1
|
Wang L, Li Y, Wang X, Duan Y, Zheng C. Halophytic succulence is a driver of the leaf non-structural carbohydrate contents in plants in the arid and hyper-arid deserts of northwestern China. ANNALS OF BOTANY 2025; 135:565-576. [PMID: 39441233 PMCID: PMC11897595 DOI: 10.1093/aob/mcae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS Non-structural carbohydrates (NSC), primarily sugars and starch, play a crucial role in plant metabolic processes and the ability of a plant to tolerate and recover from drought stress. Despite their importance, our understanding of NSC characteristics in the leaves of plants that thrive in hyper-arid and saline environments remains limited. METHODS To investigate the variations in leaf NSC across different species and spatial scales and to explore their possible causes, we collected 488 leaf samples from 49 native plant species at 115 sites in the desert area of northwestern China. The contents of soluble sugars (SS), starch and total NSC were then determined. KEY RESULTS The average contents of SS, starch and total NSC were 26.99, 60.28 and 87.27 mg g-1, respectively, which are much lower than those reported for Chinese forest plants and global terrestrial plants. Herbaceous and woody plants had similar NSC levels. In contrast, succulent halophytes, a key component of desert flora, showed significantly lower leaf SS and total NSC contents than non-succulent plants. We observed a strong negative correlation between leaf succulence and SS content, suggesting a role of halophytic succulence in driving multispecies NSC pools. Environmental factors explained a minor portion of the spatial variation in leaf NSC, possibly owing to the narrow climatic variation in the study area, and soil properties, particularly soil salinity, emerged as more significant contributors. CONCLUSIONS Our findings increase the understanding of plant adaptation to drought and salt stress, emphasizing the crucial role of halophytic succulence in shaping the intricate dynamics of leaf NSC across diverse plant species in arid and hyper-arid environments.
Collapse
Affiliation(s)
- Lilong Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730000, China
| | - Yuqiang Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuyang Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730000, China
| | - Yulong Duan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730000, China
| | - Chengzhuo Zheng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030, China
| |
Collapse
|
2
|
Wieloch T, Holloway‐Phillips M, Yu J, Niittylä T. New insights into the mechanisms of plant isotope fractionation from combined analysis of intramolecular 13C and deuterium abundances in Pinus nigra tree-ring glucose. THE NEW PHYTOLOGIST 2025; 245:1000-1017. [PMID: 39314055 PMCID: PMC11711956 DOI: 10.1111/nph.20113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
Understanding isotope fractionation mechanisms is fundamental for analyses of plant ecophysiology and paleoclimate based on tree-ring isotope data. To gain new insights into isotope fractionation, we analysed intramolecular 13C discrimination in tree-ring glucose (Δi', i = C-1 to C-6) and metabolic deuterium fractionation at H1 and H2 (εmet) combinedly. This dual-isotope approach was used for isotope-signal deconvolution. We found evidence for metabolic processes affecting Δ1' and Δ3', which respond to air vapour pressure deficit (VPD), and processes affecting Δ1', Δ2', and εmet, which respond to precipitation but not VPD. These relationships exhibit change points dividing a period of homeostasis (1961-1980) from a period of metabolic adjustment (1983-1995). Homeostasis may result from sufficient groundwater availability. Additionally, we found Δ5' and Δ6' relationships with radiation and temperature, which are temporally stable and consistent with previously proposed isotope fractionation mechanisms. Based on the multitude of climate covariables, intramolecular carbon isotope analysis has a remarkable potential for climate reconstruction. While isotope fractionation beyond leaves is currently considered to be constant, we propose significant parts of the carbon and hydrogen isotope variation in tree-ring glucose originate in stems (precipitation-dependent signals). As basis for follow-up studies, we propose mechanisms introducing Δ1', Δ2', Δ3', and εmet variability.
Collapse
Affiliation(s)
- Thomas Wieloch
- Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences, Umeå Plant Science Centre90183UmeåSweden
- Division of Geological and Planetary SciencesCalifornia Institute of Technology91125PasadenaCAUSA
| | - Meisha Holloway‐Phillips
- Research Unit of Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL8903BirmendsorfSwitzerland
| | - Jun Yu
- Department of Mathematics and Mathematical StatisticsUmeå University90187UmeåSweden
| | - Totte Niittylä
- Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural Sciences, Umeå Plant Science Centre90183UmeåSweden
| |
Collapse
|
3
|
Peng X, Bai Q, Chen G, Yu X, Zhang X. Mechanism of Bacillus cooperating with silicon to re-balance chlorophyll metabolism and restore carbon metabolism of Glycyrrhiza uralensis Fisch. Seedlings exposed to salt-drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109337. [PMID: 39616804 DOI: 10.1016/j.plaphy.2024.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025]
Abstract
Salt-drought is a major environmental event affecting crop productivity and quality by causing chlorophyll (Chl) and carbon balance disorder. There has been growing interest in the application of endophyte and silicon (Si), as inoculants for saline and drought land restoration. This study investigates the impact of Bacillus (Bs), Si, and Bs + Si on the disorder of Chl metabolism and carbon balance of G. uralensis seedlings under salt-drought stress (SD). Results showed that both Bs and Si treatments enhanced Chl and carbon metabolism, with the combined Bs and Si treatment showing a synergistic effect. Specifically, Bs + Si enhanced the mutual conversion of Chl a and Chl b, restored the equilibrium in Chl a and Chl b content, and increased RuBisco activity by 31.07%, thereby promoting carbon fixation. Subsequently, Bs + Si re-balanced the carbohydrate content, by increasing the sucrose synthase (SS), and β-amylase (BMY) activities by 49.57%, and 83.59% respectively, and decreasing sucrose phosphate synthase (SPS), and granule-bound starch synthase (GBSS) activities by 38.93%, 40.93% respectively etc involved in the metabolism of sucrose and starch. Furthermore, Bs + Si facilitated the restoration of the typical progression of the tricarboxylic acid (TCA) cycle and glycolysis pathway (EMP). These findings highlight the synergistic role of Bs and Si in enhancing the salt and drought resilience of G. uralensis seedlings, offering promising strategies for sustainable agriculture, improving crop resilience to climate change, and achieving the "dual carbon" goals of carbon peaking and carbon neutrality.
