1
|
Van der Meersch V, Armstrong E, Mouillot F, Duputié A, Davi H, Saltré F, Chuine I. Paleorecords Reveal Biological Mechanisms Crucial for Reliable Species Range Shift Projections Amid Rapid Climate Change. Ecol Lett 2025; 28:e70080. [PMID: 39967323 PMCID: PMC11836547 DOI: 10.1111/ele.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
The recent acceleration of global climate warming has created an urgent need for reliable projections of species distributions, widely used by natural resource managers. Such projections have been mainly produced by species distribution models with little information on their performances in novel climates. Here, we hindcast the range shifts of forest tree species across Europe over the last 12,000 years to compare the reliability of three different types of models. We show that in the most climatically dissimilar conditions, process-explicit models (PEMs) tend to outperform correlative species distribution models (CSDMs), and that PEM projections are likely to be more reliable than those made with CSDMs by the end of the 21st century. These results demonstrate for the first time the often promoted albeit so far untested idea that explicit description of mechanisms confers model robustness, and highlight a new avenue to increase model projection reliability in the future.
Collapse
Affiliation(s)
| | - Edward Armstrong
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| | | | - Anne Duputié
- UMR 8198‐EEP‐Evo‐Eco‐PaleoUniversité de Lille, CNRSLilleFrance
| | | | - Frédérik Saltré
- Biogeography Ecology and Modelling, School of Life SciencesUniversity Technology SydneySydneyNew South WalesAustralia
- Australian Museum Research InstituteAustralian MuseumSydneyNew South WalesAustralia
- ARC Centre of Excellence for Indigenous and Environmental Histories and FuturesJames Cook UniversityCairnsQueenslandAustralia
| | | |
Collapse
|
2
|
Gong H, Wang H, Wang Y, Zhang S, Liu X, Che J, Wu S, Wu J, Sun X, Zhang S, Yau ST, Wu R. Topological change of soil microbiota networks for forest resilience under global warming. Phys Life Rev 2024; 50:228-251. [PMID: 39178631 DOI: 10.1016/j.plrev.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Forest management by thinning can mitigate the detrimental impact of increasing drought caused by global warming. Growing evidence shows that the soil microbiota can coordinate the dynamic relationship between forest functions and drought intensity, but how they function as a cohesive whole remains elusive. We outline a statistical topology model to chart the roadmap of how each microbe acts and interacts with every other microbe to shape the dynamic changes of microbial communities under forest management. To demonstrate its utility, we analyze a soil microbiota data collected from a two-way longitudinal factorial experiment involving three stand densities and three levels of rainfall over a growing season in artificial plantations of a forest tree - larix (Larix kaempferi). We reconstruct the most sophisticated soil microbiota networks that code maximally informative microbial interactions and trace their dynamic trajectories across time, space, and environmental signals. By integrating GLMY homology theory, we dissect the topological architecture of these so-called omnidirectional networks and identify key microbial interaction pathways that play a pivotal role in mediating the structure and function of soil microbial communities. The statistical topological model described provides a systems tool for studying how microbial community assembly alters its structure, function and evolution under climate change.
