1
|
Dunken N, Widmer H, Balcke GU, Straube H, Langen G, Charura NM, Saake P, De Quattro C, Schön J, Rövenich H, Wawra S, Khan M, Djamei A, Zurbriggen MD, Tissier A, Witte CP, Zuccaro A. A nucleoside signal generated by a fungal endophyte regulates host cell death and promotes root colonization. Cell Host Microbe 2024; 32:2161-2177.e7. [PMID: 39603244 DOI: 10.1016/j.chom.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
The intracellular colonization of plant roots by the beneficial fungal endophyte Serendipita indica follows a biphasic strategy, including a host cell death phase that enables successful colonization of Arabidopsis thaliana roots. How host cell death is initiated and controlled is largely unknown. Here, we show that two fungal enzymes, the ecto-5'-nucleotidase SiE5NT and the nuclease SiNucA, act synergistically in the apoplast at the onset of cell death to produce deoxyadenosine (dAdo). The uptake of extracellular dAdo but not the structurally related adenosine activates cell death via the equilibrative nucleoside transporter ENT3. We identified a previously uncharacterized Toll-like interleukin 1 receptor (TIR)-nucleotide-binding leucine-rich repeat receptor (NLR) protein, ISI (induced by S. indica), as an intracellular factor that affects host cell death, fungal colonization, and growth promotion. Our data show that the combined activity of two fungal apoplastic enzymes promotes the production of a metabolite that engages TIR-NLR-modulated pathways to induce plant cell death, providing a link to immunometabolism in plants.
Collapse
Affiliation(s)
- Nick Dunken
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Heidi Widmer
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Henryk Straube
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover Germany; Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Gregor Langen
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Nyasha M Charura
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Concetta De Quattro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Jonas Schön
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany; Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Hanna Rövenich
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Stephan Wawra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Matias D Zurbriggen
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany; Institute of Synthetic Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany; Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Claus-Peter Witte
- Molecular Nutrition and Biochemistry of Plants, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover Germany
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
2
|
Fuertes-Rabanal M, Largo-Gosens A, Fischer A, Munzert KS, Carrasco-López C, Sánchez-Vallet A, Engelsdorf T, Mélida H. Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7337-7350. [PMID: 39225413 PMCID: PMC11630039 DOI: 10.1093/jxb/erae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Immune responses in plants are triggered by molecular patterns or elicitors, recognized by plant pattern recognition receptors. Such molecular patterns are the consequence of host-pathogen interactions, and the response cascade activated after their perception is known as pattern-triggered immunity (PTI). Glucans have emerged as key players in PTI, but the ability of certain glucans to stimulate defensive responses in plants remains understudied. This work focused on identifying novel glucan oligosaccharides as molecular patterns. The ability of various microorganism-derived glucans to trigger PTI responses was tested, revealing that specific microbial-derived molecules, such as short linear β-1,2-glucans, trigger this response in plants by increasing the production of reactive oxygen species (ROS), mitogen-activated protein kinase phosphorylation, and differential expression of defence-related genes in Arabidopsis thaliana. Pre-treatments with β-1,2-glucan trisaccharide (B2G3) improved Arabidopsis defence against bacterial and fungal infections in a hypersusceptible genotype. The knowledge generated was then transferred to the monocotyledonous model species maize and wheat, demonstrating that these plants also respond to β-1,2-glucans, with increased ROS production and improved protection against fungal infections following B2G3 pre-treatments. In summary, as with other β-glucans, plants perceive β-1,2-glucans as warning signals which stimulate defence responses against phytopathogens.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Alicia Fischer
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kristina S Munzert
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Timo Engelsdorf
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
3
|
Eichfeld R, Mahdi LK, De Quattro C, Armbruster L, Endeshaw AB, Miyauchi S, Hellmann MJ, Cord-Landwehr S, Peterson D, Singan V, Lail K, Savage E, Ng V, Grigoriev IV, Langen G, Moerschbacher BM, Zuccaro A. Transcriptomics reveal a mechanism of niche defense: two beneficial root endophytes deploy an antimicrobial GH18-CBM5 chitinase to protect their hosts. THE NEW PHYTOLOGIST 2024; 244:980-996. [PMID: 39224928 DOI: 10.1111/nph.20080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Effector secretion is crucial for root endophytes to establish and protect their ecological niche. We used time-resolved transcriptomics to monitor effector gene expression dynamics in two closely related Sebacinales, Serendipita indica and Serendipita vermifera, during symbiosis with three plant species, competition with the phytopathogenic fungus Bipolaris sorokiniana, and cooperation with root-associated bacteria. We observed increased effector gene expression in response to biotic interactions, particularly with plants, indicating their importance in host colonization. Some effectors responded to both plants and microbes, suggesting dual roles in intermicrobial competition and plant-microbe interactions. A subset of putative antimicrobial effectors, including a GH18-CBM5 chitinase, was induced exclusively by microbes. Functional analyses of this chitinase revealed its antimicrobial and plant-protective properties. We conclude that dynamic effector gene expression underpins the ability of Sebacinales to thrive in diverse ecological niches with a single fungal chitinase contributing substantially to niche defense.
Collapse
Affiliation(s)
- Ruben Eichfeld
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Lisa K Mahdi
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Concetta De Quattro
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Laura Armbruster
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| | - Asmamaw B Endeshaw
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Shingo Miyauchi
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Daniel Peterson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kathleen Lail
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Gregor Langen
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, 48149, Germany
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, 50674, Germany
| |
Collapse
|
4
|
van Boerdonk S, Saake P, Wanke A, Neumann U, Zuccaro A. β-Glucan-binding proteins are key modulators of immunity and symbiosis in mutualistic plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102610. [PMID: 39106787 DOI: 10.1016/j.pbi.2024.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024]
Abstract
In order to discriminate between detrimental, commensal, and beneficial microbes, plants rely on polysaccharides such as β-glucans, which are integral components of microbial and plant cell walls. The conversion of cell wall-associated β-glucan polymers into a specific outcome that affects plant-microbe interactions is mediated by hydrolytic and non-hydrolytic β-glucan-binding proteins. These proteins play crucial roles during microbial colonization: they influence the composition and resilience of host and microbial cell walls, regulate the homeostasis of apoplastic concentrations of β-glucan oligomers, and mediate β-glucan perception and signaling. This review outlines the dual roles of β-glucans and their binding proteins in plant immunity and symbiosis, highlighting recent discoveries on the role of β-glucan-binding proteins as modulators of immunity and as symbiosis receptors involved in the fine-tuning of microbial accommodation.
