1
|
Wei T, Zhang H, Wang S, Wu C, Tu T, Wang Y, Qian X. Divergent altitudinal patterns of arbuscular and ectomycorrhizal fungal communities in a mid-subtropical mountain ecosystem. IMA Fungus 2025; 16:e140187. [PMID: 40225017 PMCID: PMC11986432 DOI: 10.3897/imafungus.16.e140187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) form ubiquitous symbiotic relationships with plants through co-evolutionary processes, providing multiple benefits for plant growth, productivity, health, and stress mitigation. Mountain ecosystem multifunctionality is significantly influenced by mycorrhizal responses to climate change, highlighting the importance of understanding the complex interactions between these fungi and environmental variables. In this study, we investigated five vegetation zones across an altitudinal gradient (675-2157 m a.s.l.) in Wuyi Mountain, one of the most well-preserved mid-subtropical mountain ecosystems in eastern China. Using high-throughput sequencing, we examined the altitudinal distribution patterns, community assembly mechanisms, and network interactions of soil AMF and EMF. Our analyses demonstrated significant altitudinal variations in the composition and diversity of mycorrhizal fungal communities. AMF richness peaked in the subalpine dwarf forest at intermediate elevations, whereas EMF richness was highest in the low-altitude evergreen broad-leaved forest, showing a marked decrease in the alpine meadow ecosystem. β-diversity decomposition revealed that species turnover constituted the primary mechanism of community differentiation for both fungal types, explaining >56% of the observed variation. Stochastic processes dominated community assembly, with the relative importance of dispersal limitation and drift showing distinct altitudinal patterns. Network analysis indicated that AMF networks reached maximum complexity in evergreen broad-leaved forests, while EMF networks showed similar complexity levels in coniferous forests. Among the examined factors, soil properties emerged as the predominant driver of altitudinal variations in ecosystem multifunctionality, followed by AMF communities and climatic variables. These findings provide critical insights into the ecological functions and environmental adaptations of mycorrhizal fungi, advancing our understanding of their responses to environmental changes in mountain ecosystems and informing evidence-based conservation strategies.
Collapse
Affiliation(s)
- Taotao Wei
- College of Forestry, Fujian Agriculture and Forestry University, Fujian, China
| | - Huiguang Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China
| | - Shunfen Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fujian, China
| | - Chunping Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fujian, China
| | - Tieyao Tu
- Fujian Provincial Forestry Survey and Planning Institute, Fujian, China
| | - Yonglong Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangdong, China
| | - Xin Qian
- College of Forestry, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
2
|
Luo YH, Ma LL, Cadotte MW, Seibold S, Zou JY, Burgess KS, Tan SL, Ye LJ, Zheng W, Chen ZF, Liu DT, Zhu GF, Shi XC, Zhao W, Bi Z, Huang XY, Li JH, Liu J, Li DZ, Gao LM. Testing the ectomycorrhizal-dominance hypothesis for ecosystem multifunctionality in a subtropical mountain forest. THE NEW PHYTOLOGIST 2024; 243:2401-2415. [PMID: 39073209 DOI: 10.1111/nph.20003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Mycorrhizal associations are key mutualisms that shape the structure of forest communities and multiple ecosystem functions. However, we lack a framework for predicting the varying dominance of distinct mycorrhizal associations in an integrated proxy of multifunctionality across ecosystems. Here, we used the datasets containing diversity of mycorrhizal associations and 18 ecosystem processes related to supporting, provisioning, and regulating services to examine how the dominance of ectomycorrhiza (EcM) associations affects ecosystem multifunctionality in subtropical mountain forests in Southwest China. Meanwhile, we synthesized the prevalence of EcM-dominant effects on ecosystem functioning in forest biomes. Our results demonstrated that elevation significantly modified the distributions of EcM trees and fungal dominance, which in turn influenced multiple functions simultaneously. Multifunctionality increased with increasing proportion of EcM associations, supporting the ectomycorrhizal-dominance hypothesis. Meanwhile, we observed that the impacts of EcM dominance on individual ecosystem functions exhibited different relationships among forest biomes. Our findings highlight the importance of ectomycorrhizal dominance in regulating multifunctionality in subtropical forests. However, this ectomycorrhizal feedback in shaping ecosystem functions cannot necessarily be generalized across forests. Therefore, we argue that the predictions for ecosystem multifunctionality in response to the shifts of mycorrhizal composition could vary across space and time.