Collapse
Affiliation(s)
- Huiying Gong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Hongxing Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yu Wang
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Shen Zhang
- Qiuzhen College, Tsinghua University, Beijing 100084, China
| | - Xiang Liu
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Jincan Che
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Shuang Wu
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Jie Wu
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| | - Xiaomei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shing-Tung Yau
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China; Qiuzhen College, Tsinghua University, Beijing 100084, China; Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
| | - Rongling Wu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China; Qiuzhen College, Tsinghua University, Beijing 100084, China; Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Vitali V, Schuler P, Holloway-Phillips M, D'Odorico P, Guidi C, Klesse S, Lehmann MM, Meusburger K, Schaub M, Zweifel R, Gessler A, Saurer M. Finding balance: Tree-ring isotopes differentiate between acclimation and stress-induced imbalance in a long-term irrigation experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17237. [PMID: 38488024 DOI: 10.1111/gcb.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
Collapse
Affiliation(s)
- Valentina Vitali
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Schuler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Claudia Guidi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Alderotti F, Verdiani E. God save the queen! How and why the dominant evergreen species of the Mediterranean Basin is declining? AOB PLANTS 2023; 15:plad051. [PMID: 37899973 PMCID: PMC10601391 DOI: 10.1093/aobpla/plad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 10/31/2023]
Abstract
Quercus ilex may be considered the queen tree of the Mediterranean Basin, dominating coastal forest areas up to 2000 m above sea level at some sites. However, an increase in holm oak decline has been observed in the last decade. In this review, we analysed the current literature to answer the following questions: what are the traits that allow holm oak to thrive in the Mediterranean environment, and what are the main factors that are currently weakening this species? In this framework, we attempt to answer these questions by proposing a triangle as a graphical summary. The first vertex focuses on the main morpho-anatomical, biochemical and physiological traits that allow holm oak to dominate Mediterranean forests. The other two vertices consider abiotic and biotic stressors that are closely related to holm oak decline. Here, we discuss the current evidence of holm oak responses to abiotic and biotic stresses and propose a possible solution to its decline through adequate forest management choices, thus allowing the species to maintain its ecological domain.
Collapse
Affiliation(s)
- Francesca Alderotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Erika Verdiani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
5
|
Ruffault J, Limousin JM, Pimont F, Dupuy JL, De Càceres M, Cochard H, Mouillot F, Blackman CJ, Torres-Ruiz JM, Parsons RA, Moreno M, Delzon S, Jansen S, Olioso A, Choat B, Martin-StPaul N. Plant hydraulic modelling of leaf and canopy fuel moisture content reveals increasing vulnerability of a Mediterranean forest to wildfires under extreme drought. THE NEW PHYTOLOGIST 2023; 237:1256-1269. [PMID: 36366950 DOI: 10.1111/nph.18614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Fuel moisture content (FMC) is a crucial driver of forest fires in many regions world-wide. Yet, the dynamics of FMC in forest canopies as well as their physiological and environmental determinants remain poorly understood, especially under extreme drought. We embedded a FMC module in the trait-based, plant-hydraulic SurEau-Ecos model to provide innovative process-based predictions of leaf live fuel moisture content (LFMC) and canopy fuel moisture content (CFMC) based on leaf water potential ( ψ Leaf ). SurEau-Ecos-FMC relies on pressure-volume (p-v) curves to simulate LFMC and vulnerability curves to cavitation to simulate foliage mortality. SurEau-Ecos-FMC accurately reproduced ψ Leaf and LFMC dynamics as well as the occurrence of foliage mortality in a Mediterranean Quercus ilex forest. Several traits related to water use (leaf area index, available soil water, and transpiration regulation), vulnerability to cavitation, and p-v curves (full turgor osmotic potential) had the greatest influence on LFMC and CFMC dynamics. As the climate gets drier, our results showed that drought-induced foliage mortality is expected to increase, thereby significantly decreasing CFMC. Our results represent an important advance in our capacity to understand and predict the sensitivity of forests to wildfires.