Collapse
Affiliation(s)
- Sarah van Boerdonk
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Alan Wanke
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
5
|
Zambounis A, Boutsika A, Gray N, Hossain M, Chatzidimopoulos M, Tsitsigiannis DI, Paplomatas E, Hane J. Pan-genome survey of Septoria pistaciarum, causal agent of Septoria leaf spot of pistachios, across three Aegean sub-regions of Greece. Front Microbiol 2024; 15:1396760. [PMID: 38919498 PMCID: PMC11196620 DOI: 10.3389/fmicb.2024.1396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Septoria pistaciarum, a causal agent of Septoria leaf spot disease of pistachio, is a fungal pathogen that causes substantial losses in the cultivation, worldwide. This study describes the first pan-genome-based survey of this phytopathogen-comprising a total of 27 isolates, with 9 isolates each from 3 regional units of Greece (Pieria, Larissa and Fthiotida). The reference isolate (SPF8) assembled into a total of 43.1 Mb, with 38.6% contained within AT-rich regions of approximately 37.5% G:C. The genomes of the 27 isolates exhibited on average 42% gene-coding and 20% repetitive regions. The genomes of isolates from the southern Fthiotida region appeared to more diverged from each other than the other regions based on SNP-derived trees, and also contained isolates similar to both the Pieria and Larissa regions. In contrast, isolates of the Pieria and Larissa were less diverse and distinct from one another. Asexual reproduction appeared to be typical, with no MAT1-2 locus detected in any isolate. Genome-based prediction of infection mode indicated hemibiotrophic and saprotrophic adaptations, consistent with its long latent phase. Gene prediction and orthology clustering generated a pan-genome-wide gene set of 21,174 loci. A total of 59 ortholog groups were predicted to contain candidate effector proteins, with 36 (61%) of these either having homologs to known effectors from other species or could be assigned predicted functions from matches to conserved domains. Overall, effector prediction suggests that S. pistaciarum employs a combination of defensive effectors with roles in suppression of host defenses, and offensive effectors with a range of cytotoxic activities. Some effector-like ortholog groups presented as divergent versions of the same protein, suggesting region-specific adaptations may have occurred. These findings provide insights and future research directions in uncovering the pathogenesis and population dynamics of S. pistaciarum toward the efficient management of Septoria leaf spot of pistachio.
Collapse
Affiliation(s)
- Antonios Zambounis
- Hellenic Agricultural Organization - DIMITRA (ELGO - DIMITRA), Institute of Plant Breeding and Genetic Resources, Thessaloniki, Greece
| | - Anastasia Boutsika
- Hellenic Agricultural Organization - DIMITRA (ELGO - DIMITRA), Institute of Plant Breeding and Genetic Resources, Thessaloniki, Greece
| | - Naomi Gray
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Mohitul Hossain
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Michael Chatzidimopoulos
- Laboratory of Plant Pathology, Department of Agriculture, International Hellenic University, Thessaloniki, Greece
| | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - James Hane
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
6
|
John E, Chau MQ, Hoang CV, Chandrasekharan N, Bhaskar C, Ma LS. Fungal Cell Wall-Associated Effectors: Sensing, Integration, Suppression, and Protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:196-210. [PMID: 37955547 DOI: 10.1094/mpmi-09-23-0142-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The cell wall (CW) of plant-interacting fungi, as the direct interface with host plants, plays a crucial role in fungal development. A number of secreted proteins are directly associated with the fungal CW, either through covalent or non-covalent interactions, and serve a range of important functions. In the context of plant-fungal interactions many are important for fungal development in the host environment and may therefore be considered fungal CW-associated effectors (CWAEs). Key CWAE functions include integrating chemical/physical signals to direct hyphal growth, interfering with plant immunity, and providing protection against plant defenses. In recent years, a diverse range of mechanisms have been reported that underpin their roles, with some CWAEs harboring conserved motifs or functional domains, while others are reported to have novel features. As such, the current understanding regarding fungal CWAEs is systematically presented here from the perspective of their biological functions in plant-fungal interactions. An overview of the fungal CW architecture and the mechanisms by which proteins are secreted, modified, and incorporated into the CW is first presented to provide context for their biological roles. Some CWAE functions are reported across a broad range of pathosystems or symbiotic/mutualistic associations. Prominent are the chitin interacting-effectors that facilitate fungal CW modification, protection, or suppression of host immune responses. However, several alternative functions are now reported and are presented and discussed. CWAEs can play diverse roles, some possibly unique to fungal lineages and others conserved across a broad range of plant-interacting fungi. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Evan John
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Minh-Quang Chau
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cuong V Hoang
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
| | | | - Chibbhi Bhaskar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
8
|
Chavarro-Carrero EA, Snelders NC, Torres DE, Kraege A, López-Moral A, Petti GC, Punt W, Wieneke J, García-Velasco R, López-Herrera CJ, Seidl MF, Thomma BPHJ. The soil-borne white root rot pathogen Rosellinia necatrix expresses antimicrobial proteins during host colonization. PLoS Pathog 2024; 20:e1011866. [PMID: 38236788 PMCID: PMC10796067 DOI: 10.1371/journal.ppat.1011866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Rosellinia necatrix is a prevalent soil-borne plant-pathogenic fungus that is the causal agent of white root rot disease in a broad range of host plants. The limited availability of genomic resources for R. necatrix has complicated a thorough understanding of its infection biology. Here, we sequenced nine R. necatrix strains with Oxford Nanopore sequencing technology, and with DNA proximity ligation we generated a gapless assembly of one of the genomes into ten chromosomes. Whereas many filamentous pathogens display a so-called two-speed genome with more dynamic and more conserved compartments, the R. necatrix genome does not display such genome compartmentalization. It has recently been proposed that fungal plant pathogens may employ effectors with antimicrobial activity to manipulate the host microbiota to promote infection. In the predicted secretome of R. necatrix, 26 putative antimicrobial effector proteins were identified, nine of which are expressed during plant colonization. Two of the candidates were tested, both of which were found to possess selective antimicrobial activity. Intriguingly, some of the inhibited bacteria are antagonists of R. necatrix growth in vitro and can alleviate R. necatrix infection on cotton plants. Collectively, our data show that R. necatrix encodes antimicrobials that are expressed during host colonization and that may contribute to modulation of host-associated microbiota to stimulate disease development.
