1
|
Lin Y, Hopfer H, Zhang Q, Kwasniewski MT. Fingerprinting and Quantification of Procyanidins via LC-MS/MS and ESI In-Source Fragmentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40377541 DOI: 10.1021/acs.jafc.5c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Procyanidins (PCs), or condensed tannins (CTs), are critical for the quality of red wine and other polyphenol-rich foods because of their contribution to the mouthfeel. However, current analytical methods often show a lack of correlation with perceived astringency, biological activities (such as antioxidant activity), and health-related benefits. This is partly because methods such as the Folin-Ciocalteu and tannin affinity precipitation assays report a simplified total phenolic or tannin value that does not consider the diverse structures of CTs. Using procyanidin in-source fragmentation (PC-ISF) allows visualization of diverse CTs, from smaller oligomers to larger polymers, after chromatographic separation and compound depolymerization in the ion source. However, previous PC-ISF has not been optimized, particularly for predicting the structure of CTs with a degree of polymerization (DP) greater than 3. This study introduces a rapid ISF-based PC fingerprinting method, condensed tannin fragmentation fingerprinting (C-TFF), that uses three in-source energies per instrument, cone voltages of 30, 110, and 140 V on the Waters system and fragmentor voltages of 135, 330, and 380 V on the Agilent system, to depolymerize PCs and generate their in-source ions and fragments. The depolymerized spectra that contribute the most to PC differentiation are further fragmented in the collision cell, using multiple reaction monitoring (MRM). The collected MRM transitions of analytical PC standards are correlated to target samples with unidentified PCs via multiple linear regression (MLR), allowing for comprehensive fingerprinting by identifying and quantifying each PC. Nineteen mixtures of five B-type PCs (DPs 1-5) with a known mean degree of polymerization (mDP) and commercial cider samples were characterized via C-TFF, demonstrating high accuracy and precision. This study contributes to the analysis of CTs in complex samples. Future efforts will focus on characterizing structures with mDPs > 5, such as those found in wines with diverse CT profiles.
Collapse
Affiliation(s)
- Yanxin Lin
- Department of Food Science, College of Agricultural Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Helene Hopfer
- Department of Food Science, College of Agricultural Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Qining Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Misha T Kwasniewski
- Department of Food Science, College of Agricultural Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol 2025; 99:1893-1997. [PMID: 40232392 DOI: 10.1007/s00204-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 04/16/2025]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies have been conducted with evaluating antioxidant activity of various samples of research interest using by different methods in food and human health. These methods were classified methods described and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and, for chain-breaking antioxidants while different specific studies are needed for preventive antioxidants. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food and pharmaceutical constituents are examined and also a selection of chemical testing methods is critically reviewed and highlighting. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw plant extracts. The effect and influence of the reaction medium on performance of antioxidants is also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceuticals, and dietary supplement industries. Also, the most important advantages and shortcomings of each method were detected and highlighted. The underlying chemical principles of these methods have been explained and thoroughly analyzed. The chemical principles of methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, ferric ions (Fe3+) reducing assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), superoxide radical anion (O2·-), hydroxyl radical (OH·) scavenging, peroxyl radical (ROO·) removing, hydrogen peroxide (H2O2) decomposing, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are overviewed and critically discussed. Also, the general antioxidant aspects of the main food and pharmaceutical components were discussed through several methods currently used for detecting antioxidant properties of these components. This review consists of two main sections. The first section is devoted to the main components in food and their pharmaceutical applications. The second general section includes definitions of the main antioxidant methods commonly used for determining the antioxidant activity of components. In addition, some chemical, mechanistic, and kinetic properties, as well as technical details of the above mentioned methods, are provided. The general antioxidant aspects of main food components have been discussed through various methods currently used to detect the antioxidant properties of these components.
Collapse
Affiliation(s)
- İlhami Gulcin
- Faculty of Sciences, Department of Chemistry, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
3
|
Khanal S, Rochfort SJ, Steinbauer MJ. Ultraviolet-A Radiation (UV A) as a Stress and the Influence of Provenance and Leaf Age on the Expression of Phenolic Compounds by Eucalyptus camaldulensis ssp. camaldulensis. PLANTS (BASEL, SWITZERLAND) 2025; 14:493. [PMID: 39943055 PMCID: PMC11820885 DOI: 10.3390/plants14030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Ultraviolet radiation (UV) represents a significant abiotic stress, affecting green plants. Phenolic compounds have been suggested as components involved in plant photoprotective adaptation. We used a unique combination of experimental (LED lighting and leaf tagging) and analytical (unbiased, or untargeted, metabolomics) approaches to study the effects of high (approximating mid-summer) and low (approximating winter) levels of UVA on the expression of phenolic compounds. These consisted of river red gum (Eucalyptus camaldulensis ssp. camaldulensis) of five provenances. The geographically separated provenances used in our study spanned the lowest and highest latitudes of the range of this subspecies. The concentrations of gallotannins and ellagitannins (i.e., hydrolysable tannins) increased most under high levels of UVA, but responses only differed slightly among provenances. The most substantial changes in the composition of phenolic compounds were associated with leaf age. Overall, 3-month-old (herein, termed 'young') leaves had substantially different phenolic compositions to 6- and 12-month-old ('old') leaves. Hydrolysable tannins were more abundant in young leaves, whereas pedunculagin, catechin, and kaempferol galloyl glucoses were more abundant in old leaves. High levels of UVA altered the expression of phenolic compounds, but our experimental saplings were unlikely to experience photoinhibition because they were not exposed to high levels of light and low temperatures, nor were they nitrogen-limited. We expect that changes in phenolic compounds would have been more pronounced if we had induced photoinhibition.