Collapse
Affiliation(s)
- Ya-Huang Luo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Liang-Liang Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Toronto, ON, M1C1A4, Canada
| | - Sebastian Seibold
- Forest Zoology, TUD Dresden University of Technology, Tharandt, 01737, Germany
- Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
- Berchtesgaden National Park, Berchtesgaden, 83471, Germany
| | - Jia-Yun Zou
- Forest Zoology, TUD Dresden University of Technology, Tharandt, 01737, Germany
- Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
| | - Kevin S Burgess
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, 31901, USA
| | - Shao-Lin Tan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lin-Jiang Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Zheng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhi-Fa Chen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Tuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guang-Fu Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Chun Shi
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, 678000, China
| | - Wei Zhao
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, 678000, China
| | - Zheng Bi
- Gaoligongshan National Nature Reserve Baoshan Bureau Tengchong Division, Baoshan, 679100, China
| | - Xiang-Yuan Huang
- Gaoligongshan National Nature Reserve Baoshan Bureau Tengchong Division, Baoshan, 679100, China
| | - Jia-Hua Li
- Gaoligongshan National Nature Reserve Baoshan Bureau Longyang Division, Baoshan, 678000, China
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Lian-Ming Gao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| |
Collapse
|
3
|
Yu L, Zhang Z, Liu P, Zhou L, Tan S, Kuang S. Arbuscular Mycorrhizal Fungi Diversity in Sophora japonica Rhizosphere at Different Altitudes and Lithologies. J Fungi (Basel) 2024; 10:340. [PMID: 38786696 PMCID: PMC11121806 DOI: 10.3390/jof10050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Arbuscular mycorrhizal fungi play a key role in mediating soil-plant relationships within karst ecosystems. Sophora japonica, a medicinal plant with anti-inflammatory and antitumor properties, is widely cultivated in karst areas of Guangxi, China. We considered limestone, dolomite, and sandstone at altitudes ranging from 100 to 800 m and employed Illumina sequencing to evaluate AMF diversity and identify the factors driving S. japonica rhizosphere AMF community changes. We showed that the increase in altitude increased S. japonica AMF colonization and the Shannon index. The colonization of limestone plots was higher than that of other lithology. In total, 3,096,236 sequences and 5767 OTUs were identified in S. japonica rhizosphere soil. Among these, 270 OTUs were defined at the genus level and divided into 7 genera and 35 species. Moreover, available nitrogen, soil organic matter, and available calcium content had a coupling effect and positive influence on AMF colonization and Shannon and Chao1 indices. Conversely, available phosphorus, available potassium, and available magnesium negatively affected AMF Shannon and Chao1 indices. Lithology, altitude, pH, and available phosphorus are important factors that affect the dynamics of AMF in the S. japonica rhizosphere.
Collapse
Affiliation(s)
- Limin Yu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
- College of Life Sciences, Guangxi Normal University, Guilin 541006, China
| | - Zhongfeng Zhang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
| | - Peiyuan Liu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
- School of Pharmacy, Guilin Medical University, Guilin 541006, China
| | - Longwu Zhou
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
| | - Shuhui Tan
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Y.); (L.Z.); (S.T.)
