1
|
Wang T, Dong L, Liu Z. Dynamic patterns and drivers of carbon accrual under different forest restoration approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125608. [PMID: 40328122 DOI: 10.1016/j.jenvman.2025.125608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Forest restoration represents a critical nature-based solution for climate change mitigation through enhanced carbon accumulation. While recognized for its ecological potential, the temporal trajectories of carbon accumulation across restoration approaches and their underlying mechanisms remain poorly quantified. This study analyzes multi-decadal (26 years) of carbon storage dynamics within a chronosequence framework to elucidate the mechanisms linking carbon accumulation patterns with drivers and management legacies. Restoration strategies diverged markedly: old-growth forests (OF; ≥40 years old in 1990; n = 25) sustained persistent carbon accumulation, whereas secondary forests (SF; <40 years old in 1990; n = 30) protection exhibited marked temporal variability in carbon gain and loss. Reforestation (RF, n = 30) yields 2.2-13.5 times higher carbon gains (1.3-2.7 vs 0.2-0.6 Mg C ha-1 yr-1) than natural recovery (NR, n = 50) in regions in which forests have been removed. Structural equation modeling (SEM) revealed initial C stocks emerged as the most important regulators of changes in carbon stocks (ΔC stocks) when considering direct and indirect effects (p < 0.001). Tree diversity (species richness) and stand structure attributes (stand density in terms of tree per ha, age and tree size) (p < 0.05) exhibited temporal divergence in both effect size and relevance on carbon accumulation. Notably, tree size effects displayed context-dependent reversals: correlations with ΔC stocks shifted from positive to negative when baseline stocks exceeded 23.05 Mg C ha-1. These results underscore the optimization of carbon accumulation requires targeted strategies aligned with conservation priorities and restoration objectives.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin, 150040, PR China
| | - Lingbo Dong
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin, 150040, PR China
| | - Zhaogang Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin, 150040, PR China.
| |
Collapse
|
2
|
Bai Z, Ye J, Liu SF, Sun HH, Yuan ZQ, Mao ZK, Fang S, Long SF, Wang XG. Age-Related Conservation in Plant-Soil Feedback Accompanied by Ectomycorrhizal Domination in Temperate Forests in Northeast China. J Fungi (Basel) 2024; 10:310. [PMID: 38786665 PMCID: PMC11122420 DOI: 10.3390/jof10050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigates the effects of forest aging on ectomycorrhizal (EcM) fungal community and foraging behavior and their interactions with plant-soil attributes. We explored EcM fungal communities and hyphal exploration types via rDNA sequencing and investigated their associations with plant-soil traits by comparing younger (~120 years) and older (~250 years) temperate forest stands in Northeast China. The results revealed increases in the EcM fungal richness and abundance with forest aging, paralleled by plant-soil feedback shifting from explorative to conservative nutrient use strategies. In the younger stands, Tomentella species were prevalent and showed positive correlations with nutrient availability in both the soil and leaves, alongside rapid increases in woody productivity. However, the older stands were marked by the dominance of the genera Inocybe, Hymenogaster, and Otidea which were significantly and positively correlated with soil nutrient contents and plant structural attributes such as the community-weighted mean height and standing biomass. Notably, the ratios of longer-to-shorter distance EcM fungal exploration types tended to decrease along with forest aging. Our findings underscore the integral role of EcM fungi in the aging processes of temperate forests, highlighting the EcM symbiont-mediated mechanisms adapting to nutrient scarcity and promoting sustainability in plant-soil consortia.
Collapse
Affiliation(s)
- Zhen Bai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| | - Shu-Fang Liu
- College of Rural Revitalization, Weifang University, Weifang 261061, China;
| | - Hai-Hong Sun
- Liaoning Provincial Institute of Poplar, Yingkou 115000, China;
| | - Zuo-Qiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Zi-Kun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| | - Shao-Fen Long
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Gao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| |
Collapse
|
3
|
Hogan JA, Domke GM, Zhu K, Johnson DJ, Lichstein JW. Climate change determines the sign of productivity trends in US forests. Proc Natl Acad Sci U S A 2024; 121:e2311132121. [PMID: 38227667 PMCID: PMC10823222 DOI: 10.1073/pnas.2311132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024] Open
Abstract
Forests are integral to the global land carbon sink, which has sequestered ~30% of anthropogenic carbon emissions over recent decades. The persistence of this sink depends on the balance of positive drivers that increase ecosystem carbon storage-e.g., CO2 fertilization-and negative drivers that decrease it-e.g., intensifying disturbances. The net response of forest productivity to these drivers is uncertain due to the challenge of separating their effects from background disturbance-regrowth dynamics. We fit non-linear models to US forest inventory data (113,806 plot remeasurements in non-plantation forests from ~1999 to 2020) to quantify productivity trends while accounting for stand age, tree mortality, and harvest. Productivity trends were generally positive in the eastern United States, where climate change has been mild, and negative in the western United States, where climate change has been more severe. Productivity declines in the western United States cannot be explained by increased mortality or harvest; these declines likely reflect adverse climate-change impacts on tree growth. In the eastern United States, where data were available to partition biomass change into age-dependent and age-independent components, forest maturation and increasing productivity (likely due, at least in part, to CO2 fertilization) contributed roughly equally to biomass carbon sinks. Thus, adverse effects of climate change appear to overwhelm any positive drivers in the water-limited forests of the western United States, whereas forest maturation and positive responses to age-independent drivers contribute to eastern US carbon sinks. The future land carbon balance of forests will likely depend on the geographic extent of drought and heat stress.
Collapse
Affiliation(s)
- J. Aaron Hogan
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Grant M. Domke
- Northern Research Station, United States Department of Agriculture Forest Service, Saint Paul, MN55108
| | - Kai Zhu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI48109
| | - Daniel J. Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL32611
| | | |
Collapse
|
4
|
McGrath MJ, Schulte-Frohlinde A, Luyssaert S. New ways for (in)validating the forest carbon neutrality hypothesis. GLOBAL CHANGE BIOLOGY 2024; 30:e16982. [PMID: 37902299 DOI: 10.1111/gcb.16982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/31/2023]
Abstract
Over 50 years ago, Eugene Odum postulated that mature or climax forests reside in carbon neutrality. As climate change rose to prominence in the international environmental agenda, the neutrality hypothesis transformed from an ecological principle to a justification for using forest management in combating climate change. Despite persistent efforts, Odum's neutrality hypothesis has resisted both confirmation and refutation. In this opinion we show the limitations of past efforts to (in)validate Odum's neutrality hypothesis and propose new research directions for the community to permit a more general confirmation or refutation with current and near-future observations. We then demonstrate such an approach by using metabolic theory to formulate testable predictions for the total sink strength considering soil, litter, and biomass of mature or climax forests based on observations of tree biomass and individual density. In doing so, we show that ecological theory can create additional relevant, testable hypotheses to provide timely support to decision-makers seeking to address one of the world's most pressing environmental challenges.