Collapse
Affiliation(s)
- Santosh Khanal
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Simone J. Rochfort
- Agriculture Victoria, AgriBioscience, Bundoora, Melbourne, VIC 3083, Australia;
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Martin J. Steinbauer
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| |
Collapse
|
4
|
Lebbink G, Risch AC, Schuetz M, Firn J. How plant traits respond to and affect vertebrate and invertebrate herbivores-Are measurements comparable across herbivore types? PLANT, CELL & ENVIRONMENT 2024; 47:5-23. [PMID: 37853819 DOI: 10.1111/pce.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023]
Abstract
Despite plants realistically being affected by vertebrate and invertebrate herbivores simultaneously, fundamental differences in the ecology and evolution of these two herbivore guilds often means their impacts on plants are studied separately. A synthesis of the literature is needed to understand the types of plant traits examined and their response to, and effect on (in terms of forage selection) vertebrate and invertebrate herbivory, and to identify associated knowledge gaps. Focusing on grassland systems and species, we found 138 articles that met our criteria: 39 invertebrate, 97 vertebrate and 2 focussed on both vertebrate and invertebrate herbivores. Our study identified invertebrate focussed research, research conducted in the Southern Hemisphere and research on nondomesticated herbivores was significantly underrepresented based on our search and should be a focus of future research. Differences in study focus (trait response or trait effect), along with differences in the types of traits examined, led to limited opportunity for comparison between the two herbivore guilds. This review therefore predominantly discusses the response and effect of plant traits to each herbivore guild separately. In future studies, we suggest this review be used as a guide for trait selection, to improve comparability and the broader significance of results.
Collapse
Affiliation(s)
- Gabrielle Lebbink
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Martin Schuetz
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Jennifer Firn
- Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Sun X, Ye Y, Sakurai N, Wang H, Kato K, Yu J, Yuasa K, Tsuji A, Yao M. Structural basis of EHEP-mediated offense against phlorotannin-induced defense from brown algae to protect akuBGL activity. eLife 2023; 12:RP88939. [PMID: 37910430 PMCID: PMC10619976 DOI: 10.7554/elife.88939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The defensive-offensive associations between algae and herbivores determine marine ecology. Brown algae utilize phlorotannin as their chemical defense against the predator Aplysia kurodai, which uses β-glucosidase (akuBGL) to digest the laminarin in algae into glucose. Moreover, A. kurodai employs Eisenia hydrolysis-enhancing protein (EHEP) as an offense to protect akuBGL activity from phlorotannin inhibition by precipitating phlorotannin. To underpin the molecular mechanism of this digestive-defensive-offensive system, we determined the structures of the apo and tannic acid (TNA, a phlorotannin analog) bound forms of EHEP, as well as the apo akuBGL. EHEP consisted of three peritrophin-A domains arranged in a triangular shape and bound TNA in the center without significant conformational changes. Structural comparison between EHEP and EHEP-TNA led us to find that EHEP can be resolubilized from phlorotannin precipitation at an alkaline pH, which reflects a requirement in the digestive tract. akuBGL contained two GH1 domains, only one of which conserved the active site. Combining docking analysis, we propose the mechanisms by which phlorotannin inhibits akuBGL by occupying the substrate-binding pocket, and EHEP protects akuBGL against this inhibition by binding with phlorotannin to free the akuBGL pocket.
Collapse
Affiliation(s)
- Xiaomei Sun
- Faculty of Advanced Life Science, Hokkaido UniversitySapporoJapan
| | - Yuxin Ye
- Faculty of Advanced Life Science, Hokkaido UniversitySapporoJapan
| | - Naofumi Sakurai
- Faculty of Advanced Life Science, Hokkaido UniversitySapporoJapan
| | - Hang Wang
- Faculty of Advanced Life Science, Hokkaido UniversitySapporoJapan
| | - Koji Kato
- Faculty of Advanced Life Science, Hokkaido UniversitySapporoJapan
| | - Jian Yu
- Faculty of Advanced Life Science, Hokkaido UniversitySapporoJapan
| | - Keizo Yuasa
- Graduate School of Bioscience and Bioindustry, Tokushima UniversityTokushimaJapan
| | - Akihiko Tsuji
- Graduate School of Bioscience and Bioindustry, Tokushima UniversityTokushimaJapan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido UniversitySapporoJapan
| |
Collapse
|
6
|
Kashtoh H, Baek KH. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:2944. [PMID: 37631156 PMCID: PMC10458243 DOI: 10.3390/plants12162944] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
7
|
Melo LFMD, Aquino-Martins VGDQ, Silva APD, Oliveira Rocha HA, Scortecci KC. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem 2023; 414:135645. [PMID: 36821920 DOI: 10.1016/j.foodchem.2023.135645] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Secondary metabolites are divided into three classes: phenolic, terpenoid, and nitrogenous compounds. Phenolic compounds are also known as polyphenols and include tannins, classified as hydrolysable or condensed. Herein, we explored tannins for their ROS reduction characteristics and role in homeostasis. These activities are associated with the numbers and degree of polymerisation of reactive hydroxyl groups present in the phenolic rings of tannins. These characteristics are associated with anti-inflammatory, anti-aging, and anti-proliferative health benefits. Tannins can reduce the risk of cancer and neurodegenerative diseases, such as cardiovascular diseases and Alzheimer's, respectively. These biomolecules may be used as nutraceuticals to maintain good gut microbiota. Industrial applications include providing durability to leather, anti-corrosive properties to metals, and substrates for 3D printing and in bio-based foam manufacture. This review updates regarding tannin-based research and highlights its biological and pharmacological relevance and potential applications.
