1
|
Du Y, Ye C, Han P, Sheng Y, Li F, Sun H, Zhang J, Li J. The molecular mechanism of transcription factor regulation of grain size in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112434. [PMID: 40023197 DOI: 10.1016/j.plantsci.2025.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Rice is a crucial food crop in China, and the continuous and stable improvement of rice yield is of great significance for ensuring national food security. Grain size in rice is closely related to thousand-grain weight, making it a key factor influencing yield. Identifying genes associated with grain size and elucidating their molecular mechanisms are essential for breeding high-yield, high-quality rice varieties. Transcription factors play a vital role in regulating plant growth and development, and many transcription factor families are crucial in controlling grain size in rice. Here, we review the mechanisms by which transcription factors regulate rice grain size, summarize and evaluate the regulatory mechanisms of transcription factors that have been discovered in recent decades to regulate rice grain size, construct two possible super networks composed of transcription factors as links to regulate rice grain size, and points out the application of transcription factors regulating grain size in rice breeding. This review will provide a roadmap for understanding the regulatory mechanisms of rice grain size and applying these genes to rice breeding using molecular breeding techniques.
Collapse
Affiliation(s)
- Yanxiu Du
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| | - Chun Ye
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Peijie Han
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Yile Sheng
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Fei Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Hongzheng Sun
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Jing Zhang
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Junzhou Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Xie L, Li Y, Sun W, Pu M, Zhou J, He Y, Peng Y, Zheng C, Jiang C, Xu X, Xie X. OsPIL15-Induced Delay in Rice Heading Date via Direct Binding to the OsLF Promoter is Dependent on Functional Phytochrome B. PLANT, CELL & ENVIRONMENT 2025; 48:3326-3336. [PMID: 39737650 DOI: 10.1111/pce.15348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Heading date of rice (Oryza sativa) is a key factor determining rice production and regional adaptability. We analysed the molecular mechanism of OsPIL15, encoding phytochrome-interacting factor-like protein, in delaying rice heading date. Overexpression of OsPIL15 delayed rice heading date by upregulating Hd1 and inhibiting Hd3a and RFT1 expression. OsLF, encoding one rice heading repressor, was found to be the putative candidate regulated by OsPIL15 through a chromatin immunoprecipitation sequencing assay and a transcriptome sequencing assay. OsPIL15 could directly bind to the OsLF promoter and activated its expression. Knocking-out OsLF in OsPIL15-overexpressing lines resulted in flowering 2-3 days earlier, partially rescuing the delayed phenotype. This indicates that overexpression of OsPIL15 overexpression delays heading date partially through OsLF. Protein-protein interaction assay of OsPIL15 or OsPIL15-∆APB (OsPIL15 lacking the active phytochrome B [phyB]-binding [APB] motif) with PHYB showed that the APB motif was required for the interaction between OsPIL15 and PHYB. Furthermore, overexpression of either OsPIL15-∆APB in the wild type or OsPIL15 in the phyB mutant did not delay rice heading date under natural long-day conditions, suggesting that phyB influences OsPIL15-mediated delay in rice heading date.
Collapse
Affiliation(s)
- Lixia Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yaping Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei Sun
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Menglin Pu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jinjun Zhou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanan He
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongbin Peng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chongke Zheng
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Conghui Jiang
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaohui Xu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianzhi Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
3
|
Wang S, Sun Q, Yang S, Chen H, Yuan D, Gan C, Chen H, Zhi Y, Zhu H, Gao Y, Zhu X, Xuan Y. WRKY36-PIL15 Transcription Factor Complex Negatively Regulates Sheath Blight Resistance and Seed Development in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:518. [PMID: 40006783 PMCID: PMC11858971 DOI: 10.3390/plants14040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Sheath blight (ShB) causes severe yield loss in rice. Previously, we demonstrated that the sugar will eventually be exported and the transporter 11 (SWEET11) mutation significantly improved rice resistance to ShB, but it caused severe defects in seed development. The present study found that WRKY36 and PIL15 directly activate SWEET11 to negatively regulate ShB. Interestingly, WRKY36 interacted with PIL15, WRKY36 and PIL15 directly activates miR530 to negatively regulate seed development. WRKY36 interacted with a key BR signaling transcription factor WRKY53. AOS2 is an effector protein from Rhizoctonia solani (R. solani) that interacts with WRKY53. Interestingly, AOS2 also interacts with WRKY36 and PIL15 to activate SWEET11 for sugar nutrition for R. solani. These data collectively suggest that WRKY36-PIL15 negatively regulates ShB resistance and seed development via the activation of SWEET11 and miR530, respectively. In addition, WRKY36 and PIL15 are the partners of the effector protein AOS2 by which R. solani hijacks sugar nutrition from rice.
Collapse
Affiliation(s)
- Siting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Qian Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Shuo Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Huan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Depeng Yuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China;
| | - Changxi Gan
- Zhengzhou Lvyeyuan Agricultural Technology Co., Ltd., Zhengzhou 450016, China; (C.G.); (H.C.); (Y.Z.)
| | - Haixia Chen
- Zhengzhou Lvyeyuan Agricultural Technology Co., Ltd., Zhengzhou 450016, China; (C.G.); (H.C.); (Y.Z.)
| | - Yongxi Zhi
- Zhengzhou Lvyeyuan Agricultural Technology Co., Ltd., Zhengzhou 450016, China; (C.G.); (H.C.); (Y.Z.)
| | - Hongyao Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Yue Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Q.S.); (S.Y.); (H.C.); (H.Z.); (Y.G.)
| | - Yuanhu Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China;
| |
Collapse
|
4
|
Zhang T, Wang Z, Liu Q, Zhao D. Genetic Improvement of rice Grain size Using the CRISPR/Cas9 System. RICE (NEW YORK, N.Y.) 2025; 18:3. [PMID: 39865189 PMCID: PMC11769925 DOI: 10.1186/s12284-025-00758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
Rice grain size influences both grain yield and quality, making it a significant target for rice genetic improvement. In recent years, numerous genes related to grain size with differential effects have been cloned. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is a convenient tool for modifying genes. The use of the CRISPR/Cas9 tool for the genetic improvement of grain size-related genes is worth exploring. This paper summarizes the known grain size-related genes and the use of CRISPR/Cas9 for grain size modification and discusses the potential applications of CRISPR/Cas9 for improving rice grain size.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zhengwei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Dongsheng Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Khaksefidi RE, Chen W, Shen C, Langridge P, Tucker MR, Zhang D. The role of Ancestral MicroRNAs in grass inflorescence development. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154417. [PMID: 39754787 DOI: 10.1016/j.jplph.2024.154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks. MicroRNAs (miRNAs) have emerged as fundamental modulators of gene expression at the transcriptional and/or post-transcriptional level in plant inflorescence development. First discovered more than three decades ago, miRNAs have proved to be revolutionary in advancing our mechanistic understanding of gene expression. This review highlights current knowledge of downstream target genes and pathways of some highly conserved miRNAs that regulate the maintenance, identity, and activity of inflorescence and floral meristems in economically and agriculturally important grass species, including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Furthermore, we summarize emerging regulatory networks of miRNAs and their targets to suggest new avenues and strategies for application of miRNAs as a tool to enhance crop yield and performance.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi Khaksefidi
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Weiwei Chen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Chaoqun Shen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peter Langridge
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Wheat Initiative, Julius Kühn Institute, 14195, Berlin, Germany
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Dabing Zhang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Zhang N, Liu Y, Gui S, Wang Y. Regulation of tillering and panicle branching in rice and wheat. J Genet Genomics 2024:S1673-8527(24)00354-0. [PMID: 39675465 DOI: 10.1016/j.jgg.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat. Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage, respectively, both of which are significantly impacted by hormones and genetic factors. Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity. Here, we summarize the recent progress in genetic, hormonal, and environmental factors regulation in the branching of rice and wheat. This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat, but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuhao Liu
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Songtao Gui
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yonghong Wang
- State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Li X, Chen H, Yang S, Kumar V, Xuan YH. Phytochrome B promotes blast disease resistance and enhances yield in rice. PLANT PHYSIOLOGY 2024; 196:3023-3032. [PMID: 39404763 DOI: 10.1093/plphys/kiae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 12/14/2024]
Abstract
Phytochromes are red/far-red light receptors that regulate various aspects of plant growth, development, and stress responses. The precise mechanism by which phytochrome B (PhyB)-mediated light signaling influences plant defense and development remains unclear. In this study, we showed that PhyB enhances rice (Oryza sativa) blast disease resistance, tillering, and grain size compared to wild-type plants. Notably, PhyB interacted with and degraded grassy tiller 1 (GT1), a negative regulator of tiller development. Knockdown of GT1 in a phyB background partially rescued the diminished tillering of phyB. However, GT1 negatively regulates rice resistance to blast, suggesting that PhyB degradation of GT1 promotes tillering but not blast resistance. Previously, PhyB was found to interact with and degrade phytochrome-interacting factor 15 (PIL15), a key regulator of seed development that reduces rice resistance to blast and seed size. pil15 mutation in phyB mutants rescued phyB seed size and blast resistance, suggesting that PhyB might interact with and degrade PIL15 to negatively regulate blast resistance and seed size. PIL15 directly activated sugar will be eventually exported transporter 2a (SWEET2a). sweet2a mutants were less susceptible to blast disease compared to wild type. Collectively, these data demonstrate that PhyB promotes rice yield and blast resistance by inhibiting the transcription factors GT1 and PIL15 and downstream signaling.
