1
|
Vaishnav A, Rozmoš M, Kotianová M, Hršelová H, Bukovská P, Jansa J. Protists are key players in the utilization of protein nitrogen in the arbuscular mycorrhizal hyphosphere. THE NEW PHYTOLOGIST 2025; 246:2753-2764. [PMID: 40259857 PMCID: PMC12095988 DOI: 10.1111/nph.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
While largely depending on other microorganisms for nitrogen (N) mineralization, arbuscular mycorrhizal fungi (AMF) can transfer N from organic sources to their host plants. Here, we compared N acquisition by the AMF hyphae from chitin and protein sources and assessed the effects of microbial interactions in the hyphosphere. We employed in vitro compartmented microcosms, each containing three distinct hyphosphere compartments amended with different N sources (protein, chitin, or ammonium chloride), one of which was enriched with 15N isotope. All hyphosphere compartments were supplied with Paenibacillus bacteria, with or without the protist Polysphondylium pallidum. We measured the effect of these model microbiomes on the efficiency of 15N transfer to roots via the AMF hyphae. We found that the hyphae efficiently took up N from ammonium chloride, competing strongly with bacteria and protists. Mobilization of 15N from chitin and protein was facilitated by bacteria and protists, respectively. Notably, AMF priming significantly affected the abundance of bacteria and protists in hyphosphere compartments and promoted mineralization of protein N by protists. Subsequently, this N was transferred into roots. Our results provide the first unequivocal evidence that roots can acquire N from proteins present in the AMF hyphosphere and that protists may play a crucial role in protein N mineralization.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Martin Rozmoš
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Michala Kotianová
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Hana Hršelová
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Petra Bukovská
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| |
Collapse
|
2
|
Davis RA, Mafune KK, Winkler MKH. Biodegradable hydrogels and microbial consortia as a treatment for soil dysbiosis. Front Microbiol 2025; 16:1565940. [PMID: 40376461 PMCID: PMC12078290 DOI: 10.3389/fmicb.2025.1565940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
Terrestrial microbial communities drive many soil processes and can be pushed into a state of dysbiosis upon disturbance. This dysregulation negatively impacts soil biogeochemical cycles, which threatens plant and soil health. Effective treatment of soil dysbiosis requires simultaneous restoration of multiple system components, addressing both the physical structure of soil and its microbial communities. Hydrogels with microbial consortia simultaneously remedy soil hydrodynamics while promoting microbial reestablishment. The purpose of this review is to shed light on soil management practices through the lens of soil dysbiosis. This is important to address not only for soil health and crop productivity, but also to mitigate climate change through improved soil carbon sequestration and reduced greenhouse gas emissions. This review positions hydrogels and microbes as tools for the treatment of soil dysbiosis, contributing to agricultural and climate resilience.
Collapse
|
3
|
Li X, Song C, Kang X, Chen F, Li A, Wang Y, Zou J, Yin J, Li Y, Sun Z, Ma X, Liu J. Assembly and functional profile of rhizosphere microbial community during the Salix viminalis-AMF remediation of polycyclic aromatic hydrocarbon polluted soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122503. [PMID: 39299104 DOI: 10.1016/j.jenvman.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are positive to the phytoremediation by improving plant biomass and soil properties. However, the role of AM plants to the remediation of polycyclic aromatic hydrocarbons (PAHs) is yet to be widely recognized, and the impact of AM plants to indigenous microbial communities during remediation remains unclear. In this work, a 90-day study was conducted to assess the effect of AMF-Salix viminalis on the removal of PAHs, and explore the impact to the microbial community composition, abundance, and function. Results showed that AMF-Salix viminalis effectively enhanced the removal of benzo[a]pyrene, and enriched more PAH-degrading bacteria, consisting of Actinobacteria, Chloroflexi, Sphingomonas, and Stenotrophobacter, as well as fungi including Basidiomycota, Pseudogymnoascus, and Tomentella. For gene function, AM willow enhanced the enrichment of genes involved in amino acid synthesis, aminoacyl-tRNA biosynthesis, and cysteine and methionine metabolism pathways. F. mosseae inoculation had a greater effect on alpha- and beta-diversity of microbial genes at 90 d. Additionally, AMF inoculation significantly increased the soil microbial biomass carbon and organic matter concentration. All together, the microbial community assembly and function shaped by AM willow promoted the dissipation of PAHs. Our results support the effectiveness of AM remediation and contribute to reveal the enhancing-remediation mechanism to PAHs using multi-omics data.
