1
|
Huang D, Ma J, Chen X, Wang H, Tan R, Jiao L, Chen J, Mao Y, Chen L. CsWRKY17 enhances Al accumulation by promoting pectin deesterification in tea plant. HORTICULTURE RESEARCH 2025; 12:uhaf085. [PMID: 40343349 PMCID: PMC12058306 DOI: 10.1093/hr/uhaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
The tea plant (Camellia sinensis) is a typical crop that accumulates aluminum (Al). Although the physiological mechanisms by which this occurs are well understood, their molecular mechanisms remain elusive. Here, an integrative approach combining quantitative trait locus (QTL) mapping of controlled hybridized populations and comparative transcriptomic analysis using samples treated with different Al concentrations was applied to identify candidate genes associated with Al accumulation in tea plants. Consequently, 41 candidate genes were selected using genome functional annotation of the qAl09 locus in the region of 35 256 594-57 378 817 bp on chromosome 7. Finally, a key gene, CsWRKY17, was identified as encoding a nucleus-localized transcription factor involved in regulating Al accumulation in tea plants, given the finding of a high correlation between its expression level and Al content in leaves. Overexpression of CsWRKY17 in Arabidopsis increased pectin deesterification, sensitivity to Al stress, and Al accumulation in leaves. Expression of the pectin methylesterase gene CsPME6 was found to be highly consistent with CsWRKY17 expression under various Al concentrations. In addition, experiments using a yeast monoclonal, electrophoresis mobility shift assay and dual-luciferase reporter (DLR) system confirmed that CsWRKY17 activated CsPME6 promoter activity. Antisense oligodeoxynucleotide silencing revealed a positive association between CsPME6 expression and Al accumulation in tea shoots. In conclusion, this study suggests that CsWRKY17 promoted the process of pectin deesterification by binding to the CsPME6 promoter, thereby enhancing Al enrichment in tea plants. Our findings lay the foundation for studying the precise mechanisms through which Al enriched in tea leaves.
Collapse
Affiliation(s)
- Danjuan Huang
- Key Laboratory of Tea Resources Comprehensive Utilization of Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, 10 Nanhu Avenue, Hongshan District, Wuhan 430064, China
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Xihu District, Hangzhou 310008, China
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Xihu District, Hangzhou 310008, China
| | - Xun Chen
- Key Laboratory of Tea Resources Comprehensive Utilization of Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, 10 Nanhu Avenue, Hongshan District, Wuhan 430064, China
| | - Hongjuan Wang
- Key Laboratory of Tea Resources Comprehensive Utilization of Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, 10 Nanhu Avenue, Hongshan District, Wuhan 430064, China
| | - Rongrong Tan
- Key Laboratory of Tea Resources Comprehensive Utilization of Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, 10 Nanhu Avenue, Hongshan District, Wuhan 430064, China
| | - Long Jiao
- Key Laboratory of Tea Resources Comprehensive Utilization of Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, 10 Nanhu Avenue, Hongshan District, Wuhan 430064, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Xihu District, Hangzhou 310008, China
| | - Yingxin Mao
- Key Laboratory of Tea Resources Comprehensive Utilization of Ministry of Agriculture and Rural Affairs, Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, 10 Nanhu Avenue, Hongshan District, Wuhan 430064, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Xihu District, Hangzhou 310008, China
- Yunnan Key Laboratory of Tea Germplasm Conservation and Utilization in the Lancang River Basin, West Yunnan University, 2 Xuefu Road, Linxiang District, Lincang 677000, China
| |
Collapse
|
2
|
Li W, Ma Q, Wang L, Liu L, Liu L, Zhang Z, Yan N. Metabolomic analysis of flavonoid diversity and biosynthetic pathways in whole grains. Food Res Int 2025; 211:116359. [PMID: 40356159 DOI: 10.1016/j.foodres.2025.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Whole grains represent key components of a healthy diet, helping to meet the nutritional needs of consumers and playing a crucial role in preventing chronic diseases. Whole grains are rich in various types of flavonoids with antioxidants and health-promoting properties at varying levels. This article defines and elucidates different whole grain types, analyses the advantages and disadvantages of commonly used metabolomics instruments, and systematically organises and classifies flavonoids detected in whole grains. Additionally, we mapped flavonoid biosynthetic pathways and discussed the usefulness of metabolomic techniques in elucidating the functions of key genes involved in flavonoid biosynthesis. The MYB-bHLH-WD40 (MBW) complex regulates flavonoid biosynthesis during seed development, regulating seed colour and flavonoid content. In addition, MBW complex expression is highly tissue-specific; it is preferentially expressed in purple or black tissues. This review describes flavonoid diversity and biosynthetic pathways in whole grains and provides a theoretical foundation for functional whole grain development and usage.
Collapse
Affiliation(s)
- Wanhong Li
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; East China Agri-Tech Center of Chinese Academy of Agricultural Sciences (ECS-CAAS), Suzhou 215331, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qing Ma
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; East China Agri-Tech Center of Chinese Academy of Agricultural Sciences (ECS-CAAS), Suzhou 215331, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixia Wang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; East China Agri-Tech Center of Chinese Academy of Agricultural Sciences (ECS-CAAS), Suzhou 215331, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska, Lincoln 68588, NE, USA
| | - Zhongfeng Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Ning Yan
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; East China Agri-Tech Center of Chinese Academy of Agricultural Sciences (ECS-CAAS), Suzhou 215331, China.
| |
Collapse
|
3
|
Shen N, Lu C, Wen Y, Deng B, Dong Y, Gong X, Liu Y, Liu C, Liu Z, Deng X, Han LB, Tang D, Li YB. The Magnaporthe oryzae effector MoCHT1 targets and stabilizes rice OsLLB to suppress jasmonic acid synthesis and enhance infection. J Genet Genomics 2025:S1673-8527(25)00148-1. [PMID: 40381821 DOI: 10.1016/j.jgg.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Rice blast disease caused by Magnaporthe oryzae (M. oryzae) poses a serious threat to rice security worldwide. This filamentous pathogen modulates rice defense responses by secreting effectors to facilitate infection. The phytohormone jasmonic acid (JA) plays crucial roles in the response to rice blast fungus, however, how M. oryzae disrupts JA-mediated resistance in rice is not well understood. In this study, we identify a new effector, a chloroplast-targeting protein (MoCHT1), from M. oryzae. Knocking out MoCHT1 decreases virulence, whereas heterologous expression of MoCHT1 in rice compromises disease resistance. MoCHT1 interacts with a rice LESION AND LAMINA BENDING (OsLLB) protein, a negative regulator of JA biosynthesis in the chloroplast. Loss-of-function of OsLLB leads to increased JA accumulation, thereby improving resistance to rice blast. The interaction between MoCHT1 and OsLLB results in the inhibition of OsLLB degradation, consequently reducing JA accumulation, thereby impairing JA content and decreasing plant disease resistance. Overall, this study reveals the molecular mechanism by which M. oryzae utilizes MoCHT1 to subvert rice JA signaling, broadening our understanding of how pathogens circumvent host immune responses by manipulating plant defense hormone biosynthesis.
Collapse
Affiliation(s)
- Ningning Shen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chuner Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanhong Wen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Boqian Deng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Dong
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaojun Gong
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuhao Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chengyu Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zixuan Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xianya Deng
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Li-Bo Han
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yuan-Bao Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Xie W, Li X, Yue X, Zuo S, Yuan M. OsVQ32- OsWRKY53 Module Regulates Rice Resistance to Bacterial Blight by Suppressing OsPrx30-Mediated ROS Scavenging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11559-11572. [PMID: 40312814 DOI: 10.1021/acs.jafc.4c12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
WRKY transcription factors play crucial roles in regulating plant immune responses. Our previous research showed that OsWRKY53 negatively affects rice resistance to bacterial blight by reducing the thickness of the cell wall. In this study, we identified a physical interaction between the OsWRKY53 and the OsVQ32, revealing that the OsWRKY53 functions as a downstream component of the OsMPK4-OsVQ32 cascade. OsWRKY53 can directly bind to the promoter of OsPrx30, a gene that negatively affects rice resistance to bacterial blight, thereby activating its expression. OsWRKY53-overexpressing plants exhibited a significant increase in peroxidase activity and a decrease in hydrogen peroxide content, whereas the opposite effects were observed in the oswrky53 mutants. Furthermore, we found that the interaction between OsVQ32 and OsWRKY53 forms a complex that represses OsPrx30 transcription by enhancing the DNA-binding activity of OsWRKY53. OsVQ32 phosphorylation by the OsMPK4 further enhanced this suppression. In conclusion, our findings suggest that the OsVQ32-OsWRKY53 complex regulates the expression of OsPrx30, modulating resistance to bacterial blight by suppressing the scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xinru Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuanyu Yue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Li Y, Lv Y, Wei X. The MYB transcription factor TaMYB30 enhances wheat resistance to sharp eyespot disease by scavenging ROS accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109648. [PMID: 39961251 DOI: 10.1016/j.plaphy.2025.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 03/11/2025]
Abstract
Sharp eyespot disease, caused primarily by the necrotrophic fungal pathogen Rhizoctonia cerealis, poses a significant threat to global wheat production. This study reports the functional characterization of an R2R3-MYB transcription factor, TaMYB30, which plays a crucial role in wheat's resistance to R. cerealis. The overexpression of TaMYB30 in transgenic wheat led to enhanced resistance against sharp eyespot disease, whereas its knockdown in wheat notably compromised resistance, indicating that TaMYB30 acts as a positive regulator in wheat's defense against R. cerealis infection. Comparative transcriptomic analysis between transgenic and wild-type wheat following R. cerealis infection revealed that differentially expressed genes were primarily involved in oxidative stress response, peroxidase activity, and glutathione metabolism. Further functional analysis demonstrated that TaMYB30 directly activates the expression of PRX and GST genes. Transgenic wheat with elevated TaMYB30 expression also exhibited significantly enhanced tolerance to oxidative stress compared to wild-type plants. Notably, overexpression of TaMYB30 mitigated hydrogen peroxide (H2O2) accumulation post-infection, suggesting that the resistance conferred by TaMYB30 is likely due to its role in scavenging reactive oxygen species (ROS) accumulation. This research uncovers a novel regulatory function for MYB transcription factors in wheat defense mechanisms and proposes TaMYB30 as a promising candidate for genetic improvement to enhance wheat's resistance to sharp eyespot and oxidative stress.
Collapse
Affiliation(s)
- Yuyan Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yubao Lv
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuening Wei
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Jahan T, Huda MN, Zhang K, He Y, Lai D, Dhami N, Quinet M, Ali MA, Kreft I, Woo SH, Georgiev MI, Fernie AR, Zhou M. Plant secondary metabolites against biotic stresses for sustainable crop protection. Biotechnol Adv 2025; 79:108520. [PMID: 39855404 DOI: 10.1016/j.biotechadv.2025.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/06/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Sustainable agriculture practices are indispensable for achieving a hunger-free world, especially as the global population continues to expand. Biotic stresses, such as pathogens, insects, and pests, severely threaten global food security and crop productivity. Traditional chemical pesticides, while effective, can lead to environmental degradation and increase pest resistance over time. Plant-derived natural products such as secondary metabolites like alkaloids, terpenoids, phenolics, and phytoalexins offer promising alternatives due to their ability to enhance plant immunity and inhibit pest activity. Recent advances in molecular biology and biotechnology have improved our understanding of how these natural compounds function at the cellular level, activating specific plant defense through complex biochemical pathways regulated by various transcription factors (TFs) such as MYB, WRKY, bHLH, bZIP, NAC, and AP2/ERF. Advancements in multi-omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, have significantly improved the understanding of the regulatory networks that govern PSM synthesis. These integrative approaches have led to the discovery of novel insights into plant responses to biotic stresses, identifying key regulatory genes and pathways involved in plant defense. Advanced technologies like CRISPR/Cas9-mediated gene editing allow precise manipulation of PSM pathways, further enhancing plant resistance. Understanding the complex interaction between PSMs, TFs, and biotic stress responses not only advances our knowledge of plant biology but also provides feasible strategies for developing crops with improved resistance to pests and diseases, contributing to sustainable agriculture and food security. This review emphasizes the crucial role of PSMs, their biosynthetic pathways, the regulatory influence of TFs, and their potential applications in enhancing plant defense and sustainability. It also highlights the astounding potential of multi-omics approaches to discover gene functions and the metabolic engineering of genes associated with secondary metabolite biosynthesis. Taken together, this review provides new insights into research opportunities for enhancing biotic stress tolerance in crops through utilizing plant secondary metabolites.
