1
|
Chen Y, Jiang Z, Wu S, Cheng B, Zhou L, Liu T, Yu C. Structure and release function of fragrance glands. HORTICULTURE RESEARCH 2025; 12:uhaf031. [PMID: 40224323 PMCID: PMC11992339 DOI: 10.1093/hr/uhaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/23/2025] [Indexed: 04/15/2025]
Abstract
Volatile compounds serve physiological, signaling, and defensive purposes in plants and have beneficial effects on the growth, reproduction, resistance, and yield of horticultural plants. They are released through fragrance glands and become gasses by passing through the plasma membrane, cell walls that contain water, and cuticle. Transporter proteins facilitate their transport and reduce the resistance of these barriers. They also regulate the rate of release and concentration of volatiles inside and outside of the membrane. However, there has been no summary of the structure and function of the fragrance glands of horticultural plants, as well as an introduction to the latest research progress on the mechanism of the transport of volatiles. This review focuses on the structure and function of the release of aromas in horticultural plants and explores the mechanism of the release of volatiles through a transporter model. Additionally, it considers the factors that affect their release and ecological functions and suggests directions for future research.
Collapse
Affiliation(s)
- Yunyi Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Ziying Jiang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Sihui Wu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Bixuan Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Lijun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Tinghan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, No. 35 Qinghua East Street, Haidian District, Beijing 100083, China
| |
Collapse
|
2
|
Zeng T, Su H, Wang M, He J, Gu L, Wang H, Du X, Wang C, Zhu B. The Role of MYC2 Transcription Factors in Plant Secondary Metabolism and Stress Response Mechanisms. PLANTS (BASEL, SWITZERLAND) 2025; 14:1255. [PMID: 40284143 PMCID: PMC12030399 DOI: 10.3390/plants14081255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Jasmonates (JAs) are essential signaling molecules that orchestrate plant responses to abiotic and biotic stresses and regulate growth and developmental processes. MYC2, a core transcription factor in JA signaling, plays a central role in mediating these processes through transcriptional regulation. However, the broader regulatory functions of MYC2, particularly in secondary metabolism and stress signaling pathways, are still not fully understood. This review broadens that perspective by detailing the signaling mechanisms and primary functions of MYC2 transcription factors. It specifically emphasizes their roles in regulating the biosynthesis of secondary metabolites such as alkaloids, terpenes, and flavonoids, and in modulating plant responses to environmental stresses. The review further explores how MYC2 interacts with other transcription factors and hormonal pathways to fine-tune defense mechanisms and secondary metabolite production. Finally, it discusses the potential of MYC2 transcription factors to enhance plant metabolic productivity in agriculture, considering both their applications and limitations in managing secondary metabolite synthesis.
Collapse
Affiliation(s)
- Tuo Zeng
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (H.S.); (J.H.); (L.G.); (H.W.); (X.D.)
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| | - Han Su
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (H.S.); (J.H.); (L.G.); (H.W.); (X.D.)
| | - Meiyang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jiefang He
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (H.S.); (J.H.); (L.G.); (H.W.); (X.D.)
| | - Lei Gu
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (H.S.); (J.H.); (L.G.); (H.W.); (X.D.)
| | - Hongcheng Wang
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (H.S.); (J.H.); (L.G.); (H.W.); (X.D.)
| | - Xuye Du
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (H.S.); (J.H.); (L.G.); (H.W.); (X.D.)
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| | - Bin Zhu
- Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.Z.); (H.S.); (J.H.); (L.G.); (H.W.); (X.D.)
| |
Collapse
|
3
|
Liang Q, Feng X, Hu D, Jin Y, Wang X, Ma X, Liang R, Zhu QH, He S, Zhu H, Liu F, Zhang X, Sun J, Xue F. Genetic, metabolomic and transcriptomic analyses of the cotton yellow anther trait. Int J Biol Macromol 2025; 300:140193. [PMID: 39848383 DOI: 10.1016/j.ijbiomac.2025.140193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
In the fiber industry, cotton (Gossypium hirsutum L.) is an important crop. One of the most important morphology traits of plants is the color of the anthers, is closely related to pollen fertility and stress resistance. Upland cotton anthers appear white, while island cotton and many wild cotton species have yellow anthers. Carotenoids are natural pigments in plants which involved in many metabolic processes, including photosynthesis, photoprotection, photomorphogenesis, growth and development. Here, we characterized the yellow anther trait of G. hirsutum. Carotenoid and flavonoid profiles in the yellow anthers were greatly altered compared to that in the white anthers, indicating that both carotenoids and flavonoids contribute to the yellow anther phenotype. Map-based cloning identified GhYA (GH_A05G4013) encoding a phytoene synthase to be the candidate gene responsible for anther coloration. GhYA is predominantly expressed in anthers, with its expression level gradually decreasing with the development of anthers. Haplotype analysis revealed that white anthers are associated with two haplotypes, with X74 belonging to HAP1. Through evolutionary analysis, it was found that although there are many white anther Germplasm in upland cotton, the two types of white anther haplotypes were mutated from yellow anthers respectively. Comparative transcriptome analysis between the yellow anther and white anther accessions revealed differentially expressed genes related to both the carotenoid and flavonoid biosynthesis pathways, in line with the changed profiles of the two types of metabolites in yellow anthers; meanwhile, it also indicates potential cross-talk between the flavonoid and carotenoid pathways. According to the results, the PSY gene is critical for the regulation of carotenoids accumulation in cotton anthers.
Collapse
Affiliation(s)
- Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Xiaokang Feng
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - YanLong Jin
- College of Life Sciences, Fudan University, Shanghai, China.
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - XiaoHu Ma
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Rui Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia.
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| |
Collapse
|
4
|
Duan L, Wang J, Li H, Li J, Tong H, Du C, Zhang H. Reproductive strategies of two color morphs of Paeonia delavayi. FRONTIERS IN PLANT SCIENCE 2025; 16:1531186. [PMID: 40177018 PMCID: PMC11961923 DOI: 10.3389/fpls.2025.1531186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
The diversity in floral coloration results from a complex reproductive system, which has evolved in response to multiple pollinators and is intricately linked to the development of pollination mechanisms. To investigate how floral trait variations influence reproduction in Paeonia delavayi, we conducted pollination experiments, observed insect visitation, measured floral traits, estimated petal and anther colors as perceived by pollinators and analyzed floral scent for two floral morphs (red and yellow) at two distinct sites. P. delavayi depended on insect pollinators for seed production. Multiple comparisons revealed that seed yields and seed sets under natural pollination were significantly higher than those under artificial pollination (homogamy and geitonogamy) and anemophilous pollination. However, there was no significant difference in seed yields(LWS, p = 0.487; XGLL, p = 0.702) and seed set (LWS, p = 0.077; XGLL, p = 0.251) between two floral morphs under natural pollination. Both morphs shared common pollinators, primarily honeybees, bumblebees, and syrphid flies. Major pollinators visited the yellow morph more frequently than the red morph, although there was no significant difference in the duration time of visits between the two morphs. Studies utilizing insect vision models, based on color reflection spectra, revealed that major pollinators could distinguish differences in petal and anther colors between the two morphs. However, there is variation in how pollinators perceive their flower colors. On the one hand, the yellow morphs contrast against the leaves background, enhancing their visual attractiveness to bees and flies. On the other hand, the red-flowered morph compensates for its visual disadvantage through olfactory cues, ensuring successful reproduction despite lower visual attractiveness. This study highlights the intricate interplay between visual and olfactory signals in plant-pollinator interactions, emphasizing their combined influence on reproductive outcomes.