Collapse
Affiliation(s)
- Xinrui Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Huan Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shuo Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Vikranth Kumar
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Li W, Jia B, Sheng J, Shen Y, Jin J, Sun X, Liu X, Sun M. Genome-Wide Identification and Expression Profiling Analysis of the Mitochondrial Calcium Uniporter Gene Family Under Abiotic Stresses in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2024; 13:3176. [PMID: 39599385 PMCID: PMC11598098 DOI: 10.3390/plants13223176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The mitochondrial calcium uniporters (MCUs) are a family of calcium unidirectional transporters important for cytoplasmic Ca2+ signals. Though the MCU proteins in several plant species have been investigated, genome-wide analysis of MCUs in alfalfa is lacking. Here, via genome-wide analysis, a total of 5, 20, and 6 MCU genes were identified in three different alfalfa cultivars, namely Medicago truncatula Jemalong A17, Medicago sativa XinJiangDaYe, and M. sativa Zhongmu No. 1, respectively. They were further phylogenetically classified into three subfamilies. Most MCU genes have only one intron, and gene duplication events of MCU genes were observed within each alfalfa accession and between different accessions. All alfalfa MCU proteins contained a highly conserved MCU domain and 10 conserved motifs, featuring two transmembrane domains and a DI/VME motif. According to the tissue expression data of M. sativa Zhongmu No. 1, MsMCU6.2 was the most abundant transcript with the highest expression in the leaf, and MsMCU5 and MsMCU1.2 showed higher expression levels in the stem than other tissues. We analyzed the expression profiles of five MCU genes (MsMCU1.1/1.2/5/6.1/6.2) under salt, drought, and cold stresses via qRT-PCR assays. All five MCU genes were induced by drought stress, except MsMCU5, whose expression was up-regulated by salt stress, while cold stress slightly altered MsMCU expression. Nine potential interacting proteins and three miRNAs targeting MtMCUs were predicted. These results provide detailed knowledge of alfalfa MCU genes and suggest their potential functions in abiotic stress response.
Collapse
Affiliation(s)
- Wanhong Li
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Jiaxun Sheng
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Jun Jin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
| | - Xiangping Liu
- Grassland Science Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (W.L.); (B.J.); (J.S.); (Y.S.); (J.J.)
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Xiao J, Xiong Z, Huang J, Zhang Z, Cai D, Xiong D, Cui K, Peng S, Huang J. Differences in Grain Yield and Nitrogen Uptake between Tetraploid and Diploid Rice: The Physiological Mechanisms under Field Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2884. [PMID: 39458831 PMCID: PMC11510817 DOI: 10.3390/plants13202884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Research indicates that, owing to the enhanced grain-filling rate of tetraploid rice, its yield has notably improved compared to previous levels. Studies conducted on diploid rice have revealed that optimal planting density and fertilization rates play crucial roles in regulating rice yield. In this study, we investigated the effects of different nitrogen application and planting density treatments on the growth, development, yield, and nitrogen utilization in tetraploid (represented by T7, an indica-japonica conventional allotetraploid rice) and diploid rice (Fengliangyou-4, represented by FLY4, a two-line super hybrid rice used as a reference variety for the approval of super rice with a good grain yield performance). The results indicated that the highest grain-filling rate of T7 could reach 77.8% under field experimental conditions due to advancements in tetraploid rice breeding. This is a significant improvement compared with the rate seen in previous research. Under the same conditions, T7 exhibited a significantly lower grain yield than FLY4, which could be attributed to its lower grain-filling rate, spikelets per panicle, panicle number m-2, and harvest index score. Nitrogen application and planting density displayed little effect on the grain yield of both genotypes. A higher planting density significantly enhanced the leaf area index and biomass accumulation, but decreased the harvest index score. Compared with T7, FLY4 exhibited a significantly higher nitrogen use efficiency (NUEg), which was mainly due to the higher nitrogen content in the straw. Increasing nitrogen application significantly decreased NUEg due to its minimal effect on grain yield combined with its significant enhancement of nitrogen uptake. Our results suggest that the yield and grain-filling rate of T7 have been improved compared with those of previously tested polyploid rice, but are still lower than those of FLY4, and the yield of tetraploid rice can be further improved by enhancing the grain-filling rate, panicle number m-2, and spikelets per panicle via genotype improvement.
Collapse
Affiliation(s)
- Jian Xiao
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| | - Zhuang Xiong
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
| | - Jiada Huang
- College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Zuolin Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Detian Cai
- School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Eco-Physiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.X.); (D.X.); (K.C.); (S.P.)
| |
Collapse
|
10
|
Long Y, Wang C, Liu C, Li H, Pu A, Dong Z, Wei X, Wan X. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res 2024; 62:27-46. [PMID: 37739122 PMCID: PMC11331183 DOI: 10.1016/j.jare.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.
Collapse
Affiliation(s)
- Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Cheng Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
11
|
Kim H, Lee N, Kim Y, Choi G. The phytochrome-interacting factor genes PIF1 and PIF4 are functionally diversified due to divergence of promoters and proteins. THE PLANT CELL 2024; 36:2778-2797. [PMID: 38593049 PMCID: PMC11289632 DOI: 10.1093/plcell/koae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.
Collapse
Affiliation(s)
- Hanim Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Yu Y, He RR, Yang L, Feng YZ, Xue J, Liu Q, Zhou YF, Lei MQ, Zhang YC, Lian JP, Chen YQ. A transthyretin-like protein acts downstream of miR397 and LACCASE to regulate grain yield in rice. THE PLANT CELL 2024; 36:2893-2907. [PMID: 38735686 PMCID: PMC11289628 DOI: 10.1093/plcell/koae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Increasing grain yield is a major goal of breeders due to the rising global demand for food. We previously reported that the miR397-LACCASE (OsLAC) module regulates brassinosteroid (BR) signaling and grain yield in rice (Oryza sativa). However, the precise roles of laccase enzymes in the BR pathway remain unclear. Here, we report that OsLAC controls grain yield by preventing the turnover of TRANSTHYRETIN-LIKE (OsTTL), a negative regulator of BR signaling. Overexpressing OsTTL decreased BR sensitivity in rice, while loss-of-function of OsTTL led to enhanced BR signaling and increased grain yield. OsLAC directly binds to OsTTL and regulates its phosphorylation-mediated turnover. The phosphorylation site Ser226 of OsTTL is essential for its ubiquitination and degradation. Overexpressing the dephosphorylation-mimic form of OsTTL (OsTTLS226A) resulted in more severe defects than did overexpressing OsTTL. These findings provide insight into the role of an ancient laccase in BR signaling and suggest that the OsLAC-OsTTL module could serve as a target for improving grain yield.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yan-Zhao Feng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Jiao Xue
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P. R. China
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jian-Ping Lian
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
13
|
Lu Z, Huang W, Zhu L, Liang G, Huang Y, Wu J, Chen R, Li X, Liu X. Cytological Observation and RNA-Seq Analyses Reveal miR9564 and Its Target Associated with Pollen Sterility in Autotetraploid Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1461. [PMID: 38891270 PMCID: PMC11175005 DOI: 10.3390/plants13111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Understanding the regulation of autotetraploid sterility is essential for harnessing the strong advantages in genomic buffer capacity, biodiversity, and heterosis of autotetraploid rice. miRNAs play crucial roles in fertility regulation, yet information about their reproductive roles and target genes in tetraploid rice remains limited. Here, we used three tetraploid lines, H1 (fertile), HF (fertile), and LF (sterile), to investigate cytological features and identify factors associated with autotetraploid sterility. LF showed abnormal meiosis, resulting in low pollen fertility and viability, ultimately leading to scarce fertilization and a low-seed setting compared to H1 and HF. RNA-seq revealed 30 miRNA-candidate target pairs related to autotetraploid pollen sterility. These pairs showed opposite expression patterns, with differential expression between fertile lines (H1 and HF) and the sterile line (LF). qRT-PCR confirmed that miR9564, miR528, and miR27874 were highly expressed in the anthers of H1 and HF but not in LF, while opposite results were obtained in their targets (ARPS, M2T, and OsRPC53). Haplotype and expression pattern analyses revealed that ARPS was specifically expressed in lines with the same haplotype of MIR9564 (the precursor of miR9564) as LF. Furthermore, the Dual-GFP assay verified that miR9564 inhibited the fluorescence signal of ARPS-GFP. The over-expression of ARPS significantly decreased the seed setting rate (59.10%) and pollen fertility (50.44%) of neo-tetraploid rice, suggesting that ARPS plays important roles in autotetraploid pollen sterility. This study provides insights into the cytological characteristic and miRNA expression profiles of tetraploid lines with different fertility, shedding light on the role of miRNAs in polyploid rice.