Collapse
Affiliation(s)
| | | | | | | | | | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Florent Mouillot
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34000, Montpellier, France
| | - Chris J Blackman
- School of Biological Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Russell A Parsons
- Fire Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, Missoula, MT, 59808, USA
| | | | | | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, D-89081, Ulm, Germany
| | | | - Brendan Choat
- Western Sydney University, Penrith, NSW, 2751, Australia
| | | |
Collapse
|
6
|
Inbar A, Trouvé R, Benyon RG, Lane PNJ, Sheridan GJ. Long-term hydrological response emerges from forest self-thinning behaviour and tree sapwood allometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158410. [PMID: 36055479 DOI: 10.1016/j.scitotenv.2022.158410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Fires in forested catchments are of great concern to catchment managers due to their potential effect on water yield. Among other factors such as meteorological conditions and topography, dominant vegetation and its regeneration traits can play a key role in controlling the variability in the type and recovery-time of the hydrological response between forested catchments after stand-replacing fires. In temperate South-Eastern Australia, a long-term reduction in streamflow from catchments dominated by regenerating tall-wet Eucalyptus obligate seeder forests was observed, which has substantial implications for Melbourne's water supply. While the unusual hydrological response has been attributed to the higher water-use of the regrowth forests, the dominant underlying mechanism has not yet been identified. Here we show analytically and with a closed-form solution that this streamflow pattern can emerge from forest dynamics, namely the combination of growth and tree mortality as constrained by the self-thinning line (STL) and sapwood allometry of the dominant overstory tree species under non-limiting rainfall regimes. A sensitivity analysis shows that observed variations in the relative streamflow anomaly trend can be explained by parameters controlling: (i) the shape of the STL; (ii) regeneration success; (iii) radial tree growth rate; and (iv) fire severity. We conclude that the observed variation in long-term post-disturbance streamflow behaviour might have resulted from different trajectories of forest dynamics and suggest that to minimize uncertainty in future water-balance predictions, eco-hydrological models for even aged forests include a mechanistic representation of stand demography processes that are constrained by forest inventory data.
Collapse
Affiliation(s)
- Assaf Inbar
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia.
| | - Raphaël Trouvé
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard G Benyon
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Patrick N J Lane
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gary J Sheridan
- School of Ecosystems and Forest Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Mizuta K, Grunwald S, Bacon AR, Cropper WP, Phillips MA, Moss CB, Gonzalez-Benecke CA, Markewitz D, Clingensmith CM, Xiong X. Holistic aboveground ecological productivity efficiency modeling using data envelopment analysis in the southeastern U.S. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153802. [PMID: 35150681 DOI: 10.1016/j.scitotenv.2022.153802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Aboveground net primary productivity (ANPP) of an ecosystem is among the most important metrics of valued ecosystem services. Measuring the efficiency scores of ecological production (ESEP) based on ANPP using relevant variables is valuable for identifying inefficient sites. The efficiency scores computed by the Data Envelopment Analysis (DEA) may be influenced by the number of input variables incorporated into the models and two DEA settings-orientations and returns-to-scales (RTSs). Therefore, the objectives were threefold to: (1) identify soil-environmental variables relevant to ANPP, (2) assess the sensitivity of ESEP to the number of input variables and DEA settings, and (3) assess local management relations with ESEP. The ANPP rates were calculated for pine forests in the southeastern U.S. where 10 management types were used. This was followed by an all-relevant variable selection technique based on 696 variables that cover biotic, pedogenic, climatic, geological, and topographical factors. Five minimal-optimal variable selection techniques were further applied to create five parsimonious sets that contain a different number of variables used as DEA inputs. After setting ANPP as the output variable, two DEA orientations (input/output) and six RTS were applied to compute ESEP. The variable selection methods succeeded in objectively identifying the major factors relevant to ANPP variation. The site index showed the highest correlation with ANPP (r = 0.39), while various precipitation factors were negatively correlated (r = - 0.15~ - 0.29, p < 0.01). Parsimonious ESEP models observed a decrease in score variances as the number of input variables increased. Various RTS produced similar scores across orientations. Of the DEA settings, an output orientation with decreasing RTS produced the most progressive ESEP with large variation. Results also suggested that macro- and micronutrient fertilization is the best combination of management strategies to achieve high ESEP. This holistic benchmark approach can be applied to other ecological functions in diverse regions.