Collapse
Grants
- 101060309 Directorate-General XII, Science, Research, and Development
- 776810 Directorate-General XII, Science, Research, and Development
- 958927 Directorate-General XII, Science, Research, and Development
- SEP-210673589 Directorate-General XII, Science, Research, and Development
Collapse
Affiliation(s)
- Matthew Joseph McGrath
- Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ, Gif-sur-Yvette, France
| | - Augustine Schulte-Frohlinde
- Amsterdam Institute for Life and Environment, Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sebastiaan Luyssaert
- Amsterdam Institute for Life and Environment, Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Zhang R, Ying J, Zhang Y. Study on the spatial spillover effect of land use type change on carbon emissions. Sci Rep 2023; 13:12197. [PMID: 37500745 PMCID: PMC10374605 DOI: 10.1038/s41598-023-39383-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Land use change affects the terrestrial carbon cycle, a crucial factor in attaining energy conservation and emission reduction under climate change. This study constructs panel data for thirteen Hangzhou districts and municipalities from 2000 to 2020. Using the spatial Durbin model, it analyzes the spatial spillover effect of land use change on carbon emissions. The results show that the spatial distribution of carbon emissions in Hangzhou continues to increase with positive spatial autocorrelation, and the spatial distribution shows "high-high" and "low-low" clustering. The expansion of construction land is the main reason for the increase in carbon emissions, and the inhibitory effect of water area on carbon emissions is more potent than woodland. The area of cultivated land and construction land has a positive spillover effect on carbon emissions, while the woodland area has a negative spillover effect on carbon emissions. To promote urban low-carbon development, maximizing the spatial spillover effect of land use and establishing a collaborative governance system between districts and counties is crucial.
Collapse
Affiliation(s)
- Ruiwu Zhang
- College of Landscape Architecture and Landscape Architecture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Jun Ying
- College of Landscape Architecture and Landscape Architecture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
- Institute of Ecological Civilization & Institute of Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yiqi Zhang
- College of Landscape Architecture and Landscape Architecture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
6
|
Hoover CM, Smith JE. Aboveground live tree carbon stock and change in forests of conterminous United States: influence of stand age. CARBON BALANCE AND MANAGEMENT 2023; 18:7. [PMID: 37062006 PMCID: PMC10108445 DOI: 10.1186/s13021-023-00227-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Sequestration of carbon on forest land is a common and practical component within many climate action plans developed by state or municipal governments. Initial planning often identifies the general magnitude of sequestration expected given the scope of the project. Because age plays a key role in forest carbon dynamics, we summarize both the carbon stock and accumulation rates in live trees by age class and region, allowing managers and policymakers to assess the influence of forest age class structure on forest carbon storage as represented in current inventories. State-level information is provided in supplementary tables. RESULTS Average regional aboveground live tree carbon stocks (represented on a per area basis) range from 11.6 tC/ha in the Great Plains to 130 tC/ha in the Pacific Northwest West (west-side of Cascades) and increase with age in all regions, although in three regions carbon stock declined in the oldest age class. Regional average annual net change in live aboveground tree carbon varies from a low of - 0.18 tC /ha/yr in the Rocky Mountain South region to a high value of 1.74 tC/ha/yr in Pacific Northwest West. In all regions except Rocky Mountain South, accumulation rates are highest in the younger age classes and decline with age, with older age classes in several western regions showing negative rates. In the Southeast and Pacific Northwest West, intermediate age classes exhibit lower rates, likely due to harvesting activity. CONCLUSIONS Aboveground live tree carbon stocks increase and rates of average change decrease with age with few exceptions; this pattern holds when examining hardwood and softwood types individually. Because multiple forest management objectives are often considered and tradeoffs need to be assessed, we recommend considering both measures-standing stock and average annual change-of carbon storage. The relative importance of each component depends on management and policy objectives and the time frame related to those objectives. Harvesting and natural disturbance also affect forest carbon stock and change and may need to be considered if developing projections of potential carbon storage. We present forest carbon summaries at a scale and scope to meet information needs of managers and policymakers.
Collapse
Affiliation(s)
- Coeli M Hoover
- USDA Forest Service, Northern Research Station, 271 Mast Road, Durham, NH, 09824, USA.
| | - James E Smith
- USDA Forest Service, Northern Research Station, 271 Mast Road, Durham, NH, 09824, USA
| |
Collapse
|
7
|
Peichl M, Martínez‐García E, Fransson JES, Wallerman J, Laudon H, Lundmark T, Nilsson MB. Landscape-variability of the carbon balance across managed boreal forests. GLOBAL CHANGE BIOLOGY 2023; 29:1119-1132. [PMID: 36464908 PMCID: PMC10108254 DOI: 10.1111/gcb.16534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Boreal forests are important global carbon (C) sinks and, therefore, considered as a key element in climate change mitigation policies. However, their actual C sink strength is uncertain and under debate, particularly for the actively managed forests in the boreal regions of Fennoscandia. In this study, we use an extensive set of biometric- and chamber-based C flux data collected in 50 forest stands (ranging from 5 to 211 years) over 3 years (2016-2018) with the aim to explore the variations of the annual net ecosystem production (NEP; i.e., the ecosystem C balance) across a 68 km2 managed boreal forest landscape in northern Sweden. Our results demonstrate that net primary production rather than heterotrophic respiration regulated the spatio-temporal variations of NEP across the heterogeneous mosaic of the managed boreal forest landscape. We further find divergent successional patterns of NEP in our managed forests relative to naturally regenerating boreal forests, including (i) a fast recovery of the C sink function within the first decade after harvest due to the rapid establishment of a productive understory layer and (ii) a sustained C sink in old stands (131-211 years). We estimate that the rotation period for optimum C sequestration extends to 138 years, which over multiple rotations results in a long-term C sequestration rate of 86.5 t C ha-1 per rotation. Our study highlights the potential of forest management to maximize C sequestration of boreal forest landscapes and associate climate change mitigation effects by developing strategies that optimize tree biomass production rather than heterotrophic soil C emissions.