Collapse
Affiliation(s)
- Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Chuansheng Song
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Xiaofei Kang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Fengzhen Chen
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junzhu Zou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiahui Yin
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; College of Horticulture, Jilin Agricultural University, Changchun, 130000, Jilin, China
| | - Yingying Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaodong Ma
- Department of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Junxiang Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
4
|
Deng N, Nian L, Zhang S, Liang Y, Shang H, Li Y, Mao Z. Response of soil microbial community structure to temperature and nitrogen fertilizer in three different provenances of Pennisetum alopecuroides. Front Microbiol 2024; 15:1483150. [PMID: 39512941 PMCID: PMC11542641 DOI: 10.3389/fmicb.2024.1483150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Soil microorganisms are key indicators of soil health, and it is crucial to investigate the structure and interactions of soil microbial communities among three different provenances of Pennisetum alopecuroides under varying nitrogen fertilizer and temperature levels in Northwest China. This study aims to provide theoretical support for the sustainable use of artificial grassland in this region. Employing a two-factor pot-control experiment with three nitrogen fertilizer treatments and three temperature treatments, a total of all treatments was utilized to examine the composition and abundance of soil microbial communities associated with Pennisetum alopecuroides using high-throughput sequencing, PCR technology, and molecular ecological network analysis. The results revealed that Proteobacteria was the dominant bacterial phylum while Ascomycota was the dominant fungal phylum in the soil samples from three provenances of Pennisetum. Specifically, Proteobacteria exhibited higher abundance in the N3T2 treatment compared to other treatments under N3T2 (25-30°C, 3 g/pot) treatment conditions in Shaanxi and Gansu provinces; similarly, Proteobacteria was more abundant in the N1T2 (25-30°C, 1 g/pot) treatment in Inner Mongolia under N1T2. Moreover, Ascomycota displayed higher abundance than other treatments in both Inner Mongolia and Gansu provinces. Additionally, Pennisetum Ascomycota demonstrated greater prevalence under (25-30°C, 3 g/pot) treatment compared to other treatments; furthermore, Shaanxi's Pennisetum Ascomycota exhibited increased prevalence under N3T1 (18-23°C, 3 g/pot) treatment compared to other treatments. The richness and diversity of soil microbial communities were significantly influenced by nitrogen fertilizer and temperature changes, leading to notable alterations in their structure. Molecular ecological network analyses revealed strong collaborative relationships among microbial species in Shaanxi Pennisetum and Inner Mongolia Pennisetum under high nitrogen and high temperature treatments, while competitive relationships were observed among microbial species in Gansu Pennisetum under similar conditions. Redundancy analysis indicated that soil pH, total potassium, and total phosphorus were the primary environmental factors influencing microorganisms. In summary, this study offers a theoretical foundation for assessing the sustainable utilization of Pennisetum artificial grasslands in Northwest China by investigating the shifts in soil microbial communities and the driving factors under varying nitrogen fertilizer and temperature levels.
Collapse
Affiliation(s)
- Niandong Deng
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Lili Nian
- Gansu Academy Agricultural Sciences, Lanzhou, China
| | - Shuolun Zhang
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Yixuan Liang
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Huiying Shang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
| | - Yang Li
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
| | - Zhuxin Mao
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
| |
Collapse
|
5
|
Wang Z, Lian J, Liang J, Wei H, Chen H, Hu W, Tang M. Arbuscular mycorrhizal symbiosis modulates nitrogen uptake and assimilation to enhance drought tolerance of Populus cathayana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108648. [PMID: 38653094 DOI: 10.1016/j.plaphy.2024.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
This study aims to investigate effects of arbuscular mycorrhizal fungi (AMF) inoculation on nitrogen (N) uptake and assimilation in Populus cathayana under drought stress (DS). Herein, we measured photosynthetic performance, antioxidant enzyme system, N level and N assimilation enzymes, proteins content and distribution, transcripts of genes associated with N uptake or transport in P. cathayana with AMF (AM) or without AMF (NM) under soil water limitation and adequate irrigation. Compared with NM-DS P. cathayana, the growth, gas exchange properties, antioxidant enzyme activities, total N content and the proportion of water-soluble and membrane-bound proteins in AM-DS P. cathayana were increased. Meanwhile, nitrate reductase (NR) activity, NO3- and NO2- concentrations in AM-DS P. cathayana were reduced, while NH4+ concentration, glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities were elevated, indicating that AM symbiosis reduces NO3- assimilation while promoting NH4+ assimilation. Furthermore, the transcriptional levels of NH4+ transporter genes (PcAMT1-4 and PcAMT2-1) and NO3- transporter genes (PcNRT2-1 and PcNRT3-1) in AM-DS P. cathayana roots were significantly down-regulated, as well as NH4+ transporter genes (PcAMT1-6 and PcAMT4-3) in leaves. In AM P. cathayana roots, DS significantly up-regulated the transcriptional levels of RiCPSI and RiURE, the key N transport regulatory genes in AMF compared with adequate irrigation. These results indicated that AM N transport pathway play an essential role on N uptake and utilization in AM P. cathayana to cope with DS. Therefore, this research offers a novel perspective on how AM symbiosis enhances plant resilience to drought at aspect of N acquisition and assimilation.