Collapse
Affiliation(s)
- Edgar A. Chavarro-Carrero
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Nick C. Snelders
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - David E. Torres
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Anton Kraege
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Ana López-Moral
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Gabriella C. Petti
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Wilko Punt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Jan Wieneke
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Rómulo García-Velasco
- Laboratory of Phytopathology, Tenancingo University Center, Autonomous University of the State of Mexico, Tenancingo, State of Mexico, Mexico
| | - Carlos J. López-Herrera
- CSIC, Instituto de Agricultura Sostenible, Dept. Protección de Cultivos, C/Alameda del Obispo s/n, Córdoba, Spain
| | - Michael F. Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Riseh RS, Vazvani MG, Kennedy JF. β-glucan-induced disease resistance in plants: A review. Int J Biol Macromol 2023; 253:127043. [PMID: 37742892 DOI: 10.1016/j.ijbiomac.2023.127043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are caused by various factors, including both pathogenic and non-pathogenic ones. β-glucan primarily originates from bacteria and fungi, some species of these organisms work as biological agents in causing diseases. When β-glucan enters plants, it triggers the defense system, leading to various reactions such as the production of proteins related to pathogenicity and defense enzymes. By extracting β-glucan from disturbed microorganisms and using it as an inducing agent, plant diseases can be effectively controlled by activating the plant's defense system. β-glucan plays a crucial role during the interaction between plants and pathogens. Therefore, modeling the plant-pathogen relationship and using the molecules involved in this interaction can help in controlling plant diseases, as pathogens have genes related to resistance against pathogenicity. Thus, it is reasonable to identify and use biological induction agents at a large scale by extracting these compounds.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
10
|
Wang J, Liu M, Mao C, Li S, Zhou J, Fan Y, Guo L, Yu H, Yang X. Comparative proteomics reveals the mechanism of cyclosporine production and mycelial growth in Tolypocladium inflatum affected by different carbon sources. Front Microbiol 2023; 14:1259101. [PMID: 38163081 PMCID: PMC10757567 DOI: 10.3389/fmicb.2023.1259101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Cyclosporine A (CsA) is a secondary cyclopeptide metabolite produced by Tolypocladium inflatum that is widely used clinically as an immunosuppressant. CsA production and mycelial growth differed when T. inflatum was cultured in different carbon source media. During early fermentation, CsA was preferred to be produced in fructose medium, while the mycelium preferred to accumulate in sucrose medium. On the sixth day, the difference was most pronounced. In this study, high-throughput comparative proteomics methods were applied to analyze differences in protein expression of mycelial samples on day 6, revealing the proteins and mechanisms that positively regulate CsA production related to carbon metabolism. The differences included small molecule acid metabolism, lipid metabolism, organic catabolism, exocrine secretion, CsA substrate Bmt synthesis, and transcriptional regulation processes. The proteins involved in the regulation of mycelial growth related to carbon metabolism were also revealed and were associated with waste reoxidation processes or coenzyme metabolism, small molecule synthesis or metabolism, the stress response, genetic information or epigenetic changes, cell component assembly, cell wall integrity, membrane metabolism, vesicle transport, intramembrane localization, and the regulation of filamentous growth. This study provides a reliable reference for CsA production from high-efficiency fermentation. This study provides key information for obtaining more CsA high-yielding strains through metabolic engineering strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiuqing Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
11
|
Wanke A, van Boerdonk S, Mahdi LK, Wawra S, Neidert M, Chandrasekar B, Saake P, Saur IML, Derbyshire P, Holton N, Menke FLH, Brands M, Pauly M, Acosta IF, Zipfel C, Zuccaro A. A GH81-type β-glucan-binding protein enhances colonization by mutualistic fungi in barley. Curr Biol 2023; 33:5071-5084.e7. [PMID: 37977140 DOI: 10.1016/j.cub.2023.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Cell walls are important interfaces of plant-fungal interactions, acting as robust physical and chemical barriers against invaders. Upon fungal colonization, plants deposit phenolics and callose at the sites of fungal penetration to prevent further fungal progression. Alterations in the composition of plant cell walls significantly impact host susceptibility. Furthermore, plants and fungi secrete glycan hydrolases acting on each other's cell walls. These enzymes release various sugar oligomers into the apoplast, some of which activate host immunity via surface receptors. Recent characterization of cell walls from plant-colonizing fungi has emphasized the abundance of β-glucans in different cell wall layers, which makes them suitable targets for recognition. To characterize host components involved in immunity against fungi, we performed a protein pull-down with the biotinylated β-glucan laminarin. Thereby, we identified a plant glycoside hydrolase family 81-type glucan-binding protein (GBP) as a β-glucan interactor. Mutation of GBP1 and its only paralog, GBP2, in barley led to decreased colonization by the beneficial root endophytes Serendipita indica and S. vermifera, as well as the arbuscular mycorrhizal fungus Rhizophagus irregularis. The reduction of colonization was accompanied by enhanced responses at the host cell wall, including an extension of callose-containing cell wall appositions. Moreover, GBP mutation in barley also reduced fungal biomass in roots by the hemibiotrophic pathogen Bipolaris sorokiniana and inhibited the penetration success of the obligate biotrophic leaf pathogen Blumeria hordei. These results indicate that GBP1 is involved in the establishment of symbiotic associations with beneficial fungi-a role that has potentially been appropriated by barley-adapted pathogens.
Collapse
Affiliation(s)
- Alan Wanke
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah van Boerdonk
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lisa Katharina Mahdi
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stephan Wawra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Miriam Neidert
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Balakumaran Chandrasekar
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Nicholas Holton
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Mathias Brands
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK; Institute of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
12
|
Lu K, Chen R, Yang Y, Xu H, Jiang J, Li L. Involvement of the Cell Wall-Integrity Pathway in Signal Recognition, Cell-Wall Biosynthesis, and Virulence in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:608-622. [PMID: 37140471 DOI: 10.1094/mpmi-11-22-0231-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The fungal cell wall is the first layer exposed to the external environment. The cell wall has key roles in regulating cell functions, such as cellular stability, permeability, and protection against stress. Understanding the structure of the cell wall and the mechanism of its biogenesis is important for the study of fungi. Highly conserved in fungi, including Magnaporthe oryzae, the cell wall-integrity (CWI) pathway is the primary signaling cascade regulating cell-wall structure and function. The CWI pathway has been demonstrated to correlate with pathogenicity in many phytopathogenic fungi. In the synthesis of the cell wall, the CWI pathway cooperates with multiple signaling pathways to regulate cell morphogenesis and secondary metabolism. Many questions have arisen regarding the cooperation of different signaling pathways with the CWI pathway in regulating cell-wall synthesis and pathogenicity. In this review, we summarized the latest advances in the M. oryzae CWI pathway and cell-wall structure. We discussed the CWI pathway components and their involvement in different aspects, such as virulence factors, the possibility of the pathway as a target for antifungal therapies, and crosstalk with other signaling pathways. This information will aid in better understanding the universal functions of the CWI pathway in regulating cell-wall synthesis and pathogenicity in M. oryzae. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kailun Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rangrang Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Hui Xu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lianwei Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Osborne R, Rehneke L, Lehmann S, Roberts J, Altmann M, Altmann S, Zhang Y, Köpff E, Dominguez-Ferreras A, Okechukwu E, Sergaki C, Rich-Griffin C, Ntoukakis V, Eichmann R, Shan W, Falter-Braun P, Schäfer P. Symbiont-host interactome mapping reveals effector-targeted modulation of hormone networks and activation of growth promotion. Nat Commun 2023; 14:4065. [PMID: 37429856 DOI: 10.1038/s41467-023-39885-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Plants have benefited from interactions with symbionts for coping with challenging environments since the colonisation of land. The mechanisms of symbiont-mediated beneficial effects and similarities and differences to pathogen strategies are mostly unknown. Here, we use 106 (effector-) proteins, secreted by the symbiont Serendipita indica (Si) to modulate host physiology, to map interactions with Arabidopsis thaliana host proteins. Using integrative network analysis, we show significant convergence on target-proteins shared with pathogens and exclusive targeting of Arabidopsis proteins in the phytohormone signalling network. Functional in planta screening and phenotyping of Si effectors and interacting proteins reveals previously unknown hormone functions of Arabidopsis proteins and direct beneficial activities mediated by effectors in Arabidopsis. Thus, symbionts and pathogens target a shared molecular microbe-host interface. At the same time Si effectors specifically target the plant hormone network and constitute a powerful resource for elucidating the signalling network function and boosting plant productivity.
