| | - Julia Köhler
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Beersheba, Israel
| | - Ina C. Meier
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
34
|
Martin FM, Harrison MJ, Lennon S, Lindahl B, Öpik M, Polle A, Requena N, Selosse MA. Cross-scale integration of mycorrhizal function. THE NEW PHYTOLOGIST 2018; 220:941-946. [PMID: 30408219 DOI: 10.1111/nph.15493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Francis M Martin
- INRA, Université de Lorraine, UMR Interactions Arbres/Micro-Organismes, INRA-Centre Grand Est, Champenoux, 54280, France
| | | | - Sarah Lennon
- New Phytologist Central Office, Bailrigg House, Lancaster University, Lancaster, LA1 4YE, UK
| | - Björn Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, SE-750 07, Sweden
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, 40 Lai St., Tartu, 51005, Estonia
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Goettingen, 37077, Germany
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology, Fritz Haber-Weg 4, Geb. 30.43, 2. OG, Karlsruhe, D-76131, Germany
| | - Marc-André Selosse
- Département Systématique et Evolution, Muséum national d'Histoire naturelle, UMR 7205 ISYEB, CP 50, 45 rue Buffon, Paris, 75005, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
35
|
Gil-Martínez M, López-García Á, Domínguez MT, Navarro-Fernández CM, Kjøller R, Tibbett M, Marañón T. Ectomycorrhizal Fungal Communities and Their Functional Traits Mediate Plant-Soil Interactions in Trace Element Contaminated Soils. FRONTIERS IN PLANT SCIENCE 2018; 9:1682. [PMID: 30515182 PMCID: PMC6255936 DOI: 10.3389/fpls.2018.01682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
There is an increasing consensus that microbial communities have an important role in mediating ecosystem processes. Trait-based ecology predicts that the impact of the microbial communities on ecosystem functions will be mediated by the expression of their traits at community level. The link between the response of microbial community traits to environmental conditions and its effect on plant functioning is a gap in most current microbial ecology studies. In this study, we analyzed functional traits of ectomycorrhizal fungal species in order to understand the importance of their community assembly for the soil-plant relationships in holm oak trees (Quercus ilex subsp. ballota) growing in a gradient of exposure to anthropogenic trace element (TE) contamination after a metalliferous tailings spill. Particularly, we addressed how the ectomycorrhizal composition and morphological traits at community level mediate plant response to TE contamination and its capacity for phytoremediation. Ectomycorrhizal fungal taxonomy and functional diversity explained a high proportion of variance of tree functional traits, both in roots and leaves. Trees where ectomycorrhizal fungal communities were dominated by the abundant taxa Hebeloma cavipes and Thelephora terrestris showed a conservative root economics spectrum, while trees colonized by rare taxa presented a resource acquisition strategy. Conservative roots presented ectomycorrhizal functional traits characterized by high rhizomorphs formation and low melanization which may be driven by resource limitation. Soil-to-root transfer of TEs was explained substantially by the ectomycorrhizal fungal species composition, with the highest transfer found in trees whose roots were colonized by Hebeloma cavipes. Leaf phosphorus was related to ectomycorrhizal species composition, specifically higher leaf phosphorus was related to the root colonization by Thelephora terrestris. These findings support that ectomycorrhizal fungal community composition and their functional traits mediate plant performance in metal-contaminated soils, and have a high influence on plant capacity for phytoremediation of contaminants. The study also corroborates the overall effects of ectomycorrhizal fungi on ecosystem functioning through their mediation over the plant economics spectrum.
Collapse
Affiliation(s)
- Marta Gil-Martínez
- Department for Protection of the Soil, Plant and Water System, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council, Seville, Spain
| | | | - María T. Domínguez
- Área de Edafología y Química Agricola, Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, Seville, Spain
| | - Carmen M. Navarro-Fernández
- Department for Protection of the Soil, Plant and Water System, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council, Seville, Spain
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mark Tibbett
- Centre for Agri-Environmental Research and Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Teodoro Marañón
- Department for Protection of the Soil, Plant and Water System, Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council, Seville, Spain
| |
Collapse
|