Collapse
Affiliation(s)
- Luciana Fentanes Moura de Melo
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Ariana Pereira da Silva
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil; Departamento de Bioquímica - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil
| | - Katia Castanho Scortecci
- Departamento de Biologia Celular e Genética - Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59072-970, Bairro Lagoa Nova, Natal, RN, Brazil; Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário UFRN, 59078-970, Bairro Lagoa Nova, Natal, RN, Brazil.
| |
Collapse
|
8
|
Gu J, Li M, Nawaz MA, Stockmann R, Buckow R, Suleria HAR. In Vitro Digestion and Colonic Fermentation of UHT Treated Faba Protein Emulsions: Effects of Enzymatic Hydrolysis and Thermal Processing on Proteins and Phenolics. Nutrients 2022; 15:89. [PMID: 36615747 PMCID: PMC9824445 DOI: 10.3390/nu15010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Faba bean (Vicia faba L.) protein is a new plant protein alternative source with high nutrient content especially protein and phenolic compounds. The present study investigated physicochemical properties, phenolic content, antioxidant potential, and short chain fatty acids (SCFAs) production during in vitro digestion and colonic fermentation of faba bean hydrolysates and oil-in-water (O/W) emulsions. Results indicate that the enzymic hydrolysates of faba proteins exhibited higher protein solubility, increased electronegativity, and decreased surface hydrophobicity than native faba protein. O/W emulsions showed improved colloidal stability for the faba protein hydrolysates after ultra-high temperature processing (UHT). Furthermore, UHT processing preserved total phenolic content, DPPH and ABTS radical scavenging abilities while decreasing total flavonoid content and ferric reducing power. Besides, the release of phenolic compounds in faba bean hydrolysates (FBH) and emulsions (FBE) improved after intestinal digestion by 0.44 mg GAE/g and 0.55 mg GAE/g, respectively. For colonic fermentation, FBH demonstrated an approximately 10 mg TE/g higher ABTS value than FBE (106.45 mg TE/g). Total SCFAs production of both FBH and FBE was only 0.03 mM. The treatment of FBH with 30 min enzymatic hydrolysis displayed relatively higher antioxidant capacities and SCFAs production, indicating its potential to bring more benefits to gut health. Overall, this study showed that enzymic hydrolysis of faba proteins not only improved the colloidal emulsion stability, but also released antioxidant capacity during in vitro digestibility and colonic fermentation. Colonic fermentation metabolites (SCFAs) were related to the degree of hydrolysis for both FBH and FBE. Additional studies are required to further elucidate and differentiate the role of phenolics during faba protein processing and digestion stages in comparison to contributions of peptides, amino acids and microelements to digestion rates, antioxidant capacities and colonial SCFA production.
Collapse
Affiliation(s)
- Jingyu Gu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minhao Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Malik Adil Nawaz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia
| | - Regine Stockmann
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia
| | - Roman Buckow
- Centre for Advanced Food Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006, Australia
| | - Hafiz A. R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Ohsaki H, Miyamoto R, Sembongi Y, Tajima M, Sakamoto Y, Okuda K, Yamawo A. Plant–plant interaction by Aster leiophyllus affects herbivory by Sika deer, Cervus nippon. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2022; 109:54. [DOI: 10.1007/s00114-022-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
10
|
Wigley BJ, Coetsee C, Mawoyo KA, Fritz H. No evidence for the simultaneous induction of structural and chemical defences in spiny southern African savanna trees. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin J. Wigley
- Plant Ecology University of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
- School of Natural Resource Management Nelson Mandela University George South Africa
- Scientific Services, Kruger National Park Skukuza South Africa
| | - Corli Coetsee
- School of Natural Resource Management Nelson Mandela University George South Africa
- Scientific Services, Kruger National Park Skukuza South Africa
| | - Kuzivakwashe A. Mawoyo
- Scientific Services, Kyle Recreational Park Masvingo Zimbabwe
- LTSER France RI, Zone Atelier “Hwange” (Hwange LTSER) Hwange National Park Dete Zimbabwe
| | - Hervé Fritz
- LTSER France RI, Zone Atelier “Hwange” (Hwange LTSER) Hwange National Park Dete Zimbabwe
- REHABS International Research Laboratory CNRS‐Université de Lyon1‐Nelson Mandela University George South Africa
- Sustainability Research Unit Nelson Mandela University George South Africa
| |
Collapse
|
11
|
Windley HR, Starrs D, Stalenberg E, Rothman JM, Ganzhorn JU, Foley WJ. Plant secondary metabolites and primate food choices: A meta-analysis and future directions. Am J Primatol 2022; 84:e23397. [PMID: 35700311 DOI: 10.1002/ajp.23397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
The role of plant secondary metabolites (PSMs) in shaping the feeding decisions, habitat suitability, and reproductive success of herbivorous mammals has been a major theme in ecology for decades. Although primatologists were among the first to test these ideas, studies of PSMs in the feeding ecology of non-human primates have lagged in recent years, leading to a recent call for primatologists to reconnect with phytochemists to advance our understanding of the primate nutrition. To further this case, we present a formal meta-analysis of diet choice in response to PSMs based on field studies on wild primates. Our analysis of 155 measurements of primate feeding response to PSMs is drawn from 53 studies across 43 primate species which focussed primarily on the effect of three classes of PSMs tannins, phenolics, and alkaloids. We found a small but significant effect of PSMs on the diet choice of wild primates, which was largely driven by the finding that colobine primates showed a moderate aversion to condensed tannins. Conversely, there was no evidence that PSMs had a significant deterrent effect on food choices of non-colobine primates when all were combined into a single group. Furthermore, within the colobine primates, no other PSMs influenced feeding choices and we found no evidence that foregut anatomy significantly affected food choice with respect to PSMs. We suggest that methodological improvements related to experimental approaches and the adoption of new techniques including metabolomics are needed to advance our understanding of primate diet choice.