Collapse
Affiliation(s)
- Rory Osborne
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Silke Lehmann
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Laboratory of Biotechnology and Marine Chemistry LBCM, EA3884, IUEM, Southern Brittany University, 56000, Vannes, France
| | - Jemma Roberts
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Melina Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Stefan Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Eva Köpff
- Institute of Molecular Botany, Ulm University, 89069, Ulm, Germany
| | | | - Emeka Okechukwu
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Pascal Falter-Braun
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany.
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University München, 82152, Planegg-Martinsried, Germany.
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
14
|
Zhang L, Dong C, Wang J, Liu M, Wang J, Hu J, Liu L, Liu X, Xia C, Zhong L, Zhao Y, Ye X, Huang Y, Fan J, Cao H, Wang J, Li Y, Wall D, Li Z, Cui Z. Predation of oomycetes by myxobacteria via a specialized CAZyme system arising from adaptive evolution. THE ISME JOURNAL 2023; 17:1089-1103. [PMID: 37156836 PMCID: PMC10284895 DOI: 10.1038/s41396-023-01423-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp. AC19 secretes a carbohydrate-active enzyme (CAZyme) cocktail during predation on oomycetes Phytophthora. These enzymes include three specialized β-1,3-glucanases (AcGlu13.1, -13.2 and -13.3) that act as a cooperative consortium to target β-1,3-glucans of Phytophthora. However, the CAZymes showed no hydrolytic effects on fungal cells, even though fungi contain β-1,3-glucans. Heterologous expression of AcGlu13.1, -13.2 or -13.3 enzymes in Myxococcus xanthus DK1622, a model myxobacterium that antagonizes but does not predate on P. sojae, conferred a cooperative and mycophagous ability that stably maintains myxobacteria populations as a mixture of engineered strains. Comparative genomic analyses suggest that these CAZymes arose from adaptive evolution among Cystobacteriaceae myxobacteria for a specific prey killing behavior, whereby the presence of Phytophthora promotes growth of myxobacterial taxa by nutrient release and consumption. Our findings demonstrate that this lethal combination of CAZymes transforms a non-predatory myxobacterium into a predator with the ability to feed on Phytophthora, and provides new insights for understanding predator-prey interactions. In summary, our work extends the repertoire of myxobacteria predatory strategies and their evolution, and suggests that these CAZymes can be engineered as a functional consortium into strains for biocontrol of Phytophothora diseases and hence crop protection.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaonan Dong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Juying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiexiong Hu
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqin Fan
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
16
|
Kelly S, Hansen SB, Rübsam H, Saake P, Pedersen EB, Gysel K, Madland E, Wu S, Wawra S, Reid D, Sullivan JT, Blahovska Z, Vinther M, Muszynski A, Azadi P, Thygesen MB, Aachmann FL, Ronson CW, Zuccaro A, Andersen KR, Radutoiu S, Stougaard J. A glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia in the legume Lotus japonicus. PLoS Biol 2023; 21:e3002127. [PMID: 37200394 DOI: 10.1371/journal.pbio.3002127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 05/31/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined β-1,3/β-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.
Collapse
Affiliation(s)
- Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simon B Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Henriette Rübsam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Pia Saake
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Plant Sciences, Cologne, Germany
| | - Emil B Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Eva Madland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shunliang Wu
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Plant Sciences, Cologne, Germany
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zuzana Blahovska
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Vinther
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Artur Muszynski
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Finn L Aachmann
- NOBIPOL (Norwegian Biopolymer Laboratory), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alga Zuccaro
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Plant Sciences, Cologne, Germany
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Dutta P, Mahanta M, Singh SB, Thakuria D, Deb L, Kumari A, Upamanya GK, Boruah S, Dey U, Mishra AK, Vanlaltani L, VijayReddy D, Heisnam P, Pandey AK. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1145715. [PMID: 37255560 PMCID: PMC10225716 DOI: 10.3389/fpls.2023.1145715] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Trichoderma spp. (Hypocreales) are used worldwide as a lucrative biocontrol agent. The interactions of Trichoderma spp. with host plants and pathogens at a molecular level are important in understanding the various mechanisms adopted by the fungus to attain a close relationship with their plant host through superior antifungal/antimicrobial activity. When working in synchrony, mycoparasitism, antibiosis, competition, and the induction of a systemic acquired resistance (SAR)-like response are considered key factors in deciding the biocontrol potential of Trichoderma. Sucrose-rich root exudates of the host plant attract Trichoderma. The soluble secretome of Trichoderma plays a significant role in attachment to and penetration and colonization of plant roots, as well as modulating the mycoparasitic and antibiosis activity of Trichoderma. This review aims to gather information on how Trichoderma interacts with host plants and its role as a biocontrol agent of soil-borne phytopathogens, and to give a comprehensive account of the diverse molecular aspects of this interaction.
Collapse
Affiliation(s)
- Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Madhusmita Mahanta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | | | - Dwipendra Thakuria
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Arti Kumari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Gunadhya K. Upamanya
- Sarat Chandra Singha (SCS) College of Agriculture, Assam Agricultural University (Jorhat), Dhubri, Assam, India
| | - Sarodee Boruah
- Krishi Vigyan Kendra (KVK)-Tinsukia, Assam Agricultural University (Jorhat), Tinsukia, Assam, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Tripura, Sepahijala, India
| | - A. K. Mishra
- Department of Plant Pathology, Dr Rajendra Prasad Central Agricultural University, Bihar, Samastipur, India
| | - Lydia Vanlaltani
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Dumpapenchala VijayReddy
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Punabati Heisnam
- Department of Agronomy, Central Agricultural University (Imphal), Pasighat, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional, R & D Center, Jalpaiguri, West Bengal, India
| |
Collapse
|
18
|
Municio-Diaz C, Muller E, Drevensek S, Fruleux A, Lorenzetti E, Boudaoud A, Minc N. Mechanobiology of the cell wall – insights from tip-growing plant and fungal cells. J Cell Sci 2022; 135:280540. [DOI: 10.1242/jcs.259208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABSTRACT
The cell wall (CW) is a thin and rigid layer encasing the membrane of all plant and fungal cells. It ensures mechanical integrity by bearing mechanical stresses derived from large cytoplasmic turgor pressure, contacts with growing neighbors or growth within restricted spaces. The CW is made of polysaccharides and proteins, but is dynamic in nature, changing composition and geometry during growth, reproduction or infection. Such continuous and often rapid remodeling entails risks of enhanced stress and consequent damages or fractures, raising the question of how the CW detects and measures surface mechanical stress and how it strengthens to ensure surface integrity? Although early studies in model fungal and plant cells have identified homeostatic pathways required for CW integrity, recent methodologies are now allowing the measurement of pressure and local mechanical properties of CWs in live cells, as well as addressing how forces and stresses can be detected at the CW surface, fostering the emergence of the field of CW mechanobiology. Here, using tip-growing cells of plants and fungi as case study models, we review recent progress on CW mechanosensation and mechanical regulation, and their implications for the control of cell growth, morphogenesis and survival.