Collapse
Affiliation(s)
- Tanzim Jahan
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Md Nurul Huda
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqi He
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dili Lai
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Namraj Dhami
- School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Dhungepatan, Pokhara-30, Kaski, Nepal
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Md Arfan Ali
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000 Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- State Key Laboratory for Crop Gene Resources and Breeding/Key Laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Liao H, Fang Y, Yin J, He M, Wei Y, Zhang J, Yong S, Cha J, Song L, Zhu X, Chen X, Kováč J, Hou Q, Ma Z, Zhou X, Chen L, Yumoto E, Yang T, He Q, Li W, Deng Y, Li H, Li M, Qing H, Zou L, Bi Y, Liu J, Yang Y, Ye D, Tao Q, Wang L, Xiong Q, Lu X, Tang Y, Li T, Ma B, Qin P, Li Y, Wang W, Qian Y, Ďurkovič J, Miyamoto K, Chern M, Li S, Li W, Wang J, Chen X. Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing H 2O 2. Cell Res 2025; 35:205-219. [PMID: 39806170 PMCID: PMC11909244 DOI: 10.1038/s41422-024-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
Hydrogen peroxide (H2O2) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense H2O2 in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses H2O2 to confer resistance to multiple diseases caused by fungi or bacteria. Upon pathogen attack, rice plants increase the production of H2O2, which directly oxidizes bHLH25 at methionine 256 in the nucleus. Oxidized bHLH25 represses miR397b expression to activate lignin biosynthesis for plant cell wall reinforcement, preventing pathogens from penetrating plant cells. Lignin biosynthesis consumes H2O2 causing accumulation of non-oxidized bHLH25. Non-oxidized bHLH25 switches to promote the expression of Copalyl Diphosphate Synthase 2 (CPS2), which increases phytoalexin biosynthesis to inhibit expansion of pathogens that escape into plants. This oxidization/non-oxidation status change of bHLH25 allows plants to maintain H2O2, lignin and phytoalexin at optimized levels to effectively fight against pathogens and prevents these three molecules from over-accumulation that harms plants. Thus, our discovery reveals a novel mechanism by which a single protein promotes two independent defense pathways against pathogens. Importantly, the bHLH25 orthologues from available plant genomes all contain a conserved M256-like methionine suggesting the broad existence of this mechanism in the plant kingdom. Moreover, this Met-oxidation mechanism may also be employed by other eukaryotic transcription factors to sense H2O2 to change functions.
Collapse
Affiliation(s)
- Haicheng Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingjie Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuang Yong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiankui Cha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xixi Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ján Kováč
- Department of Phytology, Technical University in Zvolen, Zvolen, Slovakia
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhaotang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaogang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Tian Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qi He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yixin Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoxuan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hai Qing
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Daihua Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qi Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangwen Qian
- WIMI Biotechnology Company Limited, Sanya, Hainan, China
| | - Jaroslav Ďurkovič
- Department of Phytology, Technical University in Zvolen, Zvolen, Slovakia
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Barminga D, Mutinda S, Mobegi FM, Kibet W, Hale B, Anami S, Wijeratne A, Bellis ES, Runo S. Cell Wall Dynamics in the Parasitic Plant ( Striga) and Rice Pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:285-296. [PMID: 39636280 DOI: 10.1094/mpmi-06-24-0064-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the plant-plant pathosystem of rice (Oryza sativa) and the parasitic plant Striga hermonthica, cell walls from either plant are important defensive and offensive structures. Here, we reveal the cell wall dynamics in both Striga and rice using simultaneous RNA sequencing. We used weighted gene co-expression network analysis to home in on cell wall modification processes occurring in interactions with a resistant rice cultivar (Nipponbare) compared with a susceptible one (IAC 165). Likewise, we compared the cell wall dynamics in Striga infecting resistant and susceptible rice. Our study revealed an intense battlement at the Striga-rice cell walls involving both parasite (offense) and host (defense) factors, the outcome of which makes the difference between successful or failed parasitism. Striga activates genes encoding cell wall-degrading enzymes to gain access to the host, expansins to allow for cell elongation, and pectin methyl esterase inhibitors for rigidity during infection. In the susceptible host, immune response processes are not induced, and Striga-derived cell wall-degrading enzymes easily breach the host cell wall, resulting in successful parasitism. In contrast, the resistant host invokes immune responses modulated by phytohormones to fortify the cell wall through polysaccharides and lignin deposition. Through these processes, the cell wall of the resistant host successfully obstructs parasite entry. We discuss the implications of these findings in the context of practical agriculture in which cell wall modification can be used to manage parasitic plants. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Damaris Barminga
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Sylvia Mutinda
- Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Fredrick M Mobegi
- Department of Clinical Immunology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital Network, Murdoch, WA, Australia
- Department of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Willy Kibet
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Brett Hale
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, U.S.A
| | - Sylvester Anami
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Asela Wijeratne
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, U.S.A
| | - Emily S Bellis
- Department of Computer Science, Arkansas State University, Jonesboro, AR, U.S.A
| | - Steven Runo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
9
|
Li Y, Zhang D, Wang X, Bai F, Li R, Zhou R, Wu S, Fang Z, Liu W, Huang L, Liu P. LACCASE35 enhances lignification and resistance against Pseudomonas syringae pv. actinidiae infection in kiwifruit. PLANT PHYSIOLOGY 2025; 197:kiaf040. [PMID: 39854627 DOI: 10.1093/plphys/kiaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production. Lignin deposition in infected cells serves as a defense mechanism, effectively suppressing pathogen growth. However, the underlying process remains unclear. In this study, we determined that Psa infection leads to a significant increase in S-lignin accumulation in kiwifruit. The S/G ratio in lignin was higher in a Psa-resistant cultivar than in a Psa-sensitive cultivar. Furthermore, kiwifruit laccase 35 (AcLac35), encoding an enzyme in the lignin biosynthesis pathway with characteristic laccase activity, showed tissue-specific expression in plants and was upregulated following infection by Psa. Overexpressing AcLac35 in kiwifruit leaves resulted in greater lignin content than in wild-type leaves, leading to the formation of thicker cell walls, and also activated plant-pathogen interactions and MAPK pathways, thereby enhancing resistance against Psa infection. Yeast 1-hybrid assays, dual-LUC reporter assays, electrophoretic mobility shift assays, and transient injection experiments indicated that SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 9 (AcSPL9) can bind to the AcLac35 promoter, thereby positively regulating its expression. Moreover, overexpression of AcSPL9 increased lignin accumulation in kiwifruit leaves, enhancing resistance to Psa, while virus-induced gene silencing of AcSPL9 expression reduced this resistance. Our findings reveal the function of AsSPL9-AcLac35 in kiwifruit, providing insight into enhancing resistance against Psa in kiwifruit.
Collapse
Affiliation(s)
- Yawei Li
- Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Dongle Zhang
- Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Xiaojie Wang
- Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, P.R. China
- School of Life Science, Anhui University, Hefei 230039, P.R. China
| | - Fuxi Bai
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan 430064, P.R. China
| | - Rui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, P.R. China
| | - Rongrong Zhou
- School of Life Science, Anhui University, Hefei 230039, P.R. China
| | - Shunyuan Wu
- Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Zemin Fang
- School of Life Science, Anhui University, Hefei 230039, P.R. China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, P.R. China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, P.R. China
| | - Pu Liu
- Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, P.R. China
| |
Collapse
|
10
|
Yan Q, Chen W, Zhang H, Liu P, Zhang Y. PbrMYB14 Enhances Pear Resistance to Alternaria alternata by Regulating Genes in Lignin and Salicylic Acid Biosynthesis Pathways. Int J Mol Sci 2025; 26:972. [PMID: 39940741 PMCID: PMC11817059 DOI: 10.3390/ijms26030972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Pear is an important originate fruiter in China, ranking first in the world in terms of cultivation area and yield. However, it is susceptible to infection by Alternaria alternata (A. alternata), resulting in a reduction of approximately 30% in yield. While both lignin and salicylic acid (SA) are recognized as key components of plant immune responses, the molecular mechanisms connecting these pathways remain poorly understood. Here, we have discovered a nuclear localization transcription activator PbrMYB14 in pears, whose expression can be induced by exogenous SA and A. alternata. Overexpression of PbrMYB14 significantly increased lignin and SA content in pears, making them more resistant to A. alternata, and the relative lesion area decreased by 68.95% compared with WT plants. By analyzing the transcriptome of PbrMYB14-overexpressing plants, the lignin synthesis gene Pbr4CL1 and SA synthesis gene PbrPAL1 regulated by PbrMYB14 were screened and identified. Through yeast one-hybrid (Y1H) and a Dual-Luciferase assay (LUC), it was confirmed that PbrMYB14 positively regulates the expression of Pbr4CL1 and PbrPAL1 genes. Our results suggest that PbrMYB14 links lignin resistance and SA resistance in pears, providing valuable information for future genetic breeding research on pear disease resistance.
Collapse
Affiliation(s)
- Qi Yan
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (Q.Y.); (H.Z.); (P.L.)
| | - Weiyi Chen
- College of Agronomy, Hebei Agricultural University, Baoding 071000, China;
| | - Hui Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (Q.Y.); (H.Z.); (P.L.)
| | - Peng Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (Q.Y.); (H.Z.); (P.L.)
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (Q.Y.); (H.Z.); (P.L.)
| |
Collapse
|
11
|
Wang H, Wang ZX, Tian HY, Zeng YL, Xue H, Mao WT, Zhang LY, Chen JN, Lu X, Zhu Y, Li GB, Zhao ZX, Zhang JW, Huang YY, Fan J, Xu PZ, Chen XQ, Li WT, Wu XJ, Wang WM, Li Y. The miR172a-SNB module orchestrates both induced and adult-plant resistance to multiple diseases via MYB30-mediated lignin accumulation in rice. MOLECULAR PLANT 2025; 18:59-75. [PMID: 39616439 DOI: 10.1016/j.molp.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Plants mount induced resistance and adult-plant resistance against different pathogens throughout the whole growth period. Rice production faces threats from multiple major diseases, including rice blast, sheath blight, and bacterial leaf blight. Here, we report that the miR172a-SNB-MYB30 module regulates both induced and adult-plant resistance to these three major diseases via lignification in rice. Mechanistically, pathogen infections induce the expression of miR172a, which downregulates the transcription factor SNB to release its suppression of MYB30, leading to an increase in lignin biosynthesis and disease resistance throughout the whole growth period. Moreover, expression levels of miR172a and MYB30 gradually increase and are consistently correlated with lignin contents and disease resistance during rice development, reaching a peak at full maturity, whereas SNB RNA levels are negatively correlated with lignin contents and disease resistance, indicating the involvement of the miR172a-SNB-MYB30 module in adult-plant resistance. The functional domain of SNB protein and its binding sites in the MYB30 promoter are highly conserved among more than 4000 rice accessions, while abnormal expression of miR172a, SNB, or MYB30 compromises yield traits, suggesting artificial selection of the miR172a-SNB-MYB30 module during rice domestication. Taken together, these results reveal a novel role for a conserved miRNA-regulated module that contributes significantly to induced and adult-plant resistance against multiple pathogens by increasing lignin accumulation, deepening our understanding of broad-spectrum resistance and adult-plant resistance.