Collapse
Affiliation(s)
- Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqian Lian
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
He J, Zhang L, Van Dingenen J, Desmet S, Goormachtig S, Calonne-Salmon M, Declerck S. Arbuscular mycorrhizal hyphae facilitate rhizobia dispersal and nodulation in legumes. THE ISME JOURNAL 2024; 18:wrae185. [PMID: 39325968 PMCID: PMC11520417 DOI: 10.1093/ismejo/wrae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
In soil ecosystems, rhizobia occupy the rhizosphere of legume roots to form nodules, a process triggered by microbial recognition of specific root-derived signals (i.e. flavonoids). However, soil conditions can limit bacterial motility, restricting signal perception to the area directly influenced by roots. Legumes, like most plants of agricultural interest, associate with arbuscular mycorrhizal fungi, whose hyphae develop extensively in the soil, potentially providing an effective dispersal network for rhizobia. We hypothesized that mycelial networks of arbuscular mycorrhizal fungi play a role in signal transmission and act as a highway, enabling rhizobia to migrate from distant soil to the roots of leguminous plants. Using in vitro and greenhouse microcosm systems, we demonstrated that Rhizophagus irregularis helps Shinorhizobium meliloti to migrate towards the legume Medicago truncatula, triggering nodulation, a mechanism absent without the arbuscular mycorrhizal fungus. Metabolomics analysis revealed eight flavonoids unique to the compartment containing extraradical hyphae of the arbuscular mycorrhizal fungus linked to M. truncatula roots, associated with Sinorhizobium meliloti growth and nod gene expression. Rhizobia plated on the extraradical hyphae connecting two plants (the legume M. truncatula and non-legume Solanum tuberosum) by a common mycelium network, showed preference for the legume, suggesting the chemoattraction by specific signals transported by the fungus connected to the legume. Simultaneously, S. meliloti stimulated the cytoplasmic/protoplasmic flow in the hyphae, likely increasing the release of nutrients and signals. Our results highlight the importance of extraradical hyphae (i.e. the mycorrhizal pathway) of arbuscular mycorrhizal fungi for the migration of rhizobia over long distances to the roots, leading to nodulation.
Collapse
Affiliation(s)
- Jiadong He
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06B-1348, Louvain-la-Neuve, Belgium
| | - Lin Zhang
- College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium
| | - Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium
- VIB Metabolomics Core, VIB, Technologiepark 71, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06B-1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06B-1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Bender SF, Schulz S, Martínez-Cuesta R, Laughlin RJ, Kublik S, Pfeiffer-Zakharova K, Vestergaard G, Hartman K, Parladé E, Römbke J, Watson CJ, Schloter M, van der Heijden MGA. Simplification of soil biota communities impairs nutrient recycling and enhances above- and belowground nitrogen losses. THE NEW PHYTOLOGIST 2023; 240:2020-2034. [PMID: 37700504 DOI: 10.1111/nph.19252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Agriculture is a major source of nutrient pollution, posing a threat to the earth system functioning. Factors determining the nutrient use efficiency of plant-soil systems need to be identified to develop strategies to reduce nutrient losses while ensuring crop productivity. The potential of soil biota to tighten nutrient cycles by improving plant nutrition and reducing soil nutrient losses is still poorly understood. We manipulated soil biota communities in outdoor lysimeters, planted maize, continuously collected leachates, and measured N2 O- and N2 -gas emissions after a fertilization pulse to test whether differences in soil biota communities affected nutrient recycling and N losses. Lysimeters with strongly simplified soil biota communities showed reduced crop N (-20%) and P (-58%) uptake, strongly increased N leaching losses (+65%), and gaseous emissions (+97%) of N2 O and N2 . Soil metagenomic analyses revealed differences in the abundance of genes responsible for nutrient uptake, nitrate reduction, and denitrification that helped explain the observed nutrient losses. Soil biota are major drivers of nutrient cycling and reductions in the diversity or abundance of certain groups (e.g. through land-use intensification) can disrupt nutrient cycling, reduce agricultural productivity and nutrient use efficiency, and exacerbate environmental pollution and global warming.
