1
|
Zhang M, Jiang Y, Dong H, Shan X, Chen H, Li X, Wang C, Ba S, Li J, Guo L, Yuan Y, Ren C. Comparative transcriptome analysis of oat varieties with different flowering performances under a short-day photoperiod. BMC PLANT BIOLOGY 2025; 25:622. [PMID: 40348988 PMCID: PMC12065218 DOI: 10.1186/s12870-025-06648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Insensitivity to day length is an essential trait for oat cultivation and its geographical spread to a wide range of latitudes. Daylength-insensitive oat cultivars can flower normally from low to high latitudes and may be especially well suited for a double-cropping system. However, few studies have investigated the regulatory mechanisms involved in flowering in photoperiod-insensitive oats. RESULTS In this study, we compared the developmental stages of shoot apical meristems (SAMs) and transcriptome profiles between the photoperiod-insensitive oat cultivar VAO-8 and the photoperiod-sensitive oat cultivar Baiyan 2 at four time points under a short-day photoperiod. The development of Baiyan 2 was affected by short-day length, and SAMs persisted in the vegetative stage. VAO-8 responded less to photoperiod and matured normally under a short-day photoperiod. Comparative transcriptome data of the two cultivars revealed a total of 824, 1,189, 646 and 1,145 differentially expressed genes (DEGs) between VAO-8 and Baiyan 2 at four time points. Functional enrichment analysis revealed that metabolic processes related to chlorophyll biosynthesis, photosynthesis, carbohydrate metabolism and the secondary metabolism were significantly enhanced in VAO-8 compared with those in Baiyan 2. The upregulated genes involved in these processes may contribute to the flowering of VAO-8 under a short-day photoperiod. Furthermore, the differential expression of 93 transcription factor genes involved in multiple flowering pathways was observed, and these genes may play important roles in the regulation of VAO-8 flowering. CONCLUSIONS The results provide a comprehensive understanding of the photoperiod-insensitive molecular mechanism of oats at the transcriptional level under a short-day photoperiod, which lay a foundation for breeding photoperiod-insensitive oat cultivars.
Collapse
Affiliation(s)
- Man Zhang
- Key Laboratory of Biotechnology of Jilin Province, Baicheng Academy of Agricultural Science, Baicheng, 137000, China
| | - Yuan Jiang
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, 130000, China
| | - Haixiao Dong
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, 130000, China
| | - Xiaohui Shan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, 130000, China
| | - Hao Chen
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, 130000, China
| | - Xueying Li
- Key Laboratory of Biotechnology of Jilin Province, Baicheng Academy of Agricultural Science, Baicheng, 137000, China
| | - Chunlong Wang
- Key Laboratory of Biotechnology of Jilin Province, Baicheng Academy of Agricultural Science, Baicheng, 137000, China
| | - Sangpingcuo Ba
- Key Laboratory of Biotechnology of Jilin Province, Baicheng Academy of Agricultural Science, Baicheng, 137000, China
| | - Junwei Li
- Key Laboratory of Biotechnology of Jilin Province, Baicheng Academy of Agricultural Science, Baicheng, 137000, China
| | - Laichun Guo
- Key Laboratory of Biotechnology of Jilin Province, Baicheng Academy of Agricultural Science, Baicheng, 137000, China.
| | - Yaping Yuan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, 130000, China.
| | - Changzhong Ren
- Key Laboratory of Biotechnology of Jilin Province, Baicheng Academy of Agricultural Science, Baicheng, 137000, China.
