1
|
Li J, Chen S, Yu B, Li Q, Liu R, Wang Z, Wan L, Zhao Y. TIR immune signalling is blocked by phosphorylation to maintain plant growth. NATURE PLANTS 2025:10.1038/s41477-025-02012-x. [PMID: 40490532 DOI: 10.1038/s41477-025-02012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/28/2025] [Indexed: 06/11/2025]
Abstract
Toll/interleukin-1 receptor (TIR) domain proteins are immune signalling components and function as NAD+-cleaving enzymes to activate defence responses. In plants, TIR activation triggers cell death and severely represses growth, especially under osmotic stress, while in animals, it promotes axon degeneration. However, the mechanisms regulating TIR suppression remain unclear. Here we show that TIR NADase activity requires a conserved serine residue spatially close to the catalytic glutamate. The osmotic-stress-activated plant Ca2+-dependent protein kinases (CPKs), the mammalian Ca2+/calmodulin-dependent protein kinase II delta (CAMK2D) and TANK-binding kinase 1 (TBK1) phosphorylate TIR domains at this conserved serine, which blocks TIR NADase activities and functions, thereby maintaining growth in plants and suppressing SARM1 TIR signalling in animals. Our findings define a fundamental molecular mechanism by which phosphorylation at a conserved serine residue inhibits TIR signalling in plants and animals and sustains plant growth.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sisi Chen
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Yu
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingzhong Li
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruijia Liu
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zaiqing Wang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li Wan
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Yang Zhao
- Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Fang Y, Ju C, Javed L, Cao C, Deng Y, Gao Y, Chen X, Sun L, Zhao Y, Wang C. Plasma membrane-associated calcium signaling modulates zinc homeostasis in Arabidopsis. Sci Bull (Beijing) 2025; 70:1478-1490. [PMID: 39979205 DOI: 10.1016/j.scib.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/07/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Zinc (Zn) is a crucial micronutrient for all organisms, and its deficiency can significantly hamper crop yield and quality. However, the understanding of the regulatory mechanisms involved in plant Zn signal perception and transduction remains limited. In this study, we discovered that the Ca2+-CBL1/4/5/8/9-CIPK3/9/23/26-ZIP12 signaling module effectively responds to Zn deficiency and regulates Zn homeostasis in Arabidopsis thaliana. Furthermore, we determined that CIPK3/9/23/26 interact with the Zn transporter ZIP12 and phosphorylate it primarily at Ser185. This phosphorylation event was crucial for the stability of the ZIP12 protein, suggesting that it regulates the function of ZIP12 in Zn transport. Collectively, our findings identify a plasma membrane-associated calcium signaling pathway that regulates Zn homeostasis in Arabidopsis thaliana. This pathway represents a promising target for molecular breeding approaches aimed at developing crops with enhanced tolerance to Zn deficiency.
Collapse
Affiliation(s)
- Yanjun Fang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Laiba Javed
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Chenyu Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Yuan Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Yaqi Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Xuanyi Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Lv Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Yusheng Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling 712100, China; Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling 712100, China.
| |
Collapse
|
3
|
Jia H, Shi Y, Dai Z, Sun Y, Shu X, Li B, Wu R, Lv S, Shou J, Yang X, Jiang G, Zhang Y, Allan AC, Chen K. Phosphorylation of the strawberry MADS-box CMB1 regulates ripening via the catabolism of abscisic acid. THE NEW PHYTOLOGIST 2025; 246:1627-1646. [PMID: 40172024 PMCID: PMC12018792 DOI: 10.1111/nph.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/19/2025] [Indexed: 04/04/2025]
Abstract
Research on the ripening of fleshy fruits has relied on techniques that measure transcriptional changes. How ripening is linked to posttranslational modifications such as protein phosphorylation remains less studied. Here, we characterize the MADS-box SEPALLATA 4 (SEP4) subfamily transcription factor FaCMB1, a key negative regulator controlling strawberry ripening, whose transcript and protein abundance decrease progressively with fruit development and are repressed by abscisic acid (ABA). Transient RNAi or overexpression of FaCMB1 significantly altered the fruit ripening process and affected the content of endogenous ABA and ripening-related quality. Transcriptome sequencing (RNA-seq) analysis suggested that manipulation of FaCMB1 expression levels affected the transcription of FaASR (ABA-, stress-, ripening-induced), while FaCMB1 can repress the gene expression of FaASR by directly binding to its promoter. Furthermore, FaASR inhibited the transcriptional activity of FaCYP707A4, a key ABA 8'-hydroxylase enzyme involved in ABA catabolism. We show that FaCMB1 can be phosphorylated by the kinase FaSTPK, and Phos-tag assays indicated that the phosphorylation level of FaCMB1 increases during fruit ripening. This phosphorylation of FaCMB1 affects the binding ability of FaCMB1 to the FaASR promoter and alleviates its transcriptional repression. In conclusion, we elucidated a feedback regulatory path involving FaCMB1-FaASR-FaCYP707A4-ABA. During the fruit ripening process, an increase in ABA content led to a decrease in FaCMB1 transcript and protein levels, which, combined with increased phosphorylation levels, collectively impaired the transcriptional repression of FaASR by FaCMB1. Meanwhile, the increased transcriptional level of FaASR further repressed the expression level of FaCYP707A4, leading to ABA accumulation and fruit ripening.