Collapse
Affiliation(s)
- He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhe-Xu Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong-Yuan Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Long Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Xue
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Wan-Ting Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu-Yue Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Ni Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei-Zhou Xu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Qiong Chen
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wei-Tao Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Xian-Jun Wu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Chengdu, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
12
|
Wen D, Yang N, Zhang W, Wang X, Zhang J, Nie W, Song H, Sun S, Zhang H, Han Y, Qi M. GATA3-COMT1-Melatonin as Upstream Signaling of ABA Participated in Se-Enhanced Cold Tolerance by Regulate Iron Uptake and Distribution in Cucumis sativus L. J Pineal Res 2025; 77:e70028. [PMID: 39777792 DOI: 10.1111/jpi.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
Selenium has the function of bio-stimulating hormone. However, the underlying physiological and molecular mechanisms of melatonin and abscisic acid as secondary messengers in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings. The results showed that the content of endogenesis abscisic acid significantly changed with exogenous application of selenite under cold stress. Interestingly, we found that the content of iron significantly changed in this process. Iron uptake and distribution may be the important reason of selenium alleviates cold injury of cucumber seedlings. Whole genes transcriptome was used for screening key genes on leaf and root of cucumber seedlings. To determine the interrelation between abscisic acid and melatonin in selenite alleviating cold stress, abscisic acid inhibitor fluridone and melatonin synthesis inhibitor p-chlorophenylalanine were used for in-depth study. The results indicate that melatonin as upstream signal of ABA involved in selenium enhanced cucumber cold tolerance. The results of yeast single hybridization, EMSA, LUC, and overexpression transgenic showed that the transcription factor CsGATA3 regulates the expression of CsCOMT1 in vitro and in vivo and affects melatonin content. This study provides a theoretical basis for cucumber cultivation and breeding.
Collapse
Affiliation(s)
- Dan Wen
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ning Yang
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenjun Zhang
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiao Wang
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jibo Zhang
- Shandong Provincial Climate Center, Jinan, Shandong, China
| | - Wenjing Nie
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hualu Song
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shasha Sun
- Weifang Academy of Agricultural Sciences, Weifang, Shandong, China
| | - Haijuan Zhang
- Zibo Digital Agriculture and Rural Development Center, Zibo, Shandong, China
| | - Yujuan Han
- State Key Laboratory of Nutrient Use and Management, Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Mingfang Qi
- Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Mmbando GS. The link between changing in host carbon allocation and resistance to Magnaporthe oryzae: a possible tactic for mitigating the rice blast fungus. PLANT SIGNALING & BEHAVIOR 2024; 19:2326870. [PMID: 38465846 PMCID: PMC10936674 DOI: 10.1080/15592324.2024.2326870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
One of the most destructive diseases affecting rice is rice blast, which is brought on by the rice blast fungus Magnaporthe oryzae. The preventive measures, however, are not well established. To effectively reduce the negative effects of rice blasts on crop yields, it is imperative to comprehend the dynamic interactions between pathogen resistance and patterns of host carbon allocation. This review explores the relationship between variations in carbon allocation and rice plants' ability to withstand the damaging effects of M. oryzae. The review highlights potential strategies for altering host carbon allocation including transgenic, selective breeding, crop rotation, and nutrient management practices as a promising avenue for enhancing rice blast resistance. This study advances our knowledge of the interaction between plants' carbon allocation and M. oryzae resistance and provides stakeholders and farmers with practical guidance on mitigating the adverse effects of the rice blast globally. This information may be used in the future to create varieties that are resistant to M. oryzae.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
14
|
Sun B, Zhong Y, Tao Z, Zhu L, Miao X, Shi Z, Li H. OsMYB1 antagonizes OsSPL14 to mediate rice resistance to brown planthopper and Xanthomonas oryzae pv. oryzae. PLANT CELL REPORTS 2024; 44:13. [PMID: 39724382 DOI: 10.1007/s00299-024-03411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors. Xanthomonas oryzae pv. oryzae (Xoo) is a pathogen that severely deteriorates rice yield and quality, and brown planthopper (BPH; Nilaparvata lugens) is a rice specific insect pest with the damage topping other pathogens. Although genes for respective resistance to BPH and Xoo have been widely reported, few studies pay attention to simultaneous resistance to both. In this study, we identified a MYB transcription factor, OsMYB1, which exhibited diverse transcriptional regulatory capabilities and a negative regulatory role in resistance to both BPH and Xoo. Biochemical and genetic analysis proved OsMYB1 to be a TF that could interact with OsSPL14, a positive regulator of rice resistance to Xoo. OsSPL14 mutants showed increased sensitivity to BPH, suggesting that OsSPL14 is contrary to OsMYB1 in regulating rice resistance to these two biotic stresses. Consistently, OsMYB1 and OsSPL14 displayed opposite functions in regulating defense-related genes. OsMYB1 can form transcription regulation complexes with repressor OsJAZs instead of co-repressor TOPLESS to possibly realize its transcriptional repression function. Taken together, we concluded that two interacting TFs in rice, OsMYB1 and OsSPL14, played antagonistic roles in regulating resistance to BPH and Xoo.
Collapse
Affiliation(s)
- Bo Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuan Zhong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihuan Tao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuexia Miao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenying Shi
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Haichao Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
15
|
Fu Q, Li H, Wang B, Chen W, Wu D, Gao C, Yu F. The RALF1 peptide-FERONIA complex phosphorylates the endosomal sorting protein FREE1 to attenuate abscisic acid signaling. PLANT PHYSIOLOGY 2024; 197:kiae625. [PMID: 39577463 DOI: 10.1093/plphys/kiae625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 11/24/2024]
Abstract
The receptor-like kinase FERONIA (FER), together with its ligand rapid alkalinization factor 1 (RALF1) peptide, plays a crucial role in regulating stress responses, including its involvement in modulating abscisic acid (ABA) signaling. FER has been shown to activate ABA insensitive 2 in the cytoplasm, leading to the suppression of ABA signaling. However, its regulation of nucleus events in the ABA response remains unclear. FREE1, identified as a plant-specific component of the endosomal sorting complex required for transport in eukaryotes, serves as an important negative regulator in ABA signaling. In this study, we elucidate that upon RALF1 treatment, FER phosphorylates FREE1, promoting the accumulation of FREE1 protein in the nucleus in Arabidopsis (Arabidopsis thaliana). Consequently, FREE1 suppresses ABA sensitivity by inhibiting the expression of ABA-response genes. Mutating the 6 identified phosphorylation sites on FREE1, mediated by FER, to nonphosphorylable residues results in reduced nucleus localization of FREE1 and increased hypersensitivity to ABA. Our data also show that these 6 phosphorylation sites are likely involved in regulating plant survival under salt stress. Collectively, our study not only unveils an additional function of FER in attenuating ABA signaling in the nucleus but also provides a possible insight into the role of the RALF1-FER-FREE1 module in coordinating plant growth and salt stress tolerance.
Collapse
Affiliation(s)
- Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bingqian Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Weijun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
16
|
Zhang Y, Chen G, Zang Y, Bhavani S, Bai B, Liu W, Zhao M, Cheng Y, Li S, Chen W, Yan W, Mao H, Su H, Singh RP, Lagudah E, Li Q, Lan C. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat. PLANT COMMUNICATIONS 2024; 5:101077. [PMID: 39233441 PMCID: PMC11671766 DOI: 10.1016/j.xplc.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The widely recognized pleiotropic adult plant resistance gene Lr34 encodes an ATP-binding cassette transporter and plays an important role in breeding wheat for enhanced resistance to multiple fungal diseases. Despite its significance, the mechanisms underlying Lr34-mediated pathogen defense remain largely unknown. Our study demonstrates that wheat lines carrying the Lr34res allele exhibit thicker cell walls and enhanced resistance to fungal penetration compared to those without Lr34res. Transcriptome and metabolite profiling revealed that the lignin biosynthetic pathway is suppressed in lr34 mutants, indicating a disruption in cell wall lignification. Additionally, we discovered that lr34 mutant lines are hypersensitive to sinapyl alcohol, a major monolignol crucial for cell wall lignification. Yeast accumulation and efflux assays confirmed that the LR34 protein functions as a sinapyl alcohol transporter. Both genetic and virus-induced gene silencing experiments demonstrated that the disease resistance conferred by Lr34 can be enhanced by incorporating the TaCOMT-3B gene, which is responsible for the biosynthesis of sinapyl alcohol. Collectively, our findings provide novel insights into the role of Lr34 in disease resistance through mediating sinapyl alcohol transport and cell wall deposition, and highlight the synergistic effect of TaCOMT-3B and Lr34 against multiple fungal pathogens by mediating cell wall lignification in adult wheat plants.
Collapse
Affiliation(s)
- Yichen Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Guang Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yiming Zang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou City, Gansu Province 730070, China
| | - Wei Liu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Miaomiao Zhao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yikeng Cheng
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Shunda Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wei Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wenhao Yan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Hailiang Mao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Handong Su
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Ravi P Singh
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China; International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT 2601, Australia
| | - Qiang Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| | - Caixia Lan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| |
Collapse
|
17
|
Liu H, Zhang J, Wang J, Fan Z, Qu X, Yan M, Zhang C, Yang K, Zou J, Le J. The rice R2R3 MYB transcription factor FOUR LIPS connects brassinosteroid signaling to lignin deposition and leaf angle. THE PLANT CELL 2024; 36:4768-4785. [PMID: 39259275 PMCID: PMC11530771 DOI: 10.1093/plcell/koae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
Leaf angle is an important agronomic trait for crop architecture and yield. In rice (Oryza sativa), the lamina joint is a unique structure connecting the leaf blade and sheath that determines leaf angle. Brassinosteroid (BR) signaling involving GLYCOGEN SYNTHASE KINASE-3 (GSK3)/SHAGGY-like kinases and BRASSINAZOLE-RESISTANT1 (BZR1) has a central role in regulating leaf angle in rice. In this study, we identified the atypical R2R3-MYB transcription factor FOUR LIPS (OsFLP), the rice homolog of Arabidopsis (Arabidopsis thaliana) AtFLP, as a participant in BR-regulated leaf angle formation. The spatiotemporal specificity of OsFLP expression in the lamina joint was closely associated with lignin deposition in vascular bundles and sclerenchyma cells. OsFLP mutation caused loose plant architecture with droopy flag leaves and hypersensitivity to BRs. OsBZR1 directly targeted OsFLP, and OsFLP transduced BR signals to lignin deposition in the lamina joint. Moreover, OsFLP promoted the transcription of the phenylalanine ammonia-lyase family genes OsPAL4 and OsPAL6. Intriguingly, OsFLP feedback regulated OsGSK1 transcription and OsBZR1 phosphorylation status. In addition, an Ala-to-Thr substitution within the OsFLP R3 helix-turn-helix domain, an equivalent mutation to that in Osflp-1, affected the DNA-binding ability and transcriptional activity of OsFLP. Our results reveal that OsFLP functions with OsGSK1 and OsBZR1 in BR signaling to maintain optimal leaf angle by modulating the lignin deposition in mechanical tissues of the lamina joint.
Collapse
Affiliation(s)
- Huichao Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxue Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 10093, China
| |
Collapse
|
18
|
Zhou R, Wang S, Li J, Yang M, Liu C, Qi Z, Xu C, Wu X, Chen Q, Zhao Y. Transcriptional and Metabolomic Analyses Reveal That GmESR1 Increases Soybean Seed Protein Content Through the Phenylpropanoid Biosynthesis Pathway. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39483062 DOI: 10.1111/pce.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Soybeans are an economically vital food crop, which is employed as a key source of oil and plant protein globally. This study identified an EREBP-type transcription factor, GmESR1 (Enhance of Shot Regeneration). GmESR1 overexpression has been observed to significantly increase seed protein content. Furthermore, the molecular mechanism by which GmESR1 affects protein accumulation through transcriptome and metabolomics was also identified. The transcriptomic and metabolomic analyses identified 95 differentially expressed genes and 83 differentially abundant metabolites during the seed mid-maturity stage. Co-analysis strategies revealed that GmESR1 overexpression inhibited the biosynthesis of lignin, cellulose, hemicellulose, and pectin via the phenylpropane biosynthetic pathway, thereby redistributing biomass within cells. The key genes and metabolites impacted by this biochemical process included Gm4CL-like, GmCCR, Syringin, and Coniferin. Moreover, it was also found that GmESR1 binds to (AATATTATCATTAAGTACGGAC) during seed development and inhibits the transcription of GmCCR. GmESR1 overexpression also enhanced sucrose transporter gene expression during seed development and increased the sucrose transport rate. These results offer new insight into the molecular mechanisms whereby GmESR1 increases protein levels within soybean seeds, guiding future molecular-assisted breeding efforts aimed at establishing high-protein soybean varieties.