| |
Collapse
|
2
|
Zhang J, Shao W, Xu Y, Tian F, Chen J, Wang D, Lin X, He C, Yang X, Staiger D, Ding Y, Yu X, Xiao J. Unveiling the regulatory role of GRP7 in ABA signal-mediated mRNA translation efficiency regulation. Nat Commun 2025; 16:3947. [PMID: 40287405 PMCID: PMC12033289 DOI: 10.1038/s41467-025-59329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Abscisic acid (ABA) is a crucial phytohormone involved in plant growth and stress responses. While the transcriptional regulation triggered by ABA is well-documented, its effects on translational regulation have been less studied. Through Ribo-seq and RNA-seq analyses, we find that ABA treatment not only influences gene expression at the mRNA level but also significantly impacts mRNA translation efficiency (TE) in Arabidopsis thaliana. ABA inhibits global mRNA translation via its core signaling pathway, which includes ABA receptors, protein phosphatase 2Cs (PP2Cs), and SNF1-related protein kinase 2 s (SnRK2s). Upon ABA treatment, Glycine-rich RNA-binding proteins 7 and 8 (GRP7&8) protein levels decrease due to both reduced mRNA level and decreased TE, which diminishes their association with polysomes and leads to a global decline in mRNA TE. The absence of GRP7&8 results in a global impairment of ABA-regulated translational changes, linking ABA signaling to GRP7-dependent modulation of mRNA translation. The regulation of GRP7 on TE relies significantly on its direct binding to target mRNAs. Moreover, mRNA translation efficiency under drought stress is partially dependent on the ABA-GRP7&8 pathways. Collectively, our study reveals GRP7's role downstream of SnRK2s in mediating translation regulation in ABA signaling, offering a model for ABA-triggered multi-route regulation of environmental adaptation.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenna Shao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fa'an Tian
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Xiaofei Yang
- John Innes Centre, Norwich Research Park, Norwich, UK
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Xiang Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing, China.
| |
Collapse
|
3
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
5
|
Zafirov D, Giovinazzo N, Lecampion C, Field B, Ducassou JN, Couté Y, Browning KS, Robaglia C, Gallois JL. Arabidopsis eIF4E1 protects the translational machinery during TuMV infection and restricts virus accumulation. PLoS Pathog 2023; 19:e1011417. [PMID: 37983287 PMCID: PMC10721207 DOI: 10.1371/journal.ppat.1011417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/14/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Successful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance. However, recent findings indicate that knockout eIF4E alleles may be deleterious for plant health and could jeopardize resistance efficiency in comparison to functional resistance proteins. Here, we explored the cause of these adverse effects by studying the role of the Arabidopsis eIF4E1, whose inactivation was previously reported as conferring resistance to the potyvirus clover yellow vein virus (ClYVV) while also promoting susceptibility to another potyvirus turnip mosaic virus (TuMV). We report that eIF4E1 is required to maintain global plant translation and to restrict TuMV accumulation during infection, and its absence is associated with a favoured virus multiplication over host translation. Furthermore, our findings show that, in the absence of eIF4E1, infection with TuMV results in the production of a truncated eIFiso4G1 protein. Finally, we demonstrate a role for eIFiso4G1 in TuMV accumulation and in supporting plant fitness during infection. These findings suggest that eIF4E1 counteracts the hijacking of the plant translational apparatus during TuMV infection and underscore the importance of preserving the functionality of translation initiation factors eIF4E when implementing potyvirus resistance strategies.
Collapse
Affiliation(s)
- Delyan Zafirov
- GAFL, INRAE, Montfavet, France
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Cécile Lecampion
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Ben Field
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, Grenoble, France
| | - Karen S. Browning
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | | | | |
Collapse
|
6
|
Son S, Park SR. Plant translational reprogramming for stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1151587. [PMID: 36909402 PMCID: PMC9998923 DOI: 10.3389/fpls.2023.1151587] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Organisms regulate gene expression to produce essential proteins for numerous biological processes, from growth and development to stress responses. Transcription and translation are the major processes of gene expression. Plants evolved various transcription factors and transcriptome reprogramming mechanisms to dramatically modulate transcription in response to environmental cues. However, even the genome-wide modulation of a gene's transcripts will not have a meaningful effect if the transcripts are not properly biosynthesized into proteins. Therefore, protein translation must also be carefully controlled. Biotic and abiotic stresses threaten global crop production, and these stresses are seriously deteriorating due to climate change. Several studies have demonstrated improved plant resistance to various stresses through modulation of protein translation regulation, which requires a deep understanding of translational control in response to environmental stresses. Here, we highlight the translation mechanisms modulated by biotic, hypoxia, heat, and drought stresses, which are becoming more serious due to climate change. This review provides a strategy to improve stress tolerance in crops by modulating translational regulation.
