1
|
Vanessa E. Rubio. THE NEW PHYTOLOGIST 2025; 245:949-950. [PMID: 39370535 DOI: 10.1111/nph.20176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
|
2
|
Umaña MN, Needham J, Fortunel C. From seedlings to adults: Linking survival and leaf functional traits over ontogeny. Ecology 2025; 106:e4469. [PMID: 39618257 DOI: 10.1002/ecy.4469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 01/18/2025]
Abstract
As long-lived tropical trees grow into the multi-layered canopy and face different environmental conditions, the relationships between leaf traits and whole-plant survival can vary over ontogeny. We tested the strength and direction of the relationships between leaf traits and long-term survival data across life stages for woody species from a subtropical forest in Puerto Rico. Trait-survival relationships were largely consistent across ontogeny with conservative traits leading to higher survival rates. The stage-specific relationship R2 increased by up to one order of magnitude compared to studies not considering ontogenetic trait variations. Stage-specific traits were significant predictors of their corresponding stage-specific survival: Seedlings traits were better predictors of seedling survival than adult traits, and adult traits were better predictors of maximum adult survival than seedling traits. Our results suggest that stage-specific leaf traits reflect different strategies over ontogeny and can substantially improve predictability of survival models in tropical forests.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica Needham
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
3
|
Petrík P, Petek-Petrík A, Lamarque LJ, Link RM, Waite PA, Ruehr NK, Schuldt B, Maire V. Linking stomatal size and density to water use efficiency and leaf carbon isotope ratio in juvenile and mature trees. PHYSIOLOGIA PLANTARUM 2024; 176:e14619. [PMID: 39528910 DOI: 10.1111/ppl.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Water-use efficiency (WUE) is affected by multiple leaf traits, including stomatal morphology. However, the impact of stomatal morphology on WUE across different ontogenetic stages of tree species is not well-documented. Here, we investigated the relationship between stomatal morphology, intrinsic water-use efficiency (iWUE) and leaf carbon isotope ratio (δ13C). We sampled 190 individuals, including juvenile and mature trees belonging to 18 temperate broadleaved tree species and 9 genera. We measured guard cell length (GCL), stomatal density (SD), specific leaf area (SLA), iWUE and bulk leaf δ13C as a proxy for long-term WUE. Leaf δ13C correlated positively with iWUE across species in both juvenile and mature trees, while GCL showed a negative and SD a positive effect on iWUE and leaf δ13C. Within species, however, only GCL was significantly associated with iWUE and leaf δ13C. SLA had a minor negative influence on iWUE and leaf δ13C, but this effect was inconsistent between juvenile and mature trees. We conclude that GCL and SD can be considered functional morphological traits related to the iWUE and leaf δ13C of trees, highlighting their potential for rapid phenotyping approaches in ecological studies.
Collapse
Affiliation(s)
- Peter Petrík
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Anja Petek-Petrík
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Laurent J Lamarque
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Roman M Link
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Pierre-André Waite
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
- French Agricultural Research Centre for International Development (CIRAD), UPR AIDA, Montpellier, France
- Agroecology and Sustainable Intensification of Annual Crops (AIDA), CIRAD, Université de Montpellier, Montpellier, France
| | - Nadine K Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
4
|
Ziegler C, Cochard H, Stahl C, Foltzer L, Gérard B, Goret JY, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4128-4147. [PMID: 38613495 DOI: 10.1093/jxb/erae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Knowledge of the physiological mechanisms underlying species vulnerability to drought is critical for better understanding patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment using 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought. We further explored the importance of water- and carbon-use strategies in relation to drought survival through a modelling approach. Hydraulic strategies varied considerably across species with a continuum between dehydration tolerance and avoidance. During dehydration leading to hydraulic failure and irrespective of hydraulic strategies, species showed strong declines in whole-plant starch concentrations and maintenance, or even increases in soluble sugar concentrations, potentially favouring osmotic adjustments. Residual water losses mediated the trade-off between time to hydraulic failure and growth, indicating that dehydration avoidance is an effective drought-survival strategy linked to the 'fast-slow' continuum of plant performance at the sapling stage. Further investigations on residual water losses may be key to understanding the response of tropical rainforest tree communities to climate change.