Collapse
Affiliation(s)
- Xueying Peng
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China
| | - Qiuxian Bai
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China
| | - Guohui Chen
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China
| | - Xiangjuan Yu
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
4
|
Niu L, Wu X, Liu H, Hu X, Wang W. Leaf starch degradation by β-amylase ZmBAM8 influences drought tolerance in maize. Carbohydr Polym 2024; 345:122555. [PMID: 39227118 DOI: 10.1016/j.carbpol.2024.122555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
As a typical C4 plant and important crop worldwide, maize is susceptible to drought. In maize, transitory starch (TS) turnover occurs in the vascular bundle sheath of leaves, differing from that in Arabidopsis (a C3 plant). This process, particularly its role in drought tolerance and the key starch-hydrolyzing enzymes involved, is not fully understood. We discovered that the expression of the β-amylase (BAM) gene ZmBAM8 is highly upregulated in the drought-tolerant inbred line Chang7-2t. Inspired by this finding, we systematically investigated TS degradation in maize lines, including Chang7-2t, Chang7-2, B104, and ZmBAM8 overexpression (OE) and knockout (KO) lines. We found that ZmBAM8 was significantly induced in the vascular bundle sheath by drought, osmotic stress, and abscisic acid. The stress-induced gene expression and chloroplast localization of ZmBAM8 align with the tissue and subcellular sites where TS turnover occurs. The recombinant ZmBAM8 was capable of effectively hydrolyzing leaf starch. Under drought conditions, the leaf starch in ZmBAM8-OE plants substantially decreased under light, while that in ZmBAM8-KO plants did not decrease. Compared with ZmBAM8-KO plants, ZmBAM8-OE plants exhibited increased drought tolerance. Our study provides insights into the significance of leaf starch degradation in C4 crops and contributes to the development of drought-resistant maize.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Parri S, Faleri C, Romi M, del Río JC, Rencoret J, Dias MCP, Anichini S, Cantini C, Cai G. Unravelling Different Water Management Strategies in Three Olive Cultivars: The Role of Osmoprotectants, Proteins, and Wood Properties. Int J Mol Sci 2024; 25:11059. [PMID: 39456839 PMCID: PMC11507519 DOI: 10.3390/ijms252011059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Understanding the responses of olive trees to drought stress is crucial for improving cultivation and developing drought-tolerant varieties. Water transport and storage within the plant is a key factor in drought-tolerance strategies. Water management can be based on a variety of factors such as stomatal control, osmoprotectant molecules, proteins and wood properties. The aim of the study was to evaluate the water management strategy under drought stress from an anatomical and biochemical point of view in three young Italian olive cultivars (Giarraffa, Leccino and Maurino) previously distinguished for their physiological and metabolomic responses. For each cultivar, 15 individuals in pots were exposed or not to 28 days of water withholding. Every 7 days, the content of sugars (including mannitol), proline, aquaporins, osmotins, and dehydrins, in leaves and stems, as well as the chemical and anatomical characteristics of the wood of the three cultivars, were analyzed. 'Giarraffa' reduced glucose levels and increased mannitol production, while 'Leccino' accumulated more proline. Both 'Leccino' and 'Maurino' increased sucrose and aquaporin levels, possibly due to their ability to remove embolisms. 'Maurino' and 'Leccino' accumulated more dehydrins and osmotins. While neither genotype nor stress affected wood chemistry, 'Maurino' had a higher vessel-to-xylem area ratio and a larger hydraulic diameter, which allows it to maintain a high transpiration rate but may make it more susceptible to cavitation. The results emphasized the need for an integrated approach, highlighting the importance of the relative timing and sequence of each parameter analyzed, allowing, overall, to define a "strategy" rather than a "response" to drought of each cultivar.
Collapse
Affiliation(s)
- Sara Parri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| | - Marco Romi
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, E-41012 Seville, Spain; (J.C.d.R.); (J.R.)
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, E-41012 Seville, Spain; (J.C.d.R.); (J.R.)
| | - Maria Celeste Pereira Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Sara Anichini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine, 18, 50144 Firenze, Italy
| | - Claudio Cantini
- Institute for BioEconomy (IBE), National Research Council (CNR), Strada Provinciale Aurelia Vecchia 49, 58022 Follonica, Italy;
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| |
Collapse
|
6
|
Dias MC, Silva S, Galhano C, Lorenzo P. Olive Tree Belowground Microbiota: Plant Growth-Promoting Bacteria and Fungi. PLANTS (BASEL, SWITZERLAND) 2024; 13:1848. [PMID: 38999688 PMCID: PMC11244348 DOI: 10.3390/plants13131848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The olive tree is one of the most significant crops in the Mediterranean region. Its remarkable adaptability to various environments has facilitated olive cultivation across diverse regions and agricultural scenarios. The rising global demand for olive products, coupled with climate challenges, is driving changes in cultivation methods. These changes are altering the traditional landscape and may potentially reshape the structure and composition of orchard microbial communities, which can impact productivity and stress tolerance. Bacterial and fungal communities naturally associated with plants have long been recognized as crucial for plant growth and health, serving as a vital component of sustainable agriculture. In this review, we aim to highlight the significance of olive cultivation and the impact of abiotic stresses. We update the current knowledge on the profiles of rhizosphere and root fungal and bacterial communities in olive orchards and examine how (a)biotic factors influence these communities. Additionally, we explore the potential of plant growth-promoting bacteria and fungi in enhancing olive physiological performance and stress tolerance. We identify knowledge gaps and emphasize the need for implementing new strategies. A comprehensive understanding of olive-associated microbiota will aid in developing sustainable agronomic practices to address climatic challenges and meet the growing demand for olive products.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Associate Laboratory TERRA, Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cristina Galhano
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Paula Lorenzo
- Associate Laboratory TERRA, Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
7
|
Parri S, Cai G, Romi M, Cantini C, Pinto DCGA, Silva AMS, Dias MCP. Comparative metabolomics of leaves and stems of three Italian olive cultivars under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1408731. [PMID: 39022609 PMCID: PMC11251969 DOI: 10.3389/fpls.2024.1408731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
The Mediterranean will be one of the focal points of climate change. The predicted dry and hot summers will lead to water scarcity in agriculture, which may limit crop production and growth. The olive tree serves as a model woody plant for studying drought stress and improving water resource management; thus, it is critical to identify genotypes that are more drought tolerant and perform better under low irrigation or even rainfed conditions. In this study, the metabolomic approach was used to highlight variations in metabolites in stems and leaves of three Italian olive cultivars (previously characterized physiologically) under two and four weeks of drought stress. Phenolic and lipophilic profiles were obtained by gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-mass spectrometry, respectively. The findings identified the leaf as the primary organ in which phenolic variations occurred. The Maurino cultivar exhibited a strong stress response in the form of phenolic compound accumulation, most likely to counteract oxidative stress. The phenolic compound content of 'Giarraffa' and 'Leccino' plants remained relatively stable whether they were exposed to drought or not. Variations in the lipid profile occurred in leaves and stems of all the cultivars. A high accumulation of compounds related to epicuticular wax components was observed in the leaf of 'Giarraffa', while a strong reduction of lipids and long-chain alkanes occurred in 'Maurino' when exposed to drought stress conditions.