Collapse
Affiliation(s)
- Celia Municio-Diaz
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| | - Elise Muller
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Stéphanie Drevensek
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Antoine Fruleux
- LPTMS, CNRS, Université Paris-Saclay 4 , 91405 Orsay , France
| | - Enrico Lorenzetti
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| |
Collapse
|
19
|
Bürger M. Sweet talk: A plant protein releases a fungal β-glucan to enhance colonization. THE PLANT CELL 2022; 34:2584-2585. [PMID: 35536542 PMCID: PMC9252467 DOI: 10.1093/plcell/koac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
|
20
|
Chandrasekar B, Wanke A, Wawra S, Saake P, Mahdi L, Charura N, Neidert M, Poschmann G, Malisic M, Thiele M, Stühler K, Dama M, Pauly M, Zuccaro A. Fungi hijack a ubiquitous plant apoplastic endoglucanase to release a ROS scavenging β-glucan decasaccharide to subvert immune responses. THE PLANT CELL 2022; 34:2765-2784. [PMID: 35441693 PMCID: PMC9252488 DOI: 10.1093/plcell/koac114] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Plant pathogenic and beneficial fungi have evolved several strategies to evade immunity and cope with host-derived hydrolytic enzymes and oxidative stress in the apoplast, the extracellular space of plant tissues. Fungal hyphae are surrounded by an inner insoluble cell wall layer and an outer soluble extracellular polysaccharide (EPS) matrix. Here, we show by proteomics and glycomics that these two layers have distinct protein and carbohydrate signatures, and hence likely have different biological functions. The barley (Hordeum vulgare) β-1,3-endoglucanase HvBGLUII, which belongs to the widely distributed apoplastic glycoside hydrolase 17 family (GH17), releases a conserved β-1,3;1,6-glucan decasaccharide (β-GD) from the EPS matrices of fungi with different lifestyles and taxonomic positions. This low molecular weight β-GD does not activate plant immunity, is resilient to further enzymatic hydrolysis by β-1,3-endoglucanases due to the presence of three β-1,6-linked glucose branches and can scavenge reactive oxygen species. Exogenous application of β-GD leads to enhanced fungal colonization in barley, confirming its role in the fungal counter-defensive strategy to subvert host immunity. Our data highlight the hitherto undescribed capacity of this often-overlooked EPS matrix from plant-associated fungi to act as an outer protective barrier important for fungal accommodation within the hostile environment at the apoplastic plant-microbe interface.
Collapse
Affiliation(s)
| | - Alan Wanke
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Pia Saake
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Lisa Mahdi
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nyasha Charura
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Miriam Neidert
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Milena Malisic
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Meik Thiele
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Murali Dama
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
21
|
Abstract
Gene expression divergence through evolutionary processes is thought to be important for achieving programmed development in multicellular organisms. To test this premise in filamentous fungi, we investigated transcriptional profiles of 3,942 single-copy orthologous genes (SCOGs) in five related sordariomycete species that have morphologically diverged in the formation of their flask-shaped perithecia. We compared expression of the SCOGs to inferred gene expression levels of the most recent common ancestor of the five species, ranking genes from their largest increases to smallest increases in expression during perithecial development in each of the five species. We found that a large proportion of the genes that exhibited evolved increases in gene expression were important for normal perithecial development in Fusarium graminearum. Many of these genes were previously uncharacterized, encoding hypothetical proteins without any known functional protein domains. Interestingly, the developmental stages during which aberrant knockout phenotypes appeared largely coincided with the elevated expression of the deleted genes. In addition, we identified novel genes that affected normal perithecial development in Magnaporthe oryzae and Neurospora crassa, which were functionally and transcriptionally diverged from the orthologous counterparts in F. graminearum. Furthermore, comparative analysis of developmental transcriptomes and phylostratigraphic analysis suggested that genes encoding hypothetical proteins are generally young and transcriptionally divergent between related species. This study provides tangible evidence of shifts in gene expression that led to acquisition of novel function of orthologous genes in each lineage and demonstrates that several genes with hypothetical function are crucial for shaping multicellular fruiting bodies. IMPORTANCE The fungal class Sordariomycetes includes numerous important plant and animal pathogens. It also provides model systems for studying fungal fruiting body development, as its members develop fruiting bodies with a few well-characterized tissue types on common growth media and have rich genomic resources that enable comparative and functional analyses. To understand transcriptional divergence of key developmental genes between five related sordariomycete fungi, we performed targeted knockouts of genes inferred to have evolved significant upward shifts in expression. We found that many previously uncharacterized genes play indispensable roles at different stages of fruiting body development, which have undergone transcriptional activation in specific lineages. These novel genes are predicted to be phylogenetically young and tend to be involved in lineage- or species-specific function. Transcriptional activation of genes with unknown function seems to be more frequent than ever thought, which may be crucial for rapid adaption to changing environments for successful sexual reproduction.
Collapse
|
22
|
Li X, Yang S, Zhang M, Yang Y, Peng L. Identification of Pathogenicity-Related Effector Proteins and the Role of Piwsc1 in the Virulence of Penicillium italicum on Citrus Fruits. J Fungi (Basel) 2022; 8:jof8060646. [PMID: 35736129 PMCID: PMC9224591 DOI: 10.3390/jof8060646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Blue mold caused by Penicillium italicum is one of the two major postharvest diseases of citrus fruits. The interactions of pathogens with their hosts are complicated, and virulence factors that mediate pathogenicity have not yet been identified. In present study, a prediction pipeline approach based on bioinformatics and transcriptomic data is designed to determine the effector proteins of P. italicum. Three hundred and seventy-five secreted proteins of P. italicum were identified, many of which (29.07%) were enzymes for carbohydrate utilization. Twenty-nine candidates were further analyzed and the expression patterns of 12 randomly selected candidate effector genes were monitored during the early stages of growth on PDA and infection of Navel oranges for validation. Functional analysis of a cell wall integrity-related gene Piwsc1, a core candidate, was performed by gene knockout. The deletion of Piwsc1 resulted in reduced virulence on citrus fruits, as presented by an approximate 57% reduction in the diameter of lesions. In addition, the mycelial growth rate, spore germination rate, and sporulation of ΔPiwsc1 decreased. The findings provide us with new insights to understand the pathogenesis of P. italicum and develop an effective and sustainable control method for blue mold.