Collapse
Affiliation(s)
- Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Louis Foltzer
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Bastien Gérard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Jean-Yves Goret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Pascale Maillard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| |
Collapse
|
5
|
Laurans M, Munoz F, Charles-Dominique T, Heuret P, Fortunel C, Isnard S, Sabatier SA, Caraglio Y, Violle C. Why incorporate plant architecture into trait-based ecology? Trends Ecol Evol 2024; 39:524-536. [PMID: 38212187 DOI: 10.1016/j.tree.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/13/2024]
Abstract
Trait-based ecology has improved our understanding of the functioning of organisms, communities, ecosystems, and beyond. However, its predictive ability remains limited as long as phenotypic integration and temporal dynamics are not considered. We highlight how the morphogenetic processes that shape the 3D development of a plant during its lifetime affect its performance. We show that the diversity of architectural traits allows us to go beyond organ-level traits in capturing the temporal and spatial dimensions of ecological niches and informing community assembly processes. Overall, we argue that consideration of multilevel topological, geometrical, and ontogenetic features provides a dynamic view of the whole-plant phenotype and a relevant framework for investigating phenotypic integration, plant adaptation and performance, and community structure and dynamics.
Collapse
Affiliation(s)
- Marilyne Laurans
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - François Munoz
- LiPhy, Université Grenoble-Alpes, CNRS, Grenoble, France
| | - Tristan Charles-Dominique
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France; CNRS UMR7618, Institute of Ecology and Environmental Sciences, Paris, Sorbonne University, Paris, France
| | - Patrick Heuret
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Claire Fortunel
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sandrine Isnard
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Sylvie-Annabel Sabatier
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Yves Caraglio
- CIRAD, UMR AMAP, F-34398 Montpellier, France; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Cyrille Violle
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
6
|
Umaña MN, Salgado-Negret B, Norden N, Salinas V, Garzón F, Medina SP, Rodríguez-M GM, López-Camacho R, Castaño-Naranjo A, Cuadros H, Franke-Ante R, Avella A, Idárraga-Piedrahita Á, Jurado R, Nieto J, Pizano C, Torres AM, García H, González-M R. Upscaling the effect of traits in response to drought: The relative importance of safety-efficiency and acquisitive-conservation functional axes. Ecol Lett 2023; 26:2098-2109. [PMID: 37847674 DOI: 10.1111/ele.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023]
Abstract
We tested the idea that functional trade-offs that underlie species tolerance to drought-driven shifts in community composition via their effects on demographic processes and subsequently on shifts in species' abundance. Using data from 298 tree species from tropical dry forests during the extreme ENSO-2015, we scaled-up the effects of trait trade-offs from individuals to communities. Conservative wood and leaf traits favoured slow tree growth, increased tree survival and positively impacted species abundance and dominance at the community-level. Safe hydraulic traits, on the other hand, were related to demography but did not affect species abundance and communities. The persistent effects of the conservative-acquisitive trade-off across organizational levels is promising for generalization and predictability of tree communities. However, the safety-efficient trade-off showed more intricate effects on performance. Our results demonstrated the complex pathways in which traits scale up to communities, highlighting the importance of considering a wide range of traits and performance processes.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Viviana Salinas
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Fabián Garzón
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Sandra P Medina
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Gina M Rodríguez-M
- Fundación Ecosistemas Secos de Colombia, Puerto Colombia, Atlántico, Colombia
| | - René López-Camacho
- Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | | | - Hermes Cuadros
- Programa de Biología, Universidad del Atlántico, Barranquilla, Colombia
| | - Rebeca Franke-Ante
- Dirección Territorial Caribe, Parques Nacionales Naturales de Colombia, Santa Marta, Colombia
| | - Andrés Avella
- Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | | | | | - Jhon Nieto
- Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, Colombia
| | - Camila Pizano
- Department of Biology, Lake Forest College, Lake Forest, Illinois, USA
| | - Alba M Torres
- Dirección Territorial Caribe, Parques Nacionales Naturales de Colombia, Santa Marta, Colombia
| | - Hernando García
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Roy González-M
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| |
Collapse
|
7
|