Collapse
Affiliation(s)
- Sara Parri
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudio Cantini
- Institute for BioEconomy (IBE), National Research Council (CNR), Follonica, Italy
| | | | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
8
|
Fan X, Lin H, Ding F, Wang M. Jasmonates Promote β-Amylase-Mediated Starch Degradation to Confer Cold Tolerance in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1055. [PMID: 38674464 PMCID: PMC11055051 DOI: 10.3390/plants13081055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Cold stress severely restricts growth and development, reduces yields, and impairs quality in tomatoes (Solanum lycopersicum). Amylase-associated starch degradation and soluble sugar accumulation have been implicated in adaptation and resistance to abiotic stress. Here, we report a β-amylase (BAM) gene, SlBAM3, which plays a central role in tomato cold tolerance. The expression of SlBAM3 was triggered by cold stress. SlBAM3 knockout using the CRISPR/Cas9 system retarded starch degradation and reduced soluble sugar accumulation in tomato plants, eventually attenuating cold tolerance. Expression analysis revealed that the SlBAM3 transcript level was boosted by MeJA. Furthermore, MYC2, an essential component of the JA signaling pathway, could bind to the SlBAM3 promoter and directly activate SlBAM3 transcription, as revealed by yeast one-hybrid and dual LUC assays. In addition, the suppression of MYC2 resulted in increased starch accumulation, decreased soluble sugar content, and reduced tolerance to cold stress in tomato plants. Taken together, these findings demonstrate that JA positively regulates β-amylase-associated starch degradation through the MYC2-SlBAM3 module in tomato during cold stress. The results of the present work expand our understanding of the mechanisms underlying BAM gene activation and starch catabolism under cold stress. The regulatory module of SlBAM3 can be further utilized to breed tomato cultivars with enhanced cold tolerance.
Collapse
Affiliation(s)
| | | | - Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (X.F.); (H.L.)
| | - Meiling Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (X.F.); (H.L.)
| |
Collapse
|
9
|
Rog I, Hilman B, Fox H, Yalin D, Qubaja R, Klein T. Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year. GLOBAL CHANGE BIOLOGY 2024; 30:e17172. [PMID: 38343030 DOI: 10.1111/gcb.17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
Tree species differ in their carbon (C) allocation strategies during environmental change. Disentangling species-specific strategies and contribution to the C balance of mixed forests requires observations at the individual tree level. We measured a complete set of C pools and fluxes at the tree level in five tree species, conifers and broadleaves, co-existing in a mature evergreen mixed Mediterranean forest. Our study period included a drought year followed by an above-average wet year, offering an opportunity to test the effect of water availability on tree C allocation. We found that in comparison to the wet year, C uptake was lower in the dry year, C use was the same, and allocation to belowground sinks was higher. Among the five major C sinks, respiration was the largest (ca. 60%), while root exudation (ca. 10%) and reproduction (ca. 2%) were those that increased the most in the dry year. Most trees relied on stored starch for maintaining a stable soluble sugars balance, but no significant differences were detected in aboveground storage between dry and wet years. The detailed tree-level analysis of nonstructural carbohydrates and δ13 C dynamics suggest interspecific differences in C allocation among fluxes and tissues, specifically in response to the varying water availability. Overall, our findings shed light on mixed forest physiological responses to drought, an increasing phenomenon under the ongoing climate change.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Boaz Hilman
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
- The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Fox
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - David Yalin
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafat Qubaja
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Surano A, del Grosso C, Musio B, Todisco S, Giampetruzzi A, Altamura G, Saponari M, Gallo V, Mastrorilli P, Boscia D, Saldarelli P. Exploring the xylem-sap to unravel biological features of Xylella fastidiosa subspecies pauca ST53 in immune, resistant and susceptible crop species through metabolomics and in vitro studies. FRONTIERS IN PLANT SCIENCE 2024; 14:1343876. [PMID: 38312355 PMCID: PMC10834688 DOI: 10.3389/fpls.2023.1343876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Xylella fastidiosa subsp. pauca ST53 (Xfp) is a pathogenic bacterium causing one of the most severe plant diseases currently threatening the olive-growing areas of the Mediterranean, the Olive Quick Decline Syndrome (OQDS). The majority of the olive cultivars upon infections more or less rapidly develop severe desiccation phenomena, while few are resistant (e.g. Leccino and FS17), being less impacted by the infections. The present study contributes to elucidating the basis of the resistance phenomenon by investigating the influence of the composition of the xylem sap of plant species on the rate of bacterial multiplication. Xylem saps from Xfp host and non-host species were used for growing the bacterium in vitro, monitoring bacterial growth, biofilm formation, and the expression of specific genes. Moreover, species-specific metabolites, such as mannitol, quinic acid, tartaric acid, and choline were identified by non-targeted NMR-based metabolomic analysis in olive, grapevine, and citrus. In general, the xylem saps of immune species, including grapevine and citrus, were richer in amino acids, organic acids, and glucose. The results showed greater bacterial growth in the olive cultivar notoriously susceptible to Xfp (Cellina di Nardò), compared to that recorded in the resistant cultivar Leccino. Conversely, higher biofilm formation occurred in Leccino compared to Cellina di Nardò. Using the xylem saps of two Xfp-immune species (citrus and grapevine), a divergent bacterial behavior was recorded: low planktonic growth and biofilm production were detected in citrus compared to the grapevine. A parallel evaluation of the expression of 15 genes showed that Xfp directs its molecular functions mainly to virulence. Overall, the results gained through this multidisciplinary study contribute to extending the knowledge on the host-pathogen interaction, while confirming that the host response and resistance mechanism have a multifactorial basis, most likely with a cumulative effect on the phenotype.