Collapse
Affiliation(s)
- Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.H.); (L.Z.); (G.L.); (Y.H.); (J.W.); (R.C.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weicong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.H.); (L.Z.); (G.L.); (Y.H.); (J.W.); (R.C.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lianjun Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.H.); (L.Z.); (G.L.); (Y.H.); (J.W.); (R.C.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guobin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.H.); (L.Z.); (G.L.); (Y.H.); (J.W.); (R.C.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.H.); (L.Z.); (G.L.); (Y.H.); (J.W.); (R.C.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.H.); (L.Z.); (G.L.); (Y.H.); (J.W.); (R.C.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Rou Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.H.); (L.Z.); (G.L.); (Y.H.); (J.W.); (R.C.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.H.); (L.Z.); (G.L.); (Y.H.); (J.W.); (R.C.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Zhong C, Smith NA, Zhang D, Gou X, Greaves IK, Millar AA, Walsh TK, Shan W, Wang MB. G-U base-paired hpRNA confers potent inhibition of small RNA function in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1206-1222. [PMID: 38038953 DOI: 10.1111/tpj.16555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
MicroRNA (miRNA) target mimicry technologies, utilizing naturally occurring miRNA decoy molecules, represent a potent tool for analyzing miRNA function. In this study, we present a highly efficient small RNA (sRNA) target mimicry design based on G-U base-paired hairpin RNA (hpG:U), which allows for the simultaneous targeting of multiple sRNAs. The hpG:U constructs consistently generate high amounts of intact, polyadenylated stem-loop (SL) RNA outside the nuclei, in contrast to traditional hairpin RNA designs with canonical base pairing (hpWT), which were predominantly processed resulting in a loop. By incorporating a 460-bp G-U base-paired double-stranded stem and a 312-576 nt loop carrying multiple miRNA target mimicry sites (GUMIC), the hpG:U construct displayed effective repression of three Arabidopsis miRNAs, namely miR165/166, miR157, and miR160, both individually and in combination. Additionally, a GUMIC construct targeting a prominent cluster of siRNAs derived from cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) effectively inhibited Y-Sat siRNA-directed silencing of the chlorophyll biosynthetic gene CHLI, thereby reducing the yellowing symptoms in infected Nicotiana plants. Therefore, the G-U base-paired hpRNA, characterized by differential processing compared to traditional hpRNA, acts as an efficient decoy for both miRNAs and siRNAs. This technology holds great potential for sRNA functional analysis and the management of sRNA-mediated diseases.
Collapse
Affiliation(s)
- Chengcheng Zhong
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
- Stake Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Neil A Smith
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
| | - Daai Zhang
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
| | - Xiuhong Gou
- Stake Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ian K Greaves
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Tom K Walsh
- CSIRO Environment, Canberra, 2601, ACT, Australia
| | - Weixing Shan
- Stake Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming-Bo Wang
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
| |
Collapse
|
15
|
Sun Y, Li Q, Wu M, Wang Q, Zhang D, Gao Y. Rice PIFs: Critical regulators in rice development and stress response. PLANT MOLECULAR BIOLOGY 2024; 114:1. [PMID: 38177976 DOI: 10.1007/s11103-023-01406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
Phytochrome-interacting factors (PIFs) belong to a subfamily of the basic helix-loop-helix (bHLH) family of transcription factors, which serve as a "hub" for development and growth of plants. They have the capability to regulate the expression of many downstream genes, integrate multiple signaling pathways, and act as a signaling center within the cell. In rice (Oryza sativa), the PIF family genes, known as OsPILs, play a crucial part in many different aspects. OsPILs play a crucial role in regulating various aspects of photomorphogenesis, skotomorphogenesis, plant growth, and development in rice. These vital processes include chlorophyll synthesis, plant gravitropism, plant height, flowering, and response to abiotic stress factors such as low temperature, drought, and high salt. Additionally, OsPILs are involved in controlling several important agronomic traits in rice. Some OsPILs members coordinate with each other to function. This review summarizes and prospects the latest research progress on the biological functions of OsPILs transcription factors and provides a reference for further exploring the functions and mechanism of OsPILs.
Collapse
Affiliation(s)
- Yixuan Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qian Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Meidi Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qingwen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yong Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Deng K, Zhang H, Wu J, Zhao Z, Wang D, Xu G, Yu J, Ling Y, Zhao F. Development of Single-Segment Substitution Lines and Fine-Mapping of qSPP4 for Spikelets Per Panicle and qGW9 for Grain Width Based on Rice Dual-Segment Substitution Line Z783. Int J Mol Sci 2023; 24:17305. [PMID: 38139135 PMCID: PMC10744095 DOI: 10.3390/ijms242417305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Single segment substitution line (SSSL) libraries are an ideal platform for breeding by design. To develop SSSLs-Xihui18 covering the whole genome, a novel rice chromosome segment substitution line (CSSL), Z783, carrying two substitution segments (average length of 6.55 Mb) on Chr.4 and Chr.9 was identified, which was a gap in the library previously. Z783 was developed from the progeny of recipient "Xihui18" (an indica restorer line) and donor "Huhan3" (a japonica cultivar) by advanced backcross combined molecular marker-assisted selection (MAS). It displayed multiple panicles and less spikelets and wide grains. Then, a F2 population derived from Xihui18/Z783 was used to map quantitative trait loci (QTLs) for yield-related traits by the mixed linear model method. Nine QTLs were detected (p < 0.05). Furthermore, three SSSLs were constructed by MAS, and all 9 QTLs could be validated, and 15 novel QTLs could be detected by these SSSLs by a one-way ANOVA analysis. The genetic analysis showed that qSSP4 for less spikelets and qGW9 for wide grain all displayed dominant gene action in their SSSLs. Finally, qSSP4 and qGW9 were fine-mapped to intervals of 2.75 Mb and 1.84 Mb, on Chromosomes 4 and 9, respectively. The results lay a solid foundation for their map cloning and molecular breeding by design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fangming Zhao
- Rice Research Institute, Academy of Agricultural Science, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400715, China; (K.D.); (H.Z.); (J.W.); (Z.Z.); (D.W.); (G.X.); (J.Y.); (Y.L.)
| |
Collapse
|
17
|
Gasparis S, Miłoszewski MM. Genetic Basis of Grain Size and Weight in Rice, Wheat, and Barley. Int J Mol Sci 2023; 24:16921. [PMID: 38069243 PMCID: PMC10706642 DOI: 10.3390/ijms242316921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Grain size is a key component of grain yield in cereals. It is a complex quantitative trait controlled by multiple genes. Grain size is determined via several factors in different plant development stages, beginning with early tillering, spikelet formation, and assimilates accumulation during the pre-anthesis phase, up to grain filling and maturation. Understanding the genetic and molecular mechanisms that control grain size is a prerequisite for improving grain yield potential. The last decade has brought significant progress in genomic studies of grain size control. Several genes underlying grain size and weight were identified and characterized in rice, which is a model plant for cereal crops. A molecular function analysis revealed most genes are involved in different cell signaling pathways, including phytohormone signaling, transcriptional regulation, ubiquitin-proteasome pathway, and other physiological processes. Compared to rice, the genetic background of grain size in other important cereal crops, such as wheat and barley, remains largely unexplored. However, the high level of conservation of genomic structure and sequences between closely related cereal crops should facilitate the identification of functional orthologs in other species. This review provides a comprehensive overview of the genetic and molecular bases of grain size and weight in wheat, barley, and rice, focusing on the latest discoveries in the field. We also present possibly the most updated list of experimentally validated genes that have a strong effect on grain size and discuss their molecular function.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, 05-870 Błonie, Poland;
| | | |
Collapse
|
18
|
Yadav B, Majhi A, Phagna K, Meena MK, Ram H. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Funct Integr Genomics 2023; 23:317. [PMID: 37837547 DOI: 10.1007/s10142-023-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene knockout approaches has accelerated the development of improved varieties; however, finding out target gene with negative regulatory function in particular trait without giving any pleiotropic effect remains a challenge. Here, we have reviewed past and recent literature and identified important negative regulators of grain yield and mineral contents which could be potential targets for CRISPR-Cas9-mediated gene knockout. Additionally, we have also compiled a list of microRNAs (miRNAs), which target positive regulators of grain yield, plant stress tolerance, and grain mineral contents. Knocking out these miRNAs could help to increase expression of such positive regulators and thus improve the plant trait. The knowledge presented in this review would help to further accelerate the CRISPR-Cas9-mediated trait improvement in rice.