Collapse
Affiliation(s)
- Lijun Duan
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Juan Wang
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Haiqing Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| | - Jin Li
- Institute of Forestry Industry, Yunnan, Academy of Forestry and Grassland, Kunming, China
| | - Haizhen Tong
- College of Biological and Food Engineering, Southwest Forestry University, Kunming, China
| | - Chun Du
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Huaibi Zhang
- New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
5
|
Huang YH, Escalona HE, Sun YF, Zhang PF, Du XY, Gong SR, Tang XF, Liang YS, Yang D, Chen PT, Yang HY, Chen ML, Hüttel B, Hlinka O, Wang X, Meusemann K, Ślipiński A, Zwick A, Waterhouse RM, Misof B, Niehuis O, Li HS, Pang H. Molecular evolution of dietary shifts in ladybird beetles (Coleoptera: Coccinellidae): from fungivory to carnivory and herbivory. BMC Biol 2025; 23:67. [PMID: 40022128 PMCID: PMC11871716 DOI: 10.1186/s12915-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Dietary shifts are major evolutionary steps that shape ecological niches and biodiversity. The beetle family Coccinellidae, commonly known as ladybirds, first transitioned from a fungivorous to an insectivorous and subsequently a plant diet. However, the molecular basis of this dietary diversification remained unexplored. RESULTS We investigated the molecular evolution of dietary shifts in ladybirds, focusing on the transitions from fungivory to carnivory (Coccinellidae) and from carnivory to herbivory (Epilachnini), by comparing 25 genomes and 62 transcriptomes of beetles. Our analysis shows that chemosensory gene families have undergone significant expansions at both nodes of diet change and were differentially expressed in feeding experiments, suggesting that they may be related to foraging. We found expansions of digestive and detoxifying gene families and losses of chitin-related digestive genes in the herbivorous ladybirds, and absence of most plant cell wall-degrading enzymes in the ladybirds dating from the transition to carnivory, likely indicating the effect of different digestion requirements on the gene repertoire. Immunity effector genes tend to emerge or have specific amino acid sequence compositions in carnivorous ladybirds and are downregulated under suboptimal dietary treatments, suggesting a potential function of these genes related to microbial symbionts in the sternorrhynchan prey. CONCLUSIONS Our study provides a comprehensive comparative genomic analysis to address evolution of chemosensory, digestive, detoxifying, and immune genes associated with dietary shifts in ladybirds. Ladybirds can be considered a ubiquitous example of dietary shifts in insects, and thus a promising model system for evolutionary and applied biology.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hermes E Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Sen-Rui Gong
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Huan-Ying Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mei-Lan Chen
- School of Environmental and Life Sciences, Nanning Normal University, Nanning, 530001, China
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ondrej Hlinka
- CSIRO Information, Management and Technology, Pullenvale, QLD, Australia
| | - Xingmin Wang
- College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Karen Meusemann
- Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, Bonn, 53113, Germany
| | - Adam Ślipiński
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Bernhard Misof
- Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, Bonn, 53113, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, Freiburg, 79104, Germany
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Tai Y, Wu H, Yang L, Yuan Y, Chen Y, Wang H, Jin Y, Yu L, Li S, Shi F. Functional analysis of (E)-β-farnesene synthases involved in accumulation of (E)-β-farnesene in German chamomile (Matricaria chamomilla L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112314. [PMID: 39491728 DOI: 10.1016/j.plantsci.2024.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
German chamomile (Matricaria chamomilla L.) is a traditional medicinal aromatic plant, and the sesquiterpenoids in its flowers have important medicinal value. The (E)-β-farnesene (EβF) is one of the active sesquiterpenoid components and is also a major component of aphid alarm pheromones. In this study, two EβF synthase (βFS) genes (McβFS1 and McβFS2), were cloned from German chamomile. Subcellular localization analysis showed that both McβFS1 and McβFS2 were localized in the cytoplasm and nucleus. Tissue-specific expression analysis revealed that McβFS1 and McβFS2 were expressed in all flower stages, with the highest levels observed during the tubular flower extension stage. Prokaryotic expression and enzyme activity results showed that McβFS1 and McβFS2 possess catalytic activity. Overexpression of McβFS1 and McβFS2 in the hairy roots of German chamomile led to the accumulation of EβF, demonstrating enzyme activity in vivo. The promoters of McβFS1 and McβFS2 were cloned and analyzed. After treating German chamomile with methyl jasmonate (MeJA) and methyl salicylate (MeSA), the transcription levels of McβFS1 and McβFS2 were found to be regulated by both hormones. In addition, feeding experiments showed that aphid infestation upregulated the expression levels of McβFS1 and McβFS2. Our study provides valuable insights into the biosynthesis of EβF, laying a foundation for further research into its metabolic pathways.
Collapse
Affiliation(s)
- Yuling Tai
- School of Life Science, Anhui Agricultural University, Hefei, China.
| | - Haiyan Wu
- School of Life Science, Anhui Agricultural University, Hefei, China.
| | - Lu Yang
- School of Life Science, Anhui Agricultural University, Hefei, China.
| | - Yi Yuan
- School of Life Science, Anhui Agricultural University, Hefei, China.
| | - Youhui Chen
- School of Life Science, Anhui Agricultural University, Hefei, China.
| | - Honggang Wang
- School of Life Science, Anhui Agricultural University, Hefei, China.
| | - Yifan Jin
- School of Life Science, Anhui Agricultural University, Hefei, China.
| | - Luyao Yu
- School of Life Science, Anhui Agricultural University, Hefei, China.
| | - Shuangshuang Li
- School of Life Science, Anhui Agricultural University, Hefei, China.