Collapse
Affiliation(s)
- Antony Surano
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Carmine del Grosso
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
| | - Annalisa Giampetruzzi
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Giuseppe Altamura
- CRSFA-Centro Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo, Italy
| | - Maria Saponari
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Noci, Italy
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Bari, Italy
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Noci, Italy
| | - Donato Boscia
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| |
Collapse
|
11
|
Peltier DMP, Carbone MS, McIntire CD, Robertson N, Thompson RA, Malone S, LeMoine J, Richardson AD, McDowell NG, Adams HD, Pockman WT, Trowbridge AM. Carbon starvation following a decade of experimental drought consumes old reserves in Pinus edulis. THE NEW PHYTOLOGIST 2023; 240:92-104. [PMID: 37430467 DOI: 10.1111/nph.19119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Shifts in the age or turnover time of non-structural carbohydrates (NSC) may underlie changes in tree growth under long-term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation. We measured NSC age (Δ14 C) along with a suite of ecophysiological metrics in Pinus edulis trees experiencing either extreme short-term drought (-90% ambient precipitation plot, 2020-2021) or a decade of severe drought (-45% plot, 2010-2021). We tested the hypothesis that carbon starvation - consumption exceeding synthesis and storage - increases the age of sapwood NSC. One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long-term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (-75%), basal area increment (-39%), and bole respiration rates (-28%). Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Mariah S Carbone
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Cameron D McIntire
- Northeastern Area State, Private, and Tribal Forestry, USDA Forest Service, 271 Mast Road, Durham, NH, 03824, USA
| | - Nathan Robertson
- Biology Department, University of New Mexico, Albuquerque, NM, 87106, USA
| | - R Alex Thompson
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - Shealyn Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jim LeMoine
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Andrew D Richardson
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - William T Pockman
- Biology Department, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
12
|
Han Y, Xu T, Chen H, Tang M. Sugar metabolism and 14-3-3 protein genes expression induced by arbuscular mycorrhizal fungi and phosphorus addition to response drought stress in Populus cathayana. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154075. [PMID: 37643547 DOI: 10.1016/j.jplph.2023.154075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Sugar, as a nutrient exchange substance between arbuscular mycorrhizal (AM) fungi and host plants, plays an important role in the abiotic stress response of mycorrhizal plants. This experiment aimed to study the effects of AM fungi and phosphorus (P) addition on the sugar metabolism and 14-3-3 gene expression of Populus cathayana under drought stress. The results showed that drought affects the process of sugar metabolism by increasing the activities of amylase and invertase, resulting in the decrease of starch content in leaves and roots and the accumulation of soluble sugars (including reducing sugar and sucrose) in roots. Under drought stress, the activity or content of sucrose synthetase, sucrose phosphate synthase, acid invertase, alkaline invertase, reducing sugar, soluble sugar, sucrose, and starch in the root showed the best mycorrhizal effect at the 100 mg P level. The expression levels of the 14-3-3 genes (PcGRF10 and PcGRF11) were significantly increased by mycorrhizal induction under drought stress. These levels were positively correlated with SS, SPS, sucrose, and starch phosphorylase in leaves, as well as with almost all sugar metabolism indicators in roots. However, they were negatively correlated with starch content in both leaves and roots. Sugar metabolism and 14-3-3 protein gene expression were induced by AM fungi and P addition in response to drought stress. The 14-3-3 genes induced by AM fungi may be involved in participating in osmotic regulation during drought stress. This study provides a new idea for the mechanism of sugar metabolism of mycorrhizal plants in arid regions.
Collapse
Affiliation(s)
- Yanyan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; College of Forestry, Northwest A&F University, Yangling, 712100, China.
| | - Tingying Xu
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Ming Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Fox H, Ben-Dor S, Doron-Faigenboim A, Goldsmith M, Klein T, David-Schwartz R. Carbohydrate dynamics in Populus trees under drought: An expression atlas of genes related to sensing, translocation, and metabolism across organs. PHYSIOLOGIA PLANTARUM 2023; 175:e14001. [PMID: 37882295 DOI: 10.1111/ppl.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
In trees, nonstructural carbohydrates (NSCs) serve as long-term carbon storage and long-distance carbon transport from source to sink. NSC management in response to drought stress is key to our understanding of drought acclimation. However, the molecular mechanisms underlying these processes remain unclear. By combining a transcriptomic approach with NSC quantification in the leaves, stems, and roots of Populus alba under drought stress, we analyzed genes from 29 gene families related to NSC signaling, translocation, and metabolism. We found starch depletion across organs and accumulation of soluble sugars (SS) in the leaves. Activation of the trehalose-6-phosphate/SNF1-related protein kinase (SnRK1) signaling pathway across organs via the suppression of class I TREHALOSE-PHOSPHATE SYNTHASE (TPS) and the expression of class II TPS genes suggested an active response to drought. The expression of SnRK1α and β subunits, and SUCROSE SYNTHASE6 supported SS accumulation in leaves. The upregulation of active transporters and the downregulation of most passive transporters implied a shift toward active sugar transport and enhanced regulation over partitioning. SS accumulation in vacuoles supports osmoregulation in leaves. The increased expression of sucrose synthesis genes and reduced expression of sucrose degradation genes in the roots did not coincide with sucrose levels, implying local sucrose production for energy. Moreover, the downregulation of invertases in the roots suggests limited sucrose allocation from the aboveground organs. This study provides an expression atlas of NSC-related genes that respond to drought in poplar trees, and can be tested in tree improvement programs for adaptation to drought conditions.
