1
|
Lopez L, Lang PLM, Marciniak S, Kistler L, Latorre SM, Haile A, Cerda EV, Gamba D, Xu Y, Woods P, Yifru M, Kerby J, McKay JK, Oakley CG, Ågren J, Wondimu T, Bulafu C, Perry GH, Burbano HA, Lasky JR. Museum genomics reveals temporal genetic stasis and global genetic diversity in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636844. [PMID: 39975324 PMCID: PMC11839143 DOI: 10.1101/2025.02.06.636844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Global patterns of population genetic variation through time offer a window into evolutionary processes that maintain diversity. Over time, lineages may expand or contract their distribution, causing turnover in population genetic composition. At individual loci, migration, drift, environmental change (among other processes) may affect allele frequencies. Museum specimens of widely distributed species offer a unique window into the genetics of understudied populations and changes over time. Here, we sequenced genomes of 130 herbarium specimens and 91 new field collections of Arabidopsis thaliana and combined these with published genomes. We sought a broader view of genomic diversity across the species, and to test if population genomic composition is changing through time. We documented extensive and previously uncharacterized diversity in a range of populations in Africa, populations that are under threat from anthropogenic climate change. Through time, we did not find dramatic changes in genomic composition of populations. Instead, we found a pattern of genetic change every 100 years of the same magnitude seen when comparing Eurasian populations that are 185 km apart, potentially due to a combination of drift and changing selection. We found only mixed signals of polygenic adaptation at phenology and physiology QTL. We did find that genes conserved across eudicots show altered levels of directional allele frequency change, potentially due to variable purifying and background selection. Our study highlights how museum specimens can reveal new dimensions of population diversity and show how wild populations are evolving in recent history.
Collapse
Affiliation(s)
- Lua Lopez
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Biology, California State University, San Bernardino, San Bernardino, CA, USA
| | - Patricia L. M. Lang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | | | - Sergio M. Latorre
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Asnake Haile
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Diana Gamba
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yuxing Xu
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Patrick Woods
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Mistire Yifru
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jeffrey Kerby
- Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - John K. McKay
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology, and The Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jon Ågren
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Tigist Wondimu
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Collins Bulafu
- Department of Plant Sciences, Microbiology, and Biotechnology, Makarere University, Kampala, Uganda
| | - George H. Perry
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Hernán A. Burbano
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- PAC Herbarium, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Méndez-Vigo B, Arteaga N, Murillo-Sánchez A, Alba S, Alonso-Blanco C. The bHLH transcription factor gene EGL3 accounts for the natural diversity in Arabidopsis fruit trichome pattern and morphology. PLANT PHYSIOLOGY 2024; 197:kiae673. [PMID: 39709618 PMCID: PMC11773808 DOI: 10.1093/plphys/kiae673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
The number and distribution of trichomes, i.e. the trichome pattern, in different plant organs show a conspicuous inter- and intraspecific diversity across Angiosperms that is presumably involved in adaptation to numerous environmental factors. The genetic and molecular mechanisms accounting for the evolution of trichome patterns have just begun to be elucidated. In this study, we aimed to identify and characterize MALAMBRUNO 1 (MAU1), a locus affecting trichome number in the fruits of Arabidopsis (Arabidopsis thaliana) natural populations. To this end, we developed introgression lines (ILs) from the hairy fruit accession Doñana (Don-0) in the genetic background of the Ler strain with glabrous fruits. Genetic analyses of ILs showed that MAU1 affects fruit trichome patterns through synergistic epistasis with the MYB genes TRICHOMELESS1 (TCL1), GLABRA1 (GL1), and TRIPTYCHON (TRY). In addition, fine mapping and characterization of transgenic lines demonstrated that MAU1 is the bHLH transcription factor gene EGL3, for which Don-0 carries a gain-of-function semidominant allele. Gene expression analyses did not detect differences between EGL3 alleles, thus supporting that a structural missense mutation is the causal nucleotide polymorphism of Don-0. Further phylogenetic analyses of EGL3 showed that most Arabidopsis populations with hairy fruits belong to 3 haplogroups, suggesting that additional EGL3 natural alleles account for fruit trichome development. Finally, the characterization of EGL3 pleiotropy indicates that Don-0 hyperfunction also increases stem trichome branching. We conclude that EGL3 interactions in the core gene regulatory network of trichome development explain the Arabidopsis natural diversity for fruit trichome pattern and morphology.