Collapse
Affiliation(s)
- Katsutoshi Mizuta
- Department of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, United States of America; Soil and Water Sciences Department, University of Florida, Gainesville, FL, PO Box 110290, United States of America.
| | - Sabine Grunwald
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, PO Box 110290, United States of America
| | - Allan R Bacon
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, PO Box 110290, United States of America
| | - Wendell P Cropper
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, PO Box 110410, United States of America
| | - Michelle A Phillips
- Economics Department, University of Florida, Gainesville, FL, PO Box 117140, United States of America
| | - Charles B Moss
- Food and Resource Economics Department, University of Florida, Gainesville, FL, PO Box 110240, United States of America
| | - Carlos A Gonzalez-Benecke
- Department of Forest Engineering, Resources & Management, Oregon State University, 269 Peavy Hall, Corvallis, OR 97331, United States of America
| | - Daniel Markewitz
- Warnell School of Forestry and Natural Resources, The University of Georgia, 180 E Green Street, Athens, GA 30602, United States of America
| | - Christopher M Clingensmith
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, PO Box 110290, United States of America
| | - Xiong Xiong
- Data Science and Informatics, Corteva Agriscience, 7000 NW 62nd Avenue, Johnston, IA 50131, United States of America
| |
Collapse
|
8
|
Bose AK, Rigling A, Gessler A, Hagedorn F, Brunner I, Feichtinger L, Bigler C, Egli S, Etzold S, Gossner MM, Guidi C, Lévesque M, Meusburger K, Peter M, Saurer M, Scherrer D, Schleppi P, Schönbeck L, Vogel ME, Arx G, Wermelinger B, Wohlgemuth T, Zweifel R, Schaub M. Lessons learned from a long‐term irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arun K. Bose
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Forestry and Wood Technology Discipline Khulna University Khulna Bangladesh
| | - Andreas Rigling
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Frank Hagedorn
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Ivano Brunner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Linda Feichtinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Christof Bigler
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Simon Egli
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Sophia Etzold
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martin M. Gossner
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Institute of Terrestrial Ecosystems ETH Zurich, Universitätstrasse 16 Zurich Switzerland
| | - Claudia Guidi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Mathieu Lévesque
- Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22 ETH Zurich Zurich Switzerland
| | - Katrin Meusburger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Martina Peter
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Matthias Saurer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Daniel Scherrer
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Patrick Schleppi
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Leonie Schönbeck
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering ENAC École Polytechnique Fédérale de Lausanne EPFL, Station 2 Lausanne Switzerland
| | - Michael E. Vogel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Georg Arx
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Beat Wermelinger
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Thomas Wohlgemuth
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Roman Zweifel
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| | - Marcus Schaub
- Swiss Federal Research Institute WSL, Zürcherstrasse 111 Birmensdorf Switzerland
| |
Collapse
|
9
|
Haberstroh S, Caldeira MC, Lobo-do-Vale R, Martins JI, Moemken J, Pinto JG, Werner C. Nonlinear plant-plant interactions modulate impact of extreme drought and recovery on a Mediterranean ecosystem. THE NEW PHYTOLOGIST 2021; 231:1784-1797. [PMID: 34076289 DOI: 10.1111/nph.17522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Interaction effects of different stressors, such as extreme drought and plant invasion, can have detrimental effects on ecosystem functioning and recovery after drought. With ongoing climate change and increasing plant invasion, there is an urgent need to predict the short- and long-term interaction impacts of these stressors on ecosystems. We established a combined precipitation exclusion and shrub invasion (Cistus ladanifer) experiment in a Mediterranean cork oak (Quercus suber) ecosystem with four treatments: (1) Q. suber control; (2) Q. suber with rain exclusion; (3) Q. suber invaded by shrubs; and (4) Q. suber with rain exclusion and shrub invasion. As key parameter, we continuously measured ecosystem water fluxes. In an average precipitation year, the interaction effects of both stressors were neutral. However, the combination of imposed drought and shrub invasion led to amplifying interaction effects during an extreme drought by strongly reducing tree transpiration. Contrarily, the imposed drought reduced the competitiveness of the shrubs in the following recovery period, which buffered the negative effects of shrub invasion on Q. suber. Our results demonstrate the highly dynamic and nonlinear effects of interacting stressors on ecosystems and urges for further investigations on biotic interactions in a context of climate change pressures.