Collapse
Affiliation(s)
- Runnan Zhou
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Sihui Wang
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Jianwei Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Chang Xu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Xiaoxia Wu
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Ying Zhao
- National Key Laboratory of Smart Farm Technologies and Systems, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
19
|
Cheaib M, Nguyen HT, Couderc M, Serret J, Soriano A, Larmande P, Richter C, Junker BH, Raorane ML, Petitot AS, Champion A. Transcriptomic and metabolomic reveal OsCOI2 as the jasmonate-receptor master switch in rice root. PLoS One 2024; 19:e0311136. [PMID: 39466751 PMCID: PMC11516173 DOI: 10.1371/journal.pone.0311136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
Jasmonate is an essential phytohormone involved in plant development and stress responses. Its perception occurs through the CORONATINE INSENSITIVE (COI) nuclear receptor allowing to target the Jasmonate-ZIM domain (JAZ) repressors for degradation by the 26S proteasome. Consequently, repressed transcription factors are released and expression of jasmonate responsive genes is induced. In rice, three OsCOI genes have been identified, OsCOI1a and the closely related OsCOI1b homolog, and OsCOI2. While the roles of OsCOI1a and OsCOI1b in plant defense and leaf senescence are well-established, the significance of OsCOI2 in plant development and jasmonate signaling has only emerged recently. To unravel the role of OsCOI2 in regulating jasmonate signaling, we examined the transcriptomic and metabolomic responses of jasmonate-treated rice lines mutated in both the OsCOI1a and OsCOI1b genes or OsCOI2. RNA-seq data highlight OsCOI2 as the primary driver of the extensive transcriptional reprogramming observed after a jasmonate challenge in rice roots. A series of transcription factors exhibiting an OsCOI2-dependent expression were identified, including those involved in root development or stress responses. OsCOI2-dependent expression was also observed for genes involved in specific processes or pathways such as cell-growth and secondary metabolite biosynthesis (phenylpropanoids and diterpene phytoalexins). Although functional redundancy exists between OsCOI1a/b and OsCOI2 in regulating some genes, oscoi2 plants generally exhibit a weaker response compared to oscoi1ab plants. Metabolic data revealed a shift from the primary metabolism to the secondary metabolism primarily governed by OsCOI2. Additionally, differential accumulation of oryzalexins was also observed in oscoi1ab and oscoi2 lines. These findings underscore the pivotal role of OsCOI2 in jasmonate signaling and suggest its involvement in the control of the growth-defense trade-off in rice.
Collapse
Affiliation(s)
| | | | - Marie Couderc
- DIADE, IRD, University Montpellier, Montpellier, France
| | - Julien Serret
- DIADE, IRD, University Montpellier, Montpellier, France
| | - Alexandre Soriano
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, University Montpellier, Montpellier, France
| | | | - Chris Richter
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Björn H. Junker
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Manish L. Raorane
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
20
|
Cui Q, Li X, Hu S, Yang D, Abozeid A, Yang Z, Jiang J, Ren Z, Li D, Li D, Zheng L, Qin A. The Critical Role of Phenylpropanoid Biosynthesis Pathway in Lily Resistance Against Gray Mold. Int J Mol Sci 2024; 25:11068. [PMID: 39456848 PMCID: PMC11507431 DOI: 10.3390/ijms252011068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Gray mold caused by Botrytis elliptica is one of the most determinative factors of lily growth and has become a major threat to lily productivity. However, the nature of the lily B. elliptica interaction remains largely unknown. Here, comparative transcriptomic and metabolomic were used to investigate the defense responses of resistant ('Sorbonne') and susceptible ('Tresor') lily cultivars to B. elliptica infection at 24 hpi. In total, 1326 metabolites were identified in 'Sorbonne' and 'Tresor' after infection, including a large number of phenylpropanoids. Specifically, the accumulation of four phenylpropanes, including eriodictyol, hesperetin, ferulic acid, and sinapyl alcohol, was significantly upregulated in the B. elliptica-infected 'Sorbonne' compared with the infected 'Tresor', and these phenylpropanes could significantly inhibit B. elliptica growth. At the transcript level, higher expression levels of F3'M, COMT, and CAD led to a higher content of resistance-related phenylpropanes (eriodictyol, ferulic acid, and sinapyl alcohol) in 'Sorbonne' following B. elliptica infection. It can be assumed that these phenylpropanes cause the resistance difference between 'Sorbonne' and 'Tresor', and could be the potential marker metabolites for gray mold resistance in the lily. Further transcriptional regulatory network analysis suggested that members of the AP2/ERF, WRKY, Trihelix, and MADS-M-type families positively regulated the biosynthesis of resistance-related phenylpropanes. Additionally, the expression patterns of genes involved in phenylpropanoid biosynthesis were confirmed using qRT-PCR. Therefore, we speculate that the degree of gray mold resistance in the lily is closely related to the contents of phenylpropanes and the transcript levels of the genes in the phenylpropanoid biosynthesis pathway. Our results not only improve our understanding of the lily's resistance mechanisms against B. elliptica, but also facilitate the genetic improvement of lily cultivars with gray mold resistance.
Collapse
Affiliation(s)
- Qi Cui
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Xinran Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Shanshan Hu
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Ann Abozeid
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Zongqi Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Junhao Jiang
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Ziming Ren
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Danqing Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Dongze Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Liqun Zheng
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Anhua Qin
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| |
Collapse
|
21
|
Kou Y, Shi H, Qiu J, Tao Z, Wang W. Effectors and environment modulating rice blast disease: from understanding to effective control. Trends Microbiol 2024; 32:1007-1020. [PMID: 38580607 DOI: 10.1016/j.tim.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Rice blast is a highly destructive crop disease that requires the interplay of three essential factors: the virulent blast fungus, the susceptible rice plant, and favorable environmental conditions. Although previous studies have focused mainly on the pathogen and rice, recent research has shed light on the molecular mechanisms by which the blast fungus and environmental conditions regulate host resistance and contribute to blast disease outbreaks. This review summarizes significant achievements in understanding the sophisticated modulation of blast resistance by Magnaporthe oryzae effectors and the dual regulatory mechanisms by which environmental conditions influence rice resistance and virulence of the blast fungus. Furthermore, it emphasizes potential strategies for developing blast-resistant rice varieties to effectively control blast disease.
Collapse
Affiliation(s)
- Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
22
|
Lu X, He Y, Guo JQ, Wang Y, Yan Q, Xiong Q, Shi H, Hou Q, Yin J, An YB, Chen YD, Yang CS, Mao Y, Zhu X, Tang Y, Liu J, Bi Y, Song L, Wang L, Yang Y, He M, Li W, Chen X, Wang J. Dynamics of epitranscriptomes uncover translational reprogramming directed by ac4C in rice during pathogen infection. NATURE PLANTS 2024; 10:1548-1561. [PMID: 39317771 DOI: 10.1038/s41477-024-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Messenger RNA modifications play pivotal roles in RNA biology, but comprehensive landscape changes of epitranscriptomes remain largely unknown in plant immune response. Here we report translational reprogramming directed by ac4C mRNA modification upon pathogen challenge. We first investigate the dynamics of translatomes and epitranscriptomes and uncover that the change in ac4C at single-base resolution promotes translational reprogramming upon Magnaporthe oryzae infection. Then by characterizing the specific distributions of m1A, 2'O-Nm, ac4C, m5C, m6A and m7G, we find that ac4Cs, unlike other modifications, are enriched at the 3rd position of codons, which stabilizes the Watson-Crick base pairing. Importantly, we demonstrate that upon pathogen infection, the increased expression of the ac4C writer OsNAT10/OsACYR (N-ACETYLTRANSFERASE FOR CYTIDINE IN RNA) promotes translation to facilitate rapid activation of immune responses, including the enhancement of jasmonic acid biosynthesis. Our study provides an atlas of mRNA modifications and insights into ac4C function in plant immunity.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- MOE Key Laboratory of Agricultural Bioinformatics, Sichuan Agricultural University, Chengdu, China.
| | - Yao He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jin-Qiao Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qian Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi-Bang An
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi-Di Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Cheng-Shuang Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ye Mao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
23
|
Shad MA, Li X, Rao MJ, Luo Z, Li X, Ali A, Wang L. Exploring Lignin Biosynthesis Genes in Rice: Evolution, Function, and Expression. Int J Mol Sci 2024; 25:10001. [PMID: 39337489 PMCID: PMC11432410 DOI: 10.3390/ijms251810001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Lignin is nature's second most abundant vascular plant biopolymer, playing significant roles in mechanical support, water transport, and stress responses. This study identified 90 lignin biosynthesis genes in rice based on phylogeny and motif constitution, and they belong to PAL, C4H, 4CL, HCT, C3H, CCoAOMT, CCR, F5H, COMT, and CAD families. Duplication events contributed largely to the expansion of these gene families, such as PAL, CCoAOMT, CCR, and CAD families, mainly attributed to tandem and segmental duplication. Microarray data of 33 tissue samples covering the entire life cycle of rice suggested fairly high PAL, HCT, C3H, CCoAOMT, CCR, COMT, and CAD gene expressions and rather variable C4H, 4CL, and F5H expressions. Some members of lignin-related genes (OsCCRL11, OsHCT1/2/5, OsCCoAOMT1/3/5, OsCOMT, OsC3H, OsCAD2, and OsPAL1/6) were expressed in all tissues examined. The expression patterns of lignin-related genes can be divided into two major groups with eight subgroups, each showing a distinct co-expression in tissues representing typically primary and secondary cell wall constitutions. Some lignin-related genes were strongly co-expressed in tissues typical of secondary cell walls. Combined HPLC analysis showed increased lignin monomer (H, G, and S) contents from young to old growth stages in five genotypes. Based on 90 genes' microarray data, 27 genes were selected for qRT-PCR gene expression analysis. Four genes (OsPAL9, OsCAD8C, OsCCR8, and OsCOMTL4) were significantly negatively correlated with lignin monomers. Furthermore, eleven genes were co-expressed in certain genotypes during secondary growth stages. Among them, six genes (OsC3H, OsCAD2, OsCCR2, OsCOMT, OsPAL2, and OsPAL8) were overlapped with microarray gene expressions, highlighting their importance in lignin biosynthesis.
Collapse
Affiliation(s)
- Munsif Ali Shad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Zixuan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Xianlong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
| | - Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.A.S.)
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Cheng X, Zhou G, Chen W, Tan L, Long Q, Cui F, Tan L, Zou G, Tan Y. Current status of molecular rice breeding for durable and broad-spectrum resistance to major diseases and insect pests. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:219. [PMID: 39254868 PMCID: PMC11387466 DOI: 10.1007/s00122-024-04729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
In the past century, there have been great achievements in identifying resistance (R) genes and quantitative trait loci (QTLs) as well as revealing the corresponding molecular mechanisms for resistance in rice to major diseases and insect pests. The introgression of R genes to develop resistant rice cultivars has become the most effective and eco-friendly method to control pathogens/insects at present. However, little attention has been paid to durable and broad-spectrum resistance, which determines the real applicability of R genes. Here, we summarize all the R genes and QTLs conferring durable and broad-spectrum resistance in rice to fungal blast, bacterial leaf blight (BLB), and the brown planthopper (BPH) in molecular breeding. We discuss the molecular mechanisms and feasible methods of improving durable and broad-spectrum resistance to blast, BLB, and BPH. We will particularly focus on pyramiding multiple R genes or QTLs as the most useful method to improve durability and broaden the disease/insect spectrum in practical breeding regardless of its uncertainty. We believe that this review provides useful information for scientists and breeders in rice breeding for multiple stress resistance in the future.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Guohua Zhou
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Qishi Long
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Fusheng Cui
- Yichun Academy of Sciences (Jiangxi Selenium-Rich Industry Research Institute), Yichun, People's Republic of China
| | - Lei Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China.