Ren J, Fang S, Wang QW, Liu H, Lin F, Ye J, Hao Z, Wang X, Fortunel C. Ontogeny influences tree growth response to soil fertility and neighbourhood crowding in an old-growth temperate forest. ANNALS OF BOTANY 2023; 131:1061-1072. [PMID: 36454654 PMCID: PMC10457036 DOI: 10.1093/aob/mcac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Abiotic and biotic factors simultaneously affect tree growth and thus shape community structure and dynamics. In particular, trees of different size classes show different growth responses to soil nutrients and neighbourhood crowding, but our understanding of how species' joint responses to these factors vary between size classes remains limited in multi-storied temperate forests. Here, we investigated size class differences in tree growth response to soil gradients and neighbourhood crowding in an old-growth temperate forest. METHODS We combined growth data over 15 years from 38 902 individuals of 42 tree species with trait data in a 25-ha temperate forest plot in northeast China. We built hierarchical Bayesian models of tree growth to examine the effects of soil gradients and neighbourhood crowding between size classes and canopy types. KEY RESULTS We found that soil and neighbours mainly acted separately in shaping tree growth in small and large trees. Soil total nitrogen and phosphorus increased tree growth in small trees, in particular of understorey species, but not in large trees. Neighbours reduced tree growth in both tree size classes, with stronger effects on large than small trees, and on canopy than understorey species. Furthermore, small trees with higher specific leaf area grew faster in fertile soils, and small trees with less seed mass grew faster in crowded environments. Large trees with higher specific leaf area, specific root length and less seed mass grew faster in crowded environments, while these traits had limited influence on tree growth response to soil gradients. CONCLUSIONS Our study highlights the importance of size class in modulating the response of tree growth to soil and neighbours, and the differential role of species canopy types and functional traits in capturing these effects in large vs. small trees.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuai Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qing-Wei Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hongyan Liu
- College of Urban and Environmental Science, Peking University, Beijing, China
| | - Fei Lin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ji Ye
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhanqing Hao
- School of Ecological and Environmental, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xugao Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Chinese Academy of Sciences, Liaoning Province, China
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l’Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
8
|
Umaña MN, Needham J, Forero-Montaña J, Nytch CJ, Swenson NG, Thompson J, Uriarte M, Zimmerman JK. Demographic trade-offs and functional shifts in a hurricane-impacted tropical forest. ANNALS OF BOTANY 2023; 131:1051-1060. [PMID: 36702550 PMCID: PMC10457028 DOI: 10.1093/aob/mcad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Understanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow-fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico. METHODS We analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016. KEY RESULTS The previously identified growth-survival trade-off was not observed. Instead, we identified a fecundity-growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time. CONCLUSIONS Our study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Jessica Needham
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Christopher J Nytch
- Department of Environmental Sciences, University of Puerto Rico, Río Piedras, PR 00936, USA
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA
| | - Jill Thompson
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - María Uriarte
- Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Jess K Zimmerman
- Department of Biology, University of Puerto Rico, Río Piedras, PR 00931, USA
- Department of Environmental Sciences, University of Puerto Rico, Río Piedras, PR 00936, USA
| |
Collapse
|
9
|
Ribeiro-Júnior NG, Marimon BH, Marimon BS, Cruz WJA, Silva IV, Galbraith DR, Gloor E, Phillips OL. Anatomical functional traits and hydraulic vulnerability of trees in different water conditions in southern Amazonia. AMERICAN JOURNAL OF BOTANY 2023; 110:e16146. [PMID: 36826405 DOI: 10.1002/ajb2.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Understanding tree species' responses to drought is critical for predicting the future of tropical forests, especially in regions where the climate is changing rapidly. METHODS We compared anatomical and functional traits of the dominant tree species of two tropical forests in southern Amazonia, one on deep, well-drained soils (cerradão [CD]) and one in a riparian environment (gallery forest [GF]), to examine potential anatomical indicators of resistance or vulnerability to drought. RESULTS Leaves of CD species generally had a thicker cuticle, upper epidermis, and mesophyll than those of GF species, traits that are indicative of adaptation to water deficit. In the GF, the theoretical hydraulic conductivity of the stems was significantly higher, indicating lower investment in drought resistance. The anatomical functional traits of CD species indicate a greater potential for surviving water restriction compared to the GF. Even so, it is possible that CD species could also be affected by extreme climate changes due to the more water-limited environment. CONCLUSIONS In addition to the marked anatomical and functional differences between these phytophysiognomies, tree diversity within each is associated with a large range of hydraulic morphofunctional niches. Our results suggest the strong potential for floristic and functional compositional shifts under continued climate change, especially in the GF.