Collapse
Affiliation(s)
- Hannah R Windley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Wildlife Ecology Laboratory, Department of Wildlife Biology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Danswell Starrs
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eleanor Stalenberg
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Hawkesbury Institute of the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jessica M Rothman
- Department of Anthropology, Hunter College of the City University of New York, and New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Joerg U Ganzhorn
- Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| | - William J Foley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Beale PK, Foley WJ, Saraf I, Singh IP, Marsh KJ. Common ringtail possums (Pseudocheirus peregrinus) tolerate high concentrations of unsubstituted B-ring flavanones in their diet. AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am21027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Verma S, Salminen JP, Taube F, Malisch CS. Large Inter- and Intraspecies Variability of Polyphenols and Proanthocyanidins in Eight Temperate Forage Species Indicates Potential for Their Exploitation as Nutraceuticals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12445-12455. [PMID: 34662108 DOI: 10.1021/acs.jafc.1c03898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Substantial efforts have been made in incorporating tannin-rich forages into grassland-based livestock production systems. However, the structural and functional diversity of tannins in different species limits their potential use at the field scale. We conducted a greenhouse experiment with 17 cultivars from 8 forage species and their cultivars. Ultraperformance liquid chromatography tandem mass spectrometry was used to analyze their polyphenolic profile and proanthocyanidin (PA) structural features in leaves. Our results highlight large inter- and intraspecies variability of plants in terms of polyphenol and tannin concentrations in the leaves. A concomitant and significant variation was also registered in the structural features of PA-rich forages such as the mean degree of polymerization and prodelphinidin percentage. The concentration of PA also varied within plant organs; the highest concentration was in flowers, but leaves had the highest contribution to harvestable PA biomass. Our research highlights that identifying these variations helps in identifying the representativeness of bioactivity and provides the basis for targeted breeding programs.
Collapse
Affiliation(s)
- Supriya Verma
- Grass and Forage Science/Organic Agriculture, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Vatselankatu 2, FI-20014 Turku, Finland
| | - Friedhelm Taube
- Grass and Forage Science/Organic Agriculture, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
- Grass Based Dairy Systems, Animal Production Systems Group, Wageningen University (WUR), 6708 PB Wageningen, The Netherlands
| | - Carsten S Malisch
- Grass and Forage Science/Organic Agriculture, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| |
Collapse
|
14
|
Bertić M, Schroeder H, Kersten B, Fladung M, Orgel F, Buegger F, Schnitzler JP, Ghirardo A. European oak chemical diversity - from ecotypes to herbivore resistance. THE NEW PHYTOLOGIST 2021; 232:818-834. [PMID: 34240433 DOI: 10.1111/nph.17608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Climate change is increasing insect pressure and forcing plants to adapt. Although chemotypic differentiation and phenotypic plasticity in spatially separated tree populations are known for decades, understanding their importance in herbivory resistance across forests remains challenging. We studied four oak forest stands in Germany using nontarget metabolomics, elemental analysis, and chemometrics and mapped the leaf metabolome of herbivore-resistant (T-) and herbivore-susceptible (S-) European oaks (Quercus robur) to Tortrix viridana, an oak pest that causes severe forest defoliation. Among the detected metabolites, we identified reliable metabolic biomarkers to distinguish S- and T-oak trees. Chemotypic differentiation resulted in metabolic shifts of primary and secondary leaf metabolism. Across forests, T-oaks allocate resources towards constitutive chemical defense enriched of polyphenolic compounds, e.g. the flavonoids kaempferol, kaempferol and quercetin glucosides, while S-oaks towards growth-promoting substances such as carbohydrates and amino-acid derivatives. This extensive work across natural forests shows that oaks' resistance and susceptibility to herbivory are linked to growth-defense trade-offs of leaf metabolism. The discovery of biomarkers and the developed predictive model pave the way to understand Quercus robur's susceptibility to herbivore attack and to support forest management, contributing to the preservation of oak forests in Europe.