Collapse
Affiliation(s)
- Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashis Majhi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Phagna
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
19
|
Xiong D, Wang R, Wang Y, Li Y, Sun G, Yao S. SLG2 specifically regulates grain width through WOX11-mediated cell expansion control in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1904-1918. [PMID: 37340997 PMCID: PMC10440987 DOI: 10.1111/pbi.14102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 05/28/2023] [Indexed: 06/22/2023]
Abstract
Grain size is specified by three dimensions of length, width and thickness, and slender grain is a desirable quality trait in rice. Up to now, many grain size regulators have been identified. However, most of these molecules show influence on multi-dimensions of grain development, and only a few of them function specifically in grain width, a key factor determining grain yield and appearance quality. In this study, we identify the SLG2 (SLENDER GUY2) gene that specifically regulates grain width by affecting cell expansion in the spikelet hulls. SLG2 encodes a WD40 domain containing protein, and our biochemical analyses show that SLG2 acts as a transcription activator of its interacting WOX family protein WOX11. We demonstrate that the SLG2-associated WOX11 binds directly to the promoter of OsEXPB7, one of the downstream cell expansion genes. We show that knockout of WOX11 results in plants with a slender grain phenotype similar to the slg2 mutant. We also present that finer grains with different widths could be produced by combining SLG2 with the grain width regulator GW8. Collectively, we uncover the crucial role of SLG2 in grain width control, and provide a promising route to design rice plants with better grain shape and quality.
Collapse
Affiliation(s)
- Dunpin Xiong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruci Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yueming Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yi Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ge Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
20
|
Chandra T, Jaiswal S, Iquebal MA, Singh R, Gautam RK, Rai A, Kumar D. Revitalizing miRNAs mediated agronomical advantageous traits improvement in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107933. [PMID: 37549574 DOI: 10.1016/j.plaphy.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
One of the key enigmas in conventional and modern crop improvement programmes is how to introduce beneficial traits without any penalty impairment. Rice (Oryza sativa L.), among the essential staple food crops grown and utilized worldwide, needs to improve genotypes in multifaceted ways. With the global view to feed ten billion under the climatic perturbation, only a potent functional master regulator can withstand with hope for the next green revolution and food security. miRNAs are such, miniature, fine tuners for crop improvement and provide a value addition in emerging technologies, namely large-scale genotyping, phenotyping, genome editing, marker-assisted selection, and genomic selection, to make rice production feasible. There has been surplus research output generated since the last decade on miRNAs in rice, however, recent functional knowledge is limited to reaping the benefits for conventional and modern improvements in rice to avoid ambiguity and redundancy in the generated data. Here, we present the latest functional understanding of miRNAs in rice. In addition, their biogenesis, intra- and inter-kingdom signaling and communication, implication of amiRNAs, and consequences upon integration with CRISPR-Cas9. Further, highlights refer to the application of miRNAs for rice agronomical trait improvements, broadly classified into three functional domains. The majority of functionally established miRNAs are responsible for growth and development, followed by biotic and abiotic stresses. Tabular cataloguing reveals and highlights two multifaceted modules that were extensively studied. These belong to miRNA families 156 and 396, orchestrate multifarious aspects of advantageous agronomical traits. Moreover, updated and exhaustive functional aspects of different supplemental miRNA modules that would strengthen rice improvement are also being discussed.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - R K Gautam
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India; Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
21
|
Mittal M, Dhingra A, Dawar P, Payton P, Rock CD. The role of microRNAs in responses to drought and heat stress in peanut (Arachis hypogaea). THE PLANT GENOME 2023; 16:e20350. [PMID: 37351954 DOI: 10.1002/tpg2.20350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/24/2023]
Abstract
MicroRNAs (miRNAs) are 21-24 nt small RNAs (sRNAs) that negatively regulate protein-coding genes and/or trigger phased small-interfering RNA (phasiRNA) production. Two thousand nine hundred miRNA families, of which ∼40 are deeply conserved, have been identified in ∼80 different plant species genomes. miRNA functions in response to abiotic stresses is less understood than their roles in development. Only seven peanut MIRNA families are documented in miRBase, yet a reference genome assembly is now published and over 480 plant-like MIRNA loci were predicted in the diploid peanut progenitor Arachis duranensis genome. We explored by computational analysis of a leaf sRNA library and publicly available sRNA, degradome, and transcriptome datasets the miRNA and phasiRNA space associated with drought and heat stresses in peanut. We characterized 33 novel candidate and 33 ancient conserved families of MIRNAs and present degradome evidence for their cleavage activities on mRNA targets, including several noncanonical targets and novel phasiRNA-producing noncoding and mRNA loci with validated novel targets such as miR1509 targeting serine/threonine-protein phosphatase7 and miRc20 and ahy-miR3514 targeting penta-tricopeptide repeats (PPRs), in contradistinction to other claims of miR1509/173/7122 superfamily miRNAs indirectly targeting PPRs via TAS-like noncoding RNA loci. We characterized the inverse correlations of significantly differentially expressed drought- and heat-regulated miRNAs, assayed by sRNA blots or transcriptome datasets, with target mRNA expressions in the same datasets. Meta-analysis of an expression atlas and over representation of miRNA target genes in co-expression networks suggest that miRNAs have functions in unique aspects of peanut gynophore development. Genome-wide MIRNA annotation of the published allopolyploid peanut genome can facilitate molecular breeding of value-added traits.
Collapse
Affiliation(s)
- Meenakshi Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Anuradha Dhingra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Paxton Payton
- USDA-ARS Plant Stress and Germplasm Lab, Lubbock, Texas, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
22
|
Zhang Y, Gan L, Zhang Y, Huang B, Wan B, Li J, Tong L, Zhou X, Wei Z, Li Y, Song Z, Zhang X, Cai D, He Y. OsCBL5-CIPK1-PP23 module enhances rice grain size and weight through the gibberellin pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:895-909. [PMID: 37133258 DOI: 10.1111/tpj.16266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/04/2023]
Abstract
Grain size is a key factor in determining rice (Oryza sativa) yield, and exploring new pathways to regulate grain size has immense potential to improve yield. In this study, we report that OsCBL5 encodes a calcineurin B subunit protein that significantly promotes grain size and weight. oscbl5 plants produced obviously smaller and lighter seeds. We further revealed that OsCBL5 promotes grain size by affecting cell expansion in the spikelet hull. Biochemical analyses demonstrated that CBL5 interacts with CIPK1 and PP23. Furthermore, double and triple mutations were induced using CRISPR/Cas9 (cr) to analyze the genetic relationship. It was found that the cr-cbl5/cipk1 phenotype was similar to that of cr-cipk1 and that the cr-cbl5/pp23, cr-cipk1/pp23, and cr-cbl5/cipk1/pp23 phenotype was similar to that of cr-pp23, indicating that OsCBL5, CIPK1, and PP23 act as a molecular module influencing seed size. In addition, the results show that both CBL5 and CIPK1 are involved in the gibberellic acid (GA) pathway and significantly affect the accumulation of endogenous active GA4 . PP23 participates in GA signal transduction. In brief, this study identified a new module that affects rice grain size, OsCBL5-CIPK1-PP23, which could potentially be targeted to improve rice yield.