| | - Shitou Kuang
- Agriculture and Rural Affairs Bureau of Quanzhou County, Guilin 541599, China;
| |
Collapse
|
4
|
Cusack DF, Christoffersen B, Smith-Martin CM, Andersen KM, Cordeiro AL, Fleischer K, Wright SJ, Guerrero-Ramírez NR, Lugli LF, McCulloch LA, Sanchez-Julia M, Batterman SA, Dallstream C, Fortunel C, Toro L, Fuchslueger L, Wong MY, Yaffar D, Fisher JB, Arnaud M, Dietterich LH, Addo-Danso SD, Valverde-Barrantes OJ, Weemstra M, Ng JC, Norby RJ. Toward a coordinated understanding of hydro-biogeochemical root functions in tropical forests for application in vegetation models. THE NEW PHYTOLOGIST 2024; 242:351-371. [PMID: 38416367 DOI: 10.1111/nph.19561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.
Collapse
Affiliation(s)
- Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Bradley Christoffersen
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Amanda L Cordeiro
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Katrin Fleischer
- Department Biogeochemical Signals, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, 07745, Germany
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Nathaly R Guerrero-Ramírez
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Gottingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Gottingen, 37077, Germany
| | - Laynara F Lugli
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lindsay A McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- National Center for Atmospheric Research, National Oceanographic and Atmospheric Agency, 1850 Table Mesa Dr., Boulder, CO, 80305, USA
| | - Mareli Sanchez-Julia
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah A Batterman
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Caroline Dallstream
- Department of Biology, McGill University, 1205 Av. du Docteur-Penfield, Montreal, QC, H3A 1B1, Canada
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34398, France
| | - Laura Toro
- Yale Applied Science Synthesis Program, The Forest School at the Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Michelle Y Wong
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Daniela Yaffar
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Marie Arnaud
- Institute of Ecology and Environmental Sciences (IEES), UMR 7618, CNRS-Sorbonne University-INRAE-UPEC-IRD, Paris, 75005, France
- School of Geography, Earth and Environmental Sciences & BIFOR, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
- Department of Biology, Haverford College, Haverford, PA, 19003, USA
| | - Shalom D Addo-Danso
- Forests and Climate Change Division, CSIR-Forestry Research Institute of Ghana, P.O Box UP 63 KNUST, Kumasi, Ghana
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Jing Cheng Ng
- Nanyang Technological University, Singapore, 639798, Singapore
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
5
|
Xiao D, Tang Y, Zhang W, Hu P, Wang K. Lithology and niche habitat have significant effect on arbuscular mycorrhizal fungal abundance and their interspecific interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170774. [PMID: 38340853 DOI: 10.1016/j.scitotenv.2024.170774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The chemical properties of bedrock play a crucial role in shaping the communities of soil and root-associated arbuscular mycorrhizal fungi (AMF). We investigate AMF community composition and diversity in bulk soil, rhizosphere soil, and roots in karst and non-karst forests. Chemical properties of bedrock of the calcium oxide (CaO) and ratio of calcium oxide and magnesium oxide (Ca/Mg), soil pH, and exchangeable Ca2+ were higher in karst carbonate rocks compared to non-karst clastic rocks. Conversely, bedrock phosphorus content (P-rock), silicon dioxide (SiO2) content, and tree diversity exhibited an opposing trend. AMF abundance was higher in non-karst clastic rocks than in karst carbonate rocks. Stronger interspecific interactions among AMF taxa occurred in the bulk soil and rhizosphere soil of non-karst clastic rocks compared to karst carbonate rocks. AMF abundance and diversity were higher in rhizosphere soil and roots, attributed to increasing nutrient availability when compared to the bulk soil. A more complex network within AMF taxa was observed in rhizosphere soil and roots compared to bulk soil due to an increase in AMF abundance and diversity in rhizosphere soil and roots. Comparing non-karst clastic rocks, karst carbonate rocks increased soil