Collapse
Affiliation(s)
- Matthias Peichl
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences (SLU)UmeåSweden
| | - Eduardo Martínez‐García
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences (SLU)UmeåSweden
| | - Johan E. S. Fransson
- Department of Forest Resource ManagementSwedish University of Agricultural Sciences (SLU)UmeåSweden
- Department of Forestry and Wood TechnologyLinnaeus UniversityVäxjöSweden
| | - Jörgen Wallerman
- Department of Forest Resource ManagementSwedish University of Agricultural Sciences (SLU)UmeåSweden
| | - Hjalmar Laudon
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences (SLU)UmeåSweden
| | - Tomas Lundmark
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences (SLU)UmeåSweden
| | - Mats B. Nilsson
- Department of Forest Ecology and ManagementSwedish University of Agricultural Sciences (SLU)UmeåSweden
| |
Collapse
|
8
|
Korniyenko VO, Kalaev VN. Impact of Natural Climate Factors on Mechanical Stability and Failure Rate in Silver Birch Trees in the City of Donetsk. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522070150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Gea‐Izquierdo G, Sánchez‐González M. Forest disturbances and climate constrain carbon allocation dynamics in trees. GLOBAL CHANGE BIOLOGY 2022; 28:4342-4358. [PMID: 35322511 PMCID: PMC9541293 DOI: 10.1111/gcb.16172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Forest disturbances such as drought, fire, and logging affect the forest carbon dynamics and the terrestrial carbon sink. Forest mortality after disturbances creates uncertainties that need to be accounted for to understand forest dynamics and their associated C-sink. We combined data from permanent resampling plots and biomass oriented dendroecological plots to estimate time series of annual woody biomass growth (ABI) in several forests. ABI time series were used to benchmark a vegetation model to analyze dynamics in forest productivity and carbon allocation forced by environmental variability. The model implements source and sink limitations explicitly by dynamically constraining carbon allocation of assimilated photosynthates as a function of temperature and moisture. Bias in tree-ring reconstructed ABI increased back in time from data collection and with increasing disturbance intensity. ABI bias ranged from zero, in open stands without recorded mortality, to over 100% in stands with major disturbances such as thinning or snowstorms. Stand leaf area was still lower than in control plots decades after heavy thinning. Disturbances, species life-history strategy and climatic variability affected carbon-partitioning patterns in trees. Resprouting broadleaves reached maximum biomass growth at earlier ages than nonresprouting conifers. Environmental variability and leaf area explained much variability in woody biomass allocation. Effects of stand competition on C-allocation were mediated by changes in stand leaf area except after major disturbances. Divergence between tree-ring estimated and simulated ABI were caused by unaccounted changes in allocation or misrepresentation of some functional process independently of the model calibration approach. Higher disturbance intensity produced greater modifications of the C-allocation pattern, increasing error in reconstructed biomass dynamics. Legacy effects from disturbances decreased model performance and reduce the potential use of ABI as a proxy to net primary productivity. Trait-based dynamics of C-allocation in response to environmental variability need to be refined in vegetation models.
Collapse
|
10
|
Novick KA, Metzger S, Anderegg WRL, Barnes M, Cala DS, Guan K, Hemes KS, Hollinger DY, Kumar J, Litvak M, Lombardozzi D, Normile CP, Oikawa P, Runkle BRK, Torn M, Wiesner S. Informing Nature-based Climate Solutions for the United States with the best-available science. GLOBAL CHANGE BIOLOGY 2022; 28:3778-3794. [PMID: 35253952 DOI: 10.1111/gcb.16156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Nature-based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles. The only direct observations of ecosystem-scale carbon fluxes, for example, by eddy covariance flux towers, have not yet been systematically assessed for what they can tell us about NbCS potentials, and state-of-the-art remote sensing products and land-surface models are not yet being widely used to inform NbCS policymaking or implementation. As a result, there is a critical mismatch between the point- and tree-scale data most often used to assess NbCS benefits and impacts, the ecosystem and landscape scales where NbCS projects are implemented, and the regional to continental scales most relevant to policymaking. Here, we propose a research agenda to confront these gaps using data and tools that have long been used to understand the mechanisms driving ecosystem carbon and energy cycling, but have not yet been widely applied to NbCS. We outline steps for creating robust NbCS assessments at both local to regional scales that are informed by ecosystem-scale observations, and which consider concurrent biophysical impacts, future climate feedbacks, and the need for equitable and inclusive NbCS implementation strategies. We contend that these research goals can largely be accomplished by shifting the scales at which pre-existing tools are applied and blended together, although we also highlight some opportunities for more radical shifts in approach.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Stefan Metzger
- Battelle, National Ecological Observatory Network, Boulder, Colorado, USA
| | | | - Mallory Barnes
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Daniela S Cala
- O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, Indiana, USA
| | - Kaiyu Guan
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kyle S Hemes
- Woods Institute for the Environment, Stanford University, Stanford, California, USA
| | - David Y Hollinger
- USDA Forest Service, Northern Research Station, Durham, New Hampshire, USA
| | - Jitendra Kumar
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Marcy Litvak
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | | | - Patty Oikawa
- Department of Earth & Environmental Science, California State University-East Bay, Hayward, California, USA
| | - Benjamin R K Runkle
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Margaret Torn
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Susanne Wiesner
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Insect infestations and the persistence and functioning of oak-pine mixedwood forests in the mid-Atlantic region, USA. PLoS One 2022; 17:e0265955. [PMID: 35507583 PMCID: PMC9067937 DOI: 10.1371/journal.pone.0265955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Damage from infestations of Lymantria dispar L. in oak-dominated
stands and southern pine beetle (Dendroctonus frontalis
Zimmermann) in pine-dominated stands have far exceeded impacts of other
disturbances in forests of the mid-Atlantic Coastal Plain over the last two
decades. We used forest census data collected in undisturbed and insect-impacted
stands combined with eddy covariance measurements made pre- and post-disturbance
in oak-, mixed and pine-dominated stands to quantify how these infestations
altered forest composition, structure and carbon dynamics in the Pinelands
National Reserve of southern New Jersey. In oak-dominated stands, multi-year
defoliation during L. dispar infestations
resulted in > 40% mortality of oak trees and the release of pine saplings and
understory vegetation, while tree mortality was minimal in mixed and
pine-dominated stands. In pine-dominated stands, southern pine beetle
infestations resulted in > 85% mortality of pine trees but had minimal effect
on oaks in upland stands or other hardwoods in lowland stands, and only rarely
infested pines in hardwood-dominated stands. Because insect-driven disturbances
are both delaying and accelerating succession in stands dominated by a single
genus but having less effect in mixed-composition stands, long-term disturbance
dynamics are favoring the formation and persistence of uneven age oak-pine
mixedwood stands. Changes in forest composition may have little impact on forest
productivity and evapotranspiration; although seasonal patterns differ, with
highest daily rates of net ecosystem production (NEP) during the growing season
occurring in an oak-dominated stand and lowest in a pine-dominated stand,
integrated annual rates of NEP are similar among oak-, mixed and pine-dominated
stands. Our research documents the formation of mixedwood stands as a
consequence of insect infestations in the mid-Atlantic region and suggests that
managing for mixedwood stands could reduce damage to forest products and provide
greater continuity in ecosystem functioning.