Collapse
Affiliation(s)
- Marko Bertić
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Hilke Schroeder
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Birgit Kersten
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Matthias Fladung
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Franziska Orgel
- Thünen-Institute of Forest Genetics, Sieker Landstrasse 2, 22927, Grosshansdorf, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology (BIOP), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
15
|
López-Goldar X, Agrawal AA. Ecological Interactions, Environmental Gradients, and Gene Flow in Local Adaptation. TRENDS IN PLANT SCIENCE 2021; 26:796-809. [PMID: 33865704 DOI: 10.1016/j.tplants.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Despite long-standing interest in local adaptation of plants to their biotic and abiotic environment, existing theory, and many case studies, little work to date has addressed within-species evolution of concerted strategies and how these might contrast with patterns across species. Here we consider the interactions between pollinators, herbivores, and resource availability in shaping plant local adaptation, how these interactions impact plant phenotypes and gene flow, and the conditions where multiple traits align along major environmental gradients such as latitude and elevation. Continued work in emerging model systems will benefit from the melding of classic experimental approaches with novel population genetic analyses to reveal patterns and processes in plant local adaptation.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Hao B, Wang F, Huang H, Wu Y, Jia S, Liao Y, Mao H. Tannin foam immobilized with ferric ions for efficient removal of ciprofloxacin at low concentrations. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125567. [PMID: 34030414 DOI: 10.1016/j.jhazmat.2021.125567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The presence of ciprofloxacin (CIP) in natural water may cause potential threats to the environment. Adsorption is a convenient and efficient method to remove CIP from aqueous solution. Bayberry tannin (BT), a natural polyphenol, has been utilized in the synthesis of tannin foam (TF) due to its abundant polyphenolic hydroxyls to chelate with metal ions. The obtained TF was subsequently immobilized with Fe3+ via a facile chelative adsorption to fabricate functional tannin foam (TF-Fe), which was highly porous, with a porosity of 78.93%. The Fe species in the TF-Fe featured good dispersity, which were active for chelative adsorption of CIP. The adsorption of CIP on the TF-Fe was a pH-dependent process. At the optimized pH of 7.0, the TF-Fe provided the adsorption capacity of 91.8 mg g-1. When applied in removal of CIP at the low concentration of 2.0 µg mL-1, a high removal efficiency of 96.60% was still obtained, which was superior to commercial activated carbon (28.78%). The adsorption kinetics were well fitted by the pseudo-second-order rate model while the adsorption isotherms were well described by the Langmuir model. The TF-Fe was capable of recycling, which still maintained a high removal efficiency of 92.25% in the 5th cycle.
Collapse
Affiliation(s)
- Baicun Hao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Fang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Hui Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Yilan Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Shuanghui Jia
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Yang Liao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Hui Mao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
17
|
Takayoshi J, Huang YL, Matsuo Y, Saito Y, Li DP, Tanaka T. Ellagitannin Digestion in Moth Larvae and a New Dimeric Ellagitannin from the Leaves of Platycarya strobilacea. Molecules 2021; 26:4134. [PMID: 34299409 PMCID: PMC8303904 DOI: 10.3390/molecules26144134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
Ellagitannins (ETs) are plant polyphenols with various health benefits. Recent studies have indicated that the biological activities of ETs are attributable to their degradation products, including ellagic acid and its gut microflora metabolites, such as urolithins. Insect tea produced in the Guangxi region, China, is made from the frass of moth larvae that feed on the ET-rich leaves of Platycarya strobilacea. Chromatographic separation of the Guangxi insect tea showed that the major phenolic constituents are ellagic acid, brevifolin carboxylic acid, gallic acid, brevifolin, and polymeric polyphenols. Chemical investigation of the feed of the larvae, the fresh leaves of P. strobilacea, showed that the major polyphenols are ETs including pedunculagin, casuarictin, strictinin, and a new ET named platycaryanin E. The new ET was confirmed as a dimer of strictinin having a tergalloyl group. The insect tea and the leaves of P. strobilacea contained polymeric polyphenols, both of which were shown to be composed of ETs and proanthocyanidins by acid hydrolysis and thiol degradation. This study clarified that Guangxi insect tea contains ET metabolites produced in the digestive tract of moth larvae, and the metabolites probably have higher bioavailabilities than the original large-molecular ETs of the leaves of P. strobilacea.
Collapse
Affiliation(s)
- Juri Takayoshi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (J.T.); (Y.M.); (Y.S.)
| | - Yong-Lin Huang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guilin 541006, China;
| | - Yosuke Matsuo
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (J.T.); (Y.M.); (Y.S.)
| | - Yoshinori Saito
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (J.T.); (Y.M.); (Y.S.)
| | - Dian-Peng Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guilin 541006, China;
| | - Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (J.T.); (Y.M.); (Y.S.)
| |
Collapse
|
18
|
Kim J, Gripenberg S, Karonen M, Salminen JP. Seed tannin composition of tropical plants. PHYTOCHEMISTRY 2021; 187:112750. [PMID: 33845405 DOI: 10.1016/j.phytochem.2021.112750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Seeds collected from trees, shrubs and lianas growing on Barro Colorado Island, Panama, were analyzed for their content of phenolic compounds, oxidative activities and protein precipitation capacities. Proanthocyanidins and hydrolysable tannins were detected in one-third of 189 studied species. The most oxidatively active group of species were the ones containing prodelphinidins and ellagitannins whereas the species that had the highest protein precipitation capacity in relation to their total phenolics were the ones containing punicalagin. In addition, the oxidative activity and relative protein precipitation capacity were exceptionally high in the proanthocyanidin-rich genus Psychotria. This study offers a comprehensive overview on the tannin composition and the alkaline oxidative activities and protein precipitation capacities of the seeds of tropical plants.