Collapse
Affiliation(s)
- Simon Haberstroh
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, 79110, Germany
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, 1349-017, Portugal
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, 1349-017, Portugal
| | - Raquel Lobo-do-Vale
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, 1349-017, Portugal
| | - Joana I Martins
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, 1349-017, Portugal
| | - Julia Moemken
- Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Joaquim G Pinto
- Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
| | - Christiane Werner
- Ecosystem Physiology, Faculty of Environment and Natural Resources, University Freiburg, Freiburg, 79110, Germany
| |
Collapse
|
10
|
Bose AK, Scherrer D, Camarero JJ, Ziche D, Babst F, Bigler C, Bolte A, Dorado-Liñán I, Etzold S, Fonti P, Forrester DI, Gavinet J, Gazol A, de Andrés EG, Karger DN, Lebourgeois F, Lévesque M, Martínez-Sancho E, Menzel A, Neuwirth B, Nicolas M, Sanders TGM, Scharnweber T, Schröder J, Zweifel R, Gessler A, Rigling A. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147222. [PMID: 34088042 DOI: 10.1016/j.scitotenv.2021.147222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have identified strong relationships between delayed recovery of tree growth after drought and tree mortality caused by subsequent droughts. These observations raise concerns about forest ecosystem services and post-drought growth recovery given the projected increase in drought frequency and extremes. For quantifying the impact of extreme droughts on tree radial growth, we used a network of tree-ring width data of 1689 trees from 100 sites representing most of the distribution of two drought tolerant, deciduous oak species (Quercus petraea and Quercus robur). We first examined which climatic factors and seasons control growth of the two species and if there is any latitudinal, longitudinal or elevational trend. We then quantified the relative departure from pre-drought growth during droughts, and how fast trees were able to recover the pre-drought growth level. Our results showed that growth was more related to precipitation and climatic water balance (precipitation minus potential evapotranspiration) than to temperature. However, we did not detect any clear latitudinal, longitudinal or elevational trends except a decreasing influence of summer water balance on growth of Q. petraea with latitude. Neither species was able to maintain the pre-drought growth level during droughts. However, both species showed rapid recovery or even growth compensation after summer droughts but displayed slow recovery in response to spring droughts where none of the two species was able to fully recover the pre-drought growth-level over the three post-drought years. Collectively, our results indicate that oaks which are considered resilient to extreme droughts have also shown vulnerability when droughts occurred in spring especially at sites where long-term growth is not significantly correlated with climatic factors. This improved understanding of the role of drought seasonality and climate sensitivity of sites is key to better predict trajectories of post-drought growth recovery in response to the drier climate projected for Europe.