Collapse
|
7
|
Lu K, Li C, Guan J, Liang WH, Chen T, Zhao QY, Zhu Z, Yao S, He L, Wei XD, Zhao L, Zhou LH, Zhao CF, Wang CL, Zhang YD. The PPR-Domain Protein SOAR1 Regulates Salt Tolerance in Rice. RICE (NEW YORK, N.Y.) 2022; 15:62. [PMID: 36463341 PMCID: PMC9719575 DOI: 10.1186/s12284-022-00608-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Previous studies in Arabidopsis reported that the PPR protein SOAR1 plays critical roles in plant response to salt stress. In this study, we reported that expression of the Arabidopsis SOAR1 (AtSOAR1) in rice significantly enhanced salt tolerance at seedling growth stage and promoted grain productivity under salt stress without affecting plant productivity under non-stressful conditions. The transgenic rice lines expressing AtSOAR1 exhibited increased ABA sensitivity in ABA-induced inhibition of seedling growth, and showed altered transcription and splicing of numerous genes associated with salt stress, which may explain salt tolerance of the transgenic plants. Further, we overexpressed the homologous gene of SOAR1 in rice, OsSOAR1, and showed that transgenic plants overexpressing OsSOAR1 enhanced salt tolerance at seedling growth stage. Five salt- and other abiotic stress-induced SOAR1-like PPRs were also identified. These data showed that the SOAR1-like PPR proteins are positively involved in plant response to salt stress and may be used for crop improvement in rice under salinity conditions through transgenic manipulation.
Collapse
Affiliation(s)
- Kai Lu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Cheng Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ju Guan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Wen-Hua Liang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Tao Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Qing-Yong Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Zhen Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Shu Yao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Lei He
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Xiao-Dong Wei
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ling Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Li-Hui Zhou
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Chun-Fang Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Cai-Lin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ya-Dong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China.
| |
Collapse
|
8
|
Chen X, Gu X, Gao F, Guo J, Shen Y. The protein kinase FvRIPK1 regulates plant morphogenesis by ABA signaling using seed genetic transformation in strawberry. FRONTIERS IN PLANT SCIENCE 2022; 13:1026571. [PMID: 36388498 PMCID: PMC9659869 DOI: 10.3389/fpls.2022.1026571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A strawberry RIPK1, a leu-rich repeat receptor-like protein kinase, is previously demonstrated to be involved in fruit ripening as a positive regulator; however, its role in vegetable growth remains unknown. Here, based on our first establishment of Agrobacterium-mediated transformation of germinating seeds in diploid strawberry by FvCHLH/FvABAR, a reporter gene that functioned in chlorophyll biosynthesis, we got FvRIPK1-RNAi mutants. Downregulation of FvRIPK1 inhibited plant morphogenesis, showing curled leaves; also, this silencing significantly reduced FvABAR and FvABI1 transcripts and promoted FvABI4, FvSnRK2.2, and FvSnRK2.6 transcripts. Interestingly, the downregulation of the FvCHLH/ABAR expression could not affect FvRIPK1 transcripts but remarkably reduced FvABI1 transcripts and promoted FvABI4, FvSnRK2.2, and FvSnRK2.6 transcripts in the contrast of the non-transgenic plants to the FvCHLH/FvABAR-RNAi plants, in which chlorophyll contents were not affected but had abscisic acid (ABA) response in stomata movement and drought stress. The distinct expression level of FvABI1 and FvABI4, together with the similar expression level of FvSnRK2.2 and FvSnRK2.6 in the FvRIPK1- and FvABAR/CHLH-RNAi plants, suggested that FvRIPK1 regulated plant morphogenesis probably by ABA signaling. In addition, FvRIPK1 interacted with FvSnRK2.6 and phosphorylated each other, thus forming the FvRIPK1-FvSnRK2.6 complex. In conclusion, our results provide new insights into the molecular mechanism of FvRIPK1 in plant growth.