nitrogen (N) and P levels, which can be attributed to the elevated content of soil Ca2+ and Mg2+ content, facilitated by the high CaO content and Ca/Mg ratio in the bedrock of karst forests. However, the thicker soil layer exhibited higher soil nutrient storage, resulting in greater tree diversity in non-karst forests. These findings suggest that high tree richness may increase root biomass and secretion of root exudates in non-karst regions, thereby enhancing the abundance of AMF and their interspecies interactions. Consequently, the diverse bedrock properties that drive variations in soil properties, nutrients, and plant diversity can impact AMF communities, ultimately promoting plant growth and contributing to vegetation recovery.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Yixin Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Wuhan Geomatics Institute, Wuhan 430022, China
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| | - Peilei Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| |
Collapse
|
6
|
Medina-Vega JA, Zuleta D, Aguilar S, Alonso A, Bissiengou P, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Castaño N, Chave J, Dalling JW, de Oliveira AA, Duque Á, Ediriweera S, Ewango CEN, Filip J, Hubbell SP, Itoh A, Kiratiprayoon S, Lum SKY, Makana JR, Memiaghe H, Mitre D, Mohamad MB, Nathalang A, Nilus R, Nkongolo NV, Novotny V, O'Brien MJ, Pérez R, Pongpattananurak N, Reynolds G, Russo SE, Tan S, Thompson J, Uriarte M, Valencia R, Vicentini A, Yao TL, Zimmerman JK, Davies SJ. Tropical tree ectomycorrhiza are distributed independently of soil nutrients. Nat Ecol Evol 2024; 8:400-410. [PMID: 38200369 DOI: 10.1038/s41559-023-02298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Mycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers. Using data from 31 lowland tropical forests, both at a coarse scale (mean-plot-level data) and fine scale (20 × 20 metres from a subset of 16 sites), we demonstrate that the distribution and abundance of EcM-associated trees are independent of soil quality. Resource exchange differences among mycorrhizal partners, stemming from diverse evolutionary origins of mycorrhizal fungi, may decouple soil fertility from the advantage provided by mycorrhizal associations. Additionally, distinct historical biogeographies and diversification patterns have led to differences in forest composition and nutrient-acquisition strategies across three major tropical regions. Notably, Africa and Asia's lowland tropical forests have abundant EcM trees, whereas they are relatively scarce in lowland neotropical forests. A greater understanding of the functional biology of mycorrhizal symbiosis is required, especially in the lowland tropics, to overcome biases from assuming similarity to temperate and boreal regions.
Collapse
Affiliation(s)
- José A Medina-Vega
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA.
| | - Daniel Zuleta
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| | | | - Alfonso Alonso
- Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Pulchérie Bissiengou
- Herbier National du Gabon, Institut de Pharmacopée et de Médecine Traditionelle, Libreville, Gabon
| | - Warren Y Brockelman
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sarayudh Bunyavejchewin
- Thai Long-Term Forest Ecological Research Project, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Nicolás Castaño
- Herbario Amazónico Colombiano, Instituto Amazónico de Investigaciones Científicas Sinchi, Bogotá, Colombia
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, CNRS, UPS, IRD, Université Paul Sabatier, Toulouse, France
| | - James W Dalling
- Smithsonian Tropical Research Institute, Balboa, Panama
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alexandre A de Oliveira
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Álvaro Duque
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Sisira Ediriweera
- Department of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
| | - Corneille E N Ewango
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Jonah Filip
- Binatang Research Center, Madang, Papua New Guinea
| | - Stephen P Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Akira Itoh
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Somboon Kiratiprayoon
- Faculty of Science and Technology, Thammasat University (Rangsit), Pathum Thani, Thailand
| | - Shawn K Y Lum
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Jean-Remy Makana