| | - Feng Shi
- School of Life Science, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
7
|
Wang B, Jacquin-Joly E, Wang G. The Role of ( E)-β-Farnesene in Tritrophic Interactions: Biosynthesis, Chemoreception, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:313-335. [PMID: 39378330 DOI: 10.1146/annurev-ento-013024-021018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
(E)-β-farnesene (EBF) stands out as a crucial volatile organic compound, exerting significant influence on the complex interactions between plants, aphids, and predator insects. Serving as an alarm signal within aphids, EBF is also emitted by plants as a defense mechanism to attract aphid predators. This review delves into EBF sources, functions, biosynthesis, detection mechanisms, and its coevolutionary impacts on aphids and insect predators. The exploration underscores the need to comprehend the biophysical and structural foundations of EBF receptors in aphids, emphasizing their role in unraveling the intricate patterns and mechanisms of interaction between EBF and target receptors. Furthermore, we advocate for adopting structure-based or machine-learning methodologies to anticipate receptor-ligand interactions. On the basis of this knowledge, we propose future research directions aiming at designing, optimizing, and screening more stable and efficient active odorants. A pivotal outcome of this comprehensive investigation aims to contribute to the development of more effective aphid-targeted control strategies.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China;
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China;
| |
Collapse
|
8
|
Li J, Luo Y, Li M, Li J, Zeng T, Luo J, Chang X, Wang M, Jongsma MA, Hu H, Wang C. Nocturnal burst emissions of germacrene D from the open disk florets of pyrethrum flowers induce moths to oviposit on a nonhost and improve pollination success. THE NEW PHYTOLOGIST 2024; 244:2036-2048. [PMID: 39205445 DOI: 10.1111/nph.20060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Recent studies show that nocturnal pollinators may be more important to ecosystem function and food production than is currently appreciated. Here, we describe an agricultural field study of pyrethrum (Tanacetum cinerariifolium) flower pollination. Pyrethrum is genetically self-incompatible and thus is reliant on pollinators for seed set. Our pollinator exclusion experiment showed that nocturnal insects, particularly moths, significantly contribute to seed set and quality. We discovered that the most abundant floral volatile, the sesquiterpene (-)-germacrene D (GD), is key in attracting the noctuid moths Peridroma saucia and Helicoverpa armigera. Germacrene D synthase (GDS) gene expression regulates the specific GD production and accumulation in flowers, which, in contrast to related species, lose the habit of closing at night. We did observe that female moths also oviposited on pyrethrum leaves and flower peduncles, but found that only a small fraction of those eggs hatched. Larvae were severely stunted in development, most likely due to the presence of pyrethrin defense compounds. This example of exploitative mutualism, which blocks the reproductive success of the moth pollinator and depends on nocturnal interactions, is placed into an ecological context to explain why it may have developed.
Collapse
Affiliation(s)
- Jinjin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maoyuan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tuo Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangqian Chang
- Institute of Plant Protection & Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Petrović L, Filipović B, Skorić M, Šiler B, Banjanac T, Matekalo D, Nestorović Živković J, Dmitrović S, Aničić N, Milutinović M, Božunović J, Gašić U, Mišić D. Molecular background of the diverse metabolic profiles in leaves and inflorescences of naked catmint ( Nepeta nuda L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1452804. [PMID: 39670275 PMCID: PMC11634604 DOI: 10.3389/fpls.2024.1452804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
Nepeta nuda L. shares a typical secondary chemistry with other Nepeta species (fam. Lamiaceae), characterized by the tendency to intensively produce monoterpenoid iridoids, whereas the phenylpropanoid chemistry is steered towards the production of a caffeic acid ester, rosmarinic acid. Combining complementary state-of-the-art analytical techniques, N. nuda metabolome was here comprehensively characterized in the quest for the organ-specific composition of phenolics and terpenoids that possess well-defined functions in plant-biotic interactions as well as therapeutic potential. N. nuda inflorescences showed generally higher constitutive levels of specialized metabolites, as compared to leaves, and the composition of major iridoids and phenolics in reproductive organs was found to be more conserved than in leaves across 13 populations from the Central Balkans. The results suggest that N. nuda plants most likely invest more in constitutive than inducible biosynthesis of functional metabolites in flowers, since they are of essential importance for both pollination and defense against herbivores and pathogens. Conversely, specialized metabolism of leaves is found to be more susceptible to reprograming in response to differential growth conditions. The defense strategy of leaves, primarily functioning in CO2 fixation during photosynthesis, more likely relies on the induction of metabolite levels following plant-environment interplay. Organ-specific biosynthesis of iridoids in N. nuda is found to be tightly regulated at the transcriptional level, and high constitutive levels of these compounds in inflorescences most likely result from the up-regulated expression of several key genes (NnG8H, NnNEPS1, NnNEPS2, and NnNEPS3) determining the metabolic flux through the pathway. The organ-specific content of rosmarinic acid and co-expression patterns of the corresponding biosynthetic genes were much less correlated, which suggests independent organ-specific transcriptional regulation of the iridoid and phenolic pathways. Knowledge gathered within the present study can assist growers to select productive genotypes and manipulate phenology of N. nuda towards maximizing yields and facilitating its integration into pest management systems and other applications related to human health.
Collapse
Affiliation(s)
| | - Biljana Filipović
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Matsuda K. Understanding pyrethrin biosynthesis: toward and beyond natural pesticide overproduction. Biochem Soc Trans 2024; 52:1927-1937. [PMID: 39136197 DOI: 10.1042/bst20240213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Pyrethrins are natural insecticides biosynthesised by Asteraceae plants, such as Tanacetum cinerariifolium and have a long history, dating back to ancient times. Pyrethrins are often used as low-persistence and safe insecticides to control household, horticultural, and agricultural insect pests. Despite its long history of use, pyrethrin biosynthesis remains a mystery, presenting a significant opportunity to improve yields and meet the growing demand for organic agriculture. To achieve this, both genetic modification and non-genetic methods, such as chemical activation and priming, are indispensable. Plants use pyrethrins as a defence against herbivores, but pyrethrin biosynthesis pathways are shared with plant hormones and signal molecules. Hence, the insight that pyrethrins may play broader roles than those traditionally expected is invaluable to advance the basic and applied sciences of pyrethrins.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
11
|
Li J, Hu H, Ren S, Yu L, Luo Y, Li J, Zeng T, Wang M, Wang C. Aphid alarm pheromone mimicry in transgenic Chrysanthemum morifolium: insights into the potential of ( E)-β-farnesene for aphid resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1373669. [PMID: 38711605 PMCID: PMC11070518 DOI: 10.3389/fpls.2024.1373669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
(E)-β-Farnesene (EBF) serves as the primary component of the alarm pheromone used by most aphid pest species. Pyrethrum (Tanacetum cinerariifolium) exhibits tissue-specific regulation of EBF accumulation and release, effectively mimicking the aphid alarm signal, deterring aphid attacks while attracting aphid predators. However, cultivated chrysanthemum (Chrysanthemum morifolium), a popular and economically significant flower, is highly vulnerable to aphid infestations. In this study, we investigated the high expression of the pyrethrum EBF synthase (TcEbFS) gene promoter in the flower head and stem, particularly in the parenchyma cells. Subsequently, we introduced the TcEbFS gene, under the control of its native promoter, into cultivated chrysanthemum. This genetic modification led to increased EBF accumulation in the flower stem and young flower bud, which are the most susceptible tissues to aphid attacks. Analysis revealed that aphids feeding on transgenic chrysanthemum exhibited prolonged probing times and extended salivation durations during the phloem phase, indicating that EBF in the cortex cells hindered their host-location behavior. Interestingly, the heightened emission of EBF was only observed in transgenic chrysanthemum flowers after mechanical damage. Furthermore, we explored the potential of this transgenic chrysanthemum for aphid resistance by comparing the spatial distribution and storage of terpene volatiles in different organs and tissues of pyrethrum and chrysanthemum. This study provides valuable insights into future trials aiming for a more accurate replication of alarm pheromone release in plants. It highlights the complexities of utilizing EBF for aphid resistance in cultivated chrysanthemum and calls for further investigations to enhance our understanding of this defense mechanism.