Collapse
Affiliation(s)
- Yachun Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Lu Gan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Yujie Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Baosheng Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Shandong Institute of Commerce and Technology, 250000, Jinan, China
| | - Binliang Wan
- Hubei Academy of Agricultural Sciences Institute of Food Crops, 430000, Wuhan, China
| | - Jinbo Li
- Hubei Academy of Agricultural Sciences Institute of Food Crops, 430000, Wuhan, China
| | - Liqi Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Xue Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Zhisong Wei
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| | - Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Zhaojian Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| | - Detian Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| |
Collapse
|
23
|
Raza A, Charagh S, Karikari B, Sharif R, Yadav V, Mubarik MS, Habib M, Zhuang Y, Zhang C, Chen H, Varshney RK, Zhuang W. miRNAs for crop improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107857. [PMID: 37437345 DOI: 10.1016/j.plaphy.2023.107857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.
Collapse
Affiliation(s)
- Ali Raza
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Vivek Yadav
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, China
| | | | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Park Rd., Islamabad 45500, Pakistan
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Hua Chen
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China
| | - Rajeev K Varshney
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China; WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 35002, China.
| |
Collapse
|
24
|
Zhang J, Zhang X, Liu X, Pai Q, Wang Y, Wu X. Molecular Network for Regulation of Seed Size in Plants. Int J Mol Sci 2023; 24:10666. [PMID: 37445843 DOI: 10.3390/ijms241310666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The size of seeds is particularly important for agricultural development, as it is a key trait that determines yield. It is controlled by the coordinated development of the integument, endosperm, and embryo. Large seeds are an important way of improving the ultimate "sink strength" of crops, providing more nutrients for early plant growth and showing certain tolerance to abiotic stresses. There are several pathways for regulating plant seed size, including the HAIKU (IKU) pathway, ubiquitin-proteasome pathway, G (Guanosine triphosphate) protein regulatory pathway, mitogen-activated protein kinase (MAPK) pathway, transcriptional regulators pathway, and phytohormone regulatory pathways including the auxin, brassinosteroid (BR), gibberellin (GA), jasmonic acid (JA), cytokinin (CK), Abscisic acid (ABA), and microRNA (miRNA) regulatory pathways. This article summarizes the seed size regulatory network and prospective ways of improving yield. We expect that it will provide a valuable reference to researchers in related fields.
Collapse
Affiliation(s)
- Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xueman Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiaofeng Pai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yahui Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
25
|
Hu G, Wang B, Jia P, Wu P, Lu C, Xu Y, Shi L, Zhang F, Zhong N, Chen A, Wu J. The cotton miR530-SAP6 module activated by systemic acquired resistance mediates plant defense against Verticillium dahliae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111647. [PMID: 36806608 DOI: 10.1016/j.plantsci.2023.111647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Many cotton miRNAs in root responding to Verticillium dahliae infection have been identified. Conversely, the miRNAs in leaf distantly responding to this fungal infection from roots via systemic acquired resistance (SAR) remain to be explored. Here, we constructed two groups of leaf sRNA libraries in cotton treated with V. dahliae via root-dipped method at 7- and 10-day post inoculation. Analysis of high-throughput sRNA sequencing identified 75 known and 379 novel miRNAs, of which 41 miRNAs significantly differentially expressed in fungal treatment plant leaves compared to the mock treatment at two time points. Then we characterized the cotton miR530-SAP6 module as a representative in the distant response to V. dahliae infection in roots. Based on degradome data and a luciferase (LUC) fusion reporter analysis, ghr-miR530 directedly cleaved GhSAP6 mRNA during the post-transcriptional process. Silencing of ghr-miR530 increased plant defense to this fungus, while its overexpression attenuated plant resistance. In link with ghr-miR530 function, the knockdown of GhSAP6 also decreased the plant resistance, resulting from down-regulation of SA-relative gene expression including GhNPR1 and GhPR1. In all, these results demonstrated that there are numerous miRNAs in leaf distantly responding to V. dahliae infection in roots mediate plant immunity.
Collapse
Affiliation(s)
- Guang Hu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Bingting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei Jia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengzhe Lu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunjiao Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linfang Shi
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feiyan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aimin Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture and Rural Affairs, Join Hope Seeds Co. Ltd., Changji, Xinjiang 831100, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
A Novel miRNA in Rice Associated with the Low Seed Setting Rate Symptom of Rice Stripe Virus. Int J Mol Sci 2023; 24:ijms24043675. [PMID: 36835087 PMCID: PMC9967548 DOI: 10.3390/ijms24043675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
MicroRNAs play key regulatory roles in plant development. The changed pattern of miRNA expression is involved in the production of viral symptoms. Here, we showed that a small RNA, Seq119, a putative novel microRNA, is associated with the low seed setting rate, a viral symptom of rice stripe virus (RSV)-infected rice. The expression of Seq 119 was downregulated in RSV-infected rice. The overexpression of Seq119 in transgenic rice plants did not cause any obvious phenotypic changes in plant development. When the expression of Seq119 was suppressed in rice plants either by expressing a mimic target or by CRISPR/Cas editing, seed setting rates were extremely low, similar to the effects of RSV infection. The putative targets of Seq119 were then predicted. The overexpression of the target of Seq119 in rice caused a low seed setting rate, similar to that in Seq119-suppressed or edited rice plants. Consistently, the expression of the target was upregulated in Seq119-suppressed and edited rice plants. These results suggest that downregulated Seq119 is associated with the low seed setting rate symptom of the RSV in rice.
Collapse
|
27
|
Luo X, Wei Y, Zheng Y, Wei L, Wu F, Cai Q, Xie H, Zhang J. Analysis of co-expression and gene regulatory networks associated with sterile lemma development in rice. BMC PLANT BIOLOGY 2023; 23:11. [PMID: 36604645 PMCID: PMC9817312 DOI: 10.1186/s12870-022-04012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The sterile lemma is a unique organ of the rice (Oryza sativa L.) spikelet. However, the characteristics and origin of the rice sterile lemma have not been determined unequivocally, so it is important to elucidate the molecular mechanism of the development of the sterile lemma. RESULTS In the paper, we outline the regulatory mechanism of sterile lemma development by LONG STERILE LEMMA1 (G1), which has been identified as the gene controlling sterile lemma development. Based on the comprehensive analyses of transcriptome dynamics during sterile lemma development with G1 alleles between wild-type (WT) and mutant (MT) in rice, we obtained co-expression data and regulatory networks related to sterile lemma development. Co-transfection assays of rice protoplasts confirmed that G1 affects the expression of various phytohormone-related genes by regulating a number of critical transcription factors, such as OsLBD37 and OSH1. The hormone levels in sterile lemmas from WT and MT of rice supports the hypotheses that lower auxin, lower gibberellin, and higher cytokinin concentrations are required to maintain a normal phenotype of sterile lemmas. CONCLUSION The regulatory networks have considerable reference value, and some of the regulatory relationships exhibiting strong correlations are worthy of further study. Taken together, these work provided a detailed guide for further studies into the molecular mechanism of sterile lemma development.
Collapse
Affiliation(s)
- Xi Luo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Linyan Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350019, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
28
|
Li Q, Zhou L, Chen Y, Xiao N, Zhang D, Zhang M, Wang W, Zhang C, Zhang A, Li H, Chen J, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. THE PLANT CELL 2022; 34:4293-4312. [PMID: 35929789 PMCID: PMC9614506 DOI: 10.1093/plcell/koac244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/01/2022] [Indexed: 06/10/2023]
Abstract
Stomata are crucial valves coordinating the fixation of carbon dioxide by photosynthesis and water loss through leaf transpiration. Phytochrome interacting factors (PIFs) are negative regulators of red light responses that belong to the basic helix-loop-helix family of transcription factors. Here, we show that the rice (Oryza sativa) PIF family gene OsPIL15 acts as a negative regulator of stomatal aperture to control transpiration in rice. OsPIL15 reduces stomatal aperture by activating rice ABSCISIC ACID INSENSITIVE 5 (OsABI5), which encodes a critical positive regulator of ABSCISIC ACID (ABA) signaling in rice. Moreover, OsPIL15 interacts with the NIGT1/HRS1/HHO family transcription factor rice HRS1 HOMOLOG 3 (OsHHO3) to possibly enhance the regulation of stomatal aperture. Notably, we discovered that the maize (Zea mays) PIF family genes ZmPIF1 and ZmPIF3, which are homologous to OsPIL15, are also involved in the regulation of stomatal aperture in maize, indicating that PIF-mediated regulation of stomatal aperture may be conserved in the plant lineage. Our findings explain the molecular mechanism by which PIFs play a role in red-light-mediated stomatal opening, and demonstrate that PIFs regulate stomatal aperture by coordinating the red light and ABA signaling pathways.