Collapse
Affiliation(s)
- S Franz Bender
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Rubén Martínez-Cuesta
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Technical University of Munich, Chair for Environmental Microbiology, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ronald J Laughlin
- Agri-Environment Branch, Agri-Food & Biosciences Institute, Belfast, BT9 5PX, UK
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Kristina Pfeiffer-Zakharova
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kyle Hartman
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Eloi Parladé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Jörg Römbke
- ECT Ökotoxikologie GmbH, Böttgerstr. 2-14, D-65439, Flörsheim, Germany
| | - Catherine J Watson
- Agri-Environment Branch, Agri-Food & Biosciences Institute, Belfast, BT9 5PX, UK
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Technical University of Munich, Chair for Environmental Microbiology, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Marcel G A van der Heijden
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| |
Collapse
|
8
|
Rushworth CA, Wagner MR, Mitchell-Olds T, Anderson JT. The Boechera model system for evolutionary ecology. AMERICAN JOURNAL OF BOTANY 2022; 109:1939-1961. [PMID: 36371714 DOI: 10.1002/ajb2.16090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.
Collapse
Affiliation(s)
| | - Maggie R Wagner
- Department of Ecology and Evolutionary Biology, Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Chen Y, Liu Y, Zhang L, Zhang L, Wu N, Liu H. Effect of salt stress and nitrogen supply on seed germination and early seedling growth of three coastal halophytes. PeerJ 2022; 10:e14164. [PMID: 36225906 PMCID: PMC9549898 DOI: 10.7717/peerj.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023] Open
Abstract
Due to high salinity and low nutrient concentrations, the coastal zone is considered as one of the most vulnerable of the earth's habitats. Thus, the effect of salt and nitrogen on growth and development of coastal halophytes has been extensively investigated in recent years, but insufficient attention has been paid to the crucial stages of plant establishment, such as seed germination and seedling growth. Thus, we carried out a field experiment to evaluate the effects of salt stress (6, 10 and 20 g/kg NaCl) and nitrogen supply (0, 6 and 12 gm-2year-1) on seed germination and seedling growth of three coastal halophytes (including two dominant herb species Glehnia littoralis and Calystegia soldanella, one constructive shrub species Vitex rotundifolia) from September 2020 to June 2021. The results of our experiment showed that seeds of G. littoralis exhibited an explosive germination strategy in the early spring of 2021 with 70% of the seeds germinating. Conversely, the seeds of V. rotundifolia exhibited slow germination in the late spring of 2021 with only 60% of the seeds germinating. C. soldanella seed germination exhibited two obvious peak periods, but only 6% of the seeds germinated, which means that most seeds may be stored in the soil by stratification or died. All three halophytes showed greater sensitivity to nitrogen than salt stress during the seed germination stage. Nitrogen supply significantly delayed seed germination and reduced the cumulative germination percentage, particularly for G. littoralis. Despite the large impact of nitrogen on seed germination, nitrogen had a larger impact on seedling growth suggesting that the seedling growth stage of halophytes is more vulnerable to changes in nitrogen supply. Moreover, nitrogen supply significantly reduced the individual biomass of G. littoralis, C. soldanella and V. rotundifolia, with greater decreases seen in the dominant species than in the constructive species. Conversely, nitrogen supply increased underground biomass allocation of G. littoralis and C. soldanella, suggesting that the constructive species were less sensitive to nitrogen and exhibited a stronger anti-interference ability than the dominant species. Therefore, increasing nitrogen supply may firstly affect the seed germination and seedling growth of the dominant species, but not the constructive species.
