1
|
Bedera-García R, García-Gómez ME, Personat JM, Couso I. Inositol polyphosphates regulate resilient mechanisms in the green alga Chlamydomonas reinhardtii to adapt to extreme nutrient conditions. PHYSIOLOGIA PLANTARUM 2025; 177:e70089. [PMID: 39868659 DOI: 10.1111/ppl.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation. In this study, we conducted prolonged starvation in WT and vip1-1 Chlamydomonas cells. After N and P had been consumed, they showed important differences in the levels of chlorophyll, photosystem II (PSII) activity and ultrastructural morphology, including differences in the cell size and cell division. Metabolomic analysis under these conditions revealed an overall decrease in different organic compounds such as amino acids, including arginine and its precursors and tryptophan, which is considered a signalling molecule itself in plants. In addition, we observed significant differences in RNA levels of genes related to N assimilation that are under the control of the NIT2 transcription factor. These data are of important relevance in understanding the signalling role of PP-InsPs in nutrient sensing, especially regarding N, which has not directly been connected to these molecules in green organisms before. Additionally, the PP-InsPs regulation over cell size and photosynthesis supports novel strategies for the generation of resilient strains, expanding the biotechnological applications of green microalgae.
Collapse
Affiliation(s)
- Rodrigo Bedera-García
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - María Elena García-Gómez
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - José María Personat
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Inmaculada Couso
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
2
|
Zhang Z, Yang S, Li Y, Xie D, Chen G, Ren J, Zhu H, Zhou H. NgLst8 Coactivates TOR Signaling to Activate Photosynthetic Growth in Nannochloropsis gaditana. Microorganisms 2024; 12:2574. [PMID: 39770776 PMCID: PMC11678606 DOI: 10.3390/microorganisms12122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The target of rapamycin (TOR) serves as a central regulator of cell growth, coordinating anabolic and catabolic processes in response to nutrient availability, growth factors, and energy supply. Activation of TOR has been shown to promote photosynthesis, growth, and development in yeast, animals, and plants. In this study, the complete cDNA sequence of the Lst8 gene was obtained from Nannochloropsis gaditana. The structure of N. gaditana LST8 comprises a typical WD40 repeat sequence, exhibiting high sequence similarity to several known LST8 proteins. By overexpressing the Lst8 gene in N. gaditana, we constructed the NgLst8 transgenic algal strain and measured its photosynthetic activity and growth. We observed that an increase in LST8 abundance promotes the expression of TOR-related kinase, thereby enhancing photosynthetic growth. Transcriptome analysis further elucidated the response mechanism of elevated Lst8 abundance in relation to photosynthesis. Our findings indicate that increased Lst8 expression activates ABC transporter proteins and the MAPK signaling pathway, which regulate the transmembrane transport of sugars and other metabolites, integrate photosynthesis, sugar metabolism, and energy signaling, and modulate energy metabolism in algal cells through interactions with the TOR signaling pathway.
Collapse
Affiliation(s)
- Zhengying Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Shu Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Dian Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Guobin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Jiaxu Ren
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (Z.Z.); (S.Y.); (Y.L.); (D.X.); (G.C.); (J.R.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361000, China
| |
Collapse
|
3
|
D’Alessandro S, Velay F, Lebrun R, Zafirov D, Mehrez M, Romand S, Saadouni R, Forzani C, Citerne S, Montané MH, Robaglia C, Menand B, Meyer C, Field B. Posttranslational regulation of photosynthetic activity via the TOR kinase in plants. SCIENCE ADVANCES 2024; 10:eadj3268. [PMID: 38896607 PMCID: PMC11186500 DOI: 10.1126/sciadv.adj3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Chloroplasts are the powerhouse of the plant cell, and their activity must be matched to plant growth to avoid photooxidative damage. We have identified a posttranslational mechanism linking the eukaryotic target of rapamycin (TOR) kinase that promotes growth and the guanosine tetraphosphate (ppGpp) signaling pathway of prokaryotic origins that regulates chloroplast activity and photosynthesis in particular. We find that RelA SpoT homolog 3 (RSH3), a nuclear-encoded enzyme responsible for ppGpp biosynthesis, interacts directly with the TOR complex via a plant-specific amino-terminal region which is phosphorylated in a TOR-dependent manner. Down-regulating TOR activity causes a rapid increase in ppGpp synthesis in RSH3 overexpressors and reduces photosynthetic capacity in an RSH-dependent manner in wild-type plants. The TOR-RSH3 signaling axis therefore regulates the equilibrium between chloroplast activity and plant growth, setting a precedent for the regulation of organellar function by TOR.
Collapse
Affiliation(s)
- Stefano D’Alessandro
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
- Università di Torino, Dipartimento di Scienze della vita e Biologia dei Sistemi, 10135 Torino, Italy
| | - Florent Velay
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| | - Régine Lebrun
- Aix Marseille Univ, CNRS, Plate-forme Protéomique, Marseille Protéomique (MaP), IMM FR 3479, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Delyan Zafirov
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| | - Marwa Mehrez
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
- Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Shanna Romand
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| | - Rim Saadouni
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
- Aix Marseille Univ, CNRS, Plate-forme Protéomique, Marseille Protéomique (MaP), IMM FR 3479, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Céline Forzani
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | | | - Benoît Menand
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Ben Field
- Aix Marseille Univ, CEA, CNRS, BIAM, LGBP Team, 13009 Marseille, France
| |
Collapse
|
4
|
Xu LL, Cui MQ, Xu C, Zhang MJ, Li GX, Xu JM, Wu XD, Mao CZ, Ding WN, Benhamed M, Ding ZJ, Zheng SJ. A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation. Nat Commun 2024; 15:5107. [PMID: 38877001 PMCID: PMC11178898 DOI: 