Collapse
Affiliation(s)
- Norberto G Ribeiro-Júnior
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Rua Prof. Dr. Renato Figueiro Varella, 78690-000, Nova Xavantina-MT, Brasil
- Diretoria Regional de Educação de Sinop, Secretaria de Estado de Educação de Mato Grosso, Rua dos Lírios, 78500-007, Sinop-MT, Brasil
| | - Ben Hur Marimon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Rua Prof. Dr. Renato Figueiro Varella, 78690-000, Nova Xavantina-MT, Brasil
| | - Beatriz S Marimon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Rua Prof. Dr. Renato Figueiro Varella, 78690-000, Nova Xavantina-MT, Brasil
| | - Wesley J A Cruz
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Rua Prof. Dr. Renato Figueiro Varella, 78690-000, Nova Xavantina-MT, Brasil
| | - Ivone V Silva
- Programa de Pós-graduação em Biodiversidade e Agroecossistemas, Universidade do Estado de Mato Grosso, Avenida Perimetral Rogério Silva, 4930, 78580-000, Alta Floresta-MT, Brasil
| | | | - Emanuel Gloor
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
10
|
Girard‐Tercieux C, Maréchaux I, Clark AT, Clark JS, Courbaud B, Fortunel C, Guillemot J, Künstler G, le Maire G, Pélissier R, Rüger N, Vieilledent G. Rethinking the nature of intraspecific variability and its consequences on species coexistence. Ecol Evol 2023; 13:e9860. [PMID: 36911314 PMCID: PMC9992775 DOI: 10.1002/ece3.9860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV increases niche overlap, previous studies have found contrasting results regarding the effect of IV on species coexistence. We aim at showing that the large IV observed in data does not mean that conspecific individuals are necessarily different in their response to the environment and that the role of high-dimensional environmental variation in determining IV has largely remained unexplored in forest plant communities. We first used a simulation experiment where an individual attribute is derived from a high-dimensional model, representing "perfect knowledge" of individual response to the environment, to illustrate how large observed IV can result from "imperfect knowledge" of the environment. Second, using growth data from clonal Eucalyptus plantations in Brazil, we estimated a major contribution of the environment in determining individual growth. Third, using tree growth data from long-term tropical forest inventories in French Guiana, Panama and India, we showed that tree growth in tropical forests is structured spatially and that despite a large observed IV at the population level, conspecific individuals perform more similarly locally than compared with heterospecific individuals. As the number of environmental dimensions that are well quantified at fine scale is generally lower than the actual number of dimensions influencing individual attributes, a great part of observed IV might be represented as random variation across individuals when in fact it is environmentally driven. This mis-representation has important consequences for inference about community dynamics. We emphasize that observed IV does not necessarily impact species coexistence per se but can reveal species response to high-dimensional environment, which is consistent with niche theory and the observation of the many differences between species in nature.