Collapse
Affiliation(s)
- Yanfeng Chen
- School of Geography and Tourism, Qufu Normal University, Rizhao, Shandong, China
| | - Yan Liu
- School of Geography and Tourism, Qufu Normal University, Rizhao, Shandong, China
| | - Lan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Lingwei Zhang
- College of Life Sciences, Xinjiang Agricultural University, Urümqi, Xinjiang, China
| | - Nan Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - Huiliang Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China,Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Xinyuan, Xinjiang, China
| |
Collapse
|
10
|
Hasterok R, Catalan P, Hazen SP, Roulin AC, Vogel JP, Wang K, Mur LAJ. Brachypodium: 20 years as a grass biology model system; the way forward? TRENDS IN PLANT SCIENCE 2022; 27:1002-1016. [PMID: 35644781 DOI: 10.1016/j.tplants.2022.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
It has been 20 years since Brachypodium distachyon was suggested as a model grass species, but ongoing research now encompasses the entire genus. Extensive Brachypodium genome sequencing programmes have provided resources to explore the determinants and drivers of population diversity. This has been accompanied by cytomolecular studies to make Brachypodium a platform to investigate speciation, polyploidisation, perenniality, and various aspects of chromosome and interphase nucleus organisation. The value of Brachypodium as a functional genomic platform has been underscored by the identification of key genes for development, biotic and abiotic stress, and cell wall structure and function. While Brachypodium is relevant to the biofuel industry, its impact goes far beyond that as an intriguing model to study climate change and combinatorial stress.
Collapse
Affiliation(s)
- Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| | - Pilar Catalan
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca 22071, Spain; Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza E-50059, Spain
| | - Samuel P Hazen
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA; University California, Berkeley, Berkeley, CA 94720, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, Jiangsu, China
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK; College of Agronomy, Shanxi Agricultural University, Taiyuan 030801, Shanxi, China.
| |
Collapse
|
11
|
Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. THE ISME JOURNAL 2022; 16:676-685. [PMID: 34545172 PMCID: PMC8857242 DOI: 10.1038/s41396-021-01112-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi lack efficient exoenzymes to access organic nutrients directly. Nevertheless, the fungi often obtain and further channel to their host plants a significant share of nitrogen (N) and/or phosphorus from such resources, presumably via cooperation with other soil microorganisms. Because it is challenging to disentangle individual microbial players and processes in complex soil, we took a synthetic approach here to study 15N-labelled chitin (an organic N source) recycling via microbial loop in AM fungal hyphosphere. To this end, we employed a compartmented in vitro cultivation system and monoxenic culture of Rhizophagus irregularis associated with Cichorium intybus roots, various soil bacteria, and the protist Polysphondylium pallidum. We showed that upon presence of Paenibacillus sp. in its hyphosphere, the AM fungus (and associated plant roots) obtained several-fold larger quantities of N from the chitin than it did with any other bacteria, whether chitinolytic or not. Moreover, we demonstrated that adding P. pallidum to the hyphosphere with Paenibacillus sp. further increased by at least 65% the gain of N from the chitin by the AM fungus compared to the hyphosphere without protists. We thus directly demonstrate microbial interplay possibly involved in efficient organic N utilisation by AM fungal hyphae.
Collapse
|
12
|
Hestrin R, Weber PK, Pett-Ridge J, Lehmann J. Plants and mycorrhizal symbionts acquire substantial soil nitrogen from gaseous ammonia transport. THE NEW PHYTOLOGIST 2021; 231:1746-1757. [PMID: 34077566 DOI: 10.1111/nph.17527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen (N) is an essential nutrient that limits plant growth in many ecosystems. Here we investigate an overlooked component of the terrestrial N cycle - subsurface ammonia (NH3 ) gas transport and its contribution to plant and mycorrhizal N acquisition. We used controlled mesocosms, soil incubations, stable isotopes, and imaging to investigate edaphic drivers of NH3 gas efflux, track lateral subsurface N transport originating from 15 NH3 gas or 15 N-enriched organic matter, and assess plant and mycorrhizal N assimilation from this gaseous transport pathway. NH3 is released from soil organic matter, travels belowground, and contributes to root and fungal N content. Abiotic soil properties (pH and texture) influence the quantity of NH3 available for subsurface transport. Mutualisms with arbuscular mycorrhizal (AM) fungi can substantially increase plant NH3 -N uptake. The grass Brachypodium distachyon acquired 6-9% of total plant N from organic matter-N that traveled as a gas belowground. Colonization by the AM fungus Rhizophagus irregularis was associated with a two-fold increase in total plant N acquisition from subsurface NH3 gas. NH3 gas transport and uptake pathways may be fundamentally different from those of more commonly studied soil N species and warrant further research.
Collapse
Affiliation(s)
- Rachel Hestrin
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, 94550, USA
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, 94550, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, 94550, USA
| | - Johannes Lehmann
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, 14853, USA
- Institute for Advanced Study, TU München, Garching, 85748, Germany
| |
Collapse
|