Collapse
|
23
|
Redkar A, Sabale M, Zuccaro A, Di Pietro A. Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102226. [PMID: 35526366 DOI: 10.1016/j.pbi.2022.102226] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Plant-fungal interactions in the soil crucially impact crop productivity and can range from highly beneficial to detrimental. Accumulating evidence suggests that some root-colonizing fungi shift between endophytic and pathogenic behaviour depending on the host species and that combinations of effector proteins collectively shape the fungal lifestyle on a given plant. In this review we discuss recent advances in our understanding of how fungal infection strategies on roots can lead to contrasting outcomes for the host. We highlight functional similarities and differences in compatibility determinants that control the colonization of specific-cell layers within plant roots, ultimately shaping the continuum between endophytic and pathogenic lifestyle.
Collapse
Affiliation(s)
- Amey Redkar
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain; Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| | - Mugdha Sabale
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, D-50674, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), D-50674, Cologne, Germany
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
24
|
Structure of the Yeast Cell Wall Integrity Sensor Wsc1 Reveals an Essential Role of Surface-Exposed Aromatic Clusters. J Fungi (Basel) 2022; 8:jof8040379. [PMID: 35448610 PMCID: PMC9024836 DOI: 10.3390/jof8040379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae and other ascomycetes, the maintenance of cell wall integrity is governed by a family of plasma-membrane spanning sensors that include the Wsc-type proteins. These cell wall proteins apparently sense stress-induced mechanical forces at the cell surface and target the cell wall integrity (CWI) signaling pathway, but the structural base for their sensor function is yet unknown. Here, we solved a high-resolution crystal structure of the extracellular cysteine-rich domain (CRD) of yeast Wsc1, which shows the characteristic PAN/Apple domain fold with two of the four Wsc1 disulfide bridges being conserved in other PAN domain cores. Given the general function of PAN domains in mediating protein–protein and protein–carbohydrate interactions, this finding underpins the importance of Wsc domains in conferring sensing and localization functions. Our Wsc1 CRD structure reveals an unusually high number of surface-exposed aromatic residues that are conserved in other fungal CRDs, and can be arranged into three solvent-exposed clusters. Mutational analysis demonstrates that two of the aromatic clusters are required for conferring S. cerevisiae Wsc1-dependent resistance to the glucan synthase inhibitor caspofungin, and the chitin-binding agents Congo red and Calcofluor white. These findings suggest an essential role of surface-exposed aromatic clusters in fungal Wsc-type sensors that might include an involvement in stress-induced sensor-clustering required to elicit appropriate cellular responses via the downstream CWI pathway.
Collapse
|
25
|
Increasing-Aeration Strategy: a Practical Approach to Enhance the Schizophyllan Production and Improve the Operational Conditions of Schizophyllum commune Cultivation in the Stirred Tank and Bubble Column Bioreactors. Appl Biochem Biotechnol 2022; 194:2284-2300. [PMID: 35099723 DOI: 10.1007/s12010-021-03777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
In the present study, the effect of employing the increasing- aeration strategy (IAS) in the oxygen-limited situation and proportionate to increasing oxygen demand of the fungus Schizophyllum commune (S. commune) has been investigated in both stirred tank (STB) and bubble column (BCB) bioreactors. The purpose was to enhance schizophyllan (SPG) production by preventing oxygen starvation, improve mixing conditions of pseudoplastic culture, and intensify shear stress on fungus pellets to release SPG. At first, a constant-aeration rate of 0.08 vvm was implemented in both bioreactors to evaluate the new strategy compared to the previously studied methods. In the second set of experiments with IAS, along with the increasing oxygen demand of culture, the inlet airflow was increased gradually, while the dissolved oxygen (DO) was maintained higher than zero and below 1%. Using IAS in STB significantly raised productivity by about 100% in 96 h from 0.035 to 0.073 g/L.h. Also, employing this strategy in BCB led to a 30% increase in the maximum SPG production from 3.2 to 4.2 g/L. IAS can effectively help handle the operation of S. commune cultivation on a large scale by improving mixing conditions, mass transfer, and shear stress in both bioreactor types. This method had a significant impact on STB cultivation and its productivity so that it can be a practical approach to SPG's industrial production.
Collapse
|
26
|
Rouina H, Tseng YH, Nataraja KN, Uma Shaanker R, Krüger T, Kniemeyer O, Brakhage A, Oelmüller R. Comparative Secretome Analyses of Trichoderma/Arabidopsis Co-cultures Identify Proteins for Salt Stress, Plant Growth Promotion, and Root Colonization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.808430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous Trichoderma strains are beneficial for plants, promote their growth, and confer stress tolerance. A recently described novel Trichoderma strain strongly promotes the growth of Arabidopsis thaliana seedlings on media with 50 mM NaCl, while 150 mM NaCl strongly stimulated root colonization and induced salt-stress tolerance in the host without growth promotion. To understand the dynamics of plant-fungus interaction, we examined the secretome from both sides and revealed a substantial change under different salt regimes, and during co-cultivation. Stress-related proteins, such as a fungal cysteine-rich Kp4 domain-containing protein which inhibits plant cell growth, fungal WSC- and CFEM-domain-containing proteins, the plant calreticulin, and cell-wall modifying enzymes, disappear when the two symbionts are co-cultured under high salt concentrations. In contrast, the number of lytic polysaccharide monooxygenases increases, which indicates that the fungus degrades more plant lignocellulose under salt stress and its lifestyle becomes more saprophytic. Several plant proteins involved in plant and fungal cell wall modifications and root colonization are only found in the co-cultures under salt stress, while the number of plant antioxidant proteins decreased. We identified symbiosis- and salt concentration-specific proteins for both partners. The Arabidopsis PYK10 and a fungal prenylcysteine lyase are only found in the co-culture which promoted plant growth. The comparative analysis of the secretomes supports antioxidant enzyme assays and suggests that both partners profit from the interaction under salt stress but have to invest more in balancing the symbiosis. We discuss the role of the identified stage- and symbiosis-specific fungal and plant proteins for salt stress, and conditions promoting root colonization and plant growth.