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Hervé Memiaghe
- Institut de Recherche en Ecologie Tropicale, Centre National de la Recherche Scientifique et Technologique, Libreville, Gabon
| | - David Mitre
- Smithsonian Tropical Research Institute, Balboa, Panama
| | | | - Anuttara Nathalang
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Thailand
| | - Reuben Nilus
- Sabah Forestry Department, Forest Research Centre, Sandakan, Malaysia
| | - Nsalambi V Nkongolo
- School of Science, Navajo Technical University, Crownpoint, NM, USA
- Institut Facultaire des Sciences Agronomiques (IFA) de Yangambi, Kisangani, Democratic Republic of the Congo
| | - Vojtech Novotny
- Biology Centre, Institute of Entomology of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Michael J O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - Rolando Pérez
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Nantachai Pongpattananurak
- Thai Long-Term Forest Ecological Research Project, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Glen Reynolds
- Southeast Asia Rainforest Research Partnership (SEARRP), Kota Kinabalu, Malaysia
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
| | | | | | - María Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Renato Valencia
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Alberto Vicentini
- Coordenação de Dinâmica Ambiental (CODAM), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Tze Leong Yao
- Forestry and Environment Division, Forest Research Institute Malaysia, Kepong, Malaysia
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| |
Collapse
|
7
|
Zhao J, He X, Xiao D, Chen M, Cheng M, Wang Z. Impacts of Lithology and Slope Position on Arbuscular Mycorrhizal Fungi Communities in a Karst Forest Soil. J Fungi (Basel) 2023; 9:1133. [PMID: 38132734 PMCID: PMC10743893 DOI: 10.3390/jof9121133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The influence of lithology and slope position on arbuscular mycorrhizal fungi (AMF) communities has been explored in various ecosystems, but there is a limited understanding of these mechanisms in karst regions. This study focused on typical karst hills with contrasting lithologies, specifically dolomite and limestone. Additionally, three slope positions (upper, middle, and lower) were investigated within each hill in karst forest ecosystems. Total phosphorus (TP) content in the soil was higher in dolomite compared to limestone. Conversely, exchangeable calcium (Ca) was lower in dolomite than in limestone. Notably, the lithology, rather than the slope position, exerted a significant impact on AMF diversity and abundance and the presence of specific AMF taxa. Dolomite exhibited greater AMF richness and a higher Shannon index in comparison to limestone when not accounting for slope position. The AMF community composition differed between dolomite and limestone. For instance, without considering slope position, the relative abundance of Acaulospora, Diversispora, and Paraglomus was higher in dolomite than in limestone, while the relative abundance of Claroideoglomus displayed an opposing trend. Furthermore, a more complex interaction among AMF taxa was observed in dolomite as compared to limestone, as evidenced by an increase in the number of nodes and edges in the co-occurrence networks within the dolomite. The genera Glomus, Claroideoglomus, and Diversispora exhibited a higher number of links with each other and with other AMF taxa. The study identified TP and Ca as the primary factors determining variations in AMF diversity between dolomite and limestone. Consequently, it is imperative to consider the underlying lithology and soil conditions when addressing the restoration of degraded karst hilly areas.
Collapse
Affiliation(s)
- Jin Zhao
- Forestry College, Central South University of Forestry and Technology, Changsha 410004, China (M.C.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Xunyang He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Dan Xiao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Meifeng Chen
- Forestry College, Central South University of Forestry and Technology, Changsha 410004, China (M.C.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Ming Cheng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Zhongcheng Wang
- Forestry College, Central South University of Forestry and Technology, Changsha 410004, China (M.C.)