Collapse
Affiliation(s)
- Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Noelia Arteaga
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Alba Murillo-Sánchez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Sonia Alba
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
3
|
Fuster-Pons A, Murillo-Sánchez A, Méndez-Vigo B, Marcer A, Pieper B, Torres-Pérez R, Oliveros JC, Tsiantis M, Picó FX, Alonso-Blanco C. The trichome pattern diversity of Cardamine shares genetic mechanisms with Arabidopsis but differs in environmental drivers. PLANT PHYSIOLOGY 2024; 196:2730-2748. [PMID: 38606947 PMCID: PMC11637488 DOI: 10.1093/plphys/kiae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Natural variation in trichome pattern (amount and distribution) is prominent among populations of many angiosperms. However, the degree of parallelism in the genetic mechanisms underlying this diversity and its environmental drivers in different species remain unclear. To address these questions, we analyzed the genomic and environmental bases of leaf trichome pattern diversity in Cardamine hirsuta, a relative of Arabidopsis (Arabidopsis thaliana). We characterized 123 wild accessions for their genomic diversity, leaf trichome patterns at different temperatures, and environmental adjustments. Nucleotide diversities and biogeographical distribution models identified two major genetic lineages with distinct demographic and adaptive histories. Additionally, C. hirsuta showed substantial variation in trichome pattern and plasticity to temperature. Trichome amount in C. hirsuta correlated positively with spring precipitation but negatively with temperature, which is opposite to climatic patterns in A. thaliana. Contrastingly, genetic analysis of C. hirsuta glabrous accessions indicated that, like for A. thaliana, glabrousness is caused by null mutations in ChGLABRA1 (ChGL1). Phenotypic genome-wide association studies (GWAS) further identified a ChGL1 haplogroup associated with low trichome density and ChGL1 expression. Therefore, a ChGL1 series of null and partial loss-of-function alleles accounts for the parallel evolution of leaf trichome pattern in C. hirsuta and A. thaliana. Finally, GWAS also detected other candidate genes (e.g. ChETC3, ChCLE17) that might affect trichome pattern. Accordingly, the evolution of this trait in C. hirsuta and A. thaliana shows partially conserved genetic mechanisms but is likely involved in adaptation to different environments.
Collapse
Affiliation(s)
- Alberto Fuster-Pons
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Alba Murillo-Sánchez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Arnald Marcer
- CREAF, Cerdanyola del Vallès 08193, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Rafael Torres-Pérez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - F Xavier Picó
- Departamento de Biología evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla 41092, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| |
Collapse
|
4
|
Gamba D, Lorts CM, Haile A, Sahay S, Lopez L, Xia T, Takou M, Kulesza E, Elango D, Kerby J, Yifru M, Bulafu CE, Wondimu T, Glowacka K, Lasky JR. The genomics and physiology of abiotic stressors associated with global elevational gradients in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 244:2062-2077. [PMID: 39307956 PMCID: PMC11543515 DOI: 10.1111/nph.20138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/29/2024] [Indexed: 11/08/2024]
Abstract
Phenotypic and genomic diversity in Arabidopsis thaliana may be associated with adaptation along its wide elevational range, but it is unclear whether elevational clines are consistent among different mountain ranges. We took a multi-regional view of selection associated with elevation. In a diverse panel of ecotypes, we measured plant traits under alpine stressors (low CO2 partial pressure, high light, and night freezing) and conducted genome-wide association studies. We found evidence of contrasting locally adaptive regional clines. Western Mediterranean ecotypes showed low water use efficiency (WUE)/early flowering at low elevations to high WUE/late flowering at high elevations. Central Asian ecotypes showed the opposite pattern. We mapped different candidate genes for each region, and some quantitative trait loci (QTL) showed elevational and climatic clines likely maintained by selection. Consistent with regional heterogeneity, trait and QTL clines were evident at regional scales (c. 2000 km) but disappeared globally. Antioxidants and pigmentation rarely showed elevational clines. High elevation east African ecotypes might have higher antioxidant activity under night freezing. Physiological and genomic elevational clines in different regions can be unique, underlining the complexity of local adaptation in widely distributed species, while hindering global trait-environment or genome-environment associations. To tackle the mechanisms of range-wide local adaptation, regional approaches are thus warranted.