Collapse
|
27
|
Neeli-Venkata R, Diaz CM, Celador R, Sanchez Y, Minc N. Detection of surface forces by the cell-wall mechanosensor Wsc1 in yeast. Dev Cell 2021; 56:2856-2870.e7. [PMID: 34666001 DOI: 10.1016/j.devcel.2021.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/13/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Surface receptors of animal cells, such as integrins, promote mechanosensation by forming clusters as signaling hubs that transduce tensile forces. Walled cells of plants and fungi also feature surface sensors, with long extracellular domains that are embedded in their cell walls (CWs) and are thought to detect injuries and promote repair. How these sensors probe surface forces remains unknown. By studying the conserved CW sensor Wsc1 in fission yeast, we uncovered the formation of micrometer-sized clusters at sites of force application onto the CW. Clusters assembled within minutes of CW compression, in dose dependence with mechanical stress and disassembled upon relaxation. Our data support that Wsc1 accumulates to sites of enhanced mechanical stress through reduced lateral diffusivity, mediated by the binding of its extracellular WSC domain to CW polysaccharides, independent of canonical polarity, trafficking, and downstream CW regulatory pathways. Wsc1 may represent an autonomous module to detect and transduce local surface forces onto the CW.
Collapse
Affiliation(s)
- Ramakanth Neeli-Venkata
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Celia Municio Diaz
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Ruben Celador
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Yolanda Sanchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
28
|
Lu H, Wei T, Lou H, Shu X, Chen Q. A Critical Review on Communication Mechanism within Plant-Endophytic Fungi Interactions to Cope with Biotic and Abiotic Stresses. J Fungi (Basel) 2021; 7:719. [PMID: 34575757 PMCID: PMC8466524 DOI: 10.3390/jof7090719] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Endophytic fungi infect plant tissues by evading the immune response, potentially stimulating stress-tolerant plant growth. The plant selectively allows microbial colonization to carve endophyte structures through phenotypic genes and metabolic signals. Correspondingly, fungi develop various adaptations through symbiotic signal transduction to thrive in mycorrhiza. Over the past decade, the regulatory mechanism of plant-endophyte interaction has been uncovered. Currently, great progress has been made on plant endosphere, especially in endophytic fungi. Here, we systematically summarize the current understanding of endophytic fungi colonization, molecular recognition signal pathways, and immune evasion mechanisms to clarify the transboundary communication that allows endophytic fungi colonization and homeostatic phytobiome. In this work, we focus on immune signaling and recognition mechanisms, summarizing current research progress in plant-endophyte communication that converge to improve our understanding of endophytic fungi.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Tianyu Wei
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Hanghang Lou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| | - Xiaoli Shu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; (H.L.); (T.W.); (H.L.)
| |
Collapse
|
29
|
Ji J, Zhou L, Xu Z, Ma L, Lu Z. Two atypical gram-negative bacteria-binding proteins are involved in the antibacterial response in the pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2021; 30:427-435. [PMID: 33928689 DOI: 10.1111/imb.12708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The activation of immune pathways is triggered by the recognition of pathogens by pattern recognition receptors (PRRs). Gram-negative bacteria-binding proteins (GNBPs)/β-1,3-glucan recognition proteins (βGRPs) are a conserved family of PRRs in insects. Two GNBPs are predicted in the genome database of pea aphids; however, little is known about their functions in the aphid immune system. Here, we show that pea aphid GNBPs possess domain architectures and sequence features distinct from those of typical GNBPs/βGRPs and that their expression is induced by bacterial infection. Knockdown of their expression by dsRNA resulted in lower phenoloxidase activity, higher bacterial loads and higher mortality in aphids after infection. Our data suggest that these two atypical GNBPs are involved in the antibacterial response in the pea aphid, likely acting as PRRs in the prophenoloxidase pathway.
Collapse
Affiliation(s)
- J Ji
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Xu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Yao H, Scornet D, Jam M, Hervé C, Potin P, Oliveira Correia L, Coelho SM, Cock JM. Biochemical characteristics of a diffusible factor that induces gametophyte to sporophyte switching in the brown alga Ectocarpus. JOURNAL OF PHYCOLOGY 2021; 57:742-753. [PMID: 33432598 DOI: 10.1111/jpy.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The haploid-diploid life cycle of the filamentous brown alga Ectocarpus involves alternation between two independent and morphologically distinct multicellular generations, the sporophyte and the gametophyte. Deployment of the sporophyte developmental program requires two TALE homeodomain transcription factors OUROBOROS and SAMSARA. In addition, the sporophyte generation has been shown to secrete a diffusible factor that can induce uni-spores to switch from the gametophyte to the sporophyte developmental program. Here, we determine optimal conditions for production, storage, and detection of this diffusible factor and show that it is a heat-resistant, high molecular weight molecule. Based on a combined approach involving proteomic analysis of sporophyte-conditioned medium and the use of biochemical tools to characterize arabinogalactan proteins, we present evidence that sporophyte-conditioned medium contains AGP epitopes and suggest that the diffusible factor may belong to this family of glycoproteins.
Collapse
Affiliation(s)
- Haiqin Yao
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Delphine Scornet
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Murielle Jam
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Marine Glycobiology, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Cécile Hervé
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Marine Glycobiology, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Philippe Potin
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Algal Biology and Environmental Interactions, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Lydie Oliveira Correia
- PAPPSO, INRA, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Susana M Coelho
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
31
|
Abstract
Plant-colonizing fungi secrete a cocktail of effector proteins during colonization. After secretion, some of these effectors are delivered into plant cells to directly dampen the plant immune system or redirect host processes benefitting fungal growth. Other effectors function in the apoplastic space either as released proteins modulating the activity of plant enzymes associated with plant defense or as proteins bound to the fungal cell wall. For such fungal cell wall-bound effectors, we know particularly little about their molecular function. In this review, we describe effectors that are associated with the fungal cell wall and discuss how they contribute to colonization.
Collapse
Affiliation(s)
- Shigeyuki Tanaka
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, Marburg 35043, Germany
| |
Collapse
|
32
|
Ökmen B, Schwammbach D, Bakkeren G, Neumann U, Doehlemann G. The Ustilago hordei-Barley Interaction Is a Versatile System for Characterization of Fungal Effectors. J Fungi (Basel) 2021; 7:86. [PMID: 33513785 PMCID: PMC7912019 DOI: 10.3390/jof7020086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei-barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley.