Collapse
Affiliation(s)
| | | | - Yanan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Anning Zhang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Hua Li
- Hezhou Academy of Agricultural Sciences, Hezhou 542813, China
| | - Jianmin Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Joint International Research Laboratory of Agriculture, Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | |
Collapse
|
29
|
Fan K, Sze CC, Li MW, Lam HM. Roles of non-coding RNAs in the hormonal and nutritional regulation in nodulation and nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2022; 13:997037. [PMID: 36330261 PMCID: PMC9623164 DOI: 10.3389/fpls.2022.997037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important component in the nitrogen cycle and is a potential solution for sustainable agriculture. It is the result of the interactions between the plant host, mostly restricted to legume species, and the rhizobial symbiont. From the first encounter between the host and the symbiont to eventual successful nitrogen fixation, there are delicate processes involved, such as nodule organogenesis, rhizobial infection thread progression, differentiation of the bacteroid, deregulation of the host defense systems, and reallocation of resources. All these processes are tightly regulated at different levels. Recent evidence revealed that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in these processes by controlling the transcription and translation of effector genes. In general, ncRNAs are functional transcripts without translation potential and are important gene regulators. MiRNAs, negative gene regulators, bind to the target mRNAs and repress protein production by causing the cleavage of mRNA and translational silencing. LncRNAs affect the formation of chromosomal loops, DNA methylation, histone modification, and alternative splicing to modulate gene expression. Both lncRNAs and circRNAs could serve as target mimics of miRNA to inhibit miRNA functions. In this review, we summarized and discussed the current understanding of the roles of ncRNAs in legume nodulation and nitrogen fixation in the root nodule, mainly focusing on their regulation of hormone signal transduction, the autoregulation of nodulation (AON) pathway and nutrient homeostasis in nodules. Unraveling the mediation of legume nodulation by ncRNAs will give us new insights into designing higher-performance leguminous crops for sustainable agriculture.
Collapse
|
30
|
Mansour A, Mannaa M, Hewedy O, Ali MG, Jung H, Seo YS. Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions. THE PLANT PATHOLOGY JOURNAL 2022; 38:432-448. [PMID: 36221916 PMCID: PMC9561162 DOI: 10.5423/ppj.rw.07.2022.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.
Collapse
Affiliation(s)
- Abdelaziz Mansour
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613,
Egypt
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Department of Plant Pathology, Cairo University, Giza 12613,
Egypt
| | - Omar Hewedy
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1,
Canada
- Department of Genetics, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514,
Egypt
| | - Mostafa G. Ali
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha 13518,
Egypt
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
31
|
Cordeiro AM, Andrade L, Monteiro CC, Leitão G, Wigge PA, Saibo NJM. PHYTOCHROME-INTERACTING FACTORS: a promising tool to improve crop productivity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3881-3897. [PMID: 35429385 DOI: 10.1093/jxb/erac142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Light is a key determinant for plant growth, development, and ultimately yield. Phytochromes, red/far-red photoreceptors, play an important role in plant architecture, stress tolerance, and productivity. In the model plant Arabidopsis, it has been shown that PHYTOCHROME-INTERACTING FACTORS (PIFs; bHLH transcription factors) act as central hubs in the integration of external stimuli to regulate plant development. Recent studies have unveiled the importance of PIFs in crops. They are involved in the modulation of plant architecture and productivity through the regulation of cell division and elongation in response to different environmental cues. These studies show that different PIFs have overlapping but also distinct functions in the regulation of plant growth. Therefore, understanding the molecular mechanisms by which PIFs regulate plant development is crucial to improve crop productivity under both optimal and adverse environmental conditions. In this review, we discuss current knowledge of PIFs acting as integrators of light and other signals in different crops, with particular focus on the role of PIFs in responding to different environmental conditions and how this can be used to improve crop productivity.
Collapse
Affiliation(s)
- André M Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luis Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Catarina C Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Guilherme Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
32
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
33
|
Cao W, Zhang H, Zhou Y, Zhao J, Lu S, Wang X, Chen X, Yuan L, Guan H, Wang G, Shen W, De Vleesschauwer D, Li Z, Shi X, Gu J, Guo M, Feng Z, Chen Z, Zhang Y, Pan X, Liu W, Liang G, Yan C, Hu K, Liu Q, Zuo S. Suppressing chlorophyll degradation by silencing OsNYC3 improves rice resistance to Rhizoctonia solani, the causal agent of sheath blight. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:335-349. [PMID: 34582620 PMCID: PMC8753359 DOI: 10.1111/pbi.13715] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 05/20/2023]
Abstract
Necrotrophic fungus Rhizoctonia solani Kühn (R. solani) causes serious diseases in many crops worldwide, including rice and maize sheath blight (ShB). Crop resistance to the fungus is a quantitative trait and resistance mechanism remains largely unknown, severely hindering the progress on developing resistant varieties. In this study, we found that resistant variety YSBR1 has apparently stronger ability to suppress the expansion of R. solani than susceptible Lemont in both field and growth chamber conditions. Comparison of transcriptomic profiles shows that the photosynthetic system including chlorophyll biosynthesis is highly suppressed by R. solani in Lemont but weakly in YSBR1. YSBR1 shows higher chlorophyll content than that of Lemont, and inducing chlorophyll degradation by dark treatment significantly reduces its resistance. Furthermore, three rice mutants and one maize mutant that carry impaired chlorophyll biosynthesis all display enhanced susceptibility to R. solani. Overexpression of OsNYC3, a chlorophyll degradation gene apparently induced expression by R. solani infection, significantly enhanced ShB susceptibility in a high-yield ShB-susceptible variety '9522'. However, silencing its transcription apparently improves ShB resistance without compromising agronomic traits or yield in field tests. Interestingly, altering chlorophyll content does not affect rice resistance to blight and blast diseases, caused by biotrophic and hemi-biotrophic pathogens, respectively. Our study reveals that chlorophyll plays an important role in ShB resistance and suppressing chlorophyll degradation induced by R. solani infection apparently improves rice ShB resistance. This discovery provides a novel target for developing resistant crop to necrotrophic fungus R. solani.
Collapse
|
34
|
Jha V, Narjala A, Basu D, T. N. S, Pachamuthu K, Chenna S, Nair A, Shivaprasad PV. Essential role of γ-clade RNA-dependent RNA polymerases in rice development and yield-related traits is linked to their atypical polymerase activities regulating specific genomic regions. THE NEW PHYTOLOGIST 2021; 232:1674-1691. [PMID: 34449900 PMCID: PMC9290346 DOI: 10.1111/nph.17700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/14/2021] [Indexed: 05/31/2023]
Abstract
RNA-dependent RNA polymerases (RDR) generate double-stranded (ds)RNA triggers for RNA silencing across eukaryotes. Among the three clades, α-clade and β-clade members are key components of RNA silencing and mediators of stress responses across eukaryotes. However, γ-clade members are unusual in that they are represented in phylogenetically distant plants and fungi, and their functions are unknown. Using genetic, bioinformatic and biochemical methods, we show that γ-clade RDRs from Oryza sativa L. are involved in plant development as well as regulation of expression of coding and noncoding RNAs. Overexpression of γ-clade RDRs in transgenic rice and tobacco plants resulted in robust growth phenotype, whereas their silencing in rice displayed strong inhibition of growth. Small (s)RNA and RNA-seq analysis of OsRDR3 mis-expression lines suggested that it is specifically involved in the regulation of repeat-rich regions in the genome. Biochemical analysis confirmed that OsRDR3 has robust polymerase activities on both single stranded (ss)RNA and ssDNA templates similar to the activities reported for α-clade RDRs such as AtRDR6. Our results provide the first evidence of the importance of γ-clade RDRs in plant development, their atypical biochemical activities and their contribution to the regulation of gene expression.
Collapse
Affiliation(s)
- Vikram Jha
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- BIOSS Centre for Biological Signaling StudiesFaculty of BiologyAlbert‐Ludwigs‐Universität FreiburgFreiburg im Breisgau79104Germany
| | - Anushree Narjala
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- SASTRA UniversityThirumalaisamudram, Thanjavur613401India
| | - Debjani Basu
- National Centre for Biological SciencesGKVK CampusBangalore560065India
| | - Sujith T. N.