Collapse
|
12
|
Quantifying the Life Cycle Greenhouse Gas Emissions of a Mechanized Shelterwood Harvest Producing Both Sawtimber and Woodchips. FORESTS 2022. [DOI: 10.3390/f13010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Forests are used to mitigate anthropogenic greenhouse gas (GHG) emissions through carbon offset programs, and forest management is generally accepted as “carbon neutral”. However, forest harvesting operations depend heavily on fossil fuels, so it would be remiss to broadly paint all forms of management as carbon neutral without empirical verification of this claim. Biomass feedstock, as a means to supplant fossil fuel consumption, has received the bulk of investigative efforts, as the carbon benefit of biomass is one of the most contentious among wood products, because it does not create long-term carbon storage. A life cycle assessment (LCA) was conducted on a winter shelterwood harvest occurring in the Adirondacks of upstate New York. Primary data were collected daily throughout the operation and used to model the impact attributed to producing clean chips and logs for delivery to a pulp mill and sawmill, respectively. This harvest produced 4894 Mg of clean chips and 527 Mg of sawtimber. We calculated that 39.77 and 25.16 kg of carbon dioxide equivalent were emitted per Mg of clean chips and sawtimber, respectively, with a total observed flow of GHG into the atmosphere between 206 and 210 thousand kilograms. The results contribute to our understanding of the global warming potential of implementing a forest harvest to produce raw materials for medium- and long-term carbon storage products such as paper and dimensional hardwood lumber.
Collapse
|
13
|
Dorheim K, Gough CM, Haber LT, Mathes KC, Shiklomanov AN, Bond‐Lamberty B. Climate Drives Modeled Forest Carbon Cycling Resistance and Resilience in the Upper Great Lakes Region, USA. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 127:e2021JG006587. [PMID: 35865142 PMCID: PMC9287023 DOI: 10.1029/2021jg006587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
Forests dominate the global terrestrial carbon budget, but their ability to continue doing so in the face of a changing climate is uncertain. A key uncertainty is how forests will respond to (resistance) and recover from (resilience) rising levels of disturbance of varying intensities. This knowledge gap can optimally be addressed by integrating manipulative field experiments with ecophysiological modeling. We used the Ecosystem Demography-2.2 (ED-2.2) model to project carbon fluxes for a northern temperate deciduous forest subjected to a real-world disturbance severity manipulation experiment. ED-2.2 was run for 150 years, starting from near bare ground in 1900 (approximating the clear-cut conditions at the time), and subjected to three disturbance treatments under an ensemble of climate conditions. Both disturbance severity and climate strongly affected carbon fluxes such as gross primary production (GPP), and interacted with one another. We then calculated resistance and resilience, two dimensions of ecosystem stability. Modeled GPP exhibited a two-fold decrease in mean resistance across disturbance severities of 45%, 65%, and 85% mortality; conversely, resilience increased by a factor of two with increasing disturbance severity. This pattern held for net primary production and net ecosystem production, indicating a trade-off in which greater initial declines were followed by faster recovery. Notably, however, heterotrophic respiration responded more slowly to disturbance, and it's highly variable response was affected by different drivers. This work provides insight into how future conditions might affect the functional stability of mature forests in this region under ongoing climate change and changing disturbance regimes.
Collapse
Affiliation(s)
- Kalyn Dorheim
- Joint Global Change Research InstitutePacific Northwest National LaboratoryCollege ParkMDUSA
| | | | - Lisa T. Haber
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Kayla C. Mathes
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | | | - Ben Bond‐Lamberty
- Joint Global Change Research InstitutePacific Northwest National LaboratoryCollege ParkMDUSA
| |
Collapse
|
14
|
Liu F, Wang X, Chi Q, Tian M. Spatial variations in soil organic carbon, nitrogen, phosphorus contents and controlling factors across the "Three Rivers" regions of southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148795. [PMID: 34225155 DOI: 10.1016/j.scitotenv.2021.148795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Based on the data of China Geochemical Baselines project, geostatistical analysis was used to investigate the spatial variations in soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) contents across the "Three Rivers" regions of southwest China, and the factors affecting them were analyzed by the redundancy analysis (RDA) and Person's correlation. Results showed that, the average content of SOC, TN and TP in the study area were 7.20 g/kg, 0.84 g/kg and 0.55 g/kg, respectively. The SOC and TN contents showed an obvious enrichment characteristic with great spatial variability, while TP content was stable on regional scale. The SOC, TN and TP contents decreased with elevation increase in the northern frigid highland, but showed an opposite character in the southern tropical & subtropical, which actually reflected the control of temperature on them. Combined with that there were higher SOC, TN and TP contents in subalpine meadow soil and red earth-yellow earth of the middle latitude zone, these suggested that the suitable temperature was conducive to the accumulation of soil nutrients. The weak positive correlation between population density and soil nutrients, together with high level of soil nutrients in the vicinity of large cities, demonstrated that human activities had significantly increased the soil nutrients contents in the study area. The RDA results showed that soil nutrients in the northern frigid highland were mainly controlled by the environmental factors dominated by temperature and soil structural factors dominated by parent materials with the total explanatory power as high as 75.87%, while in the southern tropical & subtropical mainly by the environmental factors dominated by chemical and biological weathering and the biological factors dominated by vegetation with the total explanatory power as high as 88.53%. The above factors superimposing a certain degree of human activities converged to cause that the SOC and TP contents in the south were higher than that in the north while the TN content was lower than that in the north.
Collapse
Affiliation(s)
- Futian Liu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang 065000, China; School of Earth Science and Resources, Chang'an University, Xi'an 710054, China.
| | - Xueqiu Wang
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang 065000, China.
| | - Qinghua Chi
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang 065000, China
| | - Mi Tian
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China; UNESCO International Center on Global-scale Geochemistry, Langfang 065000, China
| |
Collapse
|
15
|
Gough CM, Bohrer G, Hardiman BS, Nave LE, Vogel CS, Atkins JW, Bond-Lamberty B, Fahey RT, Fotis AT, Grigri MS, Haber LT, Ju Y, Kleinke CL, Mathes KC, Nadelhoffer KJ, Stuart-Haëntjens E, Curtis PS. Disturbance-accelerated succession increases the production of a temperate forest. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02417. [PMID: 34278647 DOI: 10.1002/eap.2417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling-induced mortality of >6,700 early-successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower-based C cycling observations from the 33-ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid-late-successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1-yr recovery of total leaf area index as mid-late-successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid-late-successional species dominance improved carbon-use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid-late-successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.