| |
Collapse
|
8
|
Hogan JA, Jusino MA, Smith ME, Corrales A, Song X, Hu YH, Yang J, Cao M, Valverde-Barrantes OJ, Baraloto C. Root-associated fungal communities are influenced more by soils than by plant-host root traits in a Chinese tropical forest. THE NEW PHYTOLOGIST 2023; 238:1849-1864. [PMID: 36808625 DOI: 10.1111/nph.18821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Forest fungal communities are shaped by the interactions between host tree root systems and the associated soil conditions. We investigated how the soil environment, root morphological traits, and root chemistry influence root-inhabiting fungal communities in three tropical forest sites of varying successional status in Xishuangbanna, China. For 150 trees of 66 species, we measured root morphology and tissue chemistry. Tree species identity was confirmed by sequencing rbcL, and root-associated fungal (RAF) communities were determined using high-throughput ITS2 sequencing. Using distance-based redundancy analysis and hierarchical variation partitioning, we quantified the relative importance of two soil variables (site average total phosphorus and available phosphorus), four root traits (dry matter content, tissue density, specific tip abundance, and forks), and three root tissue elemental concentrations (nitrogen, calcium, and manganese) on RAF community dissimilarity. The root and soil environment collectively explained 23% of RAF compositional variation. Soil phosphorus explained 76% of that variation. Twenty fungal taxa differentiated RAF communities among the three sites. Soil phosphorus most strongly affects RAF assemblages in this tropical forest. Variation in root calcium and manganese concentrations and root morphology among tree hosts, principally an architectural trade-off between dense, highly branched vs less-dense, herringbone-type root systems, are important secondary determinants.
Collapse
Affiliation(s)
- J Aaron Hogan
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Michelle A Jusino
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- USDA Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, WI, 53726, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Adriana Corrales
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111221, Colombia
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Yue-Hua Hu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Christopher Baraloto
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
9
|
Russo SE, Ledder G, Muller EB, Nisbet RM. Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. CONSERVATION PHYSIOLOGY 2022; 10:coac061. [PMID: 36128259 PMCID: PMC9477497 DOI: 10.1093/conphys/coac061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change is having dramatic effects on the diversity and distribution of species. Many of these effects are mediated by how an organism's physiological patterns of resource allocation translate into fitness through effects on growth, survival and reproduction. Empirically, resource allocation is challenging to measure directly and so has often been approached using mathematical models, such as Dynamic Energy Budget (DEB) models. The fact that all plants require a very similar set of exogenous resources, namely light, water and nutrients, integrates well with the DEB framework in which a small number of variables and processes linked through pathways represent an organism's state as it changes through time. Most DEB theory has been developed in reference to animals and microorganisms. However, terrestrial vascular plants differ from these organisms in fundamental ways that make resource allocation, and the trade-offs and feedbacks arising from it, particularly fundamental to their life histories, but also challenging to represent using existing DEB theory. Here, we describe key features of the anatomy, morphology, physiology, biochemistry, and ecology of terrestrial vascular plants that should be considered in the development of a generic DEB model for plants. We then describe possible approaches to doing so using existing DEB theory and point out features that may require significant development for DEB theory to accommodate them. We end by presenting a generic DEB model for plants that accounts for many of these key features and describing gaps that would need to be addressed for DEB theory to predict the responses of plants to climate change. DEB models offer a powerful and generalizable framework for modelling resource allocation in terrestrial vascular plants, and our review contributes a framework for expansion and development of DEB theory to address how plants respond to anthropogenic change.
Collapse
Affiliation(s)
- Sabrina E Russo
- School of Biological Sciences, University of Nebraska, 1104 T Street Lincoln, Nebraska 68588-0118, USA
- Center for Plant Science Innovation, University of Nebraska, 1901 Vine Street, N300 Beadle Center, Lincoln, Nebraska 68588-0660, USA
| | - Glenn Ledder
- Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, Nebraska 68588-0130, USA
| | - Erik B Muller
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Institut für Biologische Analytik und Consulting IBACON GmbH, Arheilger Weg 17 Roß dorf, Hesse D-64380, Germany
| | - Roger M Nisbet
- Marine Science Institute, University of California, Santa Barbara, California 93106, USA
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
10
|
Ward EB, Duguid MC, Kuebbing SE, Lendemer JC, Bradford MA. The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. THE NEW PHYTOLOGIST 2022; 235:1701-1718. [PMID: 35704030 DOI: 10.1111/nph.18307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Ericoid mycorrhizal (ErM) shrubs commonly occur in forest understories and could therefore alter arbuscular (AM) and/or ectomycorrhizal (EcM) tree effects on soil carbon and nitrogen dynamics. Specifically, ErM fungi have extensive organic matter decay capabilities, and ErM plant and fungal tissues have high concentrations of secondary compounds that can form persistent complexes in the soil. Together, these traits could contribute to organic matter accumulation and inorganic nutrient limitation. These effects could also differ in AM- vs EcM-dominated stands at multiple scales within and among forest biomes by, for instance, altering fungal guild interactions. Most work on ErM effects in forests has been conducted in boreal forests dominated by EcM trees. However, ErM plants occur in c. 96, 69 and 29% of boreal, temperate and tropical forests, respectively. Within tropical montane forests, the effects of ErM plants could be particularly pronounced because their traits are more distinct from AM than EcM trees. Because ErM fungi can function as free-living saprotrophs, they could also be more resilient to forest disturbances than obligate symbionts. Further consideration of ErM effects within and among forest biomes could improve our understanding of how cooccurring mycorrhizal types interact to collectively affect soil carbon and nitrogen dynamics under changing conditions.