Collapse
Affiliation(s)
| | | | - Adam T. Clark
- Institute of BiologyKarl‐Franzens University of GrazGrazAustria
| | - James S. Clark
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
- Univ. Grenoble Alpes, INRAE, LESSEMSt‐Martin‐d'HèresFrance
| | | | - Claire Fortunel
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
| | - Joannès Guillemot
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, Institut AgroMontpellierFrance
| | | | - Guerric le Maire
- Eco&Sols, Univ. Montpellier, CIRAD, INRAE, IRD, Institut AgroMontpellierFrance
| | - Raphaël Pélissier
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRDMontpellierFrance
- Department of EcologyFrench Institute of PondicherryPuducherryIndia
| | - Nadja Rüger
- Department of EconomicsUniversity of LeipzigLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Smithsonian Tropical Research InstituteBalboaPanama
| | | |
Collapse
|
11
|
Thripob P, Fortunel C, Réjou‐Méchain M, Nathalang A, Chanthorn W. Size‐dependent intraspecific variation in wood traits has little impact on aboveground carbon estimates in a tropical forest landscape. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patcharapan Thripob
- Department of Environmental Technology and Management, Faculty of Environment Kasetsart University 50 Ngamwongwan Road, Jatujak, Bangkok 10900 Thailand
| | - Claire Fortunel
- AMAP Université de Montpellier CIRAD, CNRS, INRAE, IRD Montpellier France
| | | | - Anuttara Nathalang
- National Biobank of Thailand, National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Wirong Chanthorn
- Department of Environmental Technology and Management, Faculty of Environment Kasetsart University 50 Ngamwongwan Road, Jatujak, Bangkok 10900 Thailand
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research UFZ, 04318 Leipzig Germany
| |
Collapse
|
12
|
The Conservation and Restoration of Riparian Forests along Caribbean Riverbanks Using Legume Trees. SUSTAINABILITY 2022. [DOI: 10.3390/su14073709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the actual context of global change and biodiversity depletion, soil bioengineering represents an important tool for riparian ecosystem restoration and species conservation. Various techniques have already been implemented, but their adaptation still must be carried out in Caribbean Islands biodiversity hotspots, where suitable species remains unknown. Nitrogen-fixing legumes are particularly relevant for ecological restoration and the diversity of native Caribbean legume trees is promising in the search for suitable species for soil bioengineering. We hypothesized that Caribbean legume tree species present a growth performance and set of biotechnical traits compatible with their use in soil bioengineering. We selected five native legume trees, adapted to riparian environments, in different ecosystems (swamp forest, evergreen seasonal forest, rainforest) based on their ecology, resistance to disturbance and seed production characteristics. We measured root traits relevant for soil bioengineering on nursery grown 3-month-old seedlings. Despite their differences in sensitivity to herbivory and in growth strategies, the selected species have a high potential for use in soil bioengineering, with high seed production, high germination rates—from 88 to 100%—, and 100% survival rates, and are therefore compatible with large scale plant material production. We provided practical guidance tools for their integration into soil bioengineering techniques.
Collapse
|
13
|
Bauman D, Fortunel C, Cernusak LA, Bentley LP, McMahon SM, Rifai SW, Aguirre-Gutiérrez J, Oliveras I, Bradford M, Laurance SGW, Delhaye G, Hutchinson MF, Dempsey R, McNellis BE, Santos-Andrade PE, Ninantay-Rivera HR, Chambi Paucar JR, Phillips OL, Malhi Y. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. GLOBAL CHANGE BIOLOGY 2022; 28:1414-1432. [PMID: 34741793 DOI: 10.1111/gcb.15982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
A better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) drive spatial variations in species' baseline growth rates, whereas deviations from these averages over time (anomalies) can create growth variation around the local baseline. However, the rarity of long-term tree census data spanning climatic gradients has so far limited our understanding of their respective role, especially in tropical systems. Furthermore, tree growth sensitivity to climate is likely to vary widely among species, and the ecological strategies underlying these differences remain poorly understood. Here, we utilize an exceptional dataset of 49 years of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to examine how multiannual tree growth responds to both climate means and anomalies, and how species' functional traits mediate these growth responses to climate. We show that anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. In addition, species traits related to water use and photosynthesis partly explained differences in growth sensitivity to both climate means and anomalies. Our study demonstrates that both climate means and anomalies shape tree growth in tropical forests and that species traits can provide insights into understanding these demographic responses to climate change, offering a promising way forward to forecast tropical forest dynamics under different climate trajectories.