Collapse
Affiliation(s)
- Haoran Jia
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Yanna Shi
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality ImprovementZhejiang UniversityZijingang CampusHangzhou310058China
| | - Zhengrong Dai
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Yunfan Sun
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Xiu Shu
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Baijun Li
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of AgricultureGuangxi UniversityNanning530004China
| | - Rongrong Wu
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Shouzheng Lv
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Jiahan Shou
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
| | - Xiaofang Yang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Guihua Jiang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Yuchao Zhang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouZhejiang310021China
| | - Andrew C. Allan
- New Zealand Institute for Plant & Food Research LtdPrivate Bag 92169Auckland1142New Zealand
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Kunsong Chen
- College of Agriculture & BiotechnologyZhejiang UniversityZijingang CampusHangzhou310058China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityZijingang CampusHangzhou310058China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality ImprovementZhejiang UniversityZijingang CampusHangzhou310058China
| |
Collapse
|
4
|
Li X, Wang L, Zhang M, He J, An Y. Roles of CPKs in ethylene-induced Arabidopsis stomatal closure and their crosstalk with H 2O 2 and NO signalling. PHYSIOLOGIA PLANTARUM 2025; 177:e70196. [PMID: 40171960 DOI: 10.1111/ppl.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025]
Abstract
Calcium-dependent protein kinases (CPKs) play crucial roles in plant guard cell signal transduction. Ethylene is known to induce stomatal closure, with the hydrogen peroxide (H2O2)-nitric oxide (NO) signalling module being pivotal to this process. However, the specific roles of CPKs in this process and their interactions with H2O2 and NO remain unclear. In this study, we screened Arabidopsis mutants of nine CPKs and found that in the loss-of-function mutants for CPK3, CPK4, CPK6, CPK11, CPK21, and CPK33, exogenous ethylene failed to induce stomatal closure, indicating that these CPKs act as positive regulators in ethylene-induced stomatal closure. Mutants' stomatal responses to H2O2 and NO treatment and changes of endogenous H2O2 and NO levels in guard cells upon ethylene treatment indicated that CPK3, CPK4, CPK11, and CPK33 function upstream of the H2O2-NO module, while CPK6 and CPK21 act downstream. Furthermore, NADPH oxidases play critical roles in ethylene-induced H2O2 production. We identified the interactions of CPK3, CPK4, and CPK11 with AtRBOHF, and CPK4 and CPK11 with AtRBOHD using four different assays, and exogenous ethylene enhanced these interactions. These results suggest that CPK3, CPK4, and CPK11 may mediate ethylene-induced H2O2 formation in guard cells through their interactions with AtRBOHD/F. Additionally, exogenous ethylene significantly upregulates the expression of CPK3, CPK4, CPK6, CPK11 and CPK21, providing a potential mechanism by which ethylene modulates CPKs. Our findings not only establish the role of CPKs in ethylene guard cell signalling but also offer insights into the mechanism by which ethylene activates NADPH oxidases to initiate H2O2 production.
Collapse
Affiliation(s)
- Xue Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lixiao Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Junmin He
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuyan An
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
5
|
Valmonte-Cortes GR, Higgins CM, MacDiarmid RM. Arabidopsis Calcium Dependent Protein Kinase 3, and Its Orthologues OsCPK1, OsCPK15, and AcCPK16, Are Involved in Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2025; 14:294. [PMID: 39861648 PMCID: PMC11768100 DOI: 10.3390/plants14020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. Arabidopsis thaliana CPK3 (AtCPK3) is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, AtCPK3 and its orthologues in relatively distant plant species such as rice (Oryza sativa, monocot) and kiwifruit (Actinidia chinensis, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections. Two orthologues were studied in O. sativa, namely OsCPK1 and OsCPK15, while one orthologue-AcCPK16-was identified in A. chinensis. Reverse-transcriptase quantitative PCR (RT-qPCR) analysis revealed that OsCPK1 and AcCPK16 exhibit similar responses to stressors to AtCPK3. OsCPK15 responded differently, particularly in bacterial and fungal infections. An increase in expression was consistently observed among AtCPK3 and its orthologues in response to virus infection. Overexpression mutants in both Arabidopsis and kiwifruit showed slight tolerance to drought, while knockout mutants were slightly more susceptible or had little difference with wild-type plants. Overexpression mutants in Arabidopsis showed slight tolerance to virus infection. These findings highlight the importance of AtCPK3 and its orthologues in drought and pathogen responses and suggest such function must be conserved in its orthologues in a wide range of plants.
Collapse
Affiliation(s)
| | - Colleen M. Higgins
- School of Science, AUT City Campus, Auckland University of Technology, Auckland 1142, New Zealand;
| | - Robin M. MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand;
- School of Biological Sciences, The University of Auckland, Thomas Building, 3a Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Zhang J, Chen A, Liu Z, Pan L, Gao H. Phosphoproteomic analysis uncovers phosphorylated proteins in response to salicylic acid and N-hydroxypipecolic acid in Arabidopsis. Mol Biol Rep 2024; 52:61. [PMID: 39692907 DOI: 10.1007/s11033-024-10145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The phytohormone salicylic acid (SA) serves as a crucial signaling molecule within the realm of plant immunity, playing an indispensable role in both local and systemic acquired resistance (SAR). N-hydroxypipecolic acid (NHP), a derivative of L-lysine, is integral to the induction of SAR. Recent investigations have illuminated the intricate manner in which NHP orchestrates the establishment of SAR in conjunction with the immune signal SA. METHODS AND RESULTS To further explore the mechanisms governing the synergistic regulation of SAR by SA and NHP, we conducted an extensive phosphoproteomic analysis aimed at identifying the phosphoproteins modulated either commonly or uniquely by SA and NHP, employing a phosphoproteomics platform built upon high-resolution mass spectrometry. Our study revealed a total of 133 phosphopeptides, derived from 115 distinct proteins, exhibiting exclusive responsiveness to NHP treatment. In contrast, 229 phosphopeptides sourced from 204 proteins demonstrated exclusive sensitivity to SA treatment. Additionally, the phosphorylation status of 215 proteins, including numerous kinases, phosphatases, transcription factors, and proteins implicated in membrane trafficking, was commonly modulated by both SA and NHP. CONCLUSION This investigation offers detailed insights into the key phosphoproteins influenced either collectively or specifically by SA and NHP, thereby enabling further exploration of the mechanisms underlying the synergistic regulation of immune responses orchestrated by these two potent molecules.