Collapse
Affiliation(s)
- Hagar Fox
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Shifra Ben-Dor
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
14
|
Wang W, Chen K, Chen N, Gao J, Zhang W, Gong J, Tong S, Chen Y, Li Y, Feng Y, Jiang Y, Ma T. Chromatin accessibility dynamics insight into crosstalk between regulatory landscapes in poplar responses to multiple treatments. TREE PHYSIOLOGY 2023; 43:1023-1041. [PMID: 36851850 DOI: 10.1093/treephys/tpad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/22/2023] [Indexed: 06/11/2023]
Abstract
Perennial trees develop and coordinate endogenous response signaling pathways, including their crosstalk and convergence, to cope with various environmental stresses which occur simultaneously in most cases. These processes are involved in gene transcriptional regulations that depend on dynamic interactions between regulatory proteins and corresponding chromatin regions, but the mechanisms remain poorly understood in trees. In this study, we detected chromatin regulatory landscapes of poplar under abscisic acid, methyl jasmonate, salicylic acid and sodium chloride (NaCl) treatment, through integrating ATAC-seq and RNA-seq data. Our results showed that the degree of chromatin accessibility for a given gene is closely related to its expression level. However, unlike the gene expression that shows treatment-specific response patterns, changes in chromatin accessibility exhibit high similarities under these treatments. We further proposed and experimentally validated that a homologous gene copy of RESPONSIVE TO DESICCATION 26 mediates the crosstalk between jasmonic acid and NaCl signaling pathways by directly regulating the stress-responsive genes and that circadian clock-related transcription factors like REVEILLE8 play a central role in response of poplar to these treatments. Overall, our study provides a chromatin insight into the molecular mechanism of transcription regulatory networks in response to different environmental stresses and raises the key roles of the circadian clock of poplar to adapt to adverse environments.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kai Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ningning Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinwen Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenyan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jue Gong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shaofei Tong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yanlin Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Engelen C, Wechsler T, Bakhshian O, Smoly I, Flaks I, Friedlander T, Ben-Ari G, Samach A. Studying Parameters Affecting Accumulation of Chilling Units Required for Olive Winter Flower Induction. PLANTS (BASEL, SWITZERLAND) 2023; 12:1714. [PMID: 37111937 PMCID: PMC10143890 DOI: 10.3390/plants12081714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
With global warming, mean winter temperatures are predicted to increase. Therefore, understanding how warmer winters will affect the levels of olive flower induction is essential for predicting the future sustainability of olive oil production under different climactic scenarios. Here, we studied the effect of fruit load, forced drought in winter, and different winter temperature regimes on olive flower induction using several cultivars. We show the necessity of studying trees with no previous fruit load as well as provide evidence that soil water content during winter does not significantly affect the expression of an FT-encoding gene in leaves and the subsequent rate of flower induction. We collected yearly flowering data for 5 cultivars for 9 to 11 winters, altogether 48 data sets. Analyzing hourly temperatures from these winters, we made initial attempts to provide an efficient method to calculate accumulated chill units that are then correlated with the level of flower induction in olives. While the new models tested here appear to predict the positive contribution of cold temperatures, they lack in accurately predicting the reduction in cold units caused by warm temperatures occurring during winter.
Collapse
Affiliation(s)
- Chaim Engelen
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Tahel Wechsler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Ortal Bakhshian
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Ilan Smoly
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Idan Flaks
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Tamar Friedlander
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7528809, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Bullones A, Castro AJ, Lima-Cabello E, Alché JDD, Luque F, Claros MG, Fernandez-Pozo N. OliveAtlas: A Gene Expression Atlas Tool for Olea europaea. PLANTS (BASEL, SWITZERLAND) 2023; 12:1274. [PMID: 36986964 PMCID: PMC10053119 DOI: 10.3390/plants12061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The olive (Olea europaea L.) is an ancient crop of great importance in the Mediterranean basin due to the production of olive oil and table olives, which are important sources of fat and have benefits for human health. This crop is expanding and increasing its production worldwide and five olive genomes have recently been sequenced, representing a wild olive and important cultivars in terms of olive oil production, intensive agriculture, and adaptation to the East Asian climate. However, few bioinformatic and genomic resources are available to assist olive research and breeding, and there are no platforms to query olive gene expression data. Here, we present OliveAtlas, an interactive gene expression atlas for olive with multiple bioinformatics tools and visualization methods, enabling multiple gene comparison, replicate inspection, gene set enrichment, and data downloading. It contains 70 RNA-seq experiments, organized in 10 data sets representing the main olive plant organs, the pollen germination and pollen tube elongation process, and the response to a collection of biotic and abiotic stresses, among other experimental conditions. OliveAtlas is a web tool based on easyGDB with expression data based on the 'Picual' genome reference and gene annotation.
Collapse
Affiliation(s)
- Amanda Bullones
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), 29010 Málaga, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Antonio Jesús Castro
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | - Elena Lima-Cabello
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | - Francisco Luque
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Departamento de Biología Experimental, Universidad de Jaén (UJA), 23071 Jaén, Spain
| | - Manuel Gonzalo Claros
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), 29010 Málaga, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), 29071 Málaga, Spain
| | - Noe Fernandez-Pozo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), 29010 Málaga, Spain
| |
Collapse
|
17
|