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China.
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China.
| |
Collapse
|
25
|
Zhang Z, Yang C, Xi J, Wang Y, Guo J, Liu Q, Liu Y, Ma Y, Zhang J, Ma F, Li C. The MdHSC70-MdWRKY75 module mediates basal apple thermotolerance by regulating the expression of heat shock factor genes. THE PLANT CELL 2024; 36:3631-3653. [PMID: 38865439 PMCID: PMC11371167 DOI: 10.1093/plcell/koae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/12/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Heat stress severely restricts the growth and fruit development of apple (Malus domestica). Little is known about the involvement of WRKY proteins in the heat tolerance mechanism in apple. In this study, we found that the apple transcription factor (TF) MdWRKY75 responds to heat and positively regulates basal thermotolerance. Apple plants that overexpressed MdWRKY75 were more tolerant to heat stress while silencing MdWRKY75 caused the opposite phenotype. RNA-seq and reverse transcription quantitative PCR showed that heat shock factor genes (MdHsfs) could be the potential targets of MdWRKY75. Electrophoretic mobility shift, yeast one-hybrid, β-glucuronidase, and dual-luciferase assays showed that MdWRKY75 can bind to the promoters of MdHsf4, MdHsfB2a, and MdHsfA1d and activate their expression. Apple plants that overexpressed MdHsf4, MdHsfB2a, and MdHsfA1d exhibited heat tolerance and rescued the heat-sensitive phenotype of MdWRKY75-Ri3. In addition, apple heat shock cognate 70 (MdHSC70) interacts with MdWRKY75, as shown by yeast two-hybrid, split luciferase, bimolecular fluorescence complementation, and pull-down assays. MdHSC70 acts as a negative regulator of the heat stress response. Apple plants that overexpressed MdHSC70 were sensitive to heat, while virus-induced gene silencing of MdHSC70 enhanced heat tolerance. Additional research showed that MdHSC70 exhibits heat sensitivity by interacting with MdWRKY75 and inhibiting MdHsfs expression. In summary, we proposed a mechanism for the response of apple to heat that is mediated by the "MdHSC70/MdWRKY75-MdHsfs" molecular module, which enhances our understanding of apple thermotolerance regulated by WRKY TFs.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Xi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yuting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Qianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yusong Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
26
|
Yuan S, Jiang H, Wang Y, Zhang L, Shi Z, Jiao L, Meng D. A 3R-MYB transcription factor is involved in Methyl Jasmonate-Induced disease resistance in Agaricus bisporus and has implications for disease resistance in Arabidopsis. J Adv Res 2024:S2090-1232(24)00380-1. [PMID: 39233001 DOI: 10.1016/j.jare.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Methyl jasmonate (MeJA) and MYB transcription factors (TFs) play important roles in pathogen resistance in several plants, but MYB TFs in conjunction with MeJA-induced defense against Pseudomonas tolaasii in edible mushrooms remain unknown. OBJECTIVES To investigate the role of a novel 3R-MYB transcription factor (AbMYB11) in MeJA-induced disease resistance of Agaricus bisporus and in the resistance of transgenic Arabidopsis to P. tolaasii. METHODS Mushrooms were treated with MeJA alone or in combination with phenylpropanoid pathway inhibitors, and the effects of the treatments on the disease-related and physiological indicators of the mushrooms were determined to assess the role of MeJA in inducing resistance and the importance of the phenylpropanoid pathway involved. Subcellular localization, gene expression analysis, dual-luciferase reporter assay, electrophoretic mobility shift assay, and transgenic Arabidopsis experiments were performed to elucidate the molecular mechanism of AbMYB11 in regulating disease resistance. RESULTS MeJA application greatly improved mushroom resistance to P. tolaasii infection, and suppression of the phenylpropanoid pathway significantly weakened this effect. MeJA treatment stimulated the accumulation of phenylpropanoid metabolites, which was accompanied by increased the activities of biosynthetic enzymes and the expression of phenylpropanoid pathway-related genes (AbPAL1, Ab4CL1, AbC4H1) and an AbPR-like gene, further confirming the critical role of the phenylpropanoid pathway in MeJA-induced responses to P. tolaasii. Importantly, AbMYB11, localized in the nucleus, was rapidly induced by MeJA treatment under P. tolaasii infection; it transcriptionally activated the phenylpropanoid pathway-related and AbPR-like genes, and AbMYB11 overexpression in Arabidopsis significantly increased the transcription of phenylpropanoid-related genes, the accumulation of total phenolics and flavonoids, and improved resistance to P. tolaasii. CONCLUSION This study clarified the pivotal role of AbMYB11 as a regulator in disease resistance by modulating the phenylpropanoid pathway, providing a novel idea for the breeding of highly disease-resistant edible mushrooms and plants.
Collapse
Affiliation(s)
- Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hanyue Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zixuan Shi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lu Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
27
|
Li X, Xu Q, Gulinuer A, Tian J, Zheng J, Chang G, Gao J, Tian Z, Liang Y. AcMYB96 promotes anthocyanin accumulation in onion (Allium cepa L) without forming the MBW complex. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108965. [PMID: 39067107 DOI: 10.1016/j.plaphy.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Anthocyanins are major flavonoid compounds with established health benefits. Although the molecular mechanisms of MYB transcription factors (TFs) within the MYB-basic helix-loop-helix (bHLH)-WD-repeat protein (MBW) complex in anthocyanin biosynthesis have been revealed, the functions of other MYB TFs that are unable to form the MBW complex in this process remain unclear. In this study, we uncovered and extensively characterized an R2R3-MYB TF in onion (Allium cepa L.), named AcMYB96, which was identified as a potential anthocyanin activator. AcMYB96 was classified into subgroup 1 of the R2R3-MYB TF family and lacked the conserved sequences required for interactions with bHLH IIIf TFs. Consistently, yeast two-hybrid assays showed that AcMYB96 did not interact with any bHLH IIIf TFs examined, including AcB2 and AtTT8. The transcription pattern of AcMYB96 correlated with the level of anthocyanin accumulation, and its role in activating anthocyanin biosynthesis was confirmed through overexpression in the epithelial cells of onion bulbs and Arabidopsis. Yeast one-hybrid, electrophoretic mobility shift, and promoter transactivation assays further demonstrated that AcMYB96 promoted anthocyanin biosynthesis by binding to the promoters of the chalcone synthase (AcCHS1), anthocyanidin synthase (AcANS), and UDP-glucose-flavonoid 3-O-glucosyltransferase (AcUFGT) genes, thereby activating their expression independent of bHLH IIIf TFs. These results demonstrate that AcMYB96 activates anthocyanin biosynthesis without forming the MBW complex, providing a theoretical foundation to further enrich the gene resources for promoting anthocyanin accumulation and breeding red onions with high anthocyanin content.
Collapse
Affiliation(s)
- Xiaojie Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Qijiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | | | - Jiaxing Tian
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Junwei Zheng
- Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450015, China
| | - Guojun Chang
- Jiuquan Academy of Agricultural Sciences, Jiuquan, 735000, China
| | - Jie Gao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhaohui Tian
- Zhengzhou Academy of Agricultural Science and Technology, Zhengzhou, 450015, China.
| | - Yi Liang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
28
|
Yin J, Zhang C, Zhang Q, Long F, Hu W, Zhou Y, Mou F, Zhong Y, Wu B, Zhu M, Zou L, Zhu X. A single amino acid substitution in the AAA-type ATPase LRD6-6 activates immune responses but decreases grain quality in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1451897. [PMID: 39166250 PMCID: PMC11333209 DOI: 10.3389/fpls.2024.1451897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Plant spotted leaf (spl) mutants are useful to reveal the regulatory mechanisms of immune responses. Thus, in crop plants, their agronomic traits, especially the grain quality are usually ignored. Here, we characterized a rice spl mutant named spl-A (spotted leaf mutant from A814) that shows autoimmunity, broad-spectrum disease resistance and growth deterioration including decreased rice quality. A single nucleotide mutation of C1144T, which leads to change of the 382nd proline to serine, in the gene encoding the ATPases associated with diverse cellular activities (AAA)-type ATPase LRD6-6 is responsible for the phenotype of the spl-A mutant. Mechanistically, this mutation impairs LRD6-6 ATPase activity and disrupts its interaction with endosomal sorting complex required for transport (ESCRT)-III subunits OsSNF7.1/7.2/7.3. And thus, leading to compromise of multivesicular bodies (MVBs)-mediated vesicle trafficking and accumulation of ubiquitinated proteins in both leaves and seeds of spl-A. Therefore, the immune response of spl-A is activated, and the growth and grain quality are deteriorated. Our study identifies a new amino acid residue that important for LRD6-6 and provides new insight into our understanding of how MVBs-mediated vesicle trafficking regulates plant immunity and growth, including grain quality in rice.
Collapse
Affiliation(s)
- Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Cheng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Qianyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Feiyan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wen Hu
- Agricultural and Rural Bureau, Hanyuan County Government, Yaan, Sichuan, China
| | - Yi Zhou
- Agricultural and Rural Bureau, Hanyuan County Government, Yaan, Sichuan, China
| | - Fengying Mou
- Agricultural and Rural Bureau, Hanyuan County Government, Yaan, Sichuan, China
| | - Yufeng Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Bingxiu Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Min Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers’ College, Mianyang, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Liu S, Liu J, Wang W, Yan Y, Wang T, Wu J, Liu X, Wu J, Zeng Y. Comparative Field Evaluation and Transcriptome Analysis Reveals that Chromosome Doubling Enhances Sheath Blight Resistance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:42. [PMID: 38958835 PMCID: PMC11222352 DOI: 10.1186/s12284-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Rice sheath blight, caused by Rhizoctonia solani Kihn (R. solani), poses a significant threat to rice production and quality. Autotetraploid rice, developed through chromosome doubling of diploid rice, holds great potential for enhancing biological and yield traits. However, its resistance to sheath blight in the field has remained unclear. In this study, the field resistance of 35 autotetraploid genotypes and corresponding diploids was evaluated across three environments from 2020 to 2021. The booting stage was optimal for inoculating period based on the inoculation and analysis of R. solani at five rice growth stages. We found autotetraploids generally exhibited lower disease scores than diploids, indicating enhanced resistance after chromosome doubling. Among the 35 genotypes, 16 (45.71%) displayed increased resistance, 2 (5.71%) showed decreased resistance, and 17 (48.57%) displayed unstable resistance in different sowing dates. All combinations of the genotype, environment and ploidy, including the genotype-environment-ploidy interaction, contributed significantly to field resistance. Chromosome doubling increased sheath blight resistance in most genotypes, but was also dependent on the genotype-environment interaction. To elucidate the enhanced resistance mechanism, RNA-seq revealed autotetraploid recruited more down-regulated differentially expressed genes (DEGs), additionally, more resistance-related DEGs, were down-regulated at 24 h post inoculation in autotetraploid versus diploid. The ubiquinone/terpenoid quinone and diterpenoid biosynthesis pathways may play key roles in ploidy-specific resistance mechanisms. In summary, our findings shed light on the understanding of sheath blight resistance mechanisms in autotetraploid rice.