Collapse
Affiliation(s)
- David Bauman
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Lucas A Cernusak
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Lisa P Bentley
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Sami W Rifai
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, California, USA
| | - Jesús Aguirre-Gutiérrez
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
- Biodiversity Dynamics, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Imma Oliveras
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Matt Bradford
- CSIRO Land and Water, Tropical Forest Research Centre, Atherton, Queensland, Australia
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Guillaume Delhaye
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Michael F Hutchinson
- Fenner School of Environment and Society, The Australian National University, Canberra, Australia
| | - Raymond Dempsey
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Brandon E McNellis
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | | | | | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Zheng J, Jiang Y, Qian H, Mao Y, Zhang C, Tang X, Jin Y, Yi Y. Size-dependent and environment-mediated shifts in leaf traits of a deciduous tree species in a subtropical forest. Ecol Evol 2022; 12:e8516. [PMID: 35136561 PMCID: PMC8809444 DOI: 10.1002/ece3.8516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
AIMS Understanding the joint effects of plant development and environment on shifts of intraspecific leaf traits will advance the understandings of the causes of intraspecific trait variation. We address this question by focusing on a widespread species Clausena dunniana in a subtropical broad-leaved forest. METHODS We sampled 262 individuals of C. dunniana at two major topographic habitat types, the slope and hilltop, within the karst forests in Maolan Nature Reserve in southwestern China. We measured individual plant level leaf traits (i.e., specific leaf area (SLA), leaf area, leaf dry-matter content (LDMC), and leaf thickness) that are associated with plant resource-use strategies. We adopted a linear mixed-effects model in which the plant size (i.e., the first principal component of plant basal diameter and plant height) and environmental factors (i.e., topographic habitat, canopy height, and rock-bareness) were used as independent variables, to estimate their influences on the shifts of leaf traits. KEY RESULTS We found that (1) plant size and the environmental factors independently drove the intraspecific leaf trait shifts of C. dunniana, of which plant size explained less variances than environmental factors. (2) With increasing plant size, C. dunniana individuals had increasingly smaller SLA but larger sized leaves. (3) The most influential environmental factor was topographic habitat; it drove the shifts of all the four traits examined. Clausena dunniana individuals on hilltops had leaf traits representing more conservative resource-use strategies (e.g., smaller SLA, higher LDMC) than individuals on slopes. On top of that, local-scale environmental factors further modified leaf trait shifts. CONCLUSIONS Plant size and environment independently shaped the variations in intraspecific leaf traits of C. dunniana in the subtropical karst forest of Maolan. Compared with plant size, the environment played a more critical role in shaping intraspecific leaf trait variations, and potentially also the underlying individual-level plant resource-use strategies.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Ya Jiang
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Hong Qian
- Research and Collections CenterIllinois State MuseumSpringfieldIllinoisUSA
| | - Yanjiao Mao
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Chao Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
| | - Xiaoxin Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
| | - Yi Jin
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- Key Laboratory of Plant Physiology and Developmental Regulation of Guizhou ProvinceGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
15
|
Baraloto C, Vleminckx J, Engel J, Petronelli P, Dávila N, RÍos M, Valderrama Sandoval EH, Mesones I, Guevara Andino JE, Fortunel C, Allie E, Paine CET, Dourdain A, Goret J, Valverde‐Barrantes OJ, Draper F, Fine PVA. Biogeographic history and habitat specialization shape floristic and phylogenetic composition across Amazonian forests. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christopher Baraloto
- Institute of Environment Department of Biological Sciences Florida International University 11200 Southwest 8th Street Miami Florida 33199 USA
- INRAE UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - Jason Vleminckx
- Institute of Environment Department of Biological Sciences Florida International University 11200 Southwest 8th Street Miami Florida 33199 USA
| | - Julien Engel
- AMAP (botAnique et Modélisation de l’Architecture des Plantes et des végétations) Université de Montpellier, CIRAD, CNRS, INRAE, IRD Boulevard de la Lironde Montpellier Cedex 5 TA A‐51/PS234398 France
| | - Pascal Petronelli
- CIRAD, UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - Nállarett Dávila
- Instituto de Investigaciones de la Amazonia Peruana Iquitos, Peru, Avenida José A. Quiñones km 2.5 Iquitos Loreto Perú