Collapse
Affiliation(s)
- Elisabeth B Ward
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
- The New York Botanical Garden, The Bronx, NY, 10458, USA
| | - Marlyse C Duguid
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sara E Kuebbing
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | | | - Mark A Bradford
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
11
|
Tree mycorrhizal type mediates conspecific negative density dependence effects on seedling herbivory, growth, and survival. Oecologia 2022; 199:907-918. [PMID: 35920917 DOI: 10.1007/s00442-022-05224-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
Tree mycorrhizal type plays an important role in promoting plant species diversity and coexistence, via its mediating role in conspecific negative density dependence (CNDD), i.e., the process by which an individual's performance is impaired by the density of conspecific plants. Previous findings suggest that ectomycorrhizal (EM) tree species are generally less susceptible to CNDD than arbuscular mycorrhizal (AM) tree species, due to the chemical and physical protection that EM fungi provide their host with. We examined how CNDD effects on leaf herbivory, seedling growth, and survival differ between AM and EM seedlings of ten tree species collected over 3 years in an old-growth temperate forest in northeastern China. We found that AM and EM seedlings differed in how conspecific density affected their leaf herbivory, seedling growth, and survival. Specifically, AM seedlings leaf herbivory rates significantly increased with increasing conspecific seedling and adult density, and their growth and survival rates decreased with increasing conspecific adult density, these patterns were, however, absent in EM seedlings. Our work suggests that AM seedlings have a performance disadvantage relative to EM seedlings related to the negative effects from conspecific neighbors. We highlight the importance of integrating information on seedling leaf herbivory, seedling growth, to provide further understanding on potential mechanisms driving differences in CNDD between AM and EM tree seedlings.
Collapse
|
12
|
Bartholomew DC, Banin LF, Bittencourt PRL, Suis MAF, Mercado LM, Nilus R, Burslem DFRP, Rowland LR. Differential nutrient limitation and tree height control leaf physiology, supporting niche partitioning in tropical dipterocarp forests. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- D. C. Bartholomew
- College of Life and Environmental Sciences University of Exeter Exeter UK
- Department of Ecology and Environmental Science Umeå University Umeå Sweden
| | - L. F. Banin
- UK Centre for Ecology & Hydrology, Penicuik Midlothian UK
| | | | - M. A. F. Suis
- Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715 Sandakan Sabah Malaysia
| | - L. M. Mercado
- College of Life and Environmental Sciences University of Exeter Exeter UK
- UK Centre for Ecology & Hydrology Wallingford UK
| | - R. Nilus
- Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715 Sandakan Sabah Malaysia
| | | | - L. R. Rowland
- College of Life and Environmental Sciences University of Exeter Exeter UK
| |
Collapse
|
13
|
Segnitz RM, Russo SE, Peay KG. Interactions with soil fungi alter density dependence and neighborhood effects in a locally abundant dipterocarp species. Ecol Evol 2022; 12:e8478. [PMID: 35127017 PMCID: PMC8796921 DOI: 10.1002/ece3.8478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
Seedling recruitment can be strongly affected by the composition of nearby plant species. At the neighborhood scale (on the order of tens of meters), adult conspecifics can modify soil chemistry and the presence of host microbes (pathogens and mutualists) across their combined canopy area or rooting zones. At local or small spatial scales (on the order of one to few meters), conspecific seed or seedling density can influence the strength of intraspecific light and resource competition and also modify the density-dependent spread of natural enemies such as pathogens or invertebrate predators. Intrinsic correlation between proximity to adult