Collapse
Affiliation(s)
- Jorma Kim
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| | - Sofia Gripenberg
- School of Biological Sciences, University of Reading, Reading, UK.
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014, Turku, Finland.
| |
Collapse
|
19
|
|
20
|
Tedeschi LO, Muir JP, Naumann HD, Norris AB, Ramírez-Restrepo CA, Mertens-Talcott SU. Nutritional Aspects of Ecologically Relevant Phytochemicals in Ruminant Production. Front Vet Sci 2021; 8:628445. [PMID: 33748210 PMCID: PMC7973208 DOI: 10.3389/fvets.2021.628445] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
This review provides an update of ecologically relevant phytochemicals for ruminant production, focusing on their contribution to advancing nutrition. Phytochemicals embody a broad spectrum of chemical components that influence resource competence and biological advantage in determining plant species' distribution and density in different ecosystems. These natural compounds also often act as plant defensive chemicals against predatorial microbes, insects, and herbivores. They may modulate or exacerbate microbial transactions in the gastrointestinal tract and physiological responses in ruminant microbiomes. To harness their production-enhancing characteristics, phytochemicals have been actively researched as feed additives to manipulate ruminal fermentation and establish other phytochemoprophylactic (prevent animal diseases) and phytochemotherapeutic (treat animal diseases) roles. However, phytochemical-host interactions, the exact mechanism of action, and their effects require more profound elucidation to provide definitive recommendations for ruminant production. The majority of phytochemicals of nutritional and pharmacological interest are typically classified as flavonoids (9%), terpenoids (55%), and alkaloids (36%). Within flavonoids, polyphenolics (e.g., hydrolyzable and condensed tannins) have many benefits to ruminants, including reducing methane (CH4) emission, gastrointestinal nematode parasitism, and ruminal proteolysis. Within terpenoids, saponins and essential oils also mitigate CH4 emission, but triterpenoid saponins have rich biochemical structures with many clinical benefits in humans. The anti-methanogenic property in ruminants is variable because of the simultaneous targeting of several physiological pathways. This may explain saponin-containing forages' relative safety for long-term use and describe associated molecular interactions on all ruminant metabolism phases. Alkaloids are N-containing compounds with vast pharmacological properties currently used to treat humans, but their phytochemical usage as feed additives in ruminants has yet to be exploited as they may act as ghost compounds alongside other phytochemicals of known importance. We discussed strategic recommendations for phytochemicals to support sustainable ruminant production, such as replacements for antibiotics and anthelmintics. Topics that merit further examination are discussed and include the role of fresh forages vis-à-vis processed feeds in confined ruminant operations. Applications and benefits of phytochemicals to humankind are yet to be fully understood or utilized. Scientific explorations have provided promising results, pending thorough vetting before primetime use, such that academic and commercial interests in the technology are fully adopted.
Collapse
Affiliation(s)
- Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - James P. Muir
- Texas A&M AgriLife Research, Stephenville, TX, United States
| | - Harley D. Naumann
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Aaron B. Norris
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, United States
| | | | | |
Collapse
|
21
|
Abstract
Tannins are natural polyphenolic compounds widely distributed in the plant kingdom in the leaves, bark, fruits, and other parts. They have various biological functions in humans and animals and are used mainly in the pharmaceutical and cosmetic industries. The aim of this work was to isolate, extract, purify, and identify the tannins from the root bark of a common oak tree (Quercus aegilops L.) in Jordan and around the Mediterranean. The results showed that at least one form of ellagitannin (ellagic acid ester), quercitrin, afzelechin, valoneic acid, trigalloyl glucose, and catechin was identified in addition to two unidentified compounds. Results of this work can help in developing an ESI MS/MS search library for the constituents of the tannins of oak (Quercus aegilops L.) root bark.