Collapse
Affiliation(s)
- Jinjin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Shengjing Ren
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Lu Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Tuo Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Lev-Yadun S. Visual-, Olfactory-, and Nectar-Taste-Based Flower Aposematism. PLANTS (BASEL, SWITZERLAND) 2024; 13:391. [PMID: 38337924 PMCID: PMC10857241 DOI: 10.3390/plants13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Florivory, i.e., flower herbivory, of various types is common and can strongly reduce plant fitness. Flowers suffer two very different types of herbivory: (1) the classic herbivory of consuming tissues and (2) nectar theft. Unlike the non-reversibility of consumed tissues, nectar theft, while potentially reducing a plant's fitness by lowering its attraction to pollinators, can, in various cases, be fixed quickly by the production of additional nectar. Therefore, various mechanisms to avoid or reduce florivory have evolved. Here, I focus on one of the flowers' defensive mechanisms, aposematism, i.e., warning signaling to avoid or at least reduce herbivory via the repelling of herbivores. While plant aposematism of various types was almost ignored until the year 2000, it is a common anti-herbivory defense mechanism in many plant taxa, operating visually, olfactorily, and, in the case of nectar, via a bitter taste. Flower aposematism has received only very little focused attention as such, and many of the relevant publications that actually demonstrated herbivore repellence and avoidance learning following flower signaling did not refer to repellence as aposematism. Here, I review what is known concerning visual-, olfactory-, and nectar-taste-based flower aposematism, including some relevant cases of mimicry, and suggest some lines for future research.
Collapse
Affiliation(s)
- Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
13
|
Li J, Hu H, Fu H, Li J, Zeng T, Li J, Wang M, Jongsma MA, Wang C. Exploring the co-operativity of secretory structures for defense and pollination in flowering plants. PLANTA 2024; 259:41. [PMID: 38270671 DOI: 10.1007/s00425-023-04322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
MAIN CONCLUSION In flowers multiple secretory systems cooperate to deliver specialized metabolites to support specific roles in defence and pollination. The collective roles of cell types, enzymes, and transporters are discussed. The interplay between reproductive strategies and defense mechanisms in flowering plants has long been recognized, with trade-offs between investment in defense and reproduction predicted. Glandular trichomes and secretory cavities or ducts, which are epidermal and internal structures, play a pivotal role in the secretion, accumulation, and transport of specialized secondary metabolites, and contribute significantly to defense and pollination. Recent investigations have revealed an intricate connection between these two structures, whereby specialized volatile and non-volatile metabolites are exchanged, collectively shaping their respective ecological functions. However, a comprehensive understanding of this profound integration remains largely elusive. In this review, we explore the secretory systems and associated secondary metabolism primarily in Asteraceous species to propose potential shared mechanisms facilitating the directional translocation of these metabolites to diverse destinations. We summarize recent advances in our understanding of the cooperativity between epidermal and internal secretory structures in the biosynthesis, secretion, accumulation, and emission of terpenes, providing specific well-documented examples from pyrethrum (Tanacetum cinerariifolium). Pyrethrum is renowned for its natural pyrethrin insecticides, which accumulate in the flower head, and more recently, for emitting an aphid alarm pheromone. These examples highlight the diverse specializations of secondary metabolism in pyrethrum and raise intriguing questions regarding the regulation of production and translocation of these compounds within and between its various epidermal and internal secretory systems, spanning multiple tissues, to serve distinct ecological purposes. By discussing the cooperative nature of secretory structures in flowering plants, this review sheds light on the intricate mechanisms underlying the ecological roles of terpenes in defense and pollination.
Collapse
Affiliation(s)
- Jinjin Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hansen Fu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Li
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tuo Zeng
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
15
|
Li J, Yin J, Yan J, Zhang M, Chen R, Li S, Palli SR, Gao Y. Expression and functional analysis of an odorant binding protein PopeOBP16 from Phthorimaea operculella (Zeller). Int J Biol Macromol 2023; 242:124939. [PMID: 37207749 DOI: 10.1016/j.ijbiomac.2023.124939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Odorant binding proteins (OBPs) are essential proteins in the peripheral olfactory system, responsible for odorant recognition and transport to olfactory receptors. Phthorimaea operculella (potato tuber moth) is an important oligophagous pest on Solanaceae crops in many countries and regions. PopeOBP16 is one of the OBPs in potato tuber moth. This study examined the expression profiles of PopeOBP16. The results of qPCR indicated that PopeOBP16 was highly expressed in the antennae of adults, especially in males, suggesting that it may be involved in odor recognition in adults. The electroantennogram (EAG) was used to screen candidate compounds with the antennae of P. operculella. The relative affinities of PopeOBP16 to 27 host volatiles and two sex pheromone components with the highest relative EAG responses were examined with competitive fluorescence-based binding assays. PopeOBP16 had the strongest binding affinity with the plant volatiles: nerol, 2-phenylethanol, linalool, 1,8-cineole, benzaldehyde, β-pinene, d-limonene, terpinolene, α-terpinene, and the sex pheromone component trans-4, cis-7, cis-10-tridecatrien-1-ol acetate. The results provide a foundation for further research into the functioning of the olfactory system and the potential development of green chemistry for control of the potato tuber moth.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Junjie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mengdi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ruipeng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Suhua Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
16
|
Meng K, Eldar-Liebreich M, Nawade B, Yahyaa M, Shaltiel-Harpaz L, Coll M, Sadeh A, Ibdah M. Analysis of apocarotenoid volatiles from lettuce ( Lactuca sativa) induced by insect herbivores and characterization of carotenoid cleavage dioxygenase gene. 3 Biotech 2023; 13:94. [PMID: 36845074 PMCID: PMC9943837 DOI: 10.1007/s13205-023-03511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Plant apocarotenoids have been shown to have a diverse biological role in herbivore-plant interactions. Despite their importance, little is known about herbivores' effect on apocarotenoid emissions in Lactuca sativa. In this study, we examined changes in apocarotenoid emissions in lettuce leaves after infestation by two insects, viz., Spodoptera littoralis larvae and Myzus persicae aphids. We found that β-ionone and β-cyclocitral showed higher concentrations than the other apocarotenoids, with a significant increase as per the intensity of infestation of both herbivore species. Furthermore, we performed functional characterization of Lactuca sativa carotenoid cleavage dioxygenase 1 (LsCCD1) genes. Three LsCCD1 genes were overexpressed in E. coli strains, and recombinant proteins were assayed for cleavage activity on an array of carotenoid substrates. The LsCCD1 protein cleaved β-carotene at the 9,10 (9',10') positions producing β-ionone. The transcript analysis of LsCCD1 genes revealed differential expression patterns under varying levels of herbivores' infestation, but the results were inconsistent with the pattern of β-ionone concentrations. Our results suggest that LsCCD1 is involved in the production of β-ionone, but other regulatory factors might be involved in its induction in response to herbivory. These results provide new insights into apocarotenoid production in response to insect herbivory in lettuce. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03511-4.