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- University of Trans‐Disciplinary Health Sciences and TechnologyBengaluru560064India
| | - Kannan Pachamuthu
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Swetha Chenna
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- SASTRA UniversityThirumalaisamudram, Thanjavur613401India
| | - Ashwin Nair
- National Centre for Biological SciencesGKVK CampusBangalore560065India
- SASTRA UniversityThirumalaisamudram, Thanjavur613401India
| | | |
Collapse
|
35
|
Xiao N, Pan C, Li Y, Wu Y, Cai Y, Lu Y, Wang R, Yu L, Shi W, Kang H, Zhu Z, Huang N, Zhang X, Chen Z, Liu J, Yang Z, Ning Y, Li A. Genomic insight into balancing high yield, good quality, and blast resistance of japonica rice. Genome Biol 2021; 22:283. [PMID: 34615543 PMCID: PMC8493723 DOI: 10.1186/s13059-021-02488-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Balancing the yield, quality and resistance to disease is a daunting challenge in crop breeding due to the negative relationship among these traits. Large-scale genomic landscape analysis of germplasm resources is considered to be an efficient approach to dissect the genetic basis of the complex traits. Central China is one of the main regions where the japonica rice is produced. However, dozens of high-yield rice varieties in this region still exist with low quality or susceptibility to blast disease, severely limiting their application in rice production. RESULTS Here, we re-sequence 200 japonica rice varieties grown in central China over the past 30 years and analyze the genetic structure of these cultivars using 2.4 million polymorphic SNP markers. Genome-wide association mapping and selection scans indicate that strong selection for high-yield and taste quality associated with low-amylose content may have led to the loss of resistance to the rice blast fungus Magnaporthe oryzae. By extensive bioinformatic analyses of yield components, resistance to rice blast, and taste quality, we identify several superior alleles for these traits in the population. Based on this information, we successfully introduce excellent taste quality and blast-resistant alleles into the background of two high-yield cultivars and develop two elite lines, XY99 and JXY1, with excellent taste, high yield, and broad-spectrum of blast resistance. CONCLUSIONS This is the first large-scale genomic landscape analysis of japonica rice varieties grown in central China and we demonstrate a balancing of multiple agronomic traits by genomic-based strategy.
Collapse
Affiliation(s)
- Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Cunhong Pan
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Yuhong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Yunyu Wu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Yue Cai
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Yue Lu
- Key Laboratory of Plant Functional Genomics, Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Ling Yu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Wei Shi
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zhaobing Zhu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Niansheng Huang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Xiaoxiang Zhang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Zichun Chen
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Jianju Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics, Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| |
Collapse
|
36
|
Chen K, Łyskowski A, Jaremko Ł, Jaremko M. Genetic and Molecular Factors Determining Grain Weight in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:605799. [PMID: 34322138 PMCID: PMC8313227 DOI: 10.3389/fpls.2021.605799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 06/22/2021] [Indexed: 05/06/2023]
Abstract
Grain weight is one of the major factors determining single plant yield production of rice and other cereal crops. Research has begun to reveal the regulatory mechanisms underlying grain weight as well as grain size, highlighting the importance of this research for plant molecular biology. The developmental trait of grain weight is affected by multiple molecular and genetic aspects that lead to dynamic changes in cell division, expansion and differentiation. Additionally, several important biological pathways contribute to grain weight, such as ubiquitination, phytohormones, G-proteins, photosynthesis, epigenetic modifications and microRNAs. Our review integrates early and more recent findings, and provides future perspectives for how a more complete understanding of grain weight can optimize strategies for improving yield production. It is surprising that the acquired wealth of knowledge has not revealed more insights into the underlying molecular mechanisms. To accelerating molecular breeding of rice and other cereals is becoming an emergent and critical task for agronomists. Lastly, we highlighted the importance of leveraging gene editing technologies as well as structural studies for future rice breeding applications.
Collapse
Affiliation(s)
- Ke Chen
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Andrzej Łyskowski
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
37
|
Hu Z, Nie Z, Yan C, Huang H, Ma X, Wang Y, Ye N, Tuskan GA, Yang X, Yin H. Transcriptome and Degradome Profiling Reveals a Role of miR530 in the Circadian Regulation of Gene Expression in Kalanchoë marnieriana. Cells 2021; 10:1526. [PMID: 34204368 PMCID: PMC8233840 DOI: 10.3390/cells10061526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
Crassulacean acid metabolism (CAM) is an important photosynthetic pathway for plant adaptation to dry environments. CAM plants feature a coordinated interaction between mesophyll and epidermis functions that involves refined regulations of gene expression. Plant microRNAs (miRNAs) are crucial post-transcription regulators of gene expression, however, their roles underlying the CAM pathway remain poorly investigated. Here, we present a study characterizing the expression of miRNAs in an obligate CAM species Kalanchoë marnieriana. Through sequencing of transcriptome and degradome in mesophyll and epidermal tissues under the drought treatments, we identified differentially expressed miRNAs that were potentially involved in the regulation of CAM. In total, we obtained 84 miRNA genes, and eight of them were determined to be Kalanchoë-specific miRNAs. It is widely accepted that CAM pathway is regulated by circadian clock. We showed that miR530 was substantially downregulated in epidermal peels under drought conditions; miR530 targeted two tandem zinc knuckle/PLU3 domain encoding genes (TZPs) that were potentially involved in light signaling and circadian clock pathways. Our work suggests that the miR530-TZPs module might play a role of regulating CAM-related gene expression in Kalanchoë.
Collapse
Affiliation(s)
- Zhikang Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Ziyan Nie
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Chao Yan
- Experimental Center for Subtropical Forestry, Chinese Academy of Forestry, Fenyi 336600, China;
| | - Hu Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Xianjin Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Yupeng Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (Y.W.); (N.Y.)
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; (G.A.T.); (X.Y.)
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; (G.A.T.); (X.Y.)
- DOE-Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (Z.H.); (Z.N.); (H.H.); (X.M.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
38
|
Yang X, Zhao X, Dai Z, Ma F, Miao X, Shi Z. OsmiR396/growth regulating factor modulate rice grain size through direct regulation of embryo-specific miR408. PLANT PHYSIOLOGY 2021; 186:519-533. [PMID: 33620493 PMCID: PMC8154042 DOI: 10.1093/plphys/kiab084] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 05/23/2023]
Abstract
microRNAs (miRNAs) are promising targets for crop improvement of complex agricultural traits. Coordinated activity between/among different miRNAs may fine-tune specific developmental processes in diverse organisms. Grain size is a main factor determining rice (Oryza sativa L.) crop yield, but the network of miRNAs influencing this trait remains uncharacterized. Here we show that sequestering OsmiR396 through target mimicry (MIM396) can substantially increase grain size in several japonica and indica rice subspecies and in plants with excessive tillers and a high panicle density. Thus, OsmiR396 has a major role related to the regulation of rice grain size. The grain shape of Growth Regulating Factor8 (OsGRF8)-overexpressing transgenic plants was most similar to that of MIM396 plants, suggesting OsGRF8 is a major mediator of OsmiR396 in grain size regulation. A miRNA microarray analysis revealed changes to the expression of many miRNAs, including OsmiR408, in the MIM396 plants. Analyses of gene expression patterns and functions indicated OsmiR408 is an embryo-specific miRNA that positively regulates grain size. Silencing OsmiR408 expression (miR408KO) using CRISPR technology resulted in small grains. Moreover, we revealed the direct regulatory effects of OsGRF8 on OsMIR408 expression. A genetic analysis further showed that the large-grain phenotype of MIM396 plants could be complemented by miR408KO. Also, several hormone signaling pathways might be involved in the OsmiR396/GRF-meditated grain size regulation. Our findings suggest that genetic regulatory networks comprising various miRNAs, such as OsmiR396 and OsmiR408, may be crucial for controlling rice grain size. Furthermore, the OsmiR396/GRF module may be important for breeding new high-yielding rice varieties.
Collapse
Affiliation(s)
- Xiaofang Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoling Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhengyan Dai
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feilong Ma
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
39
|
Li H, Meng H, Sun X, Deng J, Shi T, Zhu L, Lv Q, Chen Q. Integrated microRNA and transcriptome profiling reveal key miRNA-mRNA interaction pairs associated with seed development in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2021; 21:132. [PMID: 33750309 PMCID: PMC7941931 DOI: 10.1186/s12870-021-02914-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.