Collapse
Affiliation(s)
- Diana Gamba
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Claire M. Lorts
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Asnake Haile
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Seema Sahay
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Lua Lopez
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, California State University San Bernardino, San Bernardino, CA 92407, USA
| | - Tian Xia
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Margarita Takou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Evelyn Kulesza
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Dinakaran Elango
- Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey Kerby
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mistire Yifru
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Collins E. Bulafu
- Department of Plant Sciences, Microbiology and Biotechnology, Makarere University, Kampala 7062, Uganda
| | - Tigist Wondimu
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Katarzyna Glowacka
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Osmond M, Coop G. Estimating dispersal rates and locating genetic ancestors with genome-wide genealogies. eLife 2024; 13:e72177. [PMID: 39589398 DOI: 10.7554/elife.72177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2024] [Indexed: 11/27/2024] Open
Abstract
Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation-by-distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here, we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60 km2/generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.
Collapse
Affiliation(s)
- Matthew Osmond
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Graham Coop
- Department of Evolution & Ecology and Center for Population Biology, University of California, Davis, Davis, United States
| |
Collapse
|
6
|
Bastias CC, Estarague A, Vile D, Gaignon E, Lee CR, Exposito-Alonso M, Violle C, Vasseur F. Ecological trade-offs drive phenotypic and genetic differentiation of Arabidopsis thaliana in Europe. Nat Commun 2024; 15:5185. [PMID: 38890286 PMCID: PMC11189578 DOI: 10.1038/s41467-024-49267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Plant diversity is shaped by trade-offs between traits related to competitive ability, propagule dispersal, and stress resistance. However, we still lack a clear understanding of how these trade-offs influence species distribution and population dynamics. In Arabidopsis thaliana, recent genetic analyses revealed a group of cosmopolitan genotypes that successfully recolonized Europe from its center after the last glaciation, excluding older (relict) lineages from the distribution except for their north and south margins. Here, we tested the hypothesis that cosmopolitans expanded due to higher colonization ability, while relicts persisted at the margins due to higher tolerance to competition and/or stress. We compared the phenotypic and genetic differentiation between 71 European genotypes originating from the center, and the south and north margins. We showed that a trade-off between plant fecundity and seed mass shapes the differentiation of A. thaliana in Europe, suggesting that the success of the cosmopolitan groups could be explained by their high dispersal ability. However, at both north and south margins, we found evidence of selection for alleles conferring low dispersal but highly competitive and stress-resistance abilities. This study sheds light on the role of ecological trade-offs as evolutionary drivers of the distribution and dynamics of plant populations.
Collapse
Affiliation(s)
- Cristina C Bastias
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
- Área de Ecología, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Córdoba, Spain.
| | - Aurélien Estarague
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Elza Gaignon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology & Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | | | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
7
|
Yim C, Bellis ES, DeLeo VL, Gamba D, Muscarella R, Lasky JR. Climate biogeography of Arabidopsis thaliana: linking distribution models and individual variation. JOURNAL OF BIOGEOGRAPHY 2024; 51:560-574. [PMID: 38596256 PMCID: PMC11000247 DOI: 10.1111/jbi.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/19/2023] [Indexed: 04/11/2024]
Abstract
AIM Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range-wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity. LOCATION Global. TAXON Arabidopsis thaliana ("Arabidopsis"). METHODS We fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current, and future climates. We confronted model predictions with individual performance measured on 2,194 herbarium specimens, and we asked whether predicted suitability was associated with life-history and genomic variation measured on ~900 natural accessions. RESULTS The most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate-associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late-flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the center of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well-predicted by our native-range model applied to certain regions but not others, suggesting it has colonized novel climates. MAIN CONCLUSIONS Integration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.