Collapse
Affiliation(s)
- Kun Meng
- Plant Sciences Institute, Newe Yaar Research Center, Agricultural Research Organization (ARO), Ramat Yishay, 30095 Israel
- Present Address: Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Michal Eldar-Liebreich
- Agroecology Lab, Department of Natural Resources, Newe Yaar Research Center, ARO, Ramat Yishay, 30095 Israel
- Department of Entomology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot , 7610001 Israel
| | - Bhagwat Nawade
- Plant Sciences Institute, Newe Yaar Research Center, Agricultural Research Organization (ARO), Ramat Yishay, 30095 Israel
| | - Mosaab Yahyaa
- Plant Sciences Institute, Newe Yaar Research Center, Agricultural Research Organization (ARO), Ramat Yishay, 30095 Israel
| | | | - Moshe Coll
- Department of Entomology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot , 7610001 Israel
| | - Asaf Sadeh
- Agroecology Lab, Department of Natural Resources, Newe Yaar Research Center, ARO, Ramat Yishay, 30095 Israel
| | - Mwafaq Ibdah
- Plant Sciences Institute, Newe Yaar Research Center, Agricultural Research Organization (ARO), Ramat Yishay, 30095 Israel
| |
Collapse
|
17
|
Li F, Zhang Y, Tian C, Wang X, Zhou L, Jiang J, Wang L, Chen F, Chen S. Molecular module of CmMYB15-like-Cm4CL2 regulating lignin biosynthesis of chrysanthemum (Chrysanthemum morifolium) in response to aphid (Macrosiphoniella sanborni) feeding. THE NEW PHYTOLOGIST 2023; 237:1776-1793. [PMID: 36444553 DOI: 10.1111/nph.18643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/23/2022] [Indexed: 05/22/2023]
Abstract
Lignin is a major component of plant cell walls and a conserved basic defense mechanism in higher plants deposited in response to aphid infection. However, the molecular mechanisms of lignin biosynthesis in response to aphid infection and the effect of lignin on aphid feeding behavior remain unclear. We report that 4-Coumarate:coenzyme A ligase 2 (Cm4CL2), a gene encoding a key enzyme in the lignin biosynthesis pathway, is induced by aphid feeding, resulting in lignin deposition and reduced aphid attack. Upstream regulator analysis showed that the expression of Cm4CL2 in response to aphid feeding was directly upregulated by CmMYB15-like, an SG2-type R2R3-MYB transcription factor. CmMYB15-like binds directly to the AC cis-element in the promoter region of Cm4CL2. Genetic validation demonstrated that CmMYB15-like was induced by aphid infection and contributed to lignin deposition and cell wall thickening, which consequently enhanced aphid resistance in a Cm4CL2-dependent manner. This study is the first to show that the CmMYB15-like-Cm4CL2 module regulates lignin biosynthesis in response to aphid feeding.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinhui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - LiKai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs / Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration / College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
18
|
Ma S, Li J, Pei L, Feng N, Zhang Y. Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects. J Pharm Anal 2023; 13:111-126. [PMID: 36908860 PMCID: PMC9999301 DOI: 10.1016/j.jpha.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
Similar to blood, interstitial fluid (ISF) contains exogenous drugs and biomarkers and may therefore substitute blood in drug analysis. However, current ISF extraction techniques require bulky instruments and are both time-consuming and complicated, which has inspired the development of viable alternatives such as those relying on skin or tissue puncturing with microneedles. Currently, microneedles are widely employed for transdermal drug delivery and have been successfully used for ISF extraction by different mechanisms to facilitate subsequent analysis. The integration of microneedles with sensors enables in situ ISF analysis and specific compound monitoring, while the integration of monitoring and delivery functions in wearable devices allows real-time dose modification. Herein, we review the progress in drug analysis based on microneedle-assisted ISF extraction and discuss the related future opportunities and challenges.
Collapse
Affiliation(s)
- Shuwen Ma
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaqi Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Pei
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
19
|
Defensive functions and potential ecological conflicts of floral stickiness. Sci Rep 2022; 12:19848. [PMID: 36400941 PMCID: PMC9674602 DOI: 10.1038/s41598-022-23261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Stickiness of vegetative tissues has evolved multiple times in different plant families but is rare and understudied in flowers. While stickiness in general is thought to function primarily as a defense against herbivores, it may compromise mutualistic interactions (such as those with pollinators) in reproductive tissues. Here, we test the hypothesis that stickiness on flower petals of the High-Andean plant, Bejaria resinosa (Ericaceae), functions as a defense against florivores. We address ecological consequences and discuss potential trade-offs associated with a repellant trait expressed in flowers that mediate mutualistic interactions. In surveys and manipulative experiments, we assess florivory and resulting fitness effects on plants with sticky and non-sticky flowers in different native populations of B. resinosa in Colombia. In addition, we analyze the volatile and non-volatile components in sticky and non-sticky flower morphs to understand the chemical information context within which stickiness is expressed. We demonstrate that fruit set is strongly affected by floral stickiness but also varies with population. While identifying floral stickiness as a major defensive function, our data also suggest that the context-dependency of chemical defense functionality likely arises from differential availability of primary pollinators and potential trade-offs between chemical defense with different modes of action.
Collapse
|
20
|
Huang S, Huang H, Xie J, Wang F, Fan S, Yang M, Zheng C, Han L, Zhang D. The latest research progress on the prevention of storage pests by natural products: Species, mechanisms, and sources of inspiration. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Li H, Zhu Z, Yang Z, Du S, Wang Y, Zhong H, Zhang R, Zhang C, Zhou JJ, Xu Z, Duan H. Odorant-Binding Protein 3-Oriented Rational Design and Discovery of Novel Jasmonate Derivatives as Potential Aphid-Repellent Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11792-11803. [PMID: 36095120 DOI: 10.1021/acs.jafc.2c04126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Odorant-binding protein (OBP) is a potential target for developing insect behavior control agents due to its properties in transporting semiochemicals. In this study, 12 novel jasmonic acid (JA) derivatives were rationally designed and synthesized based on the binding features between Acyrthosiphon pisum OBP3 (ApisOBP3) and compound D1 [(E)-3,7-dimethylocta-2,6-dien-1-yl 2-(3-oxo-2-pentylcyclopentyl)acetate] with a binding affinity (Kd) of 26.79 μM. Most novel JA derivatives displayed better binding affinities than D1 (Kd = 1-26 μM). Among them, compound 6b [(E)-3,7-dimethylocta-2,6-dien-1-yl-2-((Z)-3-((acryloyloxy)imino)-2-pentylcyclopentyl)acetate] is the most promising compound with an excellent Kd of 1.33 μM and a significant repellent activity with repellent rates of 50-60% against A. pisum and Myzus persicae. Both hydrophobic and electrostatic interactions were found to contribute significantly to the binding of 6b to ApisOBP3. This study provides significant guidance for the rational design and efficient identification of novel aphid repellents based on aphid OBPs.