Collapse
Affiliation(s)
- Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| | - Hengling Meng
- Key Laboratory of High-Quality Crops Cultivation and Safety Control of Yunnan Province, Honghe University, Honghe, 661100, China
| | - Xiaoqian Sun
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qiuyu Lv
- School of Big Data and Computer Science, Guizhou Normal University, Guiyang, 550025, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
40
|
Dhaka N, Sharma R. MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey! Crit Rev Biotechnol 2021; 41:594-608. [PMID: 33682533 DOI: 10.1080/07388551.2021.1873238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seed development is an intricate process with multiple levels of regulation. MicroRNAs (miRNAs) have emerged as one of the crucial components of molecular networks underlying agronomically important seed traits in diverse plant species. In fact, loss of function of the genes regulating miRNA biogenesis also exhibits defects in seed development. A total of 21 different miRNAs have experimentally been shown to regulate seed size, nutritional content, vigor, and shattering, and have been reviewed here. The mechanism details of the associated regulatory cascades mediated through transcriptional regulators, phytohormones, basic metabolic machinery, and secondary siRNAs are elaborated. Co-localization of miRNAs and their target regions with seed-related QTLs provides new avenues for engineering these traits using conventional breeding programs or biotechnological interventions. While global analysis of miRNAs using small RNA sequencing studies are expanding the repertoire of candidate miRNAs, recent revelations on their inheritance, transport, and mechanism of action would be instrumental in designing better strategies for optimizing agronomically relevant seed traits.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Haryana, India.,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
41
|
Chen J, Teotia S, Lan T, Tang G. MicroRNA Techniques: Valuable Tools for Agronomic Trait Analyses and Breeding in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:744357. [PMID: 34616418 PMCID: PMC8489592 DOI: 10.3389/fpls.2021.744357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/16/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression at the post-transcriptional level. Extensive studies have revealed that miRNAs have critical functions in plant growth, development, and stress responses and may provide valuable genetic resources for plant breeding research. We herein reviewed the development, mechanisms, and characteristics of miRNA techniques while highlighting widely used approaches, namely, the short tandem target mimic (STTM) approach. We described STTM-based advances in plant science, especially in the model crop rice, and introduced the CRISPR-based transgene-free crop breeding. Finally, we discussed the challenges and unique opportunities related to combining STTM and CRISPR technology for crop improvement and agriculture.
Collapse
Affiliation(s)
- Jiwei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida, India
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Ting Lan,
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI, United States
- Guiliang Tang,
| |
Collapse
|
42
|
Li Y, Wang LF, Bhutto SH, He XR, Yang XM, Zhou XH, Lin XY, Rajput AA, Li GB, Zhao JH, Zhou SX, Ji YP, Pu M, Wang H, Zhao ZX, Huang YY, Zhang JW, Qin P, Fan J, Wang WM. Blocking miR530 Improves Rice Resistance, Yield, and Maturity. FRONTIERS IN PLANT SCIENCE 2021; 12:729560. [PMID: 34527014 PMCID: PMC8435866 DOI: 10.3389/fpls.2021.729560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/27/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs fine-tune plant growth and resistance against multiple biotic and abiotic stresses. The trade-off between biomass and resistance can penalize crop yield. In this study, we have shown that rice miR530 regulates blast disease resistance, yield, and growth period. While the overexpression of miR530 results in compromised blast disease resistance, reduced grain yield, and late maturity, blocking miR530 using a target mimic (MIM530) leads to enhanced resistance, increased grain yield, and early maturity. Further study revealed that the accumulation of miR530 was decreased in both leaves and panicles along with the increase of age. Such expression patterns were accordant with the enhanced resistance from seedlings to adult plants, and the grain development from panicle formation to fully-filled seeds. Divergence analysis of miR530 precursor with upstream 1,000-bp promoter sequence in 11 rice species revealed that miR530 was diverse in Oryza sativa japonica and O. sativa indica group, which was consistent with the different accumulation of miR530 in japonica accessions and indica accessions. Altogether, our results indicate that miR530 coordinates rice resistance, yield, and maturity, thus providing a potential regulatory module for breeding programs aiming to improve yield and disease resistance.
Collapse
|
43
|
Yao W, Li Y, Xie W, Wang L. Features of sRNA biogenesis in rice revealed by genetic dissection of sRNA expression level. Comput Struct Biotechnol J 2020; 18:3207-3216. [PMID: 33209208 PMCID: PMC7649420 DOI: 10.1016/j.csbj.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 01/25/2023] Open
Abstract
We previously conducted a QTL analysis of small RNA (sRNA) abundance in flag leaves of an immortalized rice F2 (IMF2) population by aligning sRNA reads to the reference genome to quantify the expression levels of sRNAs. However, this approach missed about half of the sRNAs as only 50% of all sRNA reads could be uniquely aligned to the reference genome. Here, we quantified the expression levels of sRNAs and sRNA clusters without the use of a reference genome. QTL analysis of the expression levels of sRNAs and sRNA clusters confirmed the feasibility of this approach. sRNAs and sRNA clusters with identified QTLs were then aligned to the high-quality parental genomes of the IMF2 population to resolve the identified QTLs into local vs. distant regulation mode. We were able to detect new QTL hotspots by considering sRNAs aligned to multiple positions of the parental genomes and sRNAs unaligned to the parental genomes. We found that several local-QTL hotspots were caused by sequence variations in long inverted repeats, which probably function as precursors of sRNAs, between the two parental genomes. The expression levels of these sRNAs were significantly associated with the presence/absence of the long inverted repeats in the IMF2 population. Moreover, we found that the variations in whole-genome sRNA species composition among different IMF2s were attributed to sRNA biogenesis genes including OsDCL2b and OsRDR2. Our results highlight that genetic dissection of sRNA expression is a promising approach to disclose new components functioning in sRNA biogenesis and new mechanisms of sRNA biogenesis.
Collapse
Affiliation(s)
- Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China.,National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LSP. Altering Plant Architecture to Improve Performance and Resistance. TRENDS IN PLANT SCIENCE 2020; 25:1154-1170. [PMID: 32595089 DOI: 10.1016/j.tplants.2020.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
High-stress resistance and yield are major goals in crop cultivation, which can be addressed by modifying plant architecture. Significant progress has been made in recent years to understand how plant architecture is controlled under various growth conditions, recognizing the central role phytohormones play in response to environmental stresses. miRNAs, transcription factors, and other associated proteins regulate plant architecture, mainly via the modulation of hormone homeostasis and signaling. To generate crop plants of ideal architecture, we propose simultaneous editing of multiple genes involved in the regulatory networks associated with plant architecture as a feasible strategy. This strategy can help to address the need to increase grain yield and/or stress resistance under the pressures of the ever-increasing world population and climate change.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Luis Herrera-Estrella
- The Unidad de Genomica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico; Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, TX, USA
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
45
|
Killiny N, Nehela Y, Hijaz F, Gonzalez-Blanco P, Hajeri S, Gowda S. Knock-down of δ-aminolevulinic acid dehydratase via virus-induced gene silencing alters the microRNA biogenesis and causes stress-related reactions in citrus plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110622. [PMID: 32900450 DOI: 10.1016/j.plantsci.2020.110622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The δ-aminolevulinic acid (δ-ALA) is an intermediate in the biosynthetic pathway of tetrapyrroles. Tetrapyrroles play vital roles in many biological processes such as photosynthesis, respiration, and light-sensing. ALA-dehydratase (ALAD) combines two molecules of δ-ALA to form porphobilinogen. In citrus, the silencing of ALAD caused discrete yellow spots and necrosis in leaves and stems. Additionally, it caused rapid death in developing new shoots. Herein, we hypothesize that the accumulation of δ-ALA results in severe stress and reduced meristem development. For that reason, we investigated the dynamic changes in the expression profiles of 23 microRNA (miRNA) identified through small RNA sequencing, from CTV-tALAD plants in comparison with healthy C. macrophylla and C. macrophylla infiltrated with CTV-wt. Furthermore, we reported the effect of ALAD silencing on the total phenolics, H2O2, and reactive oxygen species (ROS) levels, to examine the possibilities of miRNAs involving the regulation of these pathways. Our results showed that the total phenolics content, H2O2, and O2- levels were increased in CTV-tALAD plants. Moreover, 63 conserved miRNA members belonging to 23 different miRNA families were differentially expressed in CTV-tALAD plants compared to controls. The identified miRNAs are implicated in auxin biosynthesis and signaling, axillary shoot meristem formation and leaf morphology, starch metabolism, and oxidative stress. Collectively, our findings suggested that ALAD silencing initiates stress on citrus plants. As a result, CTV-tALAD plants exhibit reduced metabolic rate, growth, and development in order to cope with the stress that resulted from the accumulation of δ-ALA. This cascade of events led to leaf, stem, and meristem necrosis and failure of new shoot development.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA.
| | - Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Faraj Hijaz
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Pedro Gonzalez-Blanco
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Subhas Hajeri
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| |
Collapse
|