Collapse
Affiliation(s)
- Arun K Bose
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Daniel Scherrer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| | - Daniel Ziche
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, USA; Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA
| | - Christof Bigler
- ETH Zurich, Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22, 8092 Zurich, Switzerland
| | - Andreas Bolte
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Isabel Dorado-Liñán
- Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry Engineering, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sophia Etzold
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Patrick Fonti
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - David I Forrester
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Jordane Gavinet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, 1919 route de Mende, F-34293 Montpellier, Cedex 5, France
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| | - Ester González de Andrés
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| | - Dirk Nikolaus Karger
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | | | - Mathieu Lévesque
- ETH Zurich, Department of Environmental Systems Science, Forest Ecology, Universitätstrasse 22, 8092 Zurich, Switzerland
| | - Elisabet Martínez-Sancho
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Annette Menzel
- Technische Universität München, TUM School of Life Sciences, Freising, Germany; Technische Universität München, Institute for Advanced Study, Garching, Germany
| | | | - Manuel Nicolas
- Departement Recherche et Développement, ONF, Office National des Fôrets, Batiment B, Boulevard de Constance, Fontainebleau F-77300, France
| | - Tanja G M Sanders
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Tobias Scharnweber
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstr.15, 17487 Greifswald, Germany
| | - Jens Schröder
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Roman Zweifel
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
11
|
Le Roncé I, Gavinet J, Ourcival JM, Mouillot F, Chuine I, Limousin JM. Holm oak fecundity does not acclimate to a drier world. THE NEW PHYTOLOGIST 2021; 231:631-645. [PMID: 33891307 DOI: 10.1111/nph.17412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Climate change might impact tree fecundity by altering the relative influences of meteorological and physiological drivers, and by modifying resource investment in reproduction. Using a 13-yr monitoring of Quercus ilex reproduction in a rainfall exclusion experiment, we analysed the interactive effects of long-term increased aridity and other environmental drivers on the inter-annual variation of fecundity (male flower biomass, number of initiated and mature fruits). Summer-autumn water stress was the main driver of fruit abortion during fruit growth. Rainfall exclusion treatment strongly reduced the number of initiated and mature fruits, even in masting years, and did not increase fruit tolerance to severe drought. Conversely, the relative contribution of the meteorological and physiological drivers, and the inter-annual variability of fruit production were not modified by rainfall exclusion. Rather than inducing an acclimation of tree fecundity to water limitation, increased aridity impacted it negatively through both lower fruit initiation due to changes in resource allocation, and more severe water and resource limitations during fruit growth. Long-term increased aridity affected tree reproduction beyond what is expected from the current response to inter-annual drought variations, suggesting that natural regeneration of holm oak forest could be jeopardised in the future.
Collapse
Affiliation(s)
- Iris Le Roncé
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Jordane Gavinet
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Jean-Marc Ourcival
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Florent Mouillot
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Isabelle Chuine
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Jean-Marc Limousin
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, Montpellier Cedex 5, 34293, France
| |
Collapse
|
12
|
Hollunder RK, Mariotte P, Carrijo TT, Holmgren M, Luber J, Stein-Soares B, Guidoni-Martins KG, Ferreira-Santos K, Scarano FR, Garbin ML. Topography and vegetation structure mediate drought impacts on the understory of the South American Atlantic Forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144234. [PMID: 33418256 DOI: 10.1016/j.scitotenv.2020.144234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Droughts have increased in frequency, duration, and severity across most of the tropics but their effect on forest communities remain not fully understood. Here we assessed the effects of a severe El Niño-induced drought event on dominant and low abundance understory plant species and the consequent impacts on ecosystem functions in the South American Atlantic Forest. We established 20 permanent plots with contrasting vegetation structure and topography. In each plot, we measured the stem diameter at breast height (DBH) of every understory woody plant (i.e. 1 to 10 cm stem diameter) before and after a severe 4-year drought event to calculate relative growth and mortality rates after drought. Litter biomass, litter nutrient content and soil nutrients, as well as tree canopy cover, were also quantified. High stem density reduced survival to drought for both dominant and low abundance understory woody species. The growth rate of dominant and low abundance species was lower on steeper slopes during the drought. Dominant species were the main contributor of litter biomass production whereas low abundance species were important drivers of litter quality. Overall, our findings suggest that habitats with low tree density and larger trees on flat areas, such as in valleys, can act as refuges for understory plant species during drought periods. These habitats are resource-rich, providing nutrients and water during unfavorable drought periods and might improve forest resilience to climate change in the long term.