Collapse
Affiliation(s)
- Huilin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ziwei Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhaokai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shaoqing Du
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yueran Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hanjing Zhong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Rulei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chunrong Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jing-Jiang Zhou
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Zhang W, Jiang Y, Chen F, Guan Z, Wei G, Chen X, Zhang C, Köllner TG, Chen S, Chen F, Chen F. Dynamic regulation of volatile terpenoid production and emission from Chrysanthemum morifolium capitula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:11-21. [PMID: 35453029 DOI: 10.1016/j.plaphy.2022.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/09/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Flower-associated communities consist of both mutualistic and antagonistic organisms. We have limited knowledge on how flowers regulate volatiles to balance their defense against antagonists and the attraction of beneficial organisms necessary for reproductive success. Asteraceae is the largest family among flowering plants. Its representatives are characterized by unique inflorescence called capitulum, which has been reduced to a reproduction unit resembling a single flower. Here, we chose Chrysanthemum morifolium, a model species of Asteraceae, to investigate how the capitulum balances the accumulation and emission of floral terpenoid volatiles that are implicated in defense and pollinator attraction, respectively. Our results showed that the capitula of C. morifolium produce and emit complex mixtures of monoterpenoids and sesquiterpenoids. The highest concentrations of terpenoids were detected in the bud stage of the capitula. In contrast, the capitulum reached the highest emission level prior to full blooming. The disc florets were the dominant organs of terpenoid accumulation and emission in the full-openness stage. To understand the molecular basis of volatile terpenoid biosynthesis in C. morifolium, experiments were designed to study terpene synthase (TPS) genes, which are pivotal for terpene biosynthesis. Eight CmCJTPS genes were identified in the transcriptomes of C. morifolium, and the proteins encoded by five genes were found to be biochemically functional. CmCJTPS5 and CmCJTPS8 were the multi-product enzymes catalyzing the monoterpenoid and sesquiterpenoid formation, which closely matched the major terpenoids produced in the flower heads. The five functional terpene synthase genes exhibited similar temporal expression patterns but diverse spatial expression levels, suggesting tissue-specific functions. Altogether, our results illustrate the dynamic patterns of accumulation and emission of floral volatile terpenoids implicated in defense and attracting pollinators in C. morifolium, for which both the regulation of TPS gene expression and the regulation of release may play critical roles.
Collapse
Affiliation(s)
- Wanbo Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyong Guan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guo Wei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745, Jena, Germany
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
23
|
Yang L, Yao X, Liu B, Han Y, Ji R, Ju J, Zhang X, Wu S, Fang J, Sun Y. Caterpillar-Induced Rice Volatile (E)-β-Farnesene Impairs the Development and Survival of Chilo suppressalis Larvae by Disrupting Insect Hormone Balance. Front Physiol 2022; 13:904482. [PMID: 35711319 PMCID: PMC9196309 DOI: 10.3389/fphys.2022.904482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Significant research progress has recently been made on establishing the roles of tps46 in rice defense. (E)-β-farnesene (Eβf) is a major product of tps46 activity but its physiological functions and potential mechanisms against Chilo suppressalis have not yet been clarified. In the present study, C. suppressalis larvae were artificially fed a diet containing 0.8 g/kg Eβf and the physiological performance of the larvae was evaluated. In response to Eβf treatment, the average 2nd instar duration significantly increased from 4.78 d to 6.31 d while that of the 3rd instar significantly increased from 5.70 d to 8.00 d compared with the control. There were no significant differences between the control and Eβf-fed 4th and 5th instars in terms of their durations. The mortalities of the 2nd and 3rd Eβf-fed instars were 21.00-fold and 6.39-fold higher, respectively, than that of the control. A comparative transcriptome analysis revealed that multiple differentially expressed genes are involved in insect hormone biosynthesis. An insect hormone assay on the 3rd instars disclosed that Eβf disrupted the balance between the juvenile hormone and ecdysteroid levels. Eβf treatment increased the juvenile hormones titers but not those of the ecdysteroids. The qPCR results were consistent with those of the RNA-Seq. The foregoing findings suggested that Eβf impairs development and survival in C. suppressalis larvae by disrupting their hormone balance. Moreover, Eβf altered the pathways associated with carbohydrate and xenobiotic metabolism as well as those related to cofactors and vitamins in C. suppressalis larvae. The discoveries of this study may contribute to the development and implementation of an integrated control system for C. suppressalis infestations in rice.
Collapse
Affiliation(s)
- Lei Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Xiaomin Yao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baosheng Liu
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Yangchun Han
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Jiafei Ju
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Xiaona Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jichao Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China
| | - Yang Sun
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, China.,Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
24
|
Cirak C, Seyis F, Özcan A, Yurteri E. Ontogenetic changes in phenolic contents and volatile composition of Hypericum androsaemum and Hypericum xylosteifolium. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Guan Y, Chen S, Chen F, Chen F, Jiang Y. Exploring the Relationship between Trichome and Terpene Chemistry in Chrysanthemum. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111410. [PMID: 35684184 PMCID: PMC9182802 DOI: 10.3390/plants11111410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 05/14/2023]
Abstract
Chrysanthemum is a popular ornamental plant with a long history of cultivation. Both the leaf and flowerhead of Chrysanthemum are known to produce diverse secondary metabolites, particularly terpenoids. Here we aimed to determine the relationship between terpene chemistry and the trichome traits in Chrysanthemum. In our examination of three cultivars of C. morifilium and three accessions of C. indicum, all plants contained T-shaped trichomes and biseriate peltate glandular trichomes. The biseriate peltate glandular trichome contained two basal cells, two stalk cells, six secondary cells and a subcuticular space, while the non-glandular T-shaped trichome was only composed of stalk cells and elongated cells. Histochemical staining analysis indicated that the biseriate peltate glandular trichome contained terpenoids and lipid oil droplets but not the T-shaped trichome. Next, experiments were performed to determine the relationship between the accumulation and emission of the volatile terpenoids and the density of trichomes on the leaves and flowerheads in all six Chrysanthemum cultivars\accessions. A significant correlation was identified between the monoterpenoid and sesquiterpenoid content and the density of glandular trichomes on the leaves, with the correlation coefficients being 0.88, 0.86 and 0.90, respectively. In contrast, there was no significant correlation between the volatile terpenoid content and the density of T-shaped trichomes on the leaves. In flowerheads, a significant correlation was identified between the emission rate of terpenoids and the number of glandular trichomes on the disc florets, with a correlation coefficient of 0.95. Interestingly, the correlation between the density of glandular trichomes and concentrations of terpenoids was insignificant. In summary, the relationship between trichomes and terpenoid chemistry in Chrysanthemum is clearly established. Such knowledge may be helpful for breeding aromatic Chrysanthemum cultivars by modulating the trichome trait.