| | - Marcos RÍos
- Instituto de Investigaciones de la Amazonia Peruana Iquitos, Peru, Avenida José A. Quiñones km 2.5 Iquitos Loreto Perú
| | | | - Italo Mesones
- Department of Integrative Biology and Jepson Herbaria University of California, Berkeley 3040 Valley Life Sciences Building 3140 Berkeley California 94720‐3140 USA
| | | | - Claire Fortunel
- AMAP (botAnique et Modélisation de l’Architecture des Plantes et des végétations) Université de Montpellier, CIRAD, CNRS, INRAE, IRD Boulevard de la Lironde Montpellier Cedex 5 TA A‐51/PS234398 France
| | - Elodie Allie
- INRAE UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - C. E. Timothy Paine
- Environmental and Rural Sciences University of New England Armidale New South Wales 2351 Australia
| | - Aurélie Dourdain
- CIRAD, UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - Jean‐Yves Goret
- INRAE UMR Ecologie des Forêts de Guyane Université de Guyane Université des Antilles Campus agronomique, BP 316 Kourou Cedex 97379 France
| | - Oscar J. Valverde‐Barrantes
- Institute of Environment Department of Biological Sciences Florida International University 11200 Southwest 8th Street Miami Florida 33199 USA
| | - Freddie Draper
- Institute of Environment Department of Biological Sciences Florida International University 11200 Southwest 8th Street Miami Florida 33199 USA
- Center for Global Discovery and Conservation Science Arizona State University 1001 South McAllister Avenue Tempe Tempe Arizona 85287 USA
- School of Geography University of Leeds Woodhouse Leeds LS2 9JT UK
| | - Paul V. A. Fine
- Department of Integrative Biology and Jepson Herbaria University of California, Berkeley 3040 Valley Life Sciences Building 3140 Berkeley California 94720‐3140 USA
| |
Collapse
|
16
|
Klipel J, Bergamin RS, Seger GDDS, Carlucci MB, Müller SC. Plant functional traits explain species abundance patterns and strategies shifts among saplings and adult trees in Araucaria forests. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joice Klipel
- Laboratório de Ecologia Vegetal Programa de Pós‐Graduação em Ecologia Departamento de Ecologia Universidade Federal do Rio Grande do Sul Avenida Bento Gonçalves Porto Alegre RS 9500Brazil
| | - Rodrigo Scarton Bergamin
- Laboratório de Ecologia Vegetal Programa de Pós‐Graduação em Ecologia Departamento de Ecologia Universidade Federal do Rio Grande do Sul Avenida Bento Gonçalves Porto Alegre RS 9500Brazil
- Laboratório de Estudos em Vegetação Campestre Programa de Pós‐Graduação em Botânica Universidade Federal do Rio Grande do Sul Porto Alegre RSBrazil
| | - Guilherme Dubal Dos Santos Seger
- Centro de Estudos Costeiros Limnológicos e Marinhos (CECLIMAR) Departamento Interdisciplinar Universidade Federal do Rio Grande do Sul Imbé RSBrazil
| | - Marcos Bergmann Carlucci
- Laboratório de Ecologia Funcional de Comunidades (LABEF) Departamento de Botânica Universidade Federal do Paraná Curitiba PR Brazil
| | - Sandra Cristina Müller
- Laboratório de Ecologia Vegetal Programa de Pós‐Graduação em Ecologia Departamento de Ecologia Universidade Federal do Rio Grande do Sul Avenida Bento Gonçalves Porto Alegre RS 9500Brazil
| |
Collapse
|
17
|
Barreto JR, Berenguer E, Ferreira J, Joly CA, Malhi Y, de Seixas MMM, Barlow J. Assessing invertebrate herbivory in human-modified tropical forest canopies. Ecol Evol 2021; 11:4012-4022. [PMID: 33976790 PMCID: PMC8093672 DOI: 10.1002/ece3.7295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 11/06/2022] Open
Abstract
Studies on the effects of human-driven forest disturbance usually focus on either biodiversity or carbon dynamics but much less is known about ecosystem processes that span different trophic levels. Herbivory is a fundamental ecological process for ecosystem functioning, but it remains poorly quantified in human-modified tropical rainforests.Here, we present the results of the largest study to date on the impacts of human disturbances on herbivory. We quantified the incidence (percentage of leaves affected) and severity (the percentage of leaf area lost) of canopy insect herbivory caused by chewers, miners, and gall makers in leaves from 1,076 trees distributed across 20 undisturbed and human-modified forest plots in the Amazon.We found that chewers dominated herbivory incidence, yet were not a good predictor of the other forms of herbivory at either the stem or plot level. Chewing severity was higher in both logged and logged-and-burned primary forests when compared to undisturbed forests. We found no difference in herbivory severity between undisturbed primary forests and secondary forests. Despite evidence at the stem level, neither plot-level incidence nor severity of the three forms of herbivory responded to disturbance. Synthesis. Our large-scale study of canopy herbivory confirms that chewers dominate the herbivory signal in tropical forests, but that their influence on leaf area lost cannot predict the incidence or severity of other forms. We found only limited evidence suggesting that human disturbance affects the severity of leaf herbivory, with higher values in logged and logged-and-burned forests than undisturbed and secondary forests. Additionally, we found no effect of human disturbance on the incidence of leaf herbivory.