Collapse
Affiliation(s)
- Sanglin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yugang Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Tianya Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuxiang Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
30
|
Deng J, Che X, Gu Y, Qu Y, Liu D. Integrated multi-omics investigation revealed the importance of phenylpropanoid metabolism in the defense response of Lilium regale Wilson to fusarium wilt. HORTICULTURE RESEARCH 2024; 11:uhae140. [PMID: 38988612 PMCID: PMC11233880 DOI: 10.1093/hr/uhae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Lilies (genus Lilium) play a significant role in the global cut-flower industry, but they are highly susceptible to fusarium wilt caused by Fusarium oxysporum. However, Lilium regale, a wild lily species, exhibits remarkable resistance to F. oxysporum. To investigate the quantitative resistance of L. regale to fusarium wilt, a comprehensive multi-omics analysis was conducted. Upon inoculation with F. oxysporum, L. regale roots showed a significant accumulation of phenylpropane metabolites, including lignin precursors, flavonoids, and hydroxycinnamic acids. These findings were consistent with the upregulated expression of phenylpropanoid biosynthesis-related genes encoding various enzymes, as revealed by transcriptomics and proteomics analyses. Furthermore, metabolomics and proteomics data demonstrated differential activation of monoterpenoid and isoquinoline alkaloid biosynthesis. Colorimetry and high-performance liquid chromatography analyses revealed significantly higher levels of total flavonoids, lignin, ferulic acid, phlorizin, and quercetin contents in L. regale scales compared with susceptible lily 'Siberia' scales during F. oxysporum infection. These phenylpropanes exhibited inhibitory effects on F. oxysporum growth and suppressed the expression of pathogenicity-related genes. Transcriptional regulatory network analysis suggested that ethylene-responsive transcription factors (ERFs) may positively regulate phenylpropanoid biosynthesis. Therefore, LrERF4 was cloned and transiently overexpressed in the fusarium wilt-susceptible Oriental hybrid lily 'Siberia'. The overexpression of LrERF4 resulted in increased levels of total flavonoids, lignin, ferulic acid, phlorizin, and quercetin, while the silencing of LrERF4 in L. regale through RNAi had the opposite effect. In conclusion, phenylpropanoid metabolism plays a crucial role in the defense response of L. regale against fusarium wilt, with LrERF4 acting as a positive regulator of phenylpropane biosynthesis.
Collapse
|
31
|
Yang H, Huang J, Ye Y, Xu Y, Xiao Y, Chen Z, Li X, Ma Y, Lu T, Rao Y. Research Progress on Mechanical Strength of Rice Stalks. PLANTS (BASEL, SWITZERLAND) 2024; 13:1726. [PMID: 38999566 PMCID: PMC11243543 DOI: 10.3390/plants13131726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
As one of the most important food crops in the world, rice yield is directly related to national food security. Lodging is one of the most important factors restricting rice production, and the cultivation of rice varieties with lodging resistance is of great significance in rice breeding. The lodging resistance of rice is directly related to the mechanical strength of the stalks. In this paper, we reviewed the cell wall structure, its components, and its genetic regulatory mechanism, which improved the regulatory network of rice stalk mechanical strength. Meanwhile, we analyzed the new progress in genetic breeding and put forward some scientific problems that need to be solved in this field in order to provide theoretical support for the improvement and application of rice breeding.
Collapse
Affiliation(s)
- Huimin Yang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahui Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuhan Ye
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuqing Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yao Xiao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ziying Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinyu Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tao Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
32
|
Xu C. The Oryza sativa transcriptome responds spatiotemporally to polystyrene nanoplastic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172449. [PMID: 38615784 DOI: 10.1016/j.scitotenv.2024.172449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Nanoplastic represents an emerging abiotic stress facing modern agriculture, impacting global crop production. However, the molecular response of crop plants to this stress remains poorly understood at a spatiotemporal resolution. We therefore used RNA sequencing to profile the transcriptome expressed in rice (Oryza sativa) root and leaf organs at 1, 2, 4, and 8 d post exposure with nanoplastic. We revealed a striking similarity between the rice biomass dynamics in aboveground parts to that in belowground parts during nanoplastic stress, but transcriptome did not. At the global transcriptomic level, a total of 2332 differentially expressed genes were identified, with the majority being spatiotemporal specific, reflecting that nanoplastics predominantly regulate three processes in rice seedlings: (1) down-regulation of chlorophyll biosynthesis, photosynthesis, and starch, sucrose and nitrogen metabolism, (2) activation of defense responses such as brassinosteroid biosynthesis and phenylpropanoid biosynthesis, and (3) modulation of jasmonic acid and cytokinin signaling pathways by transcription factors. Notably, the genes involved in plant-pathogen interaction were shown to be successively modulated by both root and leaf organs, particularly plant disease defense genes (OsWRKY24, OsWRKY53, Os4CL3, OsPAL4, and MPK5), possibly indicating that nanoplastics affect rice growth indirectly through other biota. Finally, we associated biomass phenotypes with the temporal reprogramming of rice transcriptome by weighted gene co-expression network analysis, noting a significantly correlation with photosynthesis, carbon metabolism, and phenylpropanoid biosynthesis that may reflect the mechanisms of biomass reduction. Functional analysis further identified PsbY, MYB, cytochrome P450, and AP2/ERF as hub genes governing these pathways. Overall, our work provides the understanding of molecular mechanisms of rice in response to nanoplastics, which in turn suggests how rice might behave in a nanoplastic pollution scenario.
Collapse
Affiliation(s)
- Chanchan Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China; Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
33
|
Chen P, Wang J, Liu Q, Liu J, Mo Q, Sun B, Mao X, Jiang L, Zhang J, Lv S, Yu H, Chen W, Liu W, Li C. Transcriptome and Metabolome Analysis of Rice Cultivar CBB23 after Inoculation by Xanthomonas oryzae pv. oryzae Strains AH28 and PXO99 A. PLANTS (BASEL, SWITZERLAND) 2024; 13:1411. [PMID: 38794481 PMCID: PMC11124827 DOI: 10.3390/plants13101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Bacterial leaf blight (BLB), among the most serious diseases in rice production, is caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23, the broadest resistance gene against BLB in rice, is widely used in rice breeding. In this study, the rice variety CBB23 carrying the Xa23 resistance gene was inoculated with AH28 and PXO99A to identify differentially expressed genes (DEGs) associated with the resistance. Transcriptome sequencing of the infected leaves showed 7997 DEGs between the two strains at different time points, most of which were up-regulated, including cloned rice anti-blight, peroxidase, pathology-related, protein kinase, glucosidase, and other coding genes, as well as genes related to lignin synthesis, salicylic acid, jasmonic acid, and secondary metabolites. Additionally, the DEGs included 40 cloned, five NBS-LRR, nine SWEET family, and seven phenylalanine aminolyase genes, and 431 transcription factors were differentially expressed, the majority of which belonged to the WRKY, NAC, AP2/ERF, bHLH, and MYB families. Metabolomics analysis showed that a large amount of alkaloid and terpenoid metabolite content decreased significantly after inoculation with AH28 compared with inoculation with PXO99A, while the content of amino acids and their derivatives significantly increased. This study is helpful in further discovering the pathogenic mechanism of AH28 and PXO99A in CBB23 rice and provides a theoretical basis for cloning and molecular mechanism research related to BLB resistance in rice.
Collapse
Affiliation(s)
- Pingli Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjie Wang
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510335, China
| | - Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjie Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiaoping Mo
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510335, China
| | - Bingrui Sun
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Liqun Jiang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shuwei Lv
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hang Yu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weixiong Chen
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510335, China
| | - Wei Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chen Li
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
34
|
Sun B, Shen Y, Zhu L, Yang X, Liu X, Li D, Zhu M, Miao X, Shi Z. OsmiR319-OsPCF5 modulate resistance to brown planthopper in rice through association with MYB proteins. BMC Biol 2024; 22:68. [PMID: 38520013 PMCID: PMC10960409 DOI: 10.1186/s12915-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The brown planthopper (BPH) is a kind of piercing-sucking insect specific to rice, with the damage tops the list of pathogens and insects in recent years. microRNAs (miRNAs) are pivotal regulators of plant-environment interactions, while the mechanism underlying their function against insects is largely unknown. RESULTS Here, we confirmed that OsmiR319, an ancient and conserved miRNA, negatively regulated resistance to BPHs, with overexpression of OsmiR319 susceptible to BPH, while suppression of OsmiR319 resistant to BPH in comparison with wild type. Meanwhile, we identified several targets of OsmiR319 that may mediate BPH resistance. Among them, OsPCF5 was the most obviously induced by BPH feeding, and over expression of OsPCF5 was resistance to BPH. In addition, various biochemical assays verified that OsPCF5 interacted with several MYB proteins, such as OsMYB22, OsMYB30, and OsMYB30C.Genetically, we revealed that both OsMYB22 and OsMYB30C positively regulated BPH resistance. Genetic interaction analyses confirmed that OsMYB22 and OsMYB30C both function in the same genetic pathway with OsmiR319b to mediate BPH resistance. CONCLUSIONS Altogether, we revealed that OsPCF5 regulates BPH resistance via association with several MYB proteins downstream of OsmiR319, these MYB proteins might function as regulators of BPH resistance through regulating the phenylpropane synthesis.
Collapse
Affiliation(s)
- Bo Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Shen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zhu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, People's Republic of China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, People's Republic of China
| | - Mulan Zhu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
35
|
Wang Y, Xu W, Liu Y, Yang J, Guo X, Zhang J, Pu J, Chen N, Zhang W. Identification and Transcriptome Analysis of a Novel Allelic Mutant of NAL1 in Rice. Genes (Basel) 2024; 15:325. [PMID: 38540384 PMCID: PMC10970654 DOI: 10.3390/genes15030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/14/2024] Open
Abstract
Leaf morphology is a crucial aspect of plant architecture, yet the molecular mechanisms underlying leaf development remain incompletely understood. In this study, a narrow leaf mutant, m625, was identified in rice (Oryza sativa L.), exhibiting pleiotropic developmental defects. Pigment measurement revealed reduced levels of photochromic pigments in m625. Cytological analysis demonstrated that the m625 gene affected vascular patterns and cell division. Specifically, the narrowing of the leaf was attributed to a decrease in small vein number, shorter vein spacing, and an abnormal V-shaped arrangement of bulliform cells, while the thickening was caused by longer leaf veins, thicker mesophyll cells, and an increased number of parenchyma cell layers. The dwarf stature and thickened internode were primarily due to shortened internodes and an increase in cell layers, respectively. Positional cloning and complementation assays indicated that the m625 gene is a novel allele of NAL1. In the m625 mutant, a nucleotide deletion at position 1103 in the coding sequence of NAL1 led to premature termination of protein translation. Further RNA-Seq and qRT-PCR analyses revealed that the m625 gene significantly impacted regulatory pathways related to IAA and ABA signal transduction, photosynthesis, and lignin biosynthesis. Moreover, the m625 mutant displayed thinner sclerenchyma and cell walls in both the leaf and stem, particularly showing reduced lignified cell walls in the midrib of the leaf. In conclusion, our study suggests that NAL1, in addition to its known roles in IAA transport and leaf photosynthesis, may also participate in ABA signal transduction, as well as regulate secondary cell wall formation and sclerenchyma thickness through lignification.
Collapse
Affiliation(s)
- Yang Wang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanxin Xu
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Yan Liu
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Jie Yang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Xin Guo
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Jiaruo Zhang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Jisong Pu
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
| | - Nenggang Chen
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Wenfeng Zhang
- College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China; (W.X.); (Y.L.); (J.Y.); (X.G.); (J.Z.); (J.P.); (W.Z.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
36
|
Yu H, Teng Z, Liu B, Lv J, Chen Y, Qin Z, Peng Y, Meng S, He Y, Duan M, Zhang J, Ye N. Transcription factor OsMYB30 increases trehalose content to inhibit α-amylase and seed germination at low temperature. PLANT PHYSIOLOGY 2024; 194:1815-1833. [PMID: 38057158 DOI: 10.1093/plphys/kiad650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Low-temperature germination (LTG) is an important agronomic trait for direct-seeding cultivation of rice (Oryza sativa). Both OsMYB30 and OsTPP1 regulate the cold stress response in rice, but the function of OsMYB30 and OsTPP1 in regulating LTG and the underlying molecular mechanism remains unknown. Employing transcriptomics and functional studies revealed a sugar signaling pathway that regulates seed germination in response to low temperature (LT). Expression of OsMYB30 and OsTPP1 was induced by LT during seed germination, and overexpressing either OsMYB30 or OsTPP1 delayed seed germination and increased sensitivity to LT during seed germination. Transcriptomics and qPCR revealed that expression of OsTPP1 was upregulated in OsMYB30-overexpressing lines but downregulated in OsMYB30-knockout lines. In vitro and in vivo experiments revealed that OsMYB30 bound to the promoter of OsTPP1 and regulated the abundance of OsTPP1 transcripts. Overaccumulation of trehalose (Tre) was found in both OsMYB30- and OsTPP1-overexpressing lines, resulting in inhibition of α-amylase 1a (OsAMY1a) gene during seed germination. Both LT and exogenous Tre treatments suppressed the expression of OsAMY1a, and the osamy1a mutant was not sensitive to exogenous Tre during seed germination. Overall, we concluded that OsMYB30 expression was induced by LT to activate the expression of OsTPP1 and increase Tre content, which thus inhibited α-amylase activity and seed germination. This study identified a phytohormone-independent pathway that integrates environmental cues with internal factors to control seed germination.