Collapse
Affiliation(s)
- Christina Yim
- Department of Biology, Pennsylvania State University, University Park, USA
| | - Emily S. Bellis
- Department of Biology, Pennsylvania State University, University Park, USA
- Department of Computer Science, Arkansas State University, Jonesboro, USA
| | - Victoria L. DeLeo
- Department of Biology, Pennsylvania State University, University Park, USA
| | - Diana Gamba
- Department of Biology, Pennsylvania State University, University Park, USA
| | - Robert Muscarella
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, USA
| |
Collapse
|
8
|
Sydow P, Murren CJ. Above and belowground phenotypic response to exogenous auxin across Arabidopsis thaliana mutants and natural accessions varies from seedling to reproductive maturity. PeerJ 2024; 12:e16873. [PMID: 38348101 PMCID: PMC10860551 DOI: 10.7717/peerj.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Background Plant hormones influence phenology, development, and function of above and belowground plant structures. In seedlings, auxin influences the initiation and development of lateral roots and root systems. How auxin-related genes influence root initiation at early life stages has been investigated from numerous perspectives. There is a gap in our understanding of how these genes influence root size through the life cycle and in mature plants. Across development, the influence of a particular gene on plant phenotypes is partly regulated by the addition of a poly-A tail to mRNA transcripts via alternative polyadenylation (APA). Auxin related genes have documented variation in APA, with auxin itself contributing to APA site switches. Studies of the influence of exogenous auxin on natural plant accessions and mutants of auxin pathway gene families exhibiting variation in APA are required for a more complete understanding of genotype by development by hormone interactions in whole plant and fitness traits. Methods We studied Arabidopsis thaliana homozygous mutant lines with inserts in auxin-related genes previously identified to exhibit variation in number of APA sites. Our growth chamber experiment included wildtype Col-0 controls, mutant lines, and natural accession phytometers. We applied exogenous auxin through the life cycle. We quantified belowground and aboveground phenotypes in 14 day old, 21 day old seedlings and plants at reproductive maturity. We contrasted root, rosette and flowering phenotypes across wildtype, auxin mutant, and natural accession lines, APA groups, hormone treatments, and life stages using general linear models. Results The root systems and rosettes of mutant lines in auxin related genes varied in response to auxin applications across life stages and varied between genotypes within life stages. In seedlings, exposure to auxin decreased size, but increased lateral root density, whereas at reproductive maturity, plants displayed greater aboveground mass and total root length. These differences may in part be due to a shift which delayed the reproductive stage when plants were treated with auxin. Root traits of auxin related mutants depended on the number of APA sites of mutant genes and the plant's developmental stage. Mutants with inserts in genes with many APA sites exhibited lower early seedling belowground biomass than those with few APA sites but only when exposed to exogenous auxin. As we observed different responses to exogenous auxin across the life cycle, we advocate for further studies of belowground traits and hormones at reproductive maturity. Studying phenotypic variation of genotypes across life stages and hormone environments will uncover additional shared patterns across traits, assisting efforts to potentially reach breeding targets and enhance our understanding of variation of genotypes in natural systems.
Collapse
Affiliation(s)
- Patrick Sydow
- Department of Biology, College of Charleston, Charleston, SC, United States
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Courtney J. Murren
- Department of Biology, College of Charleston, Charleston, SC, United States
| |
Collapse
|
9
|
Baumgarten L, Pieper B, Song B, Mane S, Lempe J, Lamb J, Cooke EL, Srivastava R, Strütt S, Žanko D, Casimiro PGP, Hallab A, Cartolano M, Tattersall AD, Huettel B, Filatov DA, Pavlidis P, Neuffer B, Bazakos C, Schaefer H, Mott R, Gan X, Alonso-Blanco C, Laurent S, Tsiantis M. Pan-European study of genotypes and phenotypes in the Arabidopsis relative Cardamine hirsuta reveals how adaptation, demography, and development shape diversity patterns. PLoS Biol 2023; 21:e3002191. [PMID: 37463141 PMCID: PMC10353826 DOI: 10.1371/journal.pbio.3002191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/10/2023] [Indexed: 07/20/2023] Open
Abstract
We study natural DNA polymorphisms and associated phenotypes in the Arabidopsis relative Cardamine hirsuta. We observed strong genetic differentiation among several ancestry groups and broader distribution of Iberian relict strains in European C. hirsuta compared to Arabidopsis. We found synchronization between vegetative and reproductive development and a pervasive role for heterochronic pathways in shaping C. hirsuta natural variation. A single, fast-cycling ChFRIGIDA allele evolved adaptively allowing range expansion from glacial refugia, unlike Arabidopsis where multiple FRIGIDA haplotypes were involved. The Azores islands, where Arabidopsis is scarce, are a hotspot for C. hirsuta diversity. We identified a quantitative trait locus (QTL) in the heterochronic SPL9 transcription factor as a determinant of an Azorean morphotype. This QTL shows evidence for positive selection, and its distribution mirrors a climate gradient that broadly shaped the Azorean flora. Overall, we establish a framework to explore how the interplay of adaptation, demography, and development shaped diversity patterns of 2 related plant species.