Collapse
Affiliation(s)
- Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Bei Jing Bei Nong Enterprise Management Co., Ltd, Beijing, China
| | - Xiaojiao Gu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Fan Gao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaxuan Guo
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
9
|
Yu Y, Portolés S, Ren Y, Sun G, Wang XF, Zhang H, Guo S. The key clock component ZEITLUPE (ZTL) negatively regulates ABA signaling by degradation of CHLH in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:995907. [PMID: 36176682 PMCID: PMC9513469 DOI: 10.3389/fpls.2022.995907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Ubiquitination-mediated protein degradation plays important roles in ABA signal transduction and delivering responses to chloroplast stress signals in plants, but additional E3 ligases of protein ubiquitination remain to be identified to understand the complex signaling network. Here we reported that ZEITLUPE (ZTL), an F-box protein, negatively regulates abscisic acid (ABA) signaling during ABA-inhibited early seedling growth and ABA-induced stomatal closure in Arabidopsis thaliana. Using molecular biology and biochemistry approaches, we demonstrated that ZTL interacts with and ubiquitinates its substrate, CHLH/ABAR (Mg-chelatase H subunit/putative ABA receptor), to modulate CHLH stability via the 26S proteasome pathway. CHLH acts genetically downstream of ZTL in ABA and drought stress signaling. Interestingly, ABA conversely induces ZTL phosphorylation, and high levels of ABA also induce CHLH proteasomal degradation, implying that phosphorylated ZTL protein may enhance the affinity to CHLH, leading to the increased degradation of CHLH after ABA treatment. Taken together, our results revealed a possible mechanism of reciprocal regulation between ABA signaling and the circadian clock, which is thought to be essential for plant fitness and survival.
Collapse
Affiliation(s)
- Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Sergi Portolés
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiao-Fang Wang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
10
|
Wang J, Zhang X, Greene GH, Xu G, Dong X. PABP/purine-rich motif as an initiation module for cap-independent translation in pattern-triggered immunity. Cell 2022; 185:3186-3200.e17. [PMID: 35907403 PMCID: PMC9391319 DOI: 10.1016/j.cell.2022.06.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Upon stress, eukaryotes typically reprogram their translatome through GCN2-mediated phosphorylation of the eukaryotic translation initiation factor, eIF2α, to inhibit general translation initiation while selectively translating essential stress regulators. Unexpectedly, in plants, pattern-triggered immunity (PTI) and response to other environmental stresses occur independently of the GCN2/eIF2α pathway. Here, we show that while PTI induces mRNA decapping to inhibit general translation, defense mRNAs with a purine-rich element ("R-motif") are selectively translated using R-motif as an internal ribosome entry site (IRES). R-motif-dependent translation is executed by poly(A)-binding proteins (PABPs) through preferential association with the PTI-activating eIFiso4G over the repressive eIF4G. Phosphorylation by PTI regulators mitogen-activated protein kinase 3 and 6 (MPK3/6) inhibits eIF4G's activity while enhancing PABP binding to the R-motif and promoting eIFiso4G-mediated defense mRNA translation, establishing a link between PTI signaling and protein synthesis. Given its prevalence in both plants and animals, the PABP/R-motif translation initiation module may have a broader role in reprogramming the stress translatome.