Peltier DMP, Lemoine J, Ebert C, Xu X, Ogle K, Richardson AD, Carbone MS. An incubation method to determine the age of available nonstructural carbon in woody plant tissues. TREE PHYSIOLOGY 2023:tpad015. [PMID: 36738259 DOI: 10.1093/treephys/tpad015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Radiocarbon (∆14C) measurements of nonstructural carbon enable inference on the age and turnover time of stored photosynthate (e.g., sugars, starch), of which the largest pool in trees resides in the main bole. Because of potential issues with extraction-based methods, we introduce an incubation method to capture the ∆14C of nonstructural carbon via respired CO2. In this study, we compared the ∆14C obtained from these incubations with ∆14C from a well-established extraction method, using increment cores from a mature trembling aspen (Populus tremuloides). To understand any potential ∆14C disagreement, the yields from both methods were also benchmarked against the phenol-sulfuric acid concentration assay. We found incubations captured less than 100% of measured sugar and starch carbon, with recovery ranging from ~ 3% in heartwood to 85% in shallow sapwood. However, extractions universally over-yielded (mean 273 ± 101% expected sugar carbon; as high as 480%), where sugars represented less than half of extracted soluble carbon, indicating very poor specificity. While separation of soluble and insoluble nonstructural carbon is ostensibly a strength of extraction based methods, there was also evidence of poor separation of these two fractions in extractions. The ∆14C of respired CO2 and ∆14C from extractions were similar in the sapwood, while extractions resulted in comparatively higher ∆14C (older carbon) in heartwood and bark. Because yield and ∆14C discrepancies were largest in old tissues, incubations may better capture the ∆14C of nonstructural carbon that is actually metabolically available. That is, we suggest extractions include metabolically irrelevant carbon from dead tissues or cells, as well as carbon that is neither sugar nor starch. In contrast, nonstructural carbon captured by extractions must be respired to be measured. We thus suggest incubations of live tissues are a potentially viable, inexpensive, and versatile method to study the ∆14C of metabolically relevant (available) nonstructural carbon.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, AZ
| | - Jim Lemoine
- Center for Ecosystem Science and Society, Northern Arizona University, AZ
| | - Chris Ebert
- Center for Ecosystem Science and Society, Northern Arizona University, AZ
| | - Xiaomei Xu
- Department of Earth System Science, University of California-Irvine, CA
| | - Kiona Ogle
- Center for Ecosystem Science and Society, Northern Arizona University, AZ
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, AZ
| | - Andrew D Richardson
- Center for Ecosystem Science and Society, Northern Arizona University, AZ
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, AZ
| | - Mariah S Carbone
- Center for Ecosystem Science and Society, Northern Arizona University, AZ
| |
Collapse
|
18
|
Zhang Y, Zhu J, Khan M, Wang Y, Xiao W, Fang T, Qu J, Xiao P, Li C, Liu JH. Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. PLANT PHYSIOLOGY 2023; 191:591-609. [PMID: 36102815 PMCID: PMC9806598 DOI: 10.1093/plphys/kiac428] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/07/2022] [Indexed: 05/08/2023]
Abstract
β-Amylase (BAM)-mediated starch degradation is a main source of soluble sugars that help plants adapt to environmental stresses. Here, we demonstrate that dehydration-induced expression of PtrBAM3 in trifoliate orange (Poncirus trifoliata (L.) Raf.) functions positively in drought tolerance via modulation of starch catabolism. Two transcription factors, PtrABF4 (P. trifoliata abscisic acid-responsive element-binding factor 4) and PtrABR1 (P. trifoliata ABA repressor 1), were identified as upstream transcriptional activators of PtrBAM3 through yeast one-hybrid library screening and protein-DNA interaction assays. Both PtrABF4 and PtrABR1 played a positive role in plant drought tolerance by modulating soluble sugar accumulation derived from BAM3-mediated starch decomposition. In addition, PtrABF4 could directly regulate PtrABR1 expression by binding to its promoter, leading to a regulatory cascade to reinforce the activation of PtrBAM3. Moreover, PtrABF4 physically interacted with PtrABR1 to form a protein complex that further promoted the transcriptional regulation of PtrBAM3. Taken together, our finding reveals that a transcriptional cascade composed of ABF4 and ABR1 works synergistically to upregulate BAM3 expression and starch catabolism in response to drought condition. The results shed light on the understanding of the regulatory molecular mechanisms underlying BAM-mediated soluble sugar accumulation for rendering drought tolerance in plants.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Zhu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Xiao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Fang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Qu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Xiao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Hikino K, Danzberger J, Riedel VP, Hesse BD, Hafner BD, Gebhardt T, Rehschuh R, Ruehr NK, Brunn M, Bauerle TL, Landhäusser SM, Lehmann MM, Rötzer T, Pretzsch H, Buegger F, Weikl F, Pritsch K, Grams TEE. Dynamics of initial carbon allocation after drought release in mature Norway spruce-Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine-root growth. GLOBAL CHANGE BIOLOGY 2022; 28:6889-6905. [PMID: 36039835 DOI: 10.1111/gcb.16388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity.
Collapse
Affiliation(s)
- Kyohsuke Hikino
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jasmin Danzberger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Vincent P Riedel
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin D Hesse
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Benjamin D Hafner
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Timo Gebhardt
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Romy Rehschuh
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Pienner Str. 7, Tharandt, 01737, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research-Atmospheric Environmental Research (KIT/IMK-IFU), Garmisch-Partenkirchen, Germany
| | - Melanie Brunn
- Institute for Environmental Sciences, University Koblenz-Landau, Landau, Germany
| | - Taryn L Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Forest Dynamics, Birmensdorf, Switzerland
| | - Thomas Rötzer
- Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hans Pretzsch
- Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Fabian Weikl
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Thorsten E E Grams
- Professorship for Land Surface-Atmosphere Interactions, Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
20
|
Xiao Y, Li Y, Ouyang L, Yin A, Xu B, Zhang L, Chen J, Liu J. A banana transcriptional repressor MaAP2a participates in fruit starch degradation during postharvest ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:1036719. [PMID: 36438126 PMCID: PMC9691770 DOI: 10.3389/fpls.2022.1036719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Fruit postharvest ripening is a crucial course for many fruits with significant conversion of biosubstance, which forms an intricate regulatory network. Ethylene facilitates the ripening process in banana with a remarkable change of fruit starch, but the mechanism adjusting the expression of starch degradation-related enzyme genes is incompletely discovered. Here, we describe a banana APETALA2 transcription factor (MaAP2a) identified as a transcriptional repressor with its powerful transcriptional inhibitory activity. The transcriptional level of MaAP2a gradually decreased with the transition of banana fruit ripening, suggesting a passive role of MaAP2a in banana fruit ripening. Moreover, MaAP2a is a classic nucleoprotein and encompasses transcriptional repressor domain (EAR, LxLxLx). More specifically, protein-DNA interaction assays found that MaAP2a repressed the expression of 15 starch degradation-related genes comprising MaGWD1, MaPWD1, MaSEX4, MaLSF1, MaBAM1-MaBAM3, MaAMY2B/2C/3A/3C, MaMEX1/2, and MapGlcT2-1/2-2 via binding to the GCC-box or AT-rich motif of their promoters. Overall, these results reveal an original MaAP2a-mediated negative regulatory network involved in banana postharvest starch breakdown, which advances our cognition on banana fruit ripening and offers additional reference values for banana varietal improvement.