Collapse
Affiliation(s)
- Lukas Baumgarten
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sébastien Mane
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Janne Lempe
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan Lamb
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth L. Cooke
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rachita Srivastava
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stefan Strütt
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Danijela Žanko
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Asis Hallab
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maria Cartolano
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology, Crete, Greece
| | - Barbara Neuffer
- Department of Botany, University of Osnabrück, Osnabrück, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hanno Schaefer
- Department Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Richard Mott
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Carlos Alonso-Blanco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
10
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
11
|
Christenhusz MJ, Twyford AD, Hudson A, Royal Botanic Gardens Kew Genome Acquisition Lab, Royal Botanic Garden Edinburgh Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. The genome sequence of thale cress, Arabidopsis thaliana (Heynh., 1842). Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18665.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We present a genome assembly of an Arabidopsis thaliana specimen (thale cress; Streptophyta; Magnoliopsida; Brassicales; Brassicaceae). The genome sequence spans 138 megabases. Most of the assembly (98.76%) is scaffolded into five chromosomal pseudomolecules. The mitochondrial and plastid genomes were also assembled and are 368.8 and 154.5 kilobases in length respectively.
Collapse
|
12
|
Castillo-Bravo R, Fort A, Cashell R, Brychkova G, McKeown PC, Spillane C. Parent-of-Origin Effects on Seed Size Modify Heterosis Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:835219. [PMID: 35330872 PMCID: PMC8940307 DOI: 10.3389/fpls.2022.835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 05/05/2023]
Abstract
Parent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis. We demonstrate that the paternally derived genome influences F1 seed size more significantly than previously appreciated. We further demonstrate (by disruption of parental genome dosage balance in F1 triploid seeds) that hybridity acts as an enhancer of genome dosage effects on F1 seed size, beyond that observed from hybridity or genome dosage effects on their own. Our findings indicate that interactions between genetic hybridity and parental genome dosage can enhance heterosis effects in plants, opening new avenues for boosting heterosis breeding in crop plants.
Collapse
|
13
|
Shirsekar G, Devos J, Latorre SM, Blaha A, Queiroz Dias M, González Hernando A, Lundberg DS, Burbano HA, Fenster CB, Weigel D. Multiple Sources of Introduction of North American Arabidopsis thaliana from across Eurasia. Mol Biol Evol 2021; 38:5328-5344. [PMID: 34499163 PMCID: PMC8662644 DOI: 10.1093/molbev/msab268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Large-scale movement of organisms across their habitable range, or migration, is an important evolutionary process that can shape genetic diversity and influence the adaptive spread of alleles. Although human migrations have been studied in great detail with modern and ancient genomes, recent anthropogenic influence on reducing the biogeographical constraints on the migration of nonnative species has presented opportunities in several study systems to ask the questions about how repeated introductions shape genetic diversity in the introduced range. We present an extensive overview of population structure of North American Arabidopsis thaliana by studying a set of 500 whole-genome sequenced and over 2,800 RAD-seq genotyped individuals in the context of global diversity represented by Afro-Eurasian genomes. We use methods based on haplotype and rare-allele sharing as well as phylogenetic modeling to identify likely sources of introductions of extant N. American A. thaliana from the native range in Africa and Eurasia. We find evidence of admixture among the introduced lineages having increased haplotype diversity and reduced mutational load. We also detect signals of selection in immune-system-related genes that may impart qualitative disease resistance to pathogens of bacterial and oomycete origin. We conclude that multiple introductions to a nonnative range can rapidly enhance the adaptive potential of a colonizing species by increasing haplotypic diversity through admixture. Our results lay the foundation for further investigations into the functional significance of admixture.