Collapse
Affiliation(s)
- Christopher M Gough
- Department of Biology, Virginia Commonwealth University, Box 842012, 1000 West Cary Street, Richmond, Virginia, 23284, USA
| | - Gil Bohrer
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, 2070 Neil Avenue, Columbus, Ohio, 43210, USA
| | - Brady S Hardiman
- Forestry and Natural Resources and Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Lucas E Nave
- Biological Station and Department of Ecology and Evolutionary Biology, University of Michigan, Pellston, Michigan, 49769, USA
| | - Christoph S Vogel
- Biological Station and Department of Ecology and Evolutionary Biology, University of Michigan, Pellston, Michigan, 49769, USA
| | - Jeff W Atkins
- Department of Biology, Virginia Commonwealth University, Box 842012, 1000 West Cary Street, Richmond, Virginia, 23284, USA
| | - Ben Bond-Lamberty
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, 5825 University Research Court, College Park, Maryland, 20740, USA
| | - Robert T Fahey
- Department of Natural Resources and the Environment, Center for Environmental Sciences and Engineering, University of Connecticut, 1376 Storrs Road, Storrs, Connecticut, 06269, USA
| | - Alexander T Fotis
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W 12th Avenue, Columbus, Ohio, 43210, USA
| | - Maxim S Grigri
- Department of Biology, Virginia Commonwealth University, Box 842012, 1000 West Cary Street, Richmond, Virginia, 23284, USA
| | - Lisa T Haber
- Department of Biology, Virginia Commonwealth University, Box 842012, 1000 West Cary Street, Richmond, Virginia, 23284, USA
| | - Yang Ju
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, 2070 Neil Avenue, Columbus, Ohio, 43210, USA
| | - Callie L Kleinke
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, 2070 Neil Avenue, Columbus, Ohio, 43210, USA
| | - Kayla C Mathes
- Department of Biology, Virginia Commonwealth University, Box 842012, 1000 West Cary Street, Richmond, Virginia, 23284, USA
| | - Knute J Nadelhoffer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Ellen Stuart-Haëntjens
- Department of Biology, Virginia Commonwealth University, Box 842012, 1000 West Cary Street, Richmond, Virginia, 23284, USA
| | - Peter S Curtis
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W 12th Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|
16
|
Zhu K. Understanding forest dynamics by integrating age and environmental change. THE NEW PHYTOLOGIST 2020; 228:1728-1733. [PMID: 31912504 DOI: 10.1111/nph.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
How much carbon a forest ecosystem can sequester is determined by both postdisturbance regrowth and environmentally modified growth. Disturbance causes sharp declines in the short term and is followed by regrowth in the long term. Environmental change may alter carbon accumulation through increasing CO2 , nitrogen deposition and climate change. Regrowth and modified growth occur simultaneously, yet they are usually studied separately and assessed using an additive approach. Alternatively, an interactive approach using hierarchical models can address their concurrent nature and evaluate their joint effects. Hierarchical models are informed by forest age data, which have recently become available at global scales. The age-based hierarchical framework provides a coherent and feasible way to integrate regrowth and modified growth in understanding forest dynamics.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
17
|
Shiklomanov AN, Bond-Lamberty B, Atkins JW, Gough CM. Structure and parameter uncertainty in centennial projections of forest community structure and carbon cycling. GLOBAL CHANGE BIOLOGY 2020; 26:6080-6096. [PMID: 32846039 DOI: 10.1111/gcb.15164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Secondary forest regrowth shapes community succession and biogeochemistry for decades, including in the Upper Great Lakes region. Vegetation models encapsulate our understanding of forest function, and whether models can reproduce multi-decadal succession patterns is an indication of our ability to predict forest responses to future change. We test the ability of a vegetation model to simulate C cycling and community composition during 100 years of forest regrowth following stand-replacing disturbance, asking (a) Which processes and parameters are most important to accurately model Upper Midwest forest succession? (b) What is the relative importance of model structure versus parameter values to these predictions? We ran ensembles of the Ecosystem Demography model v2.2 with different representations of processes important to competition for light. We compared the magnitude of structural and parameter uncertainty and assessed which sub-model-parameter combinations best reproduced observed C fluxes and community composition. On average, our simulations underestimated observed net primary productivity (NPP) and leaf area index (LAI) after 100 years and predicted complete dominance by a single plant functional type (PFT). Out of 4,000 simulations, only nine fell within the observed range of both NPP and LAI, but these predicted unrealistically complete dominance by either early hardwood or pine PFTs. A different set of seven simulations were ecologically plausible but under-predicted observed NPP and LAI. Parameter uncertainty was large; NPP and LAI ranged from ~0% to >200% of their mean value, and any PFT could become dominant. The two parameters that contributed most to uncertainty in predicted NPP were plant-soil water conductance and growth respiration, both unobservable empirical coefficients. We conclude that (a) parameter uncertainty is more important than structural uncertainty, at least for ED-2.2 in Upper Midwest forests and (b) simulating both productivity and plant community composition accurately without physically unrealistic parameters remains challenging for demographic vegetation models.
Collapse
Affiliation(s)
- Alexey N Shiklomanov
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
| | - Ben Bond-Lamberty
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
| | - Jeff W Atkins
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
18
|
Xu H, Xiao J, Zhang Z, Ollinger SV, Hollinger DY, Pan Y, Wan J. Canopy photosynthetic capacity drives contrasting age dynamics of resource use efficiencies between mature temperate evergreen and deciduous forests. GLOBAL CHANGE BIOLOGY 2020; 26:6156-6167. [PMID: 33245613 DOI: 10.1111/gcb.15312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Forest resource use efficiencies (RUEs) can vary with tree age, but the nature of these trends and their underlying mechanisms are not well understood. Understanding the age dynamics of forest RUEs and their drivers is vital for assessing the trade-offs between forest functions and resource consumption, making rational management policy, and projecting ecosystem carbon dynamics. Here we used the FLUXNET2015 and AmeriFlux datasets and published literature to explore the age-dependent variability of forest light use efficiency (LUE) and inherent water use efficiency as well as their main regulatory variables in temperate regions. Our results showed that evergreen forest RUEs initially increased before reaching the mature stage (i.e., around 90 years old), and then gradually declined; in contrast, RUEs continuously increased with age for mature deciduous forests. Changing canopy photosynthetic capacity (Amax) was the primary cause of age-related changes in RUEs across temperate forest sites. More importantly, soil nitrogen (N) increased in mature deciduous forests through time but decreased in older evergreen forests. The age-dependent changes in soil N were closely linked with the age dynamics of Amax for mature temperate forests. Additionally, soil nutrient conditions played a greater role in deciduous forest RUEs than evergreen forest RUEs. This study highlights the importance of stand age and forest type on temperate forest RUEs over the long term.
Collapse
Affiliation(s)
- Hang Xu
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation & Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Zhiqiang Zhang
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation & Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Scott V Ollinger
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | | | - Yude Pan
- USDA Forest Service, Northern Research Station, Durham, NH, USA
| | - Jiaming Wan
- Jixian National Forest Ecosystem Observation and Research Station, CNERN, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Soil and Water Conservation & Desertification Combating, State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Carbon Balance and Streamflow at a Small Catchment Scale 10 Years after the Severe Natural Disturbance in the Tatra Mts, Slovakia. WATER 2020. [DOI: 10.3390/w12102917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural disturbances (windthrow, bark beetle, and fire) have reduced forest cover in the Tatra National Park (Slovakia) by 50% since the year 2004. We analyzed carbon fluxes and streamflow ten years after the forest destruction in three small catchments which differ in size, land cover, disturbance type and post-disturbance management. Point-wise CO2 fluxes were estimated by chamber methods for vegetation-dominated land-use types and extrapolated over the catchments using the site-specific regressions with environmental variables. Streamflow characteristics in the pre- and post-disturbance periods (water years of 1965–2004 and 2005–2014, respectively) were compared to identify changes in hydrological cycle initiated by the disturbances. Mature Norway spruce forest which was carbon neutral, turned to carbon source (330 ± 98 gC m−2 y−1) just one year after the wind disturbance. After ten years most of the windthrow sites acted as carbon sinks (from −341 ± 92.1 up to −463 ± 178 gC m−2 y−1). In contrast, forest stands strongly infested by bark beetles regenerated much slowly and on average emitted 495 ± 176 gC m−2 year−1. Ten years after the forest destruction, annual carbon balance in studied catchments was almost neutral in the least disturbed catchment. Carbon uptake notably exceeded its release in the most severely disturbed catchment (by windthrow and fire), where net ecosystem exchange (NEE) was −206 ± 115 gC m−2. The amount of sequestered carbon in studied catchments was driven by the extent of fast-growing successional vegetation cover (represented by the leaf area index LAI) rather than by the disturbance or vegetation types. Different post-disturbance management has not influenced the carbon balance yet. Streamflow characteristics did not indicate significant changes in the hydrological cycle. However, greater cumulative decadal runoff, different median monthly flows and low flows and the greater number of flow reversals in the in the first years after the windthrow in two severely affected catchments could be partially related to the influence of the disturbances.