conspecifics (i.e., recruitment neighborhood) and local seedling density, arising from dispersal, makes it difficult to separate the independent and interactive factors that contribute to recruitment success. Here, we present a field experiment in which we manipulated both the recruitment neighborhood and seedling density to explore how they interact to influence the growth and survival of Dryobalanops aromatica, a dominant ectomycorrhizal tree species in a Bornean tropical rainforest. First, we found that both local seedling density and recruitment neighborhood had effects on performance of D. aromatica seedlings, though the nature of these impacts varied between growth and survival. Second, we did not find strong evidence that the effect of density on seedling survival is dependent on the presence of conspecific adult trees. However, accumulation of mutualistic fungi beneath conspecifics adults does facilitate establishment of D. aromatica seedlings. In total, our results suggest that recruitment near adult conspecifics was not associated with a performance cost and may have weakly benefitted recruiting seedlings. Positive effects of conspecifics may be a factor facilitating the regional hyperabundance of this species. Synthesis: Our results provide support for the idea that dominant species in diverse forests may escape the localized recruitment suppression that limits abundance in rarer species.
Collapse
Affiliation(s)
- R. Max Segnitz
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Sabrina E. Russo
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - Kabir G. Peay
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
- Woods Institute for the EnvironmentStanfordCaliforniaUSA
| |
Collapse
|
14
|
Karst J, Franklin J, Simeon A, Light A, Bennett JA, Erbilgin N. Assessing the dual-mycorrhizal status of a widespread tree species as a model for studies on stand biogeochemistry. MYCORRHIZA 2021; 31:313-324. [PMID: 33829296 DOI: 10.1007/s00572-021-01029-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Viewing plant species by their mycorrhizal type has explained a range of ecosystem processes. However, mycorrhizal type is confounded with plant phylogeny and the environments in which mycorrhizal partners occur. To circumvent these confounding effects, "dual-mycorrhizal" plant species may be potential models for testing the influence of mycorrhizal type on stand biogeochemistry. To assess their use as models, duality in mycorrhizas within a single host species must be confirmed and factors underlying their variation understood. We surveyed roots, soils, and leaves of mature aspen (Populus tremuloides) across 27 stands in western Canada spanning two biomes: boreal forest and parklands. Aspen roots were mostly ectomycorrhizal with sporadic and rare occurrences of arbuscular mycorrhizas. We further tested whether a climate moisture index predicted abundance of ectomycorrhizal roots (number of ectomycorrhizal root tips m-1 root length) surveyed at two depths (0-20 cm and 20-40 cm) and found that ectomycorrhizal root abundance in subsoils (20-40 cm) was positively related to the index. We subsequently examined the relationships between ectomycorrhizal root abundance, leaf traits, and slow and fast pools of soil organic carbon and nitrogen. The ratio of leaf lignin:N, but not its components, increased along with ectomycorrhizal root abundance in subsoils. Soil carbon and nitrogen pools were independent of ectomycorrhizal root abundance. Our results suggest that (1) categorizing aspen as dual-mycorrhizal may overstate the functional importance of arbuscular mycorrhizas in this species and life stage, (2) water availability influences ectomycorrhizal root abundance, and (3) ectomycorrhizal root abundance coincides with leaf quality.
Collapse
Affiliation(s)
- Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, Canada.
| | - James Franklin
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Andrea Simeon
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Ashley Light
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| |
Collapse
|