Collapse
Affiliation(s)
- Renan Köpp Hollunder
- Universidade Federal do Rio de Janeiro, Programa de Pós-graduação em Ecologia, IB, CCS, Ilha do Fundão, 21941-970 Rio de Janeiro, RJ, Brazil
| | - Pierre Mariotte
- Grazing Systems, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Tatiana Tavares Carrijo
- Universidade Federal do Espírito Santo, Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Alto Universitário, Guararema, 29.500-000 Alegre, ES, Brazil
| | - Milena Holmgren
- Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, the Netherlands
| | - Jaquelini Luber
- Escola Nacional de Botânica Tropical, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 22.460-036 Rio de Janeiro, RJ, Brazil
| | - Bethina Stein-Soares
- Universidade Federal do Espírito Santo, Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Alto Universitário, Guararema, 29.500-000 Alegre, ES, Brazil
| | | | - Karina Ferreira-Santos
- Universidade Federal do Rio de Janeiro, Programa de Pós-graduação em Ecologia, IB, CCS, Ilha do Fundão, 21941-970 Rio de Janeiro, RJ, Brazil
| | - Fabio Rubio Scarano
- Universidade Federal do Rio de Janeiro, Programa de Pós-graduação em Ecologia, IB, CCS, Ilha do Fundão, 21941-970 Rio de Janeiro, RJ, Brazil
| | - Mário Luís Garbin
- Universidade Federal do Espírito Santo, Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Alto Universitário, Guararema, 29.500-000 Alegre, ES, Brazil.
| |
Collapse
|
13
|
Le Roncé I, Toïgo M, Dardevet E, Venner S, Limousin JM, Chuine I. Resource manipulation through experimental defoliation has legacy effects on allocation to reproductive and vegetative organs in Quercus ilex. ANNALS OF BOTANY 2020; 126:1165-1179. [PMID: 32686832 PMCID: PMC7684701 DOI: 10.1093/aob/mcaa137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS In plants, high costs of reproduction during some years can induce trade-offs in resource allocation with other functions such as growth, survival and resistance against herbivores or extreme abiotic conditions, but also with subsequent reproduction. Such trade-offs might also occur following resource shortage at particular moments of the reproductive cycle. Because plants are modular organisms, strategies for resource allocation to reproduction can also vary among hierarchical levels. Using a defoliation experiment, our aim was to test how allocation to reproduction was impacted by resource limitation. METHODS We applied three levels of defoliation (control, moderate and intense) to branches of eight Quercus ilex trees shortly after fruit initiation and measured the effects of resource limitation induced by leaf removal on fruit development (survival, growth and germination potential) and on the production of vegetative and reproductive organs the year following defoliation. KEY RESULTS We found that defoliation had little impact on fruit development. Fruit survival was not affected by the intense defoliation treatment, but was reduced by moderate defoliation, and this result could not be explained by an upregulation of photosynthesis. Mature fruit mass was not affected by defoliation, nor was seed germination success. However, in the following spring defoliated branches produced fewer shoots and compensated for leaf loss by overproducing leaves at the expense of flowers. Therefore, resource shortage decreased resource allocation to reproduction the following season but did not affect sex ratio. CONCLUSIONS Our results support the idea of a regulation of resource allocation to reproduction beyond the shoot scale. Defoliation had larger legacy effects than immediate effects.