Collapse
Affiliation(s)
- Yunyi Xiao
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Ying Li
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Lejun Ouyang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Aiguo Yin
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Bo Xu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Ling Zhang
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Jianye Chen
- College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Jinfeng Liu
- College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| |
Collapse
|
21
|
Chandrasekaran U, Byeon S, Kim K, Kim SH, Park CO, Han AR, Lee YS, Kim HS. Short-term severe drought influences root volatile biosynthesis in eastern white pine (Pinus strobus L). FRONTIERS IN PLANT SCIENCE 2022; 13:1030140. [PMID: 36388508 PMCID: PMC9644029 DOI: 10.3389/fpls.2022.1030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change-related drought stress is expected to shift carbon partitioning toward volatile organic compound (VOC) biosynthesis. The effect of drought stress on VOC synthesis remains unknown in several tree species. Therefore, we exposed eastern white pine (Pinus strobus) plants to severe drought for 32 days and performed physiological analysis (chlorophyll content, leaf water content, and root/shoot index), biochemical analysis (non-structural carbohydrates, proline, lipid peroxidation, and antioxidant assay), and total root VOC analysis. Drought stress decreased the relative water and soil moisture contents. Root proline accumulation and antioxidant activity increased significantly, whereas leaf chlorophyll synthesis and fresh weight decreased significantly in drought-treated plants. A non-significant increase in sugar accumulation (leaves and roots), proline accumulation (leaves), antioxidant activity (leaves), and lipid peroxidation (leaves and roots) was observed in drought-treated plants. Drought stress caused a non-significant decline in root/shoot ratio and starch accumulation (leaves and roots) and caused a significant increase in root abscisic acid content. Drought-treated plants showed an increase in overall monoterpene synthesis (16%) and decline in total sesquiterpene synthesis (3%). Our findings provide an overall assessment of the different responses of VOC synthesis to severe water deficit that may help unravel the molecular mechanisms underlying drought tolerance in P. strobus.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seo Hyun Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chan Oh Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ah reum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Young-Sang Lee
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
| |
Collapse
|
22
|
Wechsler T, Bakhshian O, Engelen C, Dag A, Ben-Ari G, Samach A. Determining Reproductive Parameters, which Contribute to Variation in Yield of Olive Trees from Different Cultivars, Irrigation Regimes, Age and Location. PLANTS 2022; 11:plants11182414. [PMID: 36145815 PMCID: PMC9504372 DOI: 10.3390/plants11182414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
Olive (Olea europaea L.) trees can reach a very old age and still bear fruit. Although traditional groves are planted at low density and are rainfed, many newer groves are planted at higher densities and irrigated. As expected, initial yields per area are larger in high density plantations, yet some farmers claim they experience a reduction in productivity with grove age, even in well maintained trees. In order to test the accuracy of this claim and its underlying cause, we measured several productivity parameters in selected branches of trees in seven sites differing in cultivar (‘Barnea’ or ‘Souri’), location and irrigation regime (rainfed or irrigated) for two consecutive years. For each site (cultivar/location/regime), we compared neighboring groves of different ages, altogether 14 groves. There was no consistent reduction in productivity in older groves. Differences in productivity between irrigated cultivars were mostly due to variation in the percentage of inflorescences that formed fruit. Several parameters were higher in irrigated, compared to rainfed ‘Souri’. Differences in productivity between years within the same grove was mostly due to variation in the percentage of nodes forming inflorescences. We studied the expression of OeFT2 encoding a FLOWERING LOCUS T protein involved in olive flower induction in leaves of trees of different ages, including juvenile seedlings. Expression increased during winter in mature trees and correlated with the percentage of inflorescences formed. The leaves of juvenile seedlings expressed higher levels of two genes encoding APETALA2-like proteins, potential inhibitors of OeFT2 expression. The buds of juvenile seedlings expressed higher levels of OeTFL1, encoding a TERMINAL FLOWER 1 protein, a potential inhibitor of OeFT2 function in the meristem. Our results suggest that olives, once past the juvenile phase, can retain a similar level of productivity even in densely planted well maintained groves.
Collapse
Affiliation(s)
- Tahel Wechsler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Ortal Bakhshian
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Chaim Engelen
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Arnon Dag
- Gilat Research Center, Agricultural Research Organization (ARO), Volcani Center, Gilat, Mobile Post Negev 2, Negev 85280, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7528809, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
- Correspondence: author:
| |
Collapse
|
23
|
Bar-On P, Yaakobi A, Moran U, Rozenstein O, Kopler I, Klein T. A montane species treeline is defined by both temperature and drought effects on growth season length. TREE PHYSIOLOGY 2022; 42:1700-1719. [PMID: 35738872 DOI: 10.1093/treephys/tpac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Montane treelines are defined by a threshold low temperature. However, what are the dynamics when the snow-free summer growth season coincides with a 6-month seasonal drought? We tested this fundamental question by measuring tree growth and leaf activity across elevations in Mt Hermon (2814 m; in Israel and Syria), where oak trees (Quercus look and Quercus boissieri) form an observed treeline at 1900 m. While in theory, individuals can be established at higher elevations (minimum daily temperature >6.5 °C for >4 months even at the summit), soil drying and vapor pressure deficit in summer enforces growth cessation in August, leaving only 2-3 months for tree growth. At lower elevations, Q. look Kotschy is replaced by Quercus cerris L. (1300 m) and Quercus calliprinos Webb (1000 m) in accompanying Q. boissieri Reut., and growth season length (GSL) is longer due to an earlier start in April. Leaf gas exchange continues during autumn, but assimilates are no longer utilized in growth. Interestingly, the growth and activity of Q. boissieri were equivalent to that of each of the other three species across the ~1 km elevation gradient. A planting experiment at 2100 m showed that seedlings of the four oak species survived the cold winter and showed budding of leaves in summer, but wilted in August. Our unique mountain site in the Eastern Mediterranean introduces a new factor to the formation of treelines, involving a drought limitation on GSL. This site presents the elevation edge for each species and the southern distribution edge for both the endemic Q. look and the broad-range Q. cerris. With ongoing warming, Q. look and Q. boissieri are slowly expanding to higher elevations, while Q. cerris is at risk of future extirpation.