Collapse
|
20
|
Beamesderfer ER, Arain MA, Khomik M, Brodeur JJ. The Impact of Seasonal and Annual Climate Variations on the Carbon Uptake Capacity of a Deciduous Forest Within the Great Lakes Region of Canada. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2020; 125:e2019JG005389. [PMID: 33042720 PMCID: PMC7540005 DOI: 10.1029/2019jg005389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
In eastern North America, many deciduous forest ecosystems grow at the northernmost extent of their geographical ranges, where climate change could aid or impede their growth. This region experiences frequent extreme weather conditions, allowing us to study the response of these forests to environmental conditions, reflective of future climates. Here we determined the impact of seasonal and annual climate variations and extreme weather events on the carbon (C) uptake capacity of an oak-dominated forest in southern Ontario, Canada, from 2012 to 2016. We found that changes in meteorology during late May to mid-July were key in determining the C sink strength of the forest, impacting the seasonal and annual variability of net ecosystem productivity (NEP). Overall, higher temperatures and dry conditions reduced ecosystem respiration (RE) much more than gross ecosystem productivity (GEP), leading to higher NEP. Variability in NEP was primarily driven by changes in RE, rather than GEP. The mean annual GEP, RE, and NEP values at our site during the study were 1,343 ± 85, 1,171 ± 139, and 206 ± 92 g C m-2 yr-1, respectively. The forest was a C sink even in years that experienced heat and water stresses. Mean annual NEP at our site was within the range of NEP (69-459 g C m-2 yr-1) observed in similar North American forests from 2012 to 2016. The growth and C sequestration capabilities of our oak-dominated forest were not adversely impacted by changes in environmental conditions and extreme weather events experienced over the study period.
Collapse
Affiliation(s)
- Eric R. Beamesderfer
- School of Earth, Environment and Society and McMaster Centre for Climate ChangeMcMaster UniversityHamiltonOntarioCanada
| | - M. Altaf Arain
- School of Earth, Environment and Society and McMaster Centre for Climate ChangeMcMaster UniversityHamiltonOntarioCanada
| | - Myroslava Khomik
- School of Earth, Environment and Society and McMaster Centre for Climate ChangeMcMaster UniversityHamiltonOntarioCanada
- Geography and Environmental ManagementUniversity of WaterlooWaterlooOntarioCanada
| | - Jason J. Brodeur
- School of Earth, Environment and Society and McMaster Centre for Climate ChangeMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
21
|
Haber LT, Fahey RT, Wales SB, Correa Pascuas N, Currie WS, Hardiman BS, Gough CM. Forest structure, diversity, and primary production in relation to disturbance severity. Ecol Evol 2020; 10:4419-4430. [PMID: 32489607 PMCID: PMC7246213 DOI: 10.1002/ece3.6209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/04/2019] [Accepted: 02/26/2020] [Indexed: 11/12/2022] Open
Abstract
Differential disturbance severity effects on forest vegetation structure, species diversity, and net primary production (NPP) have been long theorized and observed. Here, we examined these factors concurrently to explore the potential for a mechanistic pathway linking disturbance severity, changes in light environment, leaf functional response, and wood NPP in a temperate hardwood forest.Using a suite of measurements spanning an experimental gradient of tree mortality, we evaluated the direction and magnitude of change in vegetation structural and diversity indexes in relation to wood NPP. Informed by prior observations, we hypothesized that forest structural and species diversity changes and wood NPP would exhibit either a linear, unimodal, or threshold response in relation to disturbance severity. We expected increasing disturbance severity would progressively shift subcanopy light availability and leaf traits, thereby coupling structural and species diversity changes with primary production.Linear or unimodal changes in three of four vegetation structural indexes were observed across the gradient in disturbance severity. However, disturbance-related changes in vegetation structure were not consistently correlated with shifts in light environment, leaf traits, and wood NPP. Species diversity indexes did not change in response to rising disturbance severity.We conclude that, in our study system, the sensitivity of wood NPP to rising disturbance severity is generally tied to changing vegetation structure but not species diversity. Changes in vegetation structure are inconsistently coupled with light environment and leaf traits, resulting in mixed support for our hypothesized cascade linking disturbance severity to wood NPP.
Collapse
Affiliation(s)
- Lisa T. Haber
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Robert T. Fahey
- Department of Natural Resources and the Environment & Center for Environmental Sciences and EngineeringUniversity of ConnecticutStorrsCTUSA
| | - Shea B. Wales
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | | | - William S. Currie
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMIUSA
| | - Brady S. Hardiman
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
| | | |
Collapse
|
22
|
Rewald B, Ammer C, Hartmann H, Malyshev AV, Meier IC. Editorial: Woody Plants and Forest Ecosystems in a Complex World-Ecological Interactions and Physiological Functioning Above and Below Ground. FRONTIERS IN PLANT SCIENCE 2020; 11:173. [PMID: 32184797 PMCID: PMC7058592 DOI: 10.3389/fpls.2020.00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Boris Rewald
- Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Andrey V. Malyshev
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Ina C. Meier
- Plant Ecology, Albrecht-von-Haller Institute of Plant Sciences, University of Goettingen, Göttingen, Germany
| |
Collapse
|
23
|
Baldocchi DD. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. GLOBAL CHANGE BIOLOGY 2020; 26:242-260. [PMID: 31461544 DOI: 10.1111/gcb.14807] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
A global network of long-term carbon and water flux measurements has existed since the late 1990s. With its representative sampling of the terrestrial biosphere's climate and ecological spaces, this network is providing background information and direct measurements on how ecosystem metabolism responds to environmental and biological forcings and how they may be changing in a warmer world with more carbon dioxide. In this review, I explore how carbon and water fluxes of the world's ecosystem are responding to a suite of covarying environmental factors, like sunlight, temperature, soil moisture, and carbon dioxide. I also report on how coupled carbon and water fluxes are modulated by biological and ecological factors such as phenology and a suite of structural and functional properties. And, I investigate whether long-term trends in carbon and water fluxes are emerging in various ecological and climate spaces and the degree to which they may be driven by physical and biological forcings. As a growing number of time series extend up to 20 years in duration, we are at the verge of capturing ecosystem scale trends in the breathing of a changing biosphere. Consequently, flux measurements need to continue to report on future conditions and responses and assess the efficacy of natural climate solutions.