Collapse
Affiliation(s)
- Junsong Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ao Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zijia Liu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Hang Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
7
|
Taylor G, Walter J, Kromdijk J. Illuminating stomatal responses to red light: establishing the role of Ci-dependent versus -independent mechanisms in control of stomatal behaviour. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6810-6822. [PMID: 38442206 PMCID: PMC11565200 DOI: 10.1093/jxb/erae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
The stomatal response to red light appears to link stomatal conductance (gs) with photosynthetic rates. Initially, it was suggested that changes in intercellular CO2 concentration (Ci) provide the main cue via a Ci-dependent response. However, evidence for Ci-independent mechanisms suggests an additional, more direct relationship with photosynthesis. While both Ci-dependent and -independent mechanisms clearly function in stomatal red light responses, little is known regarding their relative contribution. The present study aimed to quantify the relative magnitude of Ci-dependent and -independent mechanisms on the stomatal red light response, to characterize their interplay and to assess the putative link between plastoquinone redox state and Ci-independent stomatal responses. Red light response curves measured at a range of Ci values for wild-type Arabidopsis (Col-0) and the CO2 hyposensitive mutant ca1ca4 allowed deconvolution of Ci-dependent and -independent pathways. Surprisingly, we observed that both mechanisms contribute equally to stomatal red light responses, but Ci-independent stomatal opening is suppressed at high Ci. The present data are also consistent with the involvement of the plastoquinone redox state in coordinating the Ci-independent component. Overall, it seems that while Ci-independent mechanisms are distinct from responses to Ci, interplay between these two pathways is important to facilitate effective coordination between gs and photosynthesis.
Collapse
Affiliation(s)
- Georgia Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julia Walter
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
8
|
Alhaj Hamoud Y, Shaghaleh H, Zhang K, Okla MK, Alaraidh IA, AbdElgawad H, Sheteiwy MS. Calcium lignosulfonate-induced modification of soil chemical properties improves physiological traits and grain quality of maize ( Zea mays) under salinity stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1397552. [PMID: 39246811 PMCID: PMC11377938 DOI: 10.3389/fpls.2024.1397552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024]
Abstract
Introduction Salinity negatively affects maize productivity. However, calcium lignosulfonate (CLS) could improve soil properties and maize productivity. Methods In this study, we evaluated the effects of CLS application on soil chemical properties, plant physiology and grain quality of maize under salinity stress. Thus, this experiment was conducted using three CLS application rates, CLS0, CLS5, and CLS10, corresponding to 0%, 5%, and 10% of soil mass, for three irrigation water salinity (WS) levels WS0.5, WS2.5, and WS5.5 corresponding to 0.5 and 2.5 and 5.5 dS/m, respectively. Results and discussion Results show that the WS0.5 × CLS10 combination increased potassium (K 0.167 g/kg), and calcium (Ca, 0.39 g/kg) values while reducing the sodium (Na, 0.23 g/kg) content in soil. However, the treatment WS5.5 × CLS0 decreased K (0.120 g/kg), and Ca (0.15 g/kg) values while increasing Na (0.75 g/kg) content in soil. The root activity was larger in WS0.5 × CLS10 than in WS5.5 × CLS0, as the former combination enlarged K and Ca contents in the root while the latter decreased their values. The leaf glutamine synthetase (953.9 µmol/(g.h)) and nitrate reductase (40.39 µg/(g.h)) were higher in WS0.5 × CLS10 than in WS5.5 × CLS0 at 573.4 µmol/(g.h) and 20.76 µg/(g.h), leading to the improvement in cell progression cycle, as revealed by lower malonaldehyde level (6.57 µmol/g). The K and Ca contents in the leaf (881, 278 mg/plant), stem (1314, 731 mg/plant), and grains (1330, 1117 mg/plant) were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 at (146, 21 mg/plant), (201, 159 mg/plant) and (206, 157 mg/plant), respectively. Therefore, the maize was more resistance to salt stress under the CLS10 level, as a 7.34% decline in yield was noticed when salinity surpassed the threshold value (5.96 dS/m). The protein (13.6 %) and starch (89.2 %) contents were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 (6.1 %) and (67.0 %), respectively. This study reveals that CLS addition can alleviate the adverse impacts of salinity on soil quality and maize productivity. Thus, CLS application could be used as an effective soil amendment when irrigating with saline water for sustainable maize production.
Collapse
Affiliation(s)
- Yousef Alhaj Hamoud
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Hiba Shaghaleh
- The Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Ke Zhang
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, Jiangsu, China
- China Meteorological Administration Hydro-Meteorology Key Laboratory, Hohai University, Nanjing, Jiangsu, China
- Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing, Jiangsu, China
- Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, Hohai University, Nanjing, Jiangsu, China
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni Suef University, Beni-Suef, Egypt
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Zhu C, Jing B, Lin T, Li X, Zhang M, Zhou Y, Yu J, Hu Z. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. PLANT PHYSIOLOGY 2024; 195:1005-1024. [PMID: 38431528 DOI: 10.1093/plphys/kiae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Drought is a major environmental stress threatening plant growth and productivity. Calcium-dependent protein kinases (CPKs) are plant-specific Ca2+ sensors with multifaceted roles in signaling drought responses. Nonetheless, the mechanisms underpinning how CPKs transmit downstream drought signaling remain unresolved. Through genetic investigations, our study unveiled that knocking out CPK27 reduced drought tolerance in tomato (Solanum lycopersicum) plants and impaired abscisic acid (ABA)-orchestrated plant response to drought stress. Proteomics and phosphoproteomics revealed that CPK27-dependent drought-induced proteins were highly associated with the sugar metabolism pathway, which was further verified by reduced soluble sugar content in the cpk27 mutant under drought conditions. Using protein-protein interaction assays and phosphorylation assessments, we demonstrated that CPK27 directly interacted with and phosphorylated tonoplast sugar transporter 2 (TST2), promoting intercellular soluble sugar accumulation during drought stress. Furthermore, Ca2+ and ABA enhanced CPK27-mediated interaction and phosphorylation of TST2, thus revealing a role of TST2 in tomato plant drought tolerance. These findings extend the toolbox of potential interventions for enhancing plant drought stress tolerance and provide a target to improve drought tolerance by manipulating CPK27-mediated soluble sugar accumulation for rendering drought tolerance in a changing climate.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Beiyu Jing
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xinyan Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Min Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| |
Collapse
|
10
|