Collapse
Affiliation(s)
- Peleg Bar-On
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Yaakobi
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Moran
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Offer Rozenstein
- Institute of Soil, Water, and Environmental Studies, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Idan Kopler
- MIGAL - Galilee Research Institute, South Industrial Zone, PO Box 831, Kiryat Shmona 11016, Israel
| | - Tamir Klein
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
24
|
Niu E, Gao S, Yu X, Soleimani A, Zhu S. Comprehensive evaluation of the response to aluminum stress in olive tree ( Olea europaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:968499. [PMID: 35968113 PMCID: PMC9366337 DOI: 10.3389/fpls.2022.968499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/05/2022] [Indexed: 06/06/2023]
Abstract
Olive (Olea europaea L.) is an ancient tree species in the Mediterranean, but the lack of knowledge about aluminum-resistant varieties limits its introduction to acidic soil. The objective of this study was to have a comprehensive evaluation of the response to aluminum stress in olive tree at germplasm, metabolome, and transcriptome levels. In this experiment, seedlings of 97 olive germplasm with 1.0-3.0 cm roots and two leaves were treated with 50 μM Al3+ (pH = 5.0). By factor analysis of the traits of defoliation rate, rooting rate, length of extended root, and length of new root, 97 germplasm were classified into five different groups according to their diverse responses to aluminum stress: 5 highly resistant (5.15%), 30 moderately resistant (30.93%), 31 general (31.96%), 23 moderately sensitive (23.71%), and 8 highly sensitive (8.25%) germplasm. The three most sensitive and three most resistant germplasm were further used for metabolome and transcriptome analysis. Exposed to aluminum stress, 96 differentially accumulated metabolites (DAMs)/4,845 differentially expressed genes (DEGs) and 66 DAMs/2,752 DEGs were identified in highly sensitive and resistant germplasm, respectively. Using multi-omics technology, the pathways and related DAMs/DEGs involved in cell wall/cytoplasm receptors, reactive oxygen species balance, hormone induction, synthesis of organic acids, Al3+ transport, and synthesis of metabolites were identified to mainly regulate the response to aluminum stress in olive. This study provides a theoretical guide and prior germplasm and genes for further genetic improvement of aluminum tolerance in the olive tree.
Collapse
Affiliation(s)
- Erli Niu
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Song Gao
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaomin Yu
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ali Soleimani
- Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Shenlong Zhu
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
25
|
Chen N, Zhang H, Zang E, Liu ZX, Lan YF, Hao WL, He S, Fan X, Sun GL, Wang YL. Adaptation insights from comparative transcriptome analysis of two Opisthopappus species in the Taihang mountains. BMC Genomics 2022; 23:466. [PMID: 35751010 PMCID: PMC9233376 DOI: 10.1186/s12864-022-08703-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Opisthopappus is a major wild source of Asteraceae with resistance to cold and drought. Two species of this genus (Opisthopappus taihangensis and O. longilobus) have been employed as model systems to address the evolutionary history of perennial herb biomes in the Taihang Mountains of China. However, further studies on the adaptive divergence processes of these two species are currently impeded by the lack of genomic resources. To elucidate the molecular mechanisms involved, a comparative analysis of these two species was conducted. Among the identified transcription factors, the bHLH members were most prevalent, which exhibited significantly different expression levels in the terpenoid metabolic pathway. O. longilobus showed higher level of expression than did O. taihangensis in terms of terpenes biosynthesis and metabolism, particularly monoterpenoids and diterpenoids. Analyses of the positive selection genes (PSGs) identified from O. taihangensis and O. longilobus revealed that 1203 genes were related to adaptative divergence, which were under rapid evolution and/or have signs of positive selection. Differential expressions of PSG occurred primarily in the mitochondrial electron transport, starch degradation, secondary metabolism, as well as nucleotide synthesis and S-metabolism pathway processes. Several PSGs were obviously differentially expressed in terpenes biosynthesis that might result in the fragrances divergence between O. longilobus and O. taihangensis, which would provide insights into adaptation of the two species to different environments that characterized by sub-humid warm temperate and temperate continental monsoon climates. The comparative analysis for these two species in Opisthopappus not only revealed how the divergence occurred from molecular perspective, but also provided novel insights into how differential adaptations occurred in Taihang Mountains.
Collapse
Affiliation(s)
- Ning Chen
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Hao Zhang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - En Zang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Zhi-Xia Liu
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Ya-Fei Lan
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Wei-Li Hao
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Shan He
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gen-Lou Sun
- Department of Biology, Saint Mary's University, Halifax, B3H3C3, Canada.
| | - Yi-Ling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, China.
| |
Collapse
|
26
|
Tsuji C, Dannoura M, Desalme D, Angeli N, Takanashi S, Kominami Y, Epron D. Drought affects the fate of non-structural carbohydrates in hinoki cypress. TREE PHYSIOLOGY 2022; 42:784-796. [PMID: 34635913 DOI: 10.1093/treephys/tpab135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Tree species that close stomata early in response to drought are likely to suffer from an imbalance between limited carbohydrate supply due to reduced photosynthesis and metabolic demand. Our objective was to clarify the dynamic responses of non-structural carbohydrates to drought in a water-saving species, the hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.). To this end, we pulse-labeled young trees with 13CO2 10 days after the beginning of the drought treatment. Trees were harvested 7 days later, early during drought progression, and 86 days later when they had suffered from a long and severe drought. The labeled carbon (C) was traced in phloem extract, in the organic matter and starch of all the organs, and in the soluble sugars (sucrose, glucose and fructose) of the most metabolically active organs (foliage, green branches and fine roots). No drought-related changes in labeled C partitioning between belowground and aboveground organs were observed. The C allocation between non-structural carbohydrates was altered early during drought progression: starch concentration was lower by half in the photosynthetic organs, while the concentration of almost all soluble sugars tended to increase. The preferential allocation of labeled C to glucose and fructose reflected an increased demand for soluble sugars for osmotic adjustment. After 3 months of a lethal drought, the concentrations of soluble sugars and starch were admittedly lower in drought-stressed trees than in the controls, but the pool of non-structural carbohydrates was far from completely depleted. However, the allocation to storage had been impaired by drought; photosynthesis and the sugar translocation rate had also been reduced by drought. Failure to maintain cell turgor through osmoregulation and to refill embolized xylem due to the depletion in soluble sugars in the roots could have resulted in tree mortality in hinoki cypress, though the total pool of carbohydrate was not completely depleted.
Collapse
Affiliation(s)
- Chiaki Tsuji
- Graduate School of Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masako Dannoura
- Graduate School of Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dorine Desalme
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 34 cours Léopold, Nancy F-54000, France
| | - Nicolas Angeli
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 34 cours Léopold, Nancy F-54000, France
| | - Satoru Takanashi
- Forestry and Forest Products Research Institute, Kansai Research Centre, 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan
| | - Yuji Kominami
- Forestry and Forest Products Research Institute, 1 Matsunosato, Ibaraki, Tsukuba 305-8687, Japan
| | - Daniel Epron
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 34 cours Léopold, Nancy F-54000, France
| |
Collapse
|