Collapse
Affiliation(s)
- Gautam Shirsekar
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jane Devos
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sergio M Latorre
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Centre for Life’s Origin and Evolution, University College London, London, United Kingdom
| | - Andreas Blaha
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | - Derek S Lundberg
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hernán A Burbano
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Centre for Life’s Origin and Evolution, University College London, London, United Kingdom
| | - Charles B Fenster
- Oak Lake Field Station, Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
14
|
Picart-Picolo A, Grob S, Picault N, Franek M, Llauro C, Halter T, Maier TR, Jobet E, Descombin J, Zhang P, Paramasivan V, Baum TJ, Navarro L, Dvořáčková M, Mirouze M, Pontvianne F. Large tandem duplications affect gene expression, 3D organization, and plant-pathogen response. Genome Res 2020; 30:1583-1592. [PMID: 33033057 PMCID: PMC7605254 DOI: 10.1101/gr.261586.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant–pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.
Collapse
Affiliation(s)
- Ariadna Picart-Picolo
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Stefan Grob
- Institute of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Nathalie Picault
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Christel Llauro
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Thierry Halter
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Edouard Jobet
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Julie Descombin
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Panpan Zhang
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | | | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Lionel Navarro
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Marie Mirouze
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | - Frédéric Pontvianne
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| |
Collapse
|
15
|
Blackwell AR, Dluzewska J, Szymanska-Lejman M, Desjardins S, Tock AJ, Kbiri N, Lambing C, Lawrence EJ, Bieluszewski T, Rowan B, Higgins JD, Ziolkowski PA, Henderson IR. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J 2020; 39:e104858. [PMID: 32935357 PMCID: PMC7604573 DOI: 10.15252/embj.2020104858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.
Collapse
Affiliation(s)
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stuart Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana. Nat Commun 2020; 11:4140. [PMID: 32811829 PMCID: PMC7435183 DOI: 10.1038/s41467-020-17896-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 07/16/2020] [Indexed: 01/06/2023] Open
Abstract
Investigating the evolution of complex phenotypes and the underlying molecular bases of their variation is critical to understand how organisms adapt to their environment. Applying classical quantitative genetics on a segregating population derived from a Can-0xCol-0 cross, we identify the MADS-box transcription factor FLOWERING LOCUS M (FLM) as a player of the phenotypic variation in plant growth and color. We show that allelic variation at FLM modulates plant growth strategy along the leaf economics spectrum, a trade-off between resource acquisition and resource conservation, observable across thousands of plant species. Functional differences at FLM rely on a single intronic substitution, disturbing transcript splicing and leading to the accumulation of non-functional FLM transcripts. Associations between this substitution and phenotypic and climatic data across Arabidopsis natural populations, show how noncoding genetic variation at a single gene might be adaptive through pleiotropic effects. FLOWERING LOCUS M (FLM) is known as a repressor of Arabidopsis flowering. Here, the authors show that a single intronic substitution of FLM modulates leaf color and plant growth strategy along the leaf economics spectrum, as well as plays a role in plant adaptation.
Collapse
|
17
|
Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F. A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell 2019; 178:1260-1272.e14. [PMID: 31442410 PMCID: PMC6709784 DOI: 10.1016/j.cell.2019.07.038] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.
Collapse
Affiliation(s)
- Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Freddy Monteiro
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Oliver J Furzer
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marc T Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Volkan Cevik
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Milner Centre for Evolution & Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jeffery L Dangl
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Abstract
With the origin of pollination in ancient seed plants, the male gametophyte ("pollen") began to evolve a new and unique life history stage, the progamic phase, a post-pollination period in which pollen sexual maturation occurs in interaction with sporophyte-derived tissues. Pollen performance traits mediate the timing of the fertilization process, often in competition with other pollen, via the speed of pollen germination, sperm development, and pollen tube growth. Studies of pollen development rarely address the issue of performance or its evolution, which involves linking variation in developmental rates to relative fitness within populations or to adaptations on a macroevolutionary scale. Modifications to the pollen tube pathway and changes in the intensity of pollen competition affect the direction and strength of selection on pollen performance. Hence, pollen developmental evolution is always contextual-it involves both the population biology of pollen reaching stigmas and the co-evolution of sporophytic traits, such as the pollen tube pathway and mating system. For most species, performance evolution generally reflects a wandering history of periods of directional selection and relaxed selection, channeled by developmental limitations, a pattern that favors the accumulation of diversity and redundancy in developmental mechanisms and the genetic machinery. Developmental biologists are focused on finding universal mechanisms that underlie pollen function, and these are largely mechanisms that have evolved through their effects on performance. Here, we suggest ways in which studies of pollen performance or function could progress by cross-fertilization between the "evo" and "devo" fields.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - John B Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|