Collapse
Affiliation(s)
- Huihui Yu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhenning Teng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Bohan Liu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jiahan Lv
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yinke Chen
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhonge Qin
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yan Peng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shuan Meng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430000, China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nenghui Ye
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
37
|
Xiaoyang S, Wenqi D, Yiwei J, Yanchao Z, Can Z, Xinru L, Jian C, Jinmin F. Morphology, photosynthetic and molecular mechanisms associated with powdery mildew resistance in Kentucky bluegrass. PHYSIOLOGIA PLANTARUM 2024; 176:e14186. [PMID: 38351885 DOI: 10.1111/ppl.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Kentucky bluegrass (Poa pratensis L.), one of the most widely used cool-season turfgrasses around the world, is sensitive to powdery mildew (PM; Blumeria graminis). The PM strain identification and regulation mechanisms of Kentucky bluegrass in response to pathogens still remain unclear. Through morphological and molecular analyses, we identified that the pathogen in Kentucky bluegrass was B. graminis f. sp. poae. The infection of B. graminis led to a reduction of the sclerenchyma area, expansion of vesicular cells and movement of chloroplasts. The infected leaves had significantly lower values in net photosynthesis, stomatal conductance and transpiration rate, maximal quantum yield of PSII photochemistry, photochemical quenching and non-regulated energy dissipation compared to mock-inoculated leaves. Expressions of light-harvesting antenna protein genes LHCA and LHCB and photosynthetic electron transport genes petE and petH decreased significantly in infected leaves. Furthermore, upregulations of genes involved in plant-pathogen interaction, such as HSP90, RBOH, and RPM and downregulations of EDS, RPS and WRKY were observed in infected leaves. The findings may help design a feasible approach to effectively control the PM disease in Kentucky bluegrass and other related perennial grass species.
Collapse
Affiliation(s)
- Sun Xiaoyang
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| | - Ding Wenqi
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Jiang Yiwei
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Zhu Yanchao
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| | - Zhu Can
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| | - Li Xinru
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| | - Cui Jian
- School of Architecture and Civil Engineering, University of Adelaide, Adelaide, South Australia, Australia
| | - Fu Jinmin
- College of Grassland Science, Qingdao Agricultural University, Qingdao
| |
Collapse
|
38
|
Chen X, Liu C, Wang H, Liu Q, Yue Y, Duan Y, Wang Z, Zheng L, Chen X, Wang Y, Huang J, Xu Q, Pan Y. Ustilaginoidea virens-secreted effector Uv1809 suppresses rice immunity by enhancing OsSRT2-mediated histone deacetylation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:148-164. [PMID: 37715970 PMCID: PMC10754013 DOI: 10.1111/pbi.14174] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023]
Abstract
Rice false smut caused by Ustilaginoidea virens is a devastating rice (Oryza sativa) disease worldwide. However, the molecular mechanisms underlying U. virens-rice interactions are largely unknown. In this study, we identified a secreted protein, Uv1809, as a key virulence factor. Heterologous expression of Uv1809 in rice enhanced susceptibility to rice false smut and bacterial blight. Host-induced gene silencing of Uv1809 in rice enhanced resistance to U. virens, suggesting that Uv1809 inhibits rice immunity and promotes infection by U. virens. Uv1809 suppresses rice immunity by targeting and enhancing rice histone deacetylase OsSRT2-mediated histone deacetylation, thereby reducing H4K5ac and H4K8ac levels and interfering with the transcriptional activation of defence genes. CRISPR-Cas9 edited ossrt2 mutants showed no adverse effects in terms of growth and yield but displayed broad-spectrum resistance to rice pathogens, revealing a potentially valuable genetic resource for breeding disease resistance. Our study provides insight into defence mechanisms against plant pathogens that inactivate plant immunity at the epigenetic level.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Chen Liu
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Hailin Wang
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Qi Liu
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Yaping Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuhang Duan
- The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Xiaolin Chen
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Yaohui Wang
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
- Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Qiutao Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuemin Pan
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
39
|
Xu C, Gui Z, Huang Y, Yang H, Luo J, Zeng X. Integrated Transcriptomics and Metabolomics Analyses Provide Insights into Qingke in Response to Cold Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18345-18358. [PMID: 37966343 DOI: 10.1021/acs.jafc.3c07005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The survival and productivity of qingke in high altitude (>4300 m, average yearly temperature <0 °C) of the Tibetan Plateau are significantly impacted by low-temperature stress. Uncovering the mechanisms underlying low-temperature stress response in cold-tolerant qingke varieties is crucial for qingke breeding. Herein, we conducted a comprehensive transcriptomic and metabolomic analysis on cold-sensitive (ZQ) and cold-tolerant (XL) qingke varieties under chilling and freezing treatments and identified lipid metabolism pathways as enriched in response to freezing treatment. Additionally, a significant positive correlation was observed between the expression of C-repeat (CRT) binding factor 10A (HvCBF10A) and Gly-Asp-Ser-Leu-motif lipase (HvGDSL) and the accumulation of multiple lipids. Functional analysis confirmed that HvCBF10A directly binds to HvGDSL, and silencing HvCBF10A resulted in a significant decrease in both HvGDSL and lipid levels, consequently impairing the cold tolerance. Overall, HvCBF10A and HvGDSL are functional units in actively regulating lipid metabolism to enhance freezing stress tolerance in qingke.
Collapse
Affiliation(s)
- Congping Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory of Barley Biology and Genetic Improvement on QingHai-Tibet Plateau, Ministry of Agriculture, Lhasa 850002, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Zihao Gui
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuxiao Huang
- Hainan Yazhou Bay grain Laboratory, Sanya 572025, China
| | - Haizhen Yang
- Key Laboratory of Barley Biology and Genetic Improvement on QingHai-Tibet Plateau, Ministry of Agriculture, Lhasa 850002, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Jie Luo
- Hainan Yazhou Bay grain Laboratory, Sanya 572025, China
| | - Xingquan Zeng
- Key Laboratory of Barley Biology and Genetic Improvement on QingHai-Tibet Plateau, Ministry of Agriculture, Lhasa 850002, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| |
Collapse
|
40
|
Huang Y, Li Y, Zou K, Wang Y, Ma Y, Meng D, Luo H, Qu J, Li F, Xuan Y, Du W. The Resistance of Maize to Ustilago maydis Infection Is Correlated with the Degree of Methyl Esterification of Pectin in the Cell Wall. Int J Mol Sci 2023; 24:14737. [PMID: 37834187 PMCID: PMC10573042 DOI: 10.3390/ijms241914737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Common smut caused by Ustilago maydis is one of the dominant fungal diseases in plants. The resistance mechanism to U. maydis infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with U. maydis, and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection. In R445 and Ye478, the contents of cellulose, hemicellulose, pectin, and lignin increased by varying degrees, and pectin methylesterase (PME) activity increased. The changes in hemicellulose and pectin in the cell wall after U. maydis infection were analyzed via immunolabeling using monoclonal antibodies against hemicellulsic xylans and high/low-methylated pectin. U. maydis infection altered methyl esterification of pectin, and the degree of methyl esterification was correlated with the resistance of maize to U. maydis. Furthermore, the relationship between methyl esterification of pectin and host resistance was validated using 15 maize inbred lines with different resistance levels. The results revealed that cell wall components, particularly pectin, were important factors affecting the colonization and propagation of U. maydis in maize, and methyl esterification of pectin played a role in the resistance of maize to U. maydis infection.
Collapse
Affiliation(s)
- Yingni Huang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Kunkun Zou
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuting Ma
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Dexuan Meng
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Haishan Luo
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianzhou Qu
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
41
|
Guo D, Chen L, Liu S, Jiang W, Ye Q, Wu Z, Wang X, Hu X, Zhang Z, He H, Hu L. Curling Leaf 1, Encoding a MYB-Domain Protein, Regulates Leaf Morphology and Affects Plant Yield in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3127. [PMID: 37687373 PMCID: PMC10490398 DOI: 10.3390/plants12173127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The leaf is the main site of photosynthesis and is an important component in shaping the ideal rice plant architecture. Research on leaf morphology and development will lay the foundation for high-yield rice breeding. In this study, we isolated and identified a novel curling leaf mutant, designated curling leaf 1 (cl1). The cl1 mutant exhibited an inward curling phenotype because of the defective development of sclerenchymatous cells on the abaxial side. Meanwhile, the cl1 mutant showed significant reductions in grain yield and thousand-grain weight due to abnormal leaf development. Through map-based cloning, we identified the CL1 gene, which encodes a MYB transcription factor that is highly expressed in leaves. Subcellular localization studies confirmed its typical nuclear localization. Transcriptome analysis revealed a significant differential expression of the genes involved in photosynthesis, leaf morphology, yield formation, and hormone metabolism in the cl1 mutant. Yeast two-hybrid assays demonstrated that CL1 interacts with alpha-tubulin protein SRS5 and AP2/ERF protein MFS. These findings provide theoretical foundations for further elucidating the mechanisms of CL1 in regulating leaf morphology and offer genetic resources for practical applications in high-yield rice breeding.
Collapse
Affiliation(s)
- Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lianghai Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenxiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zheng Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiaoqing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiafei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zelin Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lifang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
| |
Collapse
|
42
|
Zhang B, Zhu X, Chen Z, Zhang H, Huang J, Huang J. RiceTFtarget: A rice transcription factor-target prediction server based on coexpression and machine learning. PLANT PHYSIOLOGY 2023; 193:190-194. [PMID: 37294915 DOI: 10.1093/plphys/kiad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/26/2023] [Indexed: 06/11/2023]
Abstract
The online webserver RiceTFtarget realizes rice transcription factor–target prediction based on coexpression, pattern matching, and machine learning.
Collapse
Affiliation(s)
- Baoyi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueai Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixin Chen
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Junxian Huang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
43
|
Sun B, Shen Y, Chen S, Shi Z, Li H, Miao X. A novel transcriptional repressor complex MYB22-TOPLESS-HDAC1 promotes rice resistance to brown planthopper by repressing F3'H expression. THE NEW PHYTOLOGIST 2023; 239:720-738. [PMID: 37149887 DOI: 10.1111/nph.18958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
The brown planthopper (BPH) is the most destructive pest of rice. The MYB transcription factors are vital for rice immunity, but most are activators. Although MYB22 positively regulates rice resistance to BPH and has an EAR motif associated with active repression, it remains unclear whether it is a transcriptional repressor affecting rice-BPH interaction. Genetic analyses revealed that MYB22 regulates rice resistance to BPH via its EAR motif. Several biochemical experiments (e.g. transient transcription assay, Y2H, LCA, and BiFC) indicated that MYB22 is a transcriptional repressor that interacts with the corepressor TOPLESS via its EAR motif and recruits HDAC1 to form a tripartite complex. Flavonoid-3'-hydroxylase (F3'H) is a flavonoid biosynthesis pathway-related gene that negatively regulates rice resistance to BPH. Based on a bioinformatics analysis and the results of EMSA and transient transcription assays, MYB22 can bind directly to the F3'H promoter and repress gene expression along with TOPLESS and HDAC1. We revealed a transcriptional regulatory mechanism influencing the rice-BPH interaction that differs from previously reported mechanisms. Specifically, MYB22-TOPLESS-HDAC1 is a novel transcriptional repressor complex with components that synergistically and positively regulate rice resistance to BPH through the transcriptional repression of F3'H.