Collapse
|
22
|
Scogings PF, Demmer S, Hattas D. Spinescence and Total Phenolic Content Do Not Influence Diet Preference of a Critically Endangered Megaherbivore, but the Mix of Compounds Does. J Chem Ecol 2021; 47:322-333. [PMID: 33651225 DOI: 10.1007/s10886-021-01258-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
Abstract
In contrast to understanding spinescence in savanna woody species, little is known about the functions of plant secondary metabolites (PSM). Negative effects of PSMs on individual animal performance potentially translate into negative effects on herbivore population growth. Hence, understanding PSM functions is important for the conservation of savanna megafauna. We tested the view that black rhinoceros (Diceros bicornis) diet preference is not affected by spinescence or total phenolic abundance. We hypothesized that the composition of phenolic mixtures, however, would affect preference. Furthermore, we tested our data from 71 woody species for a trade-off between structural and chemical defenses. Spinescence type, and spinescence generally, did not deter black rhino feeding. Using eco-metabolomic data, we found that total abundance of phenolics did not affect preference, but mixture composition did and that the probability of spinescence trading off against phenolics depended on the mixture. We note that our study was restricted to black rhino and that diet preferences of other mammal herbivores might be influenced by subtle differences in phenolic mixtures. However, our results did support a previous, more detailed study of phenolic profiles of six species showing the same patterns in relation to preference generalised across mammal herbivore species in savannas. Our results represent substantial advancement in the understanding of the roles of PSMs, especially flavonoid compounds, in the functioning of savanna ecosystems, and highlight the need to dig deeper into broad groups of traits such as spinescence or total phenolics to improve understanding of woody plant defenses in savannas.
Collapse
Affiliation(s)
- Peter F Scogings
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.
| | - Stuart Demmer
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.,Centre for Functional Biodiversity, University of KwaZulu-Natal, Scottsville, South Africa
| | - Dawood Hattas
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
23
|
|
24
|
Thurau EG, Rahajanirina AN, Irwin MT. Condensed tannins in the diet of folivorous diademed sifakas and the gap between crude and available protein. Am J Primatol 2021; 83:e23239. [PMID: 33544402 DOI: 10.1002/ajp.23239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 11/08/2022]
Abstract
Tannins, a type of plant secondary metabolite, are well-known for their ability to precipitate proteins and thereby reduce the protein available to consumers. Most primate studies have focused on condensed tannins (CTs) as they were thought to be the most effective type of tannin at preventing protein acquisition, but there is growing recognition that other types of tannins can bind to proteins, suggesting the division among tannin types is not as clear-cut as previously thought. Although previous studies have documented the presence of CTs in primate diets and primates' behavioral responses to them, our understanding of tannins remains limited because few researchers have used Sephadex column purification to accurately determine tannin concentrations, and few have used in vitro assays to determine available protein content and the tannins' effectiveness in binding protein. In this study, we documented diademed sifaka (Propithecus diadema) diet from June to August 2018 at Tsinjoarivo, Madagascar (in two forests with varying degrees of habitat disturbance) and quantified CT concentration and actual available protein in foods. Eleven of the fourteen top foods tested contained CTs (concentrations: 4.8%-39.3% dry matter). An in vitro assay showed available protein was strikingly low in six of the eleven top foods (e.g., little to no apparent available protein, despite high crude protein). Overall, our findings suggest sifakas acquire less protein than previously recognized and probably have adaptations to counteract tannins. Such studies of available protein are critical in understanding dietary constraints on sifaka populations and the evolution of their diet choice strategies; despite the conventional wisdom that leaves are protein-rich, folivorous primates may indeed be protein-limited. However, further studies are necessary to determine if sifakas have counter-adaptations to tannins, and if they absorb more protein than our analyses suggest, perhaps receiving protein that we were unable to detect with the current techniques (e.g., pollen).
Collapse
Affiliation(s)
- Emma G Thurau
- Department of Anthropology, The Graduate Center of the City University of New York, New York, USA.,New York City Consortium of Evolutionary Primatology (NYCEP), New York, USA.,Department of Anthropology, Hunter College of City University of New York, New York, USA
| | - Andry Narcisse Rahajanirina
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar.,Division of Research, ONG SADABE, Antananarivo, Madagascar
| | - Mitchell T Irwin
- Division of Research, ONG SADABE, Antananarivo, Madagascar.,Department of Anthropology, Northern Illinois University, DeKalb, Illinois, USA
| |
Collapse
|
25
|
Thitz P, Hagerman AE, Randriamanana TR, Virjamo V, Kosonen M, Lännenpää M, Nyman T, Mehtätalo L, Kontunen‐Soppela S, Julkunen‐Tiitto R. Genetic modification of the flavonoid pathway alters growth and reveals flexible responses to enhanced UVB - Role of foliar condensed tannins. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:1-15. [PMID: 37283848 PMCID: PMC10168092 DOI: 10.1002/pei3.10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 06/08/2023]
Abstract
Accumulation of certain phenolics is a well-known response of plants to enhanced UVB radiation (280-315 nm), but few experiments have compared the relative importance of different phenolic groups for UVB resilience. To study how an altered phenolic profile affects the responses and resilience of silver birch (Betula pendula) to enhanced UVB, we used RNA interference (RNAi) targeting dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS), or anthocyanidin reductase (ANR) to change the accumulation of phenolics. The unmodified control line and RNAi-modified plants were grown for 51 days under ambient or +32% enhanced UVB dose in a greenhouse. RNAi greatly affected phenolic profile and plant growth. There were no interactive effects of RNAi and UVB on growth or photosynthesis, which indicates that the RNAi and unmodified control plants were equally resilient. UVB enhancement led to an accumulation of foliar flavonoids and condensed tannins, and an increase in the density of stem glands and glandular trichomes on upper leaf surfaces in both the control and RNAi-modified plants. Our results do not indicate a photoprotective role for condensed tannins. However, decreased growth of high-flavonoid low-tannin DFRi and ANRi plants implies that the balance of flavonoids and condensed tannins might be important for normal plant growth.
Collapse
Affiliation(s)
- Paula Thitz
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Ann E. Hagerman
- Department of Chemistry and BiochemistryMiami UniversityOxfordOHUSA
| | - Tendry R. Randriamanana
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Virpi Virjamo
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Present address:
School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Minna Kosonen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Present address:
Natural Resources Institute FinlandMikkeliFinland
| | - Mika Lännenpää
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Present address:
Biocarelia Research LaboratoryJuurikkaFinland
| | - Tommi Nyman
- Department of Ecosystems in the Barents RegionNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| | - Lauri Mehtätalo
- School of ComputingUniversity of Eastern FinlandJoensuuFinland
| | - Sari Kontunen‐Soppela
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Riitta Julkunen‐Tiitto
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| |
Collapse
|
26
|
Dixon RA, Sarnala S. Proanthocyanidin Biosynthesis-a Matter of Protection. PLANT PHYSIOLOGY 2020; 184:579-591. [PMID: 32817234 PMCID: PMC7536678 DOI: 10.1104/pp.20.00973] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins are the second most abundant plant phenolic polymer, but, despite intensive investigation, several aspects of their biosynthesis and functions remain unclear.
Collapse
Affiliation(s)
- Richard A Dixon
- Hagler Institute for Advanced Study and Department of Biological Sciences, Texas A&M University, College Station, Texas 77843-3572
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017
| | - Sai Sarnala
- Texas Academy of Mathematics and Science, University of North Texas, Denton, Texas 76203-5017
| |
Collapse
|
27
|
Champagne E, Royo AA, Tremblay JP, Raymond P. Phytochemicals Involved in Plant Resistance to Leporids and Cervids: a Systematic Review. J Chem Ecol 2019; 46:84-98. [PMID: 31858366 DOI: 10.1007/s10886-019-01130-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/04/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Non-nutritive phytochemicals (secondary metabolites and fibre) can influence plant resistance to herbivores and have ecological impacts on animal and plant population dynamics. A major hindrance to the ecological study of these phytochemicals is the uncertainty in the compounds one should measure, especially when limited by cost and expertise. With the underlying goal of identifying proxies of plant resistance to herbivores, we performed a systematic review of the effects of non-nutritive phytochemicals on consumption by leporids (rabbits and hares) and cervids (deer family). We identified 133 out of 1790 articles that fit our selection criteria (leporids = 33, cervids = 97, both herbivore types = 3). These articles cover 18 species of herbivores, on four continents. The most prevalent group of phytochemicals in the selected articles was phenolics, followed by terpenes for leporids and by fibre for cervids. In general, the results were variable but phenolic concentration seems linked with high resistance to both types of herbivores. Terpene concentration is also linked to high plant resistance; this relationship seems driven by total terpene content for cervids and specific terpenes for leporids. Tannins and fibre did not have a consistent positive effect on plant resistance. Because of the high variability in results reported and the synergistic effects of phytochemicals, we propose that the choice of chemical analyses must be tightly tailored to research objectives. While researchers pursuing ecological or evolutionary objectives should consider multiple specific analyses, researchers in applied studies could focus on a fewer number of specific analyses. An improved consideration of plant defence, based on meaningful chemical analyses, could improve studies of plant resistance and allow us to predict novel or changing plant-herbivore interactions.
Collapse
Affiliation(s)
- Emilie Champagne
- Département de biologie & Centre d'étude de la forêt, Université Laval, QC, Québec, Canada. .,Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs, QC, Québec, Canada.
| | - Alejandro A Royo
- USDA Forest Service Northern Research Station, 335 National Forge Road, Irvine, PA, 16365, USA
| | - Jean-Pierre Tremblay
- Département de biologie & Centre d'étude de la forêt, Université Laval, QC, Québec, Canada.,Centre d'études nordiques, Université Laval, QC, Québec, Canada
| | - Patricia Raymond
- Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs, QC, Québec, Canada
| |
Collapse
|
28
|
González Mera IF, González Falconí DE, Morera Córdova V. Secondary metabolites in plants: main classes, phytochemical analysis and pharmacological activities. BIONATURA 2019. [DOI: 10.21931/rb/2019.04.04.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plants are an essential source of chemical compounds with different biological properties that man can use to his advantage. These substances are mainly produced as a result of chemical conversions of secondary metabolism. This article reviews the main classes of secondary metabolites that synthesize plants as well as their characteristics and their biological functions. Examples are provided for each of the classes. Emphasis is placed on the methods of extracting secondary metabolites and phytochemical screening, as well as on the main pharmacological activities described for the MS.
Collapse
Affiliation(s)
- Irina Francesca González Mera
- Yachay Experimental Technology Research University. School of Chemical Sciences and Engineering. San Miguel de Urcuquí. Hacienda San José s/n. Imbabura, Ecuador
| | - Daniela Estefanía González Falconí
- Yachay Experimental Technology Research University. School of Chemical Sciences and Engineering. San Miguel de Urcuquí. Hacienda San José s/n. Imbabura, Ecuador
| | - Vivian Morera Córdova
- Yachay Experimental Technology Research University. School of Chemical Sciences and Engineering. San Miguel de Urcuquí. Hacienda San José s/n. Imbabura, Ecuador
| |
Collapse
|