Collapse
Affiliation(s)
- Yaqin Guan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.G.); (S.C.); (F.C.)
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.G.); (S.C.); (F.C.)
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.G.); (S.C.); (F.C.)
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.G.); (S.C.); (F.C.)
- Correspondence:
| |
Collapse
|
26
|
Li JW, Zeng T, Xu ZZ, Li JJ, Hu H, Yu Q, Zhou L, Zheng RR, Luo J, Wang CY. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter. PLANT METHODS 2022; 18:32. [PMID: 35292048 PMCID: PMC8925089 DOI: 10.1186/s13007-022-00863-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/24/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Traditional CRISPR/Cas9 systems that rely on U6 or U3 snRNA promoters (RNA polymerase III-dependent promoters) can only achieve constitutive gene editing in plants, hampering the functional analysis of specifically expressed genes. Ribozyme-mediated CRISPR/Cas9 systems increase the types of promoters which can be used to transcribe sgRNA. Therefore, such systems allow specific gene editing; for example, transcription of the artificial gene Ribozyme-sgRNA-Ribozyme (RGR) is initiated by an RNA polymerase II-dependent promoter. Genetic transformation is indispensable for editing plant genes. In certain plant species, including pyrethrum, genetic transformation remains challenging to do, limiting the functional verification of novel CRISPR/Cas9 systems. Thus, this study's aim was to develop a simple Agrobacterium rhizogenes-mediated hairy root transformation system to analyze the function of a ribozyme-mediated CRISPR/Cas9 system in pyrethrum. RESULTS A hairy root transformation system for pyrethrum is described, with a mean transformation frequency of 7%. Transgenic hairy roots transformed with the pBI121 vector exhibited significantly increased beta-glucuronidase staining as a visual marker of transgene expression. Further, a ribozyme-based CRISPR/Cas9 vector was constructed to edit the TcEbFS gene, which catalyzes synthesis of the defense-related compound (E)-β-farnesene in pyrethrum. The vector was transferred into the hairy roots of pyrethrum and two stably transformed hairy root transgenic lines obtained. Editing of the TcEbFS gene in the hairy roots was evaluated by gene sequencing, demonstrating that both hairy root transgenic lines had DNA base loss at the editing target site. Gas chromatography-mass spectrometry showed that the (E)-β-farnesene content was significantly decreased in both hairy root transgenic lines compared with the empty vector control group. Altogether, these results show that RGR can be driven by the CaMV35S promoter to realize TcEbFS gene editing in pyrethrum hairy roots. CONCLUSION An A. rhizogenes-mediated hairy root transformation and ribozyme-mediated CRISPR/Cas9 gene editing system in pyrethrum was established, thereby facilitating gene editing in specific organs or at a particular developmental stage in future pyrethrum research.
Collapse
Affiliation(s)
- Jia-Wen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Zhi-Zhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Jin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Hu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Yu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ri-Ru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Cai-Yun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Michaud JP. The Ecological Significance of Aphid Cornicles and Their Secretions. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:65-81. [PMID: 34995085 DOI: 10.1146/annurev-ento-033021-094437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aphid cornicles are abdominal appendages that secrete an array of volatile and nonvolatile compounds with diverse ecological functions. The emission of alarm pheromones yields altruistic benefits for clone-mates in the aphid colony, which is essentially a superorganism with a collective fate. Secreted droplets also contain unsaturated triglycerides, fast-drying adhesives that can be lethal when smeared on natural enemies but more often impede their foraging efficiency. The longest cornicles have evolved in aphids that feed in exposed locations and are likely used to scent-mark colony intruders. Reduced cornicles are associated with reliance on alternative defenses, such as the secretion of protective waxes or myrmecophily. Root-feeding and gall-forming lifestyles provide protected feeding sites and are associated with an absence of cornicles. In some eusocial gall-formers, soldier morphs become repositories of cornicle secretion used to defend the gall, either as menopausal apterae that defend dispersing alatae or as sterile first instars that dispatch predators with their stylets and use cornicle secretions as a construction material for gall repair. Collectively, the evidence is consistent with an adaptive radiation of derived cornicle functions molded by the ecological lifestyle of the aphid lineage.
Collapse
Affiliation(s)
- J P Michaud
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, Kansas 67601, USA;
| |
Collapse
|
28
|
Zeng T, Li JW, Zhou L, Xu ZZ, Li JJ, Hu H, Luo J, Zheng RR, Wang YY, Wang CY. Transcriptional Responses and GCMS Analysis for the Biosynthesis of Pyrethrins and Volatile Terpenes in Tanacetum coccineum. Int J Mol Sci 2021; 22:ijms222313005. [PMID: 34884809 PMCID: PMC8657971 DOI: 10.3390/ijms222313005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/24/2023] Open
Abstract
Natural pyrethrins have been widely used as natural pesticides due to their low mammalian toxicity and environmental friendliness. Previous studies have mainly focused on Tanacetumcinerariifolium, which contains high levels of pyrethrins and volatile terpenes that play significant roles in plant defense and pollination. However, there is little information on T. coccineum due to its lower pyrethrin content and low commercial value. In this study, we measured the transcriptome and metabolites of the leaves (L), flower buds (S1), and fully blossomed flowers (S4) of T. coccineum. The results show that the expression of pyrethrins and precursor terpene backbone genes was low in the leaves, and then rapidly increased in the S1 stage before decreasing again in the S4 stage. The results also show that pyrethrins primarily accumulated at the S4 stage. However, the content of volatile terpenes was consistently low. This perhaps suggests that, despite T. coccineum and T. cinerariifolium having similar gene expression patterns and accumulation of pyrethrins, T. coccineum attracts pollinators via its large and colorful flowers rather than via inefficient and metabolically expensive volatile terpenes, as in T. cinerariifolium. This is the first instance of de novo transcriptome sequencing reported for T. coccineum. The present results could provide insights into pyrethrin biosynthetic pathways and will be helpful for further understanding how plants balance the cost–benefit relationship between plant defense and pollination.