Yang Y, Tan YQ, Wang X, Li JJ, Du BY, Zhu M, Wang P, Wang YF. OPEN STOMATA 1 phosphorylates CYCLIC NUCLEOTIDE-GATED CHANNELs to trigger Ca2+ signaling for abscisic acid-induced stomatal closure in Arabidopsis. THE PLANT CELL 2024; 36:2328-2358. [PMID: 38442317 PMCID: PMC11132897 DOI: 10.1093/plcell/koae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Multiple cyclic nucleotide-gated channels (CNGCs) are abscisic acid (ABA)-activated Ca2+ channels in Arabidopsis (Arabidopsis thaliana) guard cells. In particular, CNGC5, CNGC6, CNGC9, and CNGC12 are essential for ABA-specific cytosolic Ca2+ signaling and stomatal movements. However, the mechanisms underlying ABA-mediated regulation of CNGCs and Ca2+ signaling are still unknown. In this study, we identified the Ca2+-independent protein kinase OPEN STOMATA 1 (OST1) as a CNGC activator in Arabidopsis. OST1-targeted phosphorylation sites were identified in CNGC5, CNGC6, CNGC9, and CNGC12. These CNGCs were strongly inhibited by Ser-to-Ala mutations and fully activated by Ser-to-Asp mutations at the OST1-targeted sites. The overexpression of individual inactive CNGCs (iCNGCs) under the UBIQUITIN10 promoter in wild-type Arabidopsis conferred a strong dominant-negative-like ABA-insensitive stomatal closure phenotype. In contrast, expressing active CNGCs (aCNGCs) under their respective native promoters in the cngc5-1 cngc6-2 cngc9-1 cngc12-1 quadruple mutant fully restored ABA-activated cytosolic Ca2+ oscillations and Ca2+ currents in guard cells, and rescued the ABA-insensitive stomatal movement mutant phenotypes. Thus, we uncovered that ABA elicits cytosolic Ca2+ signaling via an OST1-CNGC module, in which OST1 functions as a convergence point of the Ca2+-dependent and -independent pathways in Arabidopsis guard cells.
Collapse
Affiliation(s)
- Yang Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Qiu Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xinyong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Jun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo-Ya Du
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Meijun Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Li J, Zhang S, Lei P, Guo L, Zhao X, Meng F. Physiological and Proteomic Responses of the Tetraploid Robinia pseudoacacia L. to High CO 2 Levels. Int J Mol Sci 2024; 25:5262. [PMID: 38791300 PMCID: PMC11121411 DOI: 10.3390/ijms25105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The increase in atmospheric CO2 concentration is a significant factor in triggering global warming. CO2 is essential for plant photosynthesis, but excessive CO2 can negatively impact photosynthesis and its associated physiological and biochemical processes. The tetraploid Robinia pseudoacacia L., a superior and improved variety, exhibits high tolerance to abiotic stress. In this study, we investigated the physiological and proteomic response mechanisms of the tetraploid R. pseudoacacia under high CO2 treatment. The results of our physiological and biochemical analyses revealed that a 5% high concentration of CO2 hindered the growth and development of the tetraploid R. pseudoacacia and caused severe damage to the leaves. Additionally, it significantly reduced photosynthetic parameters such as Pn, Gs, Tr, and Ci, as well as respiration. The levels of chlorophyll (Chl a and b) and the fluorescent parameters of chlorophyll (Fm, Fv/Fm, qP, and ETR) also significantly decreased. Conversely, the levels of ROS (H2O2 and O2·-) were significantly increased, while the activities of antioxidant enzymes (SOD, CAT, GR, and APX) were significantly decreased. Furthermore, high CO2 induced stomatal closure by promoting the accumulation of ROS and NO in guard cells. Through a proteomic analysis, we identified a total of 1652 DAPs after high CO2 treatment. GO functional annotation revealed that these DAPs were mainly associated with redox activity, catalytic activity, and ion binding. KEGG analysis showed an enrichment of DAPs in metabolic pathways, secondary metabolite biosynthesis, amino acid biosynthesis, and photosynthetic pathways. Overall, our study provides valuable insights into the adaptation mechanisms of the tetraploid R. pseudoacacia to high CO2.
Collapse
Affiliation(s)
- Jianxin Li
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China; (J.L.); (P.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (L.G.)
| | - Subin Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (L.G.)
| | - Pei Lei
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China; (J.L.); (P.L.)
| | - Liyong Guo
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (S.Z.); (L.G.)
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China; (J.L.); (P.L.)
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Changchun 130118, China
| | - Fanjuan Meng
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China; (J.L.); (P.L.)
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Changchun 130118, China
| |
Collapse
|
12
|
Gan X, Sengottaiyan P, Park KH, Assmann SM, Albert R. A network-based modeling framework reveals the core signal transduction network underlying high carbon dioxide-induced stomatal closure in guard cells. PLoS Biol 2024; 22:e3002592. [PMID: 38691548 PMCID: PMC11090369 DOI: 10.1371/journal.pbio.3002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/13/2024] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.
Collapse
Affiliation(s)
- Xiao Gan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Palanivelu Sengottaiyan
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyu Hyong Park
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
13
|
Bai X, Chen Z, Chen M, Zeng B, Li X, Tu P, Hu B. Morphological, Anatomical, and Physiological Characteristics of Heteroblastic Acacia melanoxylon Grown under Weak Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:870. [PMID: 38592868 PMCID: PMC10974800 DOI: 10.3390/plants13060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Acacia melanoxylon is a fast-growing macrophanerophyte with strong adaptability whose leaf enables heteromorphic development. Light is one of the essential environmental factors that induces the development of the heteroblastic leaf of A. melanoxylon, but its mechanism is unclear. In this study, the seedlings of A. melanoxylon clones were treated with weak light (shading net with 40% of regular light transmittance) and normal light (control) conditions for 90 d and a follow-up observation. The results show that the seedlings' growth and biomass accumulation were inhibited under weak light. After 60 days of treatment, phyllodes were raised under the control condition while the remaining compound was raised under weak light. The balance of root, stem, and leaf biomass changed to 15:11:74 under weak light, while it was 40:15:45 under control conditions. After comparing the anatomical structures of the compound leaves and phyllode, they were shown to have their own strategies for staying hydrated, while phyllodes were more able to control water loss and adapt to intense light. The compound leaves exhibited elevated levels of K, Cu, Ca, and Mg, increased antioxidant enzyme activity and proline content, and higher concentrations of chlorophyll a, carotenoids, ABA, CTK, and GA. However, they displayed a relatively limited photosynthetic capacity. Phyllodes exhibited higher levels of Fe, cellulose, lignin, IAA content, and high photosynthetic capacity with a higher maximum net photosynthetic rate, light compensation point, dark respiration rate, and water use efficiency. The comparative analysis of compound leaves and phyllodes provides a basis for understanding the diverse survival strategies that heteroblastic plants employ to adapt to environmental changes.