Collapse
|
24
|
Marino BD, Mincheva M, Doucett A. California air resources board forest carbon protocol invalidates offsets. PeerJ 2019; 7:e7606. [PMID: 31579578 PMCID: PMC6761920 DOI: 10.7717/peerj.7606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/02/2019] [Indexed: 11/20/2022] Open
Abstract
The commercial asset value of sequestered forest carbon is based on protocols employed globally; however, their scientific basis has not been validated. We review and analyze commercial forest carbon protocols, claimed to have reduced net greenhouse gas emissions, issued by the California Air Resources Board and validated by the Climate Action Reserve (CARB-CAR). CARB-CAR forest carbon offsets, based on forest mensuration and model simulation, are compared to a global database of directly measured forest carbon sequestration, or net ecosystem exchange (NEE) of forest CO2. NEE is a meteorologically based method integrating CO2 fluxes between the atmosphere, forest and soils and is independent of the CARB-CAR methodology. Annual carbon accounting results for CAR681 are compared with NEE for the Ameriflux site, Howland Forest Maine, USA, (Ho-1), the only site where both methods were applied contemporaneously, invalidating CARB-CAR protocol offsets. We then test the null hypothesis that CARB-CAR project population data fall within global NEE population values for natural and managed forests measured in the field; net annual gC m-2yr-1 are compared for both protocols. Irrespective of geography, biome and project type, the CARB-CAR population mean is significantly different from the NEE population mean at the 95% confidence interval, rejecting the null hypothesis. The CARB-CAR population exhibits standard deviation ∼5× that of known interannual NEE ranges, is overcrediting biased, incapable of detecting forest transition to net positive CO2 emissions, and exceeds the 5% CARB compliance limit for invalidation. Exclusion of CO2 efflux via soil and ecosystem respiration precludes a valid net carbon accounting result for CARB-CAR and related protocols, consistent with our findings. Protocol invalidation risk extends to vendors and policy platforms such as the United Nations Program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) and the Paris Agreement. We suggest that CARB-CAR and related protocols include NEE methodology for commercial forest carbon offsets to standardize methods, ensure in situ molecular specificity, verify claims of carbon emission reduction and harmonize carbon protocols for voluntary and compliance markets worldwide.
Collapse
Affiliation(s)
- Bruno D.V. Marino
- Executive Management, Planetary Emissions Management Inc., Cambridge, MA, USA
| | - Martina Mincheva
- Department of Statistics, Philadelphia, PA, United States of America
| | - Aaron Doucett
- Planetary Emissions Management Inc., Cambridge, MA, USA
| |
Collapse
|
25
|
Liu X, Zhou T, Luo H, Xu P, Gao S, Liu J. Models ignoring spatial heterogeneities of forest age will significantly overestimate the climate effects on litterfall in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:492-503. [PMID: 30677693 DOI: 10.1016/j.scitotenv.2019.01.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Litterfall is an important process that links vegetation and soil pools and plays an important role in the maintenance of soil fertility. Although studies indicated that climate will significantly affect forest litterfall, the role of biotic factors such as the spatial heterogeneity of forest age, remains unclear. In this study, we built an updated dataset of litterfall in China and explored the key drivers affecting forest litterfall by establishing optimal linear mixed models (OLMMs). The potential bias of models and their spatial patterns were then evaluated based on the OLMMs and remotely sensed and China's forest inventory data. The results showed the mean annual temperature (MAT) and forest age were the key drivers affecting forest litterfall. Abiotic factors and forest age and height together accounted for 77.5% of the variation in observed litterfall. Although forest age and height did not apparently enhance the coefficient of determination (R2), these factors significantly decreased spatial errors. Therefore, if the model contains only climate factors and the spatial patterns of biotic factors are ignored, it will produce high spatial errors (-52% to 92%). In addition, when forest age and height were not considered, variation of litterfall explained by forest age was inappropriately attributed to MAT, which significantly overestimated the importance of climate factors on forest litterfall. Specifically, litterfall was overestimated for young forests and underestimated for old forests if the model did not contain forest age in China. Models that ignored forest age significantly overestimated the contribution of climatic factors on forest litterfall and produced high spatially specific errors. The comparison of the litterfall modeled by OLMMs and the remote sensing-based net primary production (NPP) indicated that litterfall and NPP are strongly dependent, and the ratio of litterfall to NPP linearly increased with forest age.
Collapse
Affiliation(s)
- Xia Liu
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Tao Zhou
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China.
| | - Hui Luo
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Peipei Xu
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Shan Gao
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Jiajia Liu
- Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
26
|
Collalti A, Thornton PE, Cescatti A, Rita A, Borghetti M, Nolè A, Trotta C, Ciais P, Matteucci G. The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01837. [PMID: 30549378 PMCID: PMC6849766 DOI: 10.1002/eap.1837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 05/10/2023]
Abstract
The future trajectory of atmospheric CO2 concentration depends on the development of the terrestrial carbon sink, which in turn is influenced by forest dynamics under changing environmental conditions. An in-depth understanding of model sensitivities and uncertainties in non-steady-state conditions is necessary for reliable and robust projections of forest development and under scenarios of global warming and CO2 enrichment. Here, we systematically assessed if a biogeochemical process-based model (3D-CMCC-CNR), which embeds similarities with many other vegetation models, applied in simulating net primary productivity (NPP) and standing woody biomass (SWB), maintained a consistent sensitivity to its 55 input parameters through time, during forest ageing and structuring as well as under climate change scenarios. Overall, the model applied at three contrasting European forests showed low sensitivity to the majority of its parameters. Interestingly, model sensitivity to parameters varied through the course of >100 yr of simulations. In particular, the model showed a large responsiveness to the allometric parameters used for initialize forest carbon and nitrogen pools early in forest simulation (i.e., for NPP up to ~37%, 256 g C·m-2 ·yr-1 and for SWB up to ~90%, 65 Mg C/ha, when compared to standard simulation), with this sensitivity decreasing sharply during forest development. At medium to longer time scales, and under climate change scenarios, the model became increasingly more sensitive to additional and/or different parameters controlling biomass accumulation and autotrophic respiration (i.e., for NPP up to ~30%, 167 g C·m-2 ·yr-1 and for SWB up to ~24%, 64 Mg C/ha, when compared to standard simulation). Interestingly, model outputs were shown to be more sensitive to parameters and processes controlling stand development rather than to climate change (i.e., warming and changes in atmospheric CO2 concentration) itself although model sensitivities were generally higher under climate change scenarios. Our results suggest the need for sensitivity and uncertainty analyses that cover multiple temporal scales along forest developmental stages to better assess the potential of future forests to act as a global terrestrial carbon sink.