Collapse
Affiliation(s)
- Bo Sun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Shen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenying Shi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Haichao Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Xuexia Miao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| |
Collapse
|
44
|
Yu Y, Zhang S, Yu Y, Cui N, Yu G, Zhao H, Meng X, Fan H. The pivotal role of MYB transcription factors in plant disease resistance. PLANTA 2023; 258:16. [PMID: 37311886 DOI: 10.1007/s00425-023-04180-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION MYB transcription factors are essential for diverse biology processes in plants. This review has focused on the potential molecular actions of MYB transcription factors in plant immunity. Plants possess a variety of molecules to defend against disease. Transcription factors (TFs) serve as gene connections in the regulatory networks controlling plant growth and defense against various stressors. As one of the largest TF families in plants, MYB TFs coordinate molecular players that modulate plant defense resistance. However, the molecular action of MYB TFs in plant disease resistance lacks a systematic analysis and summary. Here, we describe the structure and function of the MYB family in the plant immune response. Functional characterization revealed that MYB TFs often function either as positive or negative modulators towards different biotic stressors. Moreover, the MYB TF resistance mechanisms are diverse. The potential molecular actions of MYB TFs are being analyzed to uncover functions by controlling the expression of resistance genes, lignin/flavonoids/cuticular wax biosynthesis, polysaccharide signaling, hormone defense signaling, and the hypersensitivity response. MYB TFs have a variety of regulatory modes that fulfill pivotal roles in plant immunity. MYB TFs regulate the expression of multiple defense genes and are, therefore, important for increasing plant disease resistance and promoting agricultural production.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuo Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangchao Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan, China
| | - Hongyan Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
45
|
Ding Y, Zhang F, Sun F, Liu J, Zhu Z, He X, Bai G, Ni Z, Sun Q, Su Z. Loss of OsHRC function confers blast resistance without yield penalty in rice. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37102736 PMCID: PMC10363764 DOI: 10.1111/pbi.14061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Yanpeng Ding
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fuping Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangyao Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jilu Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhenzhen Zhu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xi He
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Guihua Bai
- US Department of Agriculture, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, USA
| | - Zhongfu Ni
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qixin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhenqi Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Wang L, Fu J, Shen Q, Wang Q. OsWRKY10 extensively activates multiple rice diterpenoid phytoalexin biosynthesis to enhance rice blast resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37186469 DOI: 10.1111/tpj.16259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Phytoalexin is the main chemical weapon against disease pathogens in plants. Rice produces a number of phytoalexins to defend pathogens, most of which belong to diterpenoid phytoalexins. Three biosynthetic gene clusters (BGCs) and a few non-cluster genes are responsible for rice diterpenoid phytoalexin biosynthesis. The corresponding regulatory mechanism of these phytoalexins in response to pathogen challenges still remains unclear. Here we identified a transcription factor, OsWRKY10, positively regulating rice diterpenoid phytoalexin biosynthesis. Knockout mutants of OsWRKY10 obtained by the CRISPR/Cas9 technology are more susceptible to Magnaporthe oryzae infection, while overexpression of OsWRKY10 enhances resistance to rice blast. Further analysis reveals that overexpression of OsWRKY10 increases accumulation of multiple rice diterpenoid phytoalexins and expression of genes in three BGCs and non-clustered genes in response to M. oryzae infection. Knockout of OsWRKY10 impairs upregulation of rice diterpenoid phytoalexin biosynthesis gene expression by blast pathogen and CuCl2 treatment. OsWRKY10 directly binds to the W-boxes or W-box-like elements (WLEs) of rice diterpenoid phytoalexin biosynthesis gene promoters to regulate the corresponding gene expression. This study identified an extensive regulator (OsWRKY10) with the broad transcriptional regulation on rice diterpenoid phytoalexin biosynthesis, providing the insight to characterize regulation of rice chemical defense for improving disease resistance.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
47
|
Dai S, Wu H, Chen H, Wang Z, Yu X, Wang L, Jia X, Qin C, Zhu Y, Yi K, Zeng H. Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107642. [PMID: 36989993 DOI: 10.1016/j.plaphy.2023.107642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Crops often suffer from simultaneous limitations of multiple nutrients in soils, including nitrogen (N), phosphorus (P) and potassium (K), which are three major macronutrients essential for ensuring growth and yield. Although plant responses to individual N, P, and K deficiency have been well documented, our understanding of the responses to combined nutrient deficiencies and the crosstalk between nutrient starvation responses is still limited. Here, we compared the physiological responses in rice under seven kinds of single and multiple low nutrient stress of N, P and K, and used RNA sequencing approaches to compare their transcriptome changes. A total of 13,000 genes were found to be differentially expressed under all these single and multiple low N/P/K stresses, and 66 and 174 of them were shared by all these stresses in roots and shoots, respectively. Functional enrichment analyses of the DEGs showed that a group of biological and metabolic processes were shared by these low N/P/K stresses. Comparative analyses indicated that DEGs under multiple low nutrient stress was not the simple summation of single nutrient stress. N was found to be the predominant factor affecting the transcriptome under combined nutrient stress. N, P, or K availability exhibited massive influences on the transcriptomic responses to starvation of other nutrients. Many genes involved in nutrient transport, hormone signaling, and transcriptional regulation were commonly responsive to low N/P/K stresses. Some transcription factors were predicted to regulate the expression of genes that are commonly responsive to N, P, and K starvations. These results revealed the interactions between N, P, and K starvation responses, and will be helpful for further elucidation of the molecular mechanisms underlying nutrient interactions.
Collapse
Affiliation(s)
- Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zihui Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Yu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianqing Jia
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
48
|
Gao LJ, Liu XP, Gao KK, Cui MQ, Zhu HH, Li GX, Yan JY, Wu YR, Ding ZJ, Chen XW, Ma JF, Harberd NP, Zheng SJ. ART1 and putrescine contribute to rice aluminum resistance via OsMYB30 in cell wall modification. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:934-949. [PMID: 36515424 DOI: 10.1111/jipb.13429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Cell wall is the first physical barrier to aluminum (Al) toxicity. Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance; nevertheless, how it is regulated in rice remains largely unknown. In this study, we show that exogenous application of putrescines (Put) could significantly restore the Al resistance of art1, a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1 (ART1), and reduce its Al accumulation particularly in the cell wall of root tips. Based on RNA-sequencing, yeast-one-hybrid and electrophoresis mobility shift assays, we identified an R2R3 MYB transcription factor OsMYB30 as the novel target in both ART1-dependent and Put-promoted Al resistance. Furthermore, transient dual-luciferase assay showed that ART1 directly inhibited the expression of OsMYB30, and in turn repressed Os4CL5-dependent 4-coumaric acid accumulation, hence reducing the Al-binding capacity of cell wall and enhancing Al resistance. Additionally, Put repressed OsMYB30 expression by eliminating Al-induced H2 O2 accumulation, while exogenous H2 O2 promoted OsMYB30 expression. We concluded that ART1 confers Put-promoted Al resistance via repression of OsMYB30-regulated modification of cell wall properties in rice.
Collapse
Affiliation(s)
- Li Jun Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Xiang Pei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ke Ke Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue Wei Chen
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nicholas P Harberd
- Department of Plant Science, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| |
Collapse
|
49
|
Yuan P, Xu C, He N, Lu X, Zhang X, Shang J, Zhu H, Gong C, Kuang H, Tang T, Xu Y, Ma S, Sun D, Zhang W, Umer MJ, Shi J, Fernie AR, Liu W, Luo J. Watermelon domestication was shaped by stepwise selection and regulation of the metabolome. SCIENCE CHINA. LIFE SCIENCES 2023; 66:579-594. [PMID: 36346547 DOI: 10.1007/s11427-022-2198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
Although crop domestication has greatly aided human civilization, the sequential domestication and regulation of most quality traits remain poorly understood. Here, we report the stepwise selection and regulation of major fruit quality traits that occurred during watermelon evolution. The levels of fruit cucurbitacins and flavonoids were negatively selected during speciation, whereas sugar and carotenoid contents were positively selected during domestication. Interestingly, fruit malic acid and citric acid showed the opposite selection trends during the improvement. We identified a novel gene cluster (CGC1, cucurbitacin gene cluster on chromosome 1) containing both regulatory and structural genes involved in cucurbitacin biosynthesis, which revealed a cascade of transcriptional regulation operating mechanisms. In the CGC1, an allele caused a single nucleotide change in ClERF1 binding sites (GCC-box) in the promoter of ClBh1, which resulted in reduced expression of ClBh1 and inhibition of cucurbitacin synthesis in cultivated watermelon. Functional analysis revealed that a rare insertion of 244 amino acids, which arose in C. amarus and became fixed in sweet watermelon, in ClOSC (oxidosqualene cyclase) was critical for the negative selection of cucurbitacins during watermelon evolution. This research provides an important resource for metabolomics-assisted breeding in watermelon and for exploring metabolic pathway regulation mechanisms.
Collapse
Affiliation(s)
- Pingli Yuan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Congping Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Nan He
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xuqiang Lu
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Jianli Shang
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hongju Zhu
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Chengsheng Gong
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hanhui Kuang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tang Tang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Shuangwu Ma
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Dexi Sun
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Weiqin Zhang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070, China
| | - Muhammad J Umer
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jian Shi
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 144776, Germany
| | - Wenge Liu
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Jie Luo
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China.
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, 430070, China.
- College of Tropical Crops, Hainan University, Haikou, 572208, China.
| |
Collapse
|
50
|
Zhang L, Zheng L, Wu J, Liu Y, Liu W, He G, Wang N. OsCCRL1 is Essential for Phenylpropanoid Metabolism in Rice Anthers. RICE (NEW YORK, N.Y.) 2023; 16:10. [PMID: 36847882 PMCID: PMC9971536 DOI: 10.1186/s12284-023-00628-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Phenylpropanoid metabolism and timely tapetal degradation are essential for anther and pollen development, but the underlying mechanisms are unclear. In the current study, to investigate this, we identified and analyzed the male-sterile mutant, osccrl1 (cinnamoyl coA reductase-like 1), which exhibited delayed tapetal programmed cell death (PCD) and defective mature pollen. Map-based cloning, genetic complementation, and gene knockout revealed that OsCCRL1 corresponds to the gene LOC_Os09g32020.2, a member of SDR (short-chain dehydrogenase/reductase) family enzyme. OsCCRL1 was preferentially expressed in the tapetal cells and microspores, and localized to the nucleus and cytoplasm in both rice protoplasts and Nicotiana benthamiana leaves. The osccrl1 mutant exhibited reduced CCRs enzyme activity, less lignin accumulation, delayed tapetum degradation, and disrupted phenylpropanoid metabolism. Furthermore, an R2R3 MYB transcription factor OsMYB103/OsMYB80/OsMS188/BM1, involved in tapetum and pollen development, regulates the expression of OsCCRL1. Finally, the osmyb103 osccrl1 double mutants, exhibited the same phenotype as the osmyb103 single mutant, further indicating that OsMYB103/OsMYB80/OsMS188/BM1 functions upstream of OsCCRL1. These findings help to clarify the role of phenylpropanoid metabolism in male sterility and the regulatory network underlying the tapetum degradation.
Collapse
Affiliation(s)
- Lisha Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Rice Research Institute, Southwest University, Chongqing, 400715, China
| | - Lintao Zheng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Rice Research Institute, Southwest University, Chongqing, 400715, China
| | - Jingwen Wu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Rice Research Institute, Southwest University, Chongqing, 400715, China
| | - Yang Liu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Rice Research Institute, Southwest University, Chongqing, 400715, China
| | - Weichi Liu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Rice Research Institute, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Rice Research Institute, Southwest University, Chongqing, 400715, China.
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Rice Research Institute, Southwest University, Chongqing, 400715, China.
| |
Collapse
|