Collapse
Affiliation(s)
- Xiaogang Bai
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhaoli Chen
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Mengjiao Chen
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Bingshan Zeng
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Xiangyang Li
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Panfeng Tu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bing Hu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
14
|
Li K, Grauschopf C, Hedrich R, Dreyer I, Konrad KR. K + and pH homeostasis in plant cells is controlled by a synchronized K + /H + antiport at the plasma and vacuolar membrane. THE NEW PHYTOLOGIST 2024; 241:1525-1542. [PMID: 38017688 DOI: 10.1111/nph.19436] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Christina Grauschopf
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Ingo Dreyer
- Faculty of Engineering, Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, 3460000, Talca, Chile
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
15
|
Zhang T, Bai L, Guo Y. SCAB1 coordinates sequential Ca 2+ and ABA signals during osmotic stress induced stomatal closure in Arabidopsis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1-18. [PMID: 38153680 DOI: 10.1007/s11427-023-2480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/01/2023] [Indexed: 12/29/2023]
Abstract
Hyperosmotic stress caused by drought is a detrimental threat to plant growth and agricultural productivity due to limited water availability. Stomata are gateways of transpiration and gas exchange, the swift adjustment of stomatal aperture has a strong influence on plant drought resistance. Despite intensive investigations of stomatal closure during drought stress in past decades, little is known about how sequential signals are integrated during complete processes. Here, we discovered that the rapid Ca2+ signaling and subsequent abscisic acid (ABA) signaling contribute to the kinetics of both F-actin reorganizations and stomatal closure in Arabidopsis thaliana, while STOMATAL CLOSURE-RELATED ACTIN BINDING PROTEIN1 (SCAB1) is the molecular switch for this entire process. During the early stage of osmotic shock responses, swift elevated calcium signaling promotes SCAB1 phosphorylation through calcium sensors CALCIUM DEPENDENT PROTEIN KINASE3 (CPK3) and CPK6. The phosphorylation restrained the microfilament binding affinity of SCAB1, which bring about the F-actin disassembly and stomatal closure initiation. As the osmotic stress signal continued, both the kinase activity of CPK3 and the phosphorylation level of SCAB1 attenuated significantly. We further found that ABA signaling is indispensable for these attenuations, which presumably contributed to the actin filament reassembly process as well as completion of stomatal closure. Notably, the dynamic changes of SCAB1 phosphorylation status are crucial for the kinetics of stomatal closure. Taken together, our results support a model in which SCAB1 works as a molecular switch, and directs the microfilament rearrangement through integrating the sequentially generated Ca2+ and ABA signals during osmotic stress induced stomatal closure.
Collapse
Affiliation(s)
- Tianren Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Bai
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Nguyen T, Silva‐Alvim FAL, Hills A, Blatt MR. OnGuard3e: A predictive, ecophysiology-ready tool for gas exchange and photosynthesis research. PLANT, CELL & ENVIRONMENT 2023; 46:3644-3658. [PMID: 37498151 PMCID: PMC10946835 DOI: 10.1111/pce.14674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Gas exchange across the stomatal pores of leaves is a focal point in studies of plant-environmental relations. Stomata regulate atmospheric exchange with the inner air spaces of the leaf. They open to allow CO2 entry for photosynthesis and close to minimize water loss. Models that focus on the phenomenology of stomatal conductance generally omit the mechanics of the guard cells that regulate the pore aperture. The OnGuard platform fills this gap and offers a truly mechanistic approach with which to analyse stomatal gas exchange, whole-plant carbon assimilation and water-use efficiency. Previously, OnGuard required specialist knowledge of membrane transport, signalling and metabolism. Here we introduce OnGuard3e, a software package accessible to ecophysiologists and membrane biologists alike. We provide a brief guide to its use and illustrate how the package can be applied to explore and analyse stomatal conductance, assimilation and water use efficiencies, addressing a range of experimental questions with truly predictive outputs.
Collapse
Affiliation(s)
- Thanh‐Hao Nguyen
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| | | | - Adrian Hills
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| |
Collapse
|
17
|
Fan W, Liao X, Tan Y, Wang X, Schroeder JI, Li Z. Arabidopsis PLANT U-BOX44 down-regulates osmotic stress signaling by mediating Ca2+-DEPENDENT PROTEIN KINASE4 degradation. THE PLANT CELL 2023; 35:3870-3888. [PMID: 37338064 PMCID: PMC10533340 DOI: 10.1093/plcell/koad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Calcium (Ca2+)-dependent protein kinases (CPKs) are essential regulators of plant responses to diverse environmental stressors, including osmotic stress. CPKs are activated by an increase in intracellular Ca2+ levels triggered by osmotic stress. However, how the levels of active CPK protein are dynamically and precisely regulated has yet to be determined. Here, we demonstrate that NaCl/mannitol-induced osmotic stress promoted the accumulation of CPK4 protein by disrupting its 26S proteasome-mediated CPK4 degradation in Arabidopsis (Arabidopsis thaliana). We isolated PLANT U-BOX44 (PUB44), a U-box type E3 ubiquitin ligase that ubiquitinates CPK4 and triggers its degradation. A calcium-free or kinase-inactive CPK4 variant was preferentially degraded compared to the Ca2+-bound active form of CPK4. Furthermore, PUB44 exhibited a CPK4-dependent negative role in the response of plants to osmotic stress. Osmotic stress induced the accumulation of CPK4 protein by inhibiting PUB44-mediated CPK4 degradation. The present findings reveal a mechanism for regulating CPK protein levels and establish the relevance of PUB44-dependent CPK4 regulation in modulating plant osmotic stress responses, providing insights into osmotic stress signal transduction mechanisms.