Collapse
Affiliation(s)
- Bilal Ökmen
- BioCenter, Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Daniela Schwammbach
- Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Straße, 35043 Marburg, Germany;
| | - Guus Bakkeren
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada;
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany;
| | - Gunther Doehlemann
- BioCenter, Institute for Plant Sciences, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| |
Collapse
|
33
|
Wanke A, Malisic M, Wawra S, Zuccaro A. Unraveling the sugar code: the role of microbial extracellular glycans in plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:15-35. [PMID: 32929496 PMCID: PMC7816849 DOI: 10.1093/jxb/eraa414] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 05/14/2023]
Abstract
To defend against microbial invaders but also to establish symbiotic programs, plants need to detect the presence of microbes through the perception of molecular signatures characteristic of a whole class of microbes. Among these molecular signatures, extracellular glycans represent a structurally complex and diverse group of biomolecules that has a pivotal role in the molecular dialog between plants and microbes. Secreted glycans and glycoconjugates such as symbiotic lipochitooligosaccharides or immunosuppressive cyclic β-glucans act as microbial messengers that prepare the ground for host colonization. On the other hand, microbial cell surface glycans are important indicators of microbial presence. They are conserved structures normally exposed and thus accessible for plant hydrolytic enzymes and cell surface receptor proteins. While the immunogenic potential of bacterial cell surface glycoconjugates such as lipopolysaccharides and peptidoglycan has been intensively studied in the past years, perception of cell surface glycans from filamentous microbes such as fungi or oomycetes is still largely unexplored. To date, only few studies have focused on the role of fungal-derived cell surface glycans other than chitin, highlighting a knowledge gap that needs to be addressed. The objective of this review is to give an overview on the biological functions and perception of microbial extracellular glycans, primarily focusing on their recognition and their contribution to plant-microbe interactions.
Collapse
Affiliation(s)
- Alan Wanke
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Milena Malisic
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Stephan Wawra
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Alga Zuccaro
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| |
Collapse
|
34
|
Rocafort M, Fudal I, Mesarich CH. Apoplastic effector proteins of plant-associated fungi and oomycetes. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:9-19. [PMID: 32247857 DOI: 10.1016/j.pbi.2020.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 05/23/2023]
Abstract
The outcome of an interaction between a plant and a fungus or an oomycete, whether compatibility or incompatibility, is often determined in the hostile extracellular spaces and matrices of the apoplast. Indeed, for compatibility to occur, many plant-associated fungi and oomycetes must first neutralize the apoplast, which is both monitored by plant cell-surface immune receptors, and enriched in plant (and frequently, competitor)-derived antimicrobial compounds. Research is highlighting the diverse roles that fungal and oomycete effector proteins play in the apoplast to promote compatibility, with most recent progress made towards understanding the role of these proteins in evading chitin-triggered immunity. Research is also showcasing the ability of apoplastic effector proteins to bring about incompatibility upon recognition by diverse plant cell-surface immune receptors, and the use of effectoromics to rapidly identify apoplastic effector protein-cell-surface immune receptor interactions.
Collapse
Affiliation(s)
- Mercedes Rocafort
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; Bio-Protection Research Centre, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
35
|
Nostadt R, Hilbert M, Nizam S, Rovenich H, Wawra S, Martin J, Küpper H, Mijovilovich A, Ursinus A, Langen G, Hartmann MD, Lupas AN, Zuccaro A. A secreted fungal histidine- and alanine-rich protein regulates metal ion homeostasis and oxidative stress. THE NEW PHYTOLOGIST 2020; 227:1174-1188. [PMID: 32285459 DOI: 10.1111/nph.16606] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/01/2020] [Indexed: 05/22/2023]
Abstract
Like pathogens, beneficial endophytic fungi secrete effector proteins to promote plant colonization, for example, through perturbation of host immunity. The genome of the root endophyte Serendipita indica encodes a novel family of highly similar, small alanine- and histidine-rich proteins, whose functions remain unknown. Members of this protein family carry an N-terminal signal peptide and a conserved C-terminal DELD motif. Here we report on the functional characterization of the plant-responsive DELD family protein Dld1 using a combination of structural, biochemical, biophysical and cytological analyses. The crystal structure of Dld1 shows an unusual, monomeric histidine zipper consisting of two antiparallel coiled-coil helices. Similar to other histidine-rich proteins, Dld1 displays varying affinity to different transition metal ions and undergoes metal ion- and pH-dependent unfolding. Transient expression of mCherry-tagged Dld1 in barley leaf and root tissue suggests that Dld1 localizes to the plant cell wall and accumulates at cell wall appositions during fungal penetration. Moreover, recombinant Dld1 enhances barley root colonization by S. indica, and inhibits H2 O2 -mediated radical polymerization of 3,3'-diaminobenzidine. Our data suggest that Dld1 has the potential to enhance micronutrient accessibility for the fungus and to interfere with oxidative stress and reactive oxygen species homeostasis to facilitate host colonization.
Collapse
Affiliation(s)
- Robin Nostadt
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Magdalena Hilbert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Shadab Nizam
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Hanna Rovenich
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Jörg Martin
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Hendrik Küpper
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Ana Mijovilovich
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Astrid Ursinus
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Gregor Langen
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Andrei N Lupas
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
36
|
Wanke A, Rovenich H, Schwanke F, Velte S, Becker S, Hehemann JH, Wawra S, Zuccaro A. Plant species-specific recognition of long and short β-1,3-linked glucans is mediated by different receptor systems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1142-1156. [PMID: 31925978 DOI: 10.1111/tpj.14688] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 05/21/2023]
Abstract
Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe-derived or modified-self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying β-glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different β-glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) β-1,3-glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long β-1,3-glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short β-1,3-glucans. Hydrolysis of the β-1,6 side-branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long-chain β-glucans. Moreover, in contrast to the recognition of short β-1,3-glucans in A. thaliana, perception of long β-1,3-glucans in N. benthamiana and rice is independent of CERK1, indicating that β-glucan recognition may be mediated by multiple β-glucan receptor systems.
Collapse
Affiliation(s)
- Alan Wanke
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hanna Rovenich
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), 50679, Cologne, Germany
| | - Florian Schwanke
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
| | - Stefanie Velte
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
| | - Stefan Becker
- Center for Marine Environmental Sciences, University of Bremen, MARUM, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Jan-Hendrik Hehemann
- Center for Marine Environmental Sciences, University of Bremen, MARUM, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Stephan Wawra
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), 50679, Cologne, Germany
| | - Alga Zuccaro
- University of Cologne, Institute for Plant Sciences, 50679, Cologne, Germany
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), 50679, Cologne, Germany
| |
Collapse
|
37
|
Franken P, Takken FLW, Rep M. Transcript accumulation in a trifold interaction gives insight into mechanisms of biocontrol. THE NEW PHYTOLOGIST 2019; 224:547-549. [PMID: 31545885 DOI: 10.1111/nph.16141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Philipp Franken
- Erfurt Research Centre for Horticultural Crops, University of Applied Sciences Erfurt, Kühnhäuser Straße 101, 99090, Erfurt, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
38
|
Oide S, Tanaka Y, Watanabe A, Inui M. Carbohydrate-binding property of a cell wall integrity and stress response component (WSC) domain of an alcohol oxidase from the rice blast pathogen Pyricularia oryzae. Enzyme Microb Technol 2019; 125:13-20. [DOI: 10.1016/j.enzmictec.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
|