Collapse
Affiliation(s)
- Jinlong Wang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - George H Greene
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Guoyong Xu
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
11
|
Sheikhalipour M, Mohammadi SA, Esmaielpour B, Zareei E, Kulak M, Ali S, Nouraein M, Bahrami MK, Gohari G, Fotopoulos V. Exogenous melatonin increases salt tolerance in bitter melon by regulating ionic balance, antioxidant system and secondary metabolism-related genes. BMC PLANT BIOLOGY 2022; 22:380. [PMID: 35907823 PMCID: PMC9338570 DOI: 10.1186/s12870-022-03728-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Melatonin is a multi-functional molecule widely employed in order to mitigate abiotic stress factors, in general and salt stress in particular. Even though previous reports revealed that melatonin could exhibit roles in promoting seed germination and protecting plants during various developmental stages of several plant species under salt stress, no reports are available with respect to the regulatory acts of melatonin on the physiological and biochemical status as well as the expression levels of defense- and secondary metabolism-related related transcripts in bitter melon subjected to the salt stress. RESULTS Herewith the present study, we performed a comprehensive analysis of the physiological and ion balance, antioxidant system, as well as transcript analysis of defense-related genes (WRKY1, SOS1, PM H+-ATPase, SKOR, Mc5PTase7, and SOAR1) and secondary metabolism-related gene expression (MAP30, α-MMC, polypeptide-P, and PAL) in salt-stressed bitter melon (Momordica charantia L.) plants in response to melatonin treatment. In this regard, different levels of melatonin (0, 75 and 150 µM) were applied to mitigate salinity stress (0, 50 and 100 mM NaCl) in bitter melon. Accordingly, present findings revealed that 100 mM salinity stress decreased growth and photosynthesis parameters (SPAD, Fv/Fo, Y(II)), RWC, and some nutrient elements (K+, Ca2+, and P), while it increased Y(NO), Y(NPQ), proline, Na+, Cl-, H2O2, MDA, antioxidant enzyme activity, and lead to the induction of the examined genes. However, prsiming with 150 µM melatonin increased SPAD, Fv/Fo, Y(II)), RWC, and K+, Ca2+, and P concentration while decreased Y(NO), Y(NPQ), Na+, Cl-, H2O2, and MDA under salt stress. In addition, the antioxidant system and gene expression levels were increased by melatonin (150 µM). CONCLUSIONS Overall, it can be postulated that the application of melatonin (150 µM) has effective roles in alleviating the adverse impacts of salinity through critical modifications in plant metabolism.
Collapse
Affiliation(s)
- Morteza Sheikhalipour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardebili, Ardebil, Iran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abolghasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
- Center for Cell Pathology, Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Behrooz Esmaielpour
- Department of Horticulture, Faculty of Horticulture, University of Mohagheh Ardebili, Ardebil, Iran
| | - Elnaz Zareei
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Igdir, Türkiye
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Mojtaba Nouraein
- Department of Plant Genetics and Production, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Gholamreza Gohari
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology Limassol, Limassol, Cyprus
| |
Collapse
|
12
|
RNA-binding proteins and their role in translational regulation in plants. Essays Biochem 2022; 66:87-97. [PMID: 35612383 DOI: 10.1042/ebc20210069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Translation is a fundamental process for life that needs to be finely adapted to the energetical, developmental and environmental conditions; however, the molecular mechanisms behind such adaptation are not yet fully understood. By directly recognizing and binding to cis-elements present in their target mRNAs, RBPs govern all post-transcriptional regulatory processes. They orchestrate the balance between mRNA stability, storage, decay, and translation of their client mRNAs, playing a crucial role in the modulation of gene expression. In the last years exciting discoveries have been made regarding the roles of RBPs in fine-tuning translation. In this review, we focus on how these RBPs recognize their targets and modulate their translation, highlighting the complex and diverse molecular mechanisms implicated. Since the repertoire of RBPs keeps growing, future research promises to uncover new fascinating means of translational modulation, and thus, of gene expression.
Collapse
|
13
|
Castellano MM, Merchante C. Peculiarities of the regulation of translation initiation in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102073. [PMID: 34186463 DOI: 10.1016/j.pbi.2021.102073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Protein synthesis is a fundamental process for life and, as such, plays a crucial role in the adaptation to energy, developmentaland environmental conditions. For these reasons, and despite the general conservation of the eukaryotic translational machinery, it is not surprising that organisms with different lifestyles have evolved distinct mechanisms of regulation to adapt translation initiation to their intrinsic growth and development. Plants have clear peculiarities compared with other eukaryotes that have also extended to translation control. This review describes the plant-specific mechanisms for regulation of translation initiation, with a focus on those that modulate the eIF4F complexes, central translational regulatory hubs in all eukaryotes, and highlights the latest discoveries on the signaling pathways that regulate their constituents and activity.