Collapse
Affiliation(s)
- Wei Fan
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiliang Liao
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanqiu Tan
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiruo Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zixing Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
18
|
Thye KL, Wan Abdullah WMAN, Ong-Abdullah J, Lamasudin DU, Wee CY, Mohd Yusoff MHY, Loh JY, Cheng WH, Lai KS. Calcium lignosulfonate modulates physiological and biochemical responses to enhance shoot multiplication in Vanilla planifolia Andrews. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:377-392. [PMID: 37033764 PMCID: PMC10073391 DOI: 10.1007/s12298-023-01293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Utilisation of calcium lignosulfonate (CaLS) in Vanilla planifolia has been reported to improve shoot multiplication. However, mechanisms responsible for such observation remain unknown. Here, we elucidated the underlying mechanisms of CaLS in promoting shoot multiplication of V. planifolia via comparative proteomics, biochemical assays, and nutrient analysis. The proteome profile of CaLS-treated plants showed enhancement of several important cellular metabolisms such as photosynthesis, protein synthesis, Krebs cycle, glycolysis, gluconeogenesis, and carbohydrate synthesis. Further biochemical analysis recorded that CaLS increased Rubisco activity, hexokinase activity, isocitrate dehydrogenase activity, total carbohydrate content, glutamate synthase activity and total protein content in plant shoot, suggesting the role of CaLS in enhancing shoot growth via upregulation of cellular metabolism. Subsequent nutrient analysis showed that CaLS treatment elevated the contents of several nutrient ions especially calcium and sodium ions. In addition, our study also revealed that CaLS successfully maintained the cellular homeostasis level through the regulation of signalling molecules such as reactive oxygen species and calcium ions. These results demonstrated that the CaLS treatment can enhance shoot multiplication in V. planifolia Andrews by stimulating nutrient uptake, inducing cell metabolism, and regulating cell homeostasis. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01293-w.
Collapse
Affiliation(s)
- Kah-Lok Thye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Wan Muhamad Asrul Nizam Wan Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Dhilia Udie Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Chien-Yeong Wee
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, 43400 Serdang, Selangor Malaysia
| | | | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000 Cheras, Kuala Lumpur Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates
| |
Collapse
|
19
|
Ge H, Shao Q, Chen J, Chen J, Li X, Tan Y, Lan W, Yang L, Wang Y. A metal tolerance protein, MTP10, is required for the calcium and magnesium homeostasis in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2022; 17:2025322. [PMID: 35007463 PMCID: PMC9176222 DOI: 10.1080/15592324.2021.2025322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Nutrient antagonism typically refers to the fact that too high a concentration of one nutrient inhibits the absorption of another nutrient. In plants, Ca2+ (Calcium) and Mg2+ (Magnesium) are the two most abundant divalent cations, which are known to have antagonistic interactions. Hence, maintaining their homeostasis is crucial for plant growth and development. In this study, we showed that MTP10 (Metal Tolerance Protein 10) is an important regulator for maintaining homeostasis of Mg and Ca in Arabidopsis. The mtp10 mutant displayed severe growth retardation in the presence of excess Mg2+, to which the addition of Ca2+ was able to rescue the phenotype of mtp10 mutant. Additionally, the deficiency of Ca2+ in the culture medium accelerated the high-Mg sensitivity of the mtp10 mutant. The yeast complementation assay suggested that AtMTP10 had no Ca2+ transport activity. And the ICP-MS data further confirmed the antagonistic relationship between Ca2+ and Mg2+, with the addition of Ca2+ reducing the excessive accumulation of Mg2+ and high-Mg inhibiting the uptake of Ca2+. We conclude that the Arabidopsis MTP10 is essential for the regulation of Mg and Ca homeostasis.
Collapse
Affiliation(s)
- Haiman Ge
- College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qiaolin Shao
- Cas Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Jinlin Chen
- College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jiahong Chen
- Cas Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xueqin Li
- Cas Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yu Tan
- Cas Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Wenzhi Lan
- College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yuan Wang
- College of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Cas Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, PR China
| |
Collapse
|
20
|
Jones JJ, Huang S, Hedrich R, Geilfus CM, Roelfsema MRG. The green light gap: a window of opportunity for optogenetic control of stomatal movement. THE NEW PHYTOLOGIST 2022; 236:1237-1244. [PMID: 36052708 DOI: 10.1111/nph.18451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.
Collapse
Affiliation(s)
- Jeffrey J Jones
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
| | - Shouguang Huang
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, 14195, Germany
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, 65366, Geisenheim, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082, Würzburg, Germany
| |
Collapse
|
21
|
Bai R, Bai C, Han X, Liu Y, Yong JWH. The significance of calcium-sensing receptor in sustaining photosynthesis and ameliorating stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1019505. [PMID: 36304398 PMCID: PMC9594963 DOI: 10.3389/fpls.2022.1019505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium ions (Ca2+) regulate plant growth and development during exposure to multiple biotic and abiotic stresses as the second signaling messenger in cells. The extracellular calcium-sensing receptor (CAS) is a specific protein spatially located on the thylakoid membrane. It regulates the intracellular Ca2+ responses by sensing changes in extracellular Ca2+ concentration, thereby affecting a series of downstream signal transduction processes and making plants more resilient to respond to stresses. Here, we summarized the discovery process, structure, and location of CAS in plants and the effects of Ca2+ and CAS on stomatal functionality, photosynthesis, and various environmental adaptations. Under changing environmental conditions and global climate, our study enhances the mechanistic understanding of calcium-sensing receptors in sustaining photosynthesis and mediating abiotic stress responses in plants. A better understanding of the fundamental mechanisms of Ca2+ and CAS in regulating stress responses in plants may provide novel mitigation strategies for improving crop yield in a world facing more extreme climate-changed linked weather events with multiple stresses during cultivation.