Collapse
Affiliation(s)
- Alessio Collalti
- National Research Council of ItalyInstitute for Agriculture and Forestry Systems in the Mediterranean (CNR‐ISAFOM)87036RendeCosenzaItaly
- Impacts on Agriculture, Forests and Ecosystem Services (CMCC‐IAFES) DivisionFoundation Euro‐Mediterranean Centre on Climate Change01100ViterboItaly
| | - Peter E. Thornton
- Environmental Sciences Division and Climate Change Science InstituteOak Ridge National LaboratoryOak RidgeTennessee37830USA
| | - Alessandro Cescatti
- Joint Research CentreDirectorate for Sustainable ResourcesEuropean CommissionIspraItaly
| | - Angelo Rita
- Scuola di Scienze Agrarie, Forestali, Alimentari e AmbientaliUniversità degli Studi della BasilicataViale dell'Ateneo Lucano 10PotenzaPotenza85100Italy
| | - Marco Borghetti
- Scuola di Scienze Agrarie, Forestali, Alimentari e AmbientaliUniversità degli Studi della BasilicataViale dell'Ateneo Lucano 10PotenzaPotenza85100Italy
| | - Angelo Nolè
- Scuola di Scienze Agrarie, Forestali, Alimentari e AmbientaliUniversità degli Studi della BasilicataViale dell'Ateneo Lucano 10PotenzaPotenza85100Italy
| | - Carlo Trotta
- Department for Innovation in Biological, Agro‐Food and Forest Systems (DIBAF)University of Tuscia01100ViterboItaly
| | - Philippe Ciais
- IPSL–LSCE CEA CNRS UVSQ UPSaclay Centre d'Etudes Orme des Merisiers91191Gif sur YvetteFrance
| | - Giorgio Matteucci
- National Research Council of ItalyInstitute for Agriculture and Forestry Systems in the Mediterranean (CNR‐ISAFOM)87036RendeCosenzaItaly
| |
Collapse
|
27
|
Eddy Covariance vs. Biometric Based Estimates of Net Primary Productivity of Pedunculate Oak (Quercus robur L.) Forest in Croatia during Ten Years. FORESTS 2018. [DOI: 10.3390/f9120764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We analysed 10 years (2008–2017) of continuous eddy covariance (EC) CO2 flux measurements of net ecosystem exchange (NEE) in a young pedunculate oak forest in Croatia. Measured NEE was gap-filled and partitioned into gross primary productivity (GPP) and ecosystem reparation (RECO) using the online tool by Max Planck Institute for Biogeochemistry in Jena, Germany. Annual NEE, GPP, and RECO were correlated with main environmental drivers. Net primary productivity was estimated from EC (NPPEC), as a sum of −NEE and Rh obtained using a constant Rh:RECO ratio, and from independent periodic biometric measurements (NPPBM). For comparing the NPP at the seasonal level, we propose a simple model that aimed at accounting for late-summer and autumn carbon storage in the non-structural carbohydrate pool. Over the study period, Jastrebarsko forest acted as a carbon sink, with an average (±std. dev.) annual NEE of −319 (±94) gC m−2 year−1, GPP of 1594 (±109) gC m−2 year−1, and RECO of 1275 (±94) gC m−2 year−1. Annual NEE showed high inter-annual variability and poor correlation with annual average global radiation, air temperature, and total precipitation, but significant (R2 = 0.501, p = 0.02) correlation with the change in soil water content between May and September. Comparison of annual NPPEC and NPPBM showed a good overall agreement (R2 = 0.463, p = 0.03), although in all years NPPBM was lower than NPPEC, with averages of 680 (±88) gC m−2 year−1 and 819 (±89) gC m−2 year−1, respectively. Lower values of NPPBM indicate that fine roots and grasses contributions to NPP, which were not measured in the study period, could have an important contribution to the overall ecosystem NPP. At a seasonal level, two NPP estimates showed differences in their dynamic, but the application of the proposed model greatly improved the agreement in the second part of the growing season. Further research is needed on the respiration partitioning and mechanisms of carbon allocation.
Collapse
|
28
|
Sustained Biomass Carbon Sequestration by China’s Forests from 2010 to 2050. FORESTS 2018. [DOI: 10.3390/f9110689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
China’s forests have functioned as important carbon sinks. They are expected to have substantial future potential for biomass carbon sequestration (BCS) resulting from afforestation and reforestation. However, previous estimates of forest BCS have included large uncertainties due to the limitations of sample size, multiple data sources, and inconsistent methodologies. This study refined the BCS estimation of China’s forests from 2010 to 2050 using the national forest inventory data (FID) of 2009−2013, as well as the relationships between forest biomass and stand age retrieved from field observations for major forest types in different regions of China. The results showed that biomass–age relationships were well-fitted using field data, with respective R2 values more than 0.70 (p < 0.01) for most forest types, indicating the applicability of these relationships developed for BCS estimation in China. National BCS would increase from 130.90 to 159.94 Tg C year−1 during the period of 2010−2050 because of increases in forest area and biomass carbon density, with a maximum of 230.15 Tg C year−1 around 2030. BCS for young and middle-aged forests would increase by 65.35 and 15.38 Tg C year−1, respectively. 187.8% of this increase would be offset by premature, mature, and overmature forests. During the study period, forest BCS would increase in all but the northern region. The largest contributor to the increment would be the southern region (52.5%), followed by the southwest, northeast, northwest, and east regions. Their BCS would be primarily driven by the area expansion and forest growth of young and middle-aged forests as a result of afforestation and reforestation. In the northern region, BCS reduction would occur mainly in the Inner Mongolia province (6.38 Tg C year−1) and be caused predominantly by a slowdown in the increases of forest area and biomass carbon density for different age–class forests. Our findings are in broader agreement with other studies, which provide valuable references for the validation and parameterization of carbon models and climate-change mitigation policies in China.
Collapse
|
29
|
Abstract
Forest canopy structure (CS) controls many ecosystem functions and is highly variable across landscapes, but the magnitude and scale of this variation is not well understood. We used a portable canopy LiDAR system to characterize variation in five categories of CS along N = 3 transects (140–800 m long) at each of six forested landscapes within the eastern USA. The cumulative coefficient of variation was calculated for subsegments of each transect to determine the point of stability for individual CS metrics. We then quantified the scale at which CS is autocorrelated using Moran’s I in an Incremental Autocorrelation analysis. All CS metrics reached stable values within 300 m but varied substantially within and among forested landscapes. A stable point of 300 m for CS metrics corresponds with the spatial extent that many ecosystem functions are measured and modeled. Additionally, CS metrics were spatially autocorrelated at 40 to 88 m, suggesting that patch scale disturbance or environmental factors drive these patterns. Our study shows CS is heterogeneous across temperate forest landscapes at the scale of 10 s of meters, requiring a resolution of this size for upscaling CS with remote sensing to large spatial scales.
Collapse
|