Collapse
Affiliation(s)
- M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain.
| | - Catharina Merchante
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Málaga, 29071, Spain.
| |
Collapse
|
14
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
15
|
Ma Y, Zhang S, Bi C, Mei C, Jiang SC, Wang XF, Lu ZJ, Zhang DP. Arabidopsis exoribonuclease USB1 interacts with the PPR-domain protein SOAR1 to negatively regulate abscisic acid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5837-5851. [PMID: 32969475 PMCID: PMC7541913 DOI: 10.1093/jxb/eraa315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/23/2020] [Indexed: 05/27/2023]
Abstract
Signaling by the phytohormone abscisic acid (ABA) involves pre-mRNA splicing, a key process of post-transcriptional regulation of gene expression. However, the regulatory mechanism of alternative pre-mRNA splicing in ABA signaling remains largely unknown. We previously identified a pentatricopeptide repeat protein SOAR1 (suppressor of the ABAR-overexpressor 1) as a crucial player downstream of ABAR (putative ABA receptor) in ABA signaling. In this study, we identified a SOAR1 interaction partner USB1, which is an exoribonuclease catalyzing U6 production for spliceosome assembly. We reveal that together USB1 and SOAR1 negatively regulate ABA signaling in early seedling development. USB1 and SOAR1 are both required for the splicing of transcripts of numerous genes, including those involved in ABA signaling pathways, suggesting that USB1 and SOAR1 collaborate to regulate ABA signaling by affecting spliceosome assembly. These findings provide important new insights into the mechanistic control of alternative pre-mRNA splicing in the regulation of ABA-mediated plant responses to environmental cues.
Collapse
Affiliation(s)
- Yu Ma
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Shang Zhang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Chao Bi
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Chao Mei
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Shang-Chuan Jiang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Xiao-Fang Wang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Zhi John Lu
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| | - Da-Peng Zhang
- MOE Key Lab of Bioinformatics, Center for Plant Biology, School of Life Sciences,Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Liu M, Sun W, Ma Z, Yu G, Li J, Wang Y, Wang X. Comprehensive multiomics analysis reveals key roles of NACs in plant growth and development and its environmental adaption mechanism by regulating metabolite pathways. Genomics 2020; 112:4897-4911. [PMID: 32916257 DOI: 10.1016/j.ygeno.2020.08.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 01/17/2023]
Abstract
Abnormal environmental conditions induce polyploidization and exacerbate vulnerability to agricultural production. Polyploidization is a pivotal event for plant adaption to stress and the expansion of transcription factors. NACs play key roles in plant stress resistance and growth and development, but the adaptive mechanism of NACs during plant polyploidization remain to be explored. Here, we identified and analyzed NACs from 15 species and found that the expansion of NACs was contributed by polyploidization. The regulatory networks were systematically analyzed based on polyomics. NACs might influence plant phenotypes and were correlated with amino acids acting as nitrogen source, indicating that NACs play a vital role in plant development. More importantly, in quinoa and Arabidopsis thaliana, NACs enabled plants to resist stress by regulating flavonoid pathways, and the universality was further confirmed by the Arabidopsis population. Our study provides a cornerstone for future research into improvement of important agronomic traits by transcription factors in a changing global environment.
Collapse
Affiliation(s)
- Moyang Liu
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Wenjun Sun
- Sichuan Agricultural University, College of Life Science, Ya'an, China.
| | - Zhaotang Ma
- Sichuan Agricultural University, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Chengdu, China.
| | - Guolong Yu
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Jiahao Li
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Yudong Wang
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| | - Xu Wang
- Shanghai Jiao Tong University, School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai, China.