Collapse
Affiliation(s)
- Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
22
|
Shanker AK, Gunnapaneni D, Bhanu D, Vanaja M, Lakshmi NJ, Yadav SK, Prabhakar M, Singh VK. Elevated CO 2 and Water Stress in Combination in Plants: Brothers in Arms or Partners in Crime? BIOLOGY 2022; 11:biology11091330. [PMID: 36138809 PMCID: PMC9495351 DOI: 10.3390/biology11091330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 04/30/2023]
Abstract
The changing dynamics in the climate are the primary and important determinants of agriculture productivity. The effects of this changing climate on overall productivity in agriculture can be understood when we study the effects of individual components contributing to the changing climate on plants and crops. Elevated CO2 (eCO2) and drought due to high variability in rainfall is one of the important manifestations of the changing climate. There is a considerable amount of literature that addresses climate effects on plant systems from molecules to ecosystems. Of particular interest is the effect of increased CO2 on plants in relation to drought and water stress. As it is known that one of the consistent effects of increased CO2 in the atmosphere is increased photosynthesis, especially in C3 plants, it will be interesting to know the effect of drought in relation to elevated CO2. The potential of elevated CO2 ameliorating the effects of water deficit stress is evident from literature, which suggests that these two agents are brothers in arms protecting the plant from stress rather than partners in crime, specifically for water deficit when in isolation. The possible mechanisms by which this occurs will be discussed in this minireview. Interpreting the effects of short-term and long-term exposure of plants to elevated CO2 in the context of ameliorating the negative impacts of drought will show us the possible ways by which there can be effective adaption to crops in the changing climate scenario.
Collapse
|
23
|
Wang T, Wei Q, Wang Z, Liu W, Zhao X, Ma C, Gao J, Xu Y, Hong B. CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:741-755. [PMID: 34889055 DOI: 10.1111/jipb.13201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/08/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major abiotic stress that limits plant growth and development. Adaptive mechanisms have evolved to mitigate drought stress, including the capacity to adjust water loss rate and to modify the morphology and structure of the epidermis. Here, we show that the expression of CmNF-YB8, encoding a nuclear factor Y (NF-Y) B-type subunit, is lower under drought conditions in chrysanthemum (Chrysanthemum morifolium). Transgenic chrysanthemum lines in which transcript levels of CmNF-YB8 were reduced by RNA interference (CmNF-YB8-RNAi) exhibited enhanced drought resistance relative to control lines, whereas lines overexpressing CmNF-YB8 (CmNF-YB8-OX) were less tolerant to drought. Compared to wild type (WT), CmNF-YB8-RNAi plants showed reduced stomatal opening and a thicker epidermal cuticle that correlated with their water loss rate. We also identified genes involved in stomatal adjustment (CBL-interacting protein kinase 6, CmCIPK6) and cuticle biosynthesis (CmSHN3) that are more highly expressed in CmNF-YB8-RNAi lines than in WT, CmCIPK6 being a direct downstream target of CmNF-YB8. Virus-induced gene silencing of CmCIPK6 or CmSHN3 in the CmNF-YB8-RNAi background abolished the effects of CmNF-YB8-RNAi on stomatal closure and cuticle deposition, respectively. CmNF-YB8 thus regulates CmCIPK6 and CmSHN3 expression to alter stomatal movement and cuticle thickness in the leaf epidermis, thereby affecting drought resistance.
Collapse
Affiliation(s)
- Tianle Wang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Wei
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiling Wang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenwen Liu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Zhao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
24
|
Kleist TJ, Bortolazzo A, Keyser ZP, Perera AM, Irving TB, Venkateshwaran M, Atanjaoui F, Tang RJ, Maeda J, Cartwright HN, Christianson ML, Lemaux PG, Luan S, Ané JM. Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway. iScience 2022; 25:103754. [PMID: 35146383 PMCID: PMC8819110 DOI: 10.1016/j.isci.2022.103754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Abstract
Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming.
Collapse
Affiliation(s)
- Thomas J. Kleist
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Plant Biology, Carnegie Institute for Science, Stanford, CA 94305, USA
- Institute for Molecular Physiology, Department of Biology, Heinrich Heine University, Düsseldorf 40225, Germany
- Corresponding author
| | - Anthony Bortolazzo
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zachary P. Keyser
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adele M. Perera
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Thomas B. Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Fatiha Atanjaoui
- Institute for Molecular Physiology, Department of Biology, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Ren-Jie Tang
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heather N. Cartwright
- Department of Plant Biology, Carnegie Institute for Science, Stanford, CA 94305, USA
| | - Michael L. Christianson
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Peggy G. Lemaux
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Sheng Luan
- Department of Plant & Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Corresponding author
| |
Collapse
|
25
|
Ou X, Li T, Zhao Y, Chang Y, Wu L, Chen G, Day B, Jiang K. Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153585. [PMID: 34894596 DOI: 10.1016/j.jplph.2021.153585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Stomatal immunity is mediated by ABA, an osmotic stress-responsive phytohormone that closes stomata via calcium-dependent and -independent signaling pathways. However, the functional involvement of ABA signal transducers in stomatal immunity remains poorly understood. Here, we demonstrate that stomatal immunity was compromised in mutants of the ABA signaling core. We also found that it is a subset of calcium-dependent protein kinases (CPK4/5/6), but not the calcium-independent kinase OST1, that relay the stomatal immune signaling. Surface-inoculated bacteria caused an endogenous ABA-dependent induction of local SA responses, whilst expression of the ABA biosynthetic genes and the ABA levels were not affected in leaf epidermis. Furthermore, flg22-elicited ROS burst was attenuated by mutations in CPK4 and CPK5, and pathogen-induced SA production in leaf epidermis was compromised in cpk4, cpk5, and cpk6 mutants. Our results suggest that CPKs function in stomatal immunity through fine-tuning apoplastic ROS levels as well as reinforcing the localized SA signal in guard cells. It is also envisioned that ABA mediates stomatal responses to biotic and abiotic stresses via two distinct but partially overlapping signaling modules.