Collapse
Affiliation(s)
- Tuo Zeng
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Jia-Wen Li
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Li Zhou
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Zhi-Zhuo Xu
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Jin-Jin Li
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Hao Hu
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Jing Luo
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Ri-Ru Zheng
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Yuan-Yuan Wang
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Cai-Yun Wang
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
- Correspondence:
| |
Collapse
|
29
|
Lee BW, Basu S, Bera S, Casteel CL, Crowder DW. Responses to predation risk cues and alarm pheromones affect plant virus transmission by an aphid vector. Oecologia 2021; 196:1005-1015. [PMID: 34264386 DOI: 10.1007/s00442-021-04989-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/08/2021] [Indexed: 11/27/2022]
Abstract
Herbivores assess predation risk in their environment by identifying visual, chemical, and tactile predator cues. Detection of predator cues can induce risk-avoidance behaviors in herbivores that affect feeding, dispersal, and host selection in ways that minimize mortality and reproductive costs. For herbivores that transmit plant pathogens, including many aphids, changes in herbivore behavior in response to predator cues may also affect pathogen spread. However, few studies have assessed how aphid behavioral responses to different types of predator cues affect pathogen transmission. Here, we conducted greenhouse experiments to assess whether responses of pea aphids (Acyrthosiphon pisum) to predation risk and alarm pheromone (E-β-Farnesene), an aphid alarm signal released in response to predation risk, affected transmission of Pea enation mosaic virus (PEMV). We exposed A. pisum individuals to risk cues, and quantified viral titer in aphids and pea (Pisum sativum) host plants across several time periods. We also assessed how A. pisum responses to risk cues affected aphid nutrition, reproduction, and host selection. We show that exposure to predator cues and alarm pheromone significantly reduced PEMV acquisition and inoculation. Although vectors avoided hosts with predator cues, predator cues did not alter vector reproduction or reduce nutrient acquisition. Overall, these results suggest that non-consumptive effects of predators may indirectly decrease the spread of plant pathogens by altering vector behavior in ways that reduce vector competence and pathogen transmission efficiency.
Collapse
Affiliation(s)
- Benjamin W Lee
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| | - Saumik Basu
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA
| | - Sayanta Bera
- School of Integrative Plant Science, Plant-Microbe Biology and Plant Pathology Section, Cornell University, Ithaca, NY, USA
| | - Clare L Casteel
- School of Integrative Plant Science, Plant-Microbe Biology and Plant Pathology Section, Cornell University, Ithaca, NY, USA
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA
| |
Collapse
|
30
|
Liu J, Zhao X, Zhan Y, Wang K, Francis F, Liu Y. New slow release mixture of (E)-β-farnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem. PEST MANAGEMENT SCIENCE 2021; 77:3341-3348. [PMID: 33773020 DOI: 10.1002/ps.6378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Semiochemical use is a promising way to reduce damage from pests by improving natural control in agro-ecosystems. The aphid alarm pheromone (E)-β-farnesene (EβF) and herbivore-induced methyl salicylate (MeSA) are two volatile cues to induce changes in aphid behavior with functional significance. Because of limitations related to the volatility and oxidization of EβF and MeSA under natural conditions, slow-release and antioxidant techniques should be developed and optimized before application. Here, a slow-release alginate bead of EβF mixed with MeSA was first designed and manufactured. We hypothesized that a mixture of these two semiochemicals could be effective in controlling Sitobion miscanthi in wheat crops. Both MeSA and EβF in alginate beads were released stably and continuously for at least 15 days in the laboratory, whereas EβF in paraffin oil and pure MeSA were released for only 2 and 7 days, respectively. In 2018 field experiments, EβF and MeSA alone or in association significantly decreased the abundance of alate and apterous aphids. An increased abundance of mummified aphids enhanced by higher parasitism rates was observed when using EβF and MeSA in association, with a significant reduction of apterous abundance, more so than EβF or MeSA alone. In 2019, plots treated with a mixture of EβF and MeSA showed significantly decreased abundance of alate and apterous aphids with higher parasitism rates compared with the control. The new slow-release alginate bead containing a mixture of EβF with MeSA could be the most efficient formulation to control S. miscanthi population by attracting parasitoids in the wheat agro-ecosystem. © 2021 Society of Chemical Industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, Liege University, Gembloux, Belgium
| | - Xiaojing Zhao
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yidi Zhan
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Kang Wang
- College of Plant Protection, Shandong Agricultural University, Taian, China
- Supervision Division, Taizhou Customs of the People's Republic of China, Taizhou, China
| | - Frederic Francis
- College of Plant Protection, Shandong Agricultural University, Taian, China
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, Liege University, Gembloux, Belgium
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Taian, China
| |
Collapse
|
31
|
Lybrand DB, Xu H, Last RL, Pichersky E. How Plants Synthesize Pyrethrins: Safe and Biodegradable Insecticides. TRENDS IN PLANT SCIENCE 2020; 25:1240-1251. [PMID: 32690362 PMCID: PMC7677217 DOI: 10.1016/j.tplants.2020.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 05/04/2023]
Abstract
Natural pyrethrin insecticides produced by Dalmatian pyrethrum (Tanacetum cinerariifolium) have low mammalian toxicity and short environmental persistence, providing an alternative to widely used synthetic agricultural insecticides that pose a threat to human health and the environment. A recent surge of interest in the use of pyrethrins as agricultural insecticides coincides with the discovery of several new genes in the pyrethrin biosynthetic pathway. Elucidation of this pathway facilitates efforts to breed improved pyrethrum varieties and to engineer plants with improved endogenous defenses or hosts for heterologous pyrethrin production. We describe the current state of knowledge related to global pyrethrum production, the pyrethrin biosynthetic pathway and its regulation, and recent efforts to engineer the pyrethrin pathway in diverse plant hosts.
Collapse
Affiliation(s)
- Daniel B Lybrand
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Haiyang Xu
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Methyl Salicylate and Sesquiterpene Emissions Are Indicative for Aphid Infestation on Scots Pine. FORESTS 2020. [DOI: 10.3390/f11050573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biotic stresses on forest trees are caused by various pest insects and plant pathogens. Attack by these parasites is known to induce the emissions of various biogenic volatile organic compounds (BVOCs), and the profile of these emissions often differs between infested and healthy plants. This difference in emission profile can be used for the non-destructive early-stage diagnosis of the stressor organism. We studied how phloem feeding by a large pine aphid (Cinara pinea Mordvilko) on the branch bark of Scots pine (Pinus sylvestris L.) affects BVOC emissions compared to those of healthy plants in two experiments. We found that in aphid-infested plants, methyl salicylate (MeSA) emissions significantly increased, and the emission rates were dependent on aphid density on the studied branch. Aphid infestation did not significantly affect total monoterpene emission, while the emissions of total sesquiterpenes were substantially higher in aphid-infested saplings than in uninfested plants. Sesquiterpene (E, E)-α-farnesene was emitted at increased rates in both experiments, and the aphid alarm pheromone sesquiterpene (E)-β-farnesene, only in the experiment with higher aphid pressure. We conclude that the rapid increase in MeSA emissions is the most reliable indicator of aphid infestation in pine trees together with (E, E)-α-farnesene.
Collapse
|