| |
Collapse
|
17
|
Lu K, Zhang YD, Zhao CF, Zhou LH, Zhao QY, Chen T, Wang CL. The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. PLANT MOLECULAR BIOLOGY 2020; 102:199-212. [PMID: 31813113 DOI: 10.1007/s11103-019-00941-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/29/2019] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE The kinase-associated protein phosphatase, KAPP, is negatively involved in abscisic acid (ABA) signaling. KAPP interacts physically with SnRK2.2, SnRK2.3 and SnRK2.6, and functionally acts upstream of SnRK2.2 and SnRK2.3. The kinase-associated protein phosphatase (KAPP) has been reported to be involved in the regulation of many developmental and signaling events, but it remains unknown whether KAPP is involved in ABA signaling. Here, we report that KAPP is negatively involved in ABA-mediated seed germination and early seedling growth in Arabidopsis thaliana. The two loss-of-function mutants of KAPP, kapp-1 and kapp-2, exhibit increased ABA sensitivity in ABA-induced seed germination inhibition and post-germination growth arrest. The three closely-related protein kinase, (SNF1)-related protein kinase SnRK2.2, SnRK2.3 and SnRK2.6, which play critical roles in ABA signaling, interact and co-localize with KAPP. Genetic evidence showed that the ABA-hypersensitive phenotypes caused by KAPP mutation were suppressed by the double mutation of SnRK2.2 and SnRK2.3, indicating that KAPP functions upstream of SnRK2.2 and SnRK2.3 in ABA signaling. RNA-sequencing analysis revealed that KAPP mutation affects expression of multiple ABA-responsive genes. These results demonstrated that KAPP is negatively involved in plant response to ABA, which help to understand the complicated ABA signaling mechanism.
Collapse
Affiliation(s)
- Kai Lu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Ya-Dong Zhang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Chun-Fang Zhao
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Li-Hui Zhou
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Qing-Yong Zhao
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Tao Chen
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Cai-Lin Wang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China.
| |
Collapse
|
18
|
Wang M, Zang L, Jiao F, Perez-Garcia MD, Ogé L, Hamama L, Le Gourrierec J, Sakr S, Chen J. Sugar Signaling and Post-transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? FRONTIERS IN PLANT SCIENCE 2020; 11:578096. [PMID: 33224165 PMCID: PMC7674178 DOI: 10.3389/fpls.2020.578096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/02/2020] [Indexed: 05/21/2023]
Abstract
Plants are autotrophic organisms that self-produce sugars through photosynthesis. These sugars serve as an energy source, carbon skeletons, and signaling entities throughout plants' life. Post-transcriptional regulation of gene expression plays an important role in various sugar-related processes. In cells, it is regulated by many factors, such as RNA-binding proteins (RBPs), microRNAs, the spliceosome, etc. To date, most of the investigations into sugar-related gene expression have been focused on the transcriptional level in plants, while only a few studies have been conducted on post-transcriptional mechanisms. The present review provides an overview of the relationships between sugar and post-transcriptional regulation in plants. It addresses the relationships between sugar signaling and RBPs, microRNAs, and mRNA stability. These new items insights will help to reach a comprehensive understanding of the diversity of sugar signaling regulatory networks, and open onto new investigations into the relevance of these regulations for plant growth and development.
Collapse
Affiliation(s)
- Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Lili Zang
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Laurent Ogé
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - José Le Gourrierec
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Soulaiman Sakr
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
- Soulaiman Sakr,
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jingtang Chen,
| |
Collapse
|
19
|
Toribio R, Muñoz A, Castro-Sanz AB, Merchante C, Castellano MM. A novel eIF4E-interacting protein that forms non-canonical translation initiation complexes. NATURE PLANTS 2019; 5:1283-1296. [PMID: 31819221 PMCID: PMC6914366 DOI: 10.1038/s41477-019-0553-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Translation is a fundamental step in gene expression that regulates multiple developmental and stress responses. One key step of translation initiation is the association between eIF4E and eIF4G. This process is regulated in different eukaryotes by proteins that bind to eIF4E; however, evidence of eIF4E-interacting proteins able to regulate translation is missing in plants. Here, we report the discovery of CERES, a plant eIF4E-interacting protein. CERES contains an LRR domain and a canonical eIF4E-binding site. Although the CERES-eIF4E complex does not include eIF4G, CERES forms part of cap-binding complexes, interacts with eIF4A, PABP and eIF3, and co-sediments with translation initiation complexes in vivo. Moreover, CERES promotes translation in vitro and general translation in vivo, while it modulates the translation of specific mRNAs related to light and carbohydrate response. These data suggest that CERES is a non-canonical translation initiation factor that modulates translation in plants.
Collapse
Affiliation(s)
- René Toribio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Cordova, Spain
| | - Ana B Castro-Sanz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Catharina Merchante
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga- Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Málaga, Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| |
Collapse
|