Collapse
Affiliation(s)
- Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Tianqi Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yuankai Chang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, 475004, China
| | - Lihong Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Guoqingzi Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
26
|
Karanam A, Rappel WJ. Boolean modelling in plant biology. QUANTITATIVE PLANT BIOLOGY 2022; 3:e29. [PMID: 37077966 PMCID: PMC10095905 DOI: 10.1017/qpb.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/03/2023]
Abstract
Signalling and genetic networks underlie most biological processes and are often complex, containing many highly connected components. Modelling these networks can provide insight into mechanisms but is challenging given that rate parameters are often not well defined. Boolean modelling, in which components can only take on a binary value with connections encoded by logic equations, is able to circumvent some of these challenges, and has emerged as a viable tool to probe these complex networks. In this review, we will give an overview of Boolean modelling, with a specific emphasis on its use in plant biology. We review how Boolean modelling can be used to describe biological networks and then discuss examples of its applications in plant genetics and plant signalling.
Collapse
Affiliation(s)
- Aravind Karanam
- Department of Physics, University of California, San Diego, La Jolla, California92093, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California92093, USA
- Author for correspondence: W.-J. Rappel, E-mail:
| |
Collapse
|
27
|
Karanam A, He D, Hsu PK, Schulze S, Dubeaux G, Karmakar R, Schroeder JI, Rappel WJ. Boolink: a graphical interface for open access Boolean network simulations and use in guard cell CO2 signaling. PLANT PHYSIOLOGY 2021; 187:2311-2322. [PMID: 34618035 PMCID: PMC8644243 DOI: 10.1093/plphys/kiab344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/30/2021] [Indexed: 05/02/2023]
Abstract
Signaling networks are at the heart of almost all biological processes. Most of these networks contain large number of components, and often either the connections between these components are not known or the rate equations that govern the dynamics of soluble signaling components are not quantified. This uncertainty in network topology and parameters can make it challenging to formulate detailed mathematical models. Boolean networks, in which all components are either on or off, have emerged as viable alternatives to detailed mathematical models that contain rate constants and other parameters. Therefore, open-source platforms of Boolean models for community use are desirable. Here, we present Boolink, a freely available graphical user interface that allows users to easily construct and analyze existing Boolean networks. Boolink can be applied to any Boolean network. We demonstrate its application using a previously published network for abscisic acid (ABA)-driven stomatal closure in Arabidopsis spp. (Arabidopsis thaliana). We also show how Boolink can be used to generate testable predictions by extending the network to include CO2 regulation of stomatal movements. Predictions of the model were experimentally tested, and the model was iteratively modified based on experiments showing that ABA effectively closes Arabidopsis stomata at near-zero CO2 concentrations (1.5-ppm CO2). Thus, Boolink enables public generation and the use of existing Boolean models, including the prior developed ABA signaling model with added CO2 signaling components.
Collapse
Affiliation(s)
- Aravind Karanam
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - David He
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Sebastian Schulze
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Guillaume Dubeaux
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Richa Karmakar
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California, San Diego, La Jolla, California 92093, USA
- Author for communication:
| |
Collapse
|
28
|
Dubeaux G, Hsu PK, Ceciliato PHO, Swink KJ, Rappel WJ, Schroeder JI. Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants. PLANT PHYSIOLOGY 2021; 187:2032-2042. [PMID: 35142859 PMCID: PMC8644143 DOI: 10.1093/plphys/kiab342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Recent advances are revealing mechanisms mediating CO2-regulated stomatal movements in Arabidopsis, stomatal architecture and stomatal movements in grasses, and the long-term impact of CO2 on growth.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Paulo H O Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Kelsey J Swink
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
- Author for communication:
| |
Collapse
|
29
|
Hsu PK, Takahashi Y, Merilo E, Costa A, Zhang L, Kernig K, Lee KH, Schroeder JI. Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proc Natl Acad Sci U S A 2021; 118:e2107280118. [PMID: 34799443 PMCID: PMC8617523 DOI: 10.1073/pnas.2107280118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD-induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches. We show that the slow-type anion channel SLAC1 plays a relatively more substantial role than the rapid-type anion channel ALMT12/QUAC1 in stomatal VPD signaling. VPD-induced stomatal closure is not affected in mpk12/mpk4GC double mutants that completely disrupt stomatal CO2 signaling, indicating that VPD signaling is independent of the early CO2 signal-transduction pathway. Calcium imaging shows that osmotic stress causes cytoplasmic Ca2+ transients in guard cells. Nevertheless, osca1-2/1.3/2.2/2.3/3.1 Ca2+-permeable channel quintuple, osca1.3/1.7-channel double, cngc5/6-channel double, cngc20-channel single, cngc19/20crispr-channel double, glr3.2/3.3-channel double, cpk-kinase quintuple, cbl1/4/5/8/9 quintuple, and cbl2/3rf double mutants showed wild-type-like stomatal VPD responses. A B3-family Raf-like mitogen-activated protein (MAP)-kinase kinase kinase, M3Kδ5/RAF6, activates the OST1/SnRK2.6 kinase in plant cells. Interestingly, B3 Raf-kinase m3kδ5 and m3kδ1/δ5/δ6/δ7 (raf3/6/5/4) quadruple mutants, but not a 14-gene raf-kinase mutant including osmotic stress-linked B4-family Raf-kinases, exhibited slowed high-VPD responses, suggesting that B3-family Raf-kinases play an important role in stomatal VPD signaling. Moreover, high VPD-induced stomatal closure was impaired in receptor-like pseudokinase GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) mutant alleles. Notably, the classical transient "wrong-way" VPD response was absent in ghr1 mutant alleles. These findings reveal genes and signaling mechanisms in the elusive high VPD-induced stomatal closing response pathway.
Collapse
Affiliation(s)
- Po-Kai Hsu
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Yohei Takahashi
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Alex Costa
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| | - Li Zhang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Klara Kernig
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Katie H Lee
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|