Collapse
Affiliation(s)
- Iris Le Roncé
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Maude Toïgo
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Elia Dardevet
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Jean-Marc Limousin
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
14
|
Hartmann H, Bahn M, Carbone M, Richardson AD. Plant carbon allocation in a changing world - challenges and progress: introduction to a Virtual Issue on carbon allocation: Introduction to a virtual issue on carbon allocation. THE NEW PHYTOLOGIST 2020; 227:981-988. [PMID: 32662104 DOI: 10.1111/nph.16757] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Henrik Hartmann
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans Knoll Str. 10, 07745, Jena, Germany
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Mariah Carbone
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, 200 Beckwith Way, Flagstaff, AZ, 86011, USA
| | - Andrew D Richardson
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, 200 Beckwith Way, Flagstaff, AZ, 86011, USA
| |
Collapse
|
15
|
García de Jalón L, Limousin JM, Richard F, Gessler A, Peter M, Hättenschwiler S, Milcu A. Microhabitat and ectomycorrhizal effects on the establishment, growth and survival of Quercus ilex L. seedlings under drought. PLoS One 2020; 15:e0229807. [PMID: 32502167 PMCID: PMC7274372 DOI: 10.1371/journal.pone.0229807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
The success of tree recruitment in Mediterranean holm oak (Quercus ilex) forests is threatened by the increasing intensity, duration and frequency of drought periods. Seedling germination and growth are modulated by complex interactions between abiotic (microhabitat conditions) and biotic factors (mycorrhiza association) that may mitigate the impacts of climate change on tree recruitment. To better understand and anticipate these effects, we conducted a germination experiment in a long-term precipitation reduction (PR) field experiment where we monitored seedling establishment and survival, micro-habitat conditions and ectomycorrhizal (ECM) colonization by different mycelia exploration types during the first year of seedling growth. We hypothesized that (i) the PR treatment decreases seedling survival relative to the control with ambient conditions, (ii) microhabitat conditions of water and light availability are better predictors of seedling survival than the PR treatment, (iii) the PR treatment will favour the development of ECM exploration types with drought-resistance traits such as differentiated rhizomorphs. Contrary to our first hypothesis, seedling survival was lower in control plots with overall higher soil moisture. Micro-habitat light and soil moisture conditions were better predictors of seedling survival and growth than the plot-level PR treatment, confirming our second hypothesis. Furthermore, in line with our third hypothesis, we found that ECM with longer extramatrical mycelia were more abundant in the PR treatment plots and were positively correlated to survival, which suggests a potential role of this ECM exploration type in seedling survival and recruitment. Although summer drought was the main cause of seedling mortality, our study indicates that drier conditions in spring can increase seedling survival, presumably through a synergistic effect of drought adapted ECM species and less favourable conditions for root pathogens.
Collapse
Affiliation(s)
- Laura García de Jalón
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Jean-Marc Limousin
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Franck Richard
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Arthur Gessler
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Martina Peter
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Stephan Hättenschwiler
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Alexandru Milcu
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
- Ecotron Européen de Montpellier (UPS-3248), CNRS, Montferrier-sur-Lez, France
| |
Collapse
|
16
|
Salomón RL, Steppe K, Ourcival JM, Villers S, Rodríguez-Calcerrada J, Schapman R, Limousin JM. Hydraulic acclimation in a Mediterranean oak subjected to permanent throughfall exclusion results in increased stem hydraulic capacitance. PLANT, CELL & ENVIRONMENT 2020; 43:1528-1544. [PMID: 32154937 DOI: 10.1111/pce.13751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Stem water storage capacity and hydraulic capacitance (CS ) play a crucial role in tree survival under drought-stress. To investigate whether CS adjusts to increasing water deficit, variation in stem water content (StWC) was monitored in vivo for 2 years and related to periodical measurements of tree water potential in Mediterranean Quercus ilex trees subjected either to permanent throughfall exclusion (TE) or to control conditions. Seasonal reductions in StWC were larger in TE trees relative to control ones, resulting in greater seasonal CS (154 and 80 kg m-3 MPa-1 , respectively), but only during the first phase of the desorption curve, when predawn water potential was above -1.1 MPa. Below this point, CS decreased substantially and did not differ between treatments (<20 kg m-3 MPa-1 ). The allometric relationship between tree diameter and sapwood area, measured via electrical resistivity tomography, was not affected by TE. Our results suggest that (a) CS response to water deficit in the drought-tolerant Q. ilex might be more important to optimize carbon gain during well-hydrated periods than to prevent drought-induced embolism formation during severe drought stress, and (b) enhanced CS during early summer does not result from proportional increases in sapwood volume, but mostly from increased elastic water.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jean M Ourcival
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CEFE UMR 5175, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier Cedex 5, France
| | - Selwyn Villers
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Roderick Schapman
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jean M Limousin
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CEFE UMR 5175, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier Cedex 5, France
| |
Collapse
|