Collapse
Affiliation(s)
- Julia Rodrigues Barreto
- Setor de Ecologia e ConservaçãoUniversidade Federal de LavrasLavrasBrazil
- Programa de Pós‐Graduação em Ecologia do Instituto de Biociências da USPUniversidade de São PauloSão PauloBrazil
| | - Erika Berenguer
- School of Geography and the EnvironmentEnvironmental Change InstituteUniversity of OxfordOxfordUK
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | - Carlos A. Joly
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil
| | - Yadvinder Malhi
- School of Geography and the EnvironmentEnvironmental Change InstituteUniversity of OxfordOxfordUK
| | | | - Jos Barlow
- Setor de Ecologia e ConservaçãoUniversidade Federal de LavrasLavrasBrazil
- Lancaster Environment CentreLancaster UniversityLancasterUK
| |
Collapse
|
18
|
Rimlinger A, Raharimalala N, Letort V, Rakotomalala JJ, Crouzillat D, Guyot R, Hamon P, Sabatier S. Phenotypic diversity assessment within a major ex situ collection of wild endemic coffees in Madagascar. ANNALS OF BOTANY 2020; 126:849-863. [PMID: 32303759 PMCID: PMC7539352 DOI: 10.1093/aob/mcaa073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Like other clades, the Coffea genus is highly diversified on the island of Madagascar. The 66 endemic species have colonized various environments and consequently exhibit a wide diversity of morphological, functional and phenological features and reproductive strategies. The trends of interspecific trait variation, which stems from interactions between genetically defined species and their environment, still needed to be addressed for Malagasy coffee trees. METHODS Data acquisition was done in the most comprehensive ex situ collection of Madagascan wild Coffea. The structure of endemic wild coffees maintained in an ex situ collection was explored in terms of morphological, phenological and functional traits. The environmental (natural habitat) effect was assessed on traits in species from distinct natural habitats. Phylogenetic signal (Pagel's λ, Blomberg's K) was used to quantify trait proximities among species according to their phylogenetic relatedness. KEY RESULTS Despite the lack of environmental difference in the ex situ collection, widely diverging phenotypes were observed. Phylogenetic signal was found to vary greatly across and even within trait categories. The highest values were exhibited by the ratio of internode mass to leaf mass, the length of the maturation phase and leaf dry matter content (ratio of dry leaf mass to fresh leaf mass). By contrast, traits weakly linked to phylogeny were either constrained by the original natural environment (leaf size) or under selective pressures (phenological traits). CONCLUSIONS This study gives insight into complex patterns of trait variability found in an ex situ collection, and underlines the opportunities offered by living ex situ collections for research characterizing phenotypic variation.
Collapse
Affiliation(s)
- Aurore Rimlinger
- AMAP Univ Montpellier CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | | | - Véronique Letort
- Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | | | - Romain Guyot
- DIADE, Univ Montpellier IRD CIRAD, Montpellier, France
| | - Perla Hamon
- DIADE, Univ Montpellier IRD CIRAD, Montpellier, France
| | - Sylvie Sabatier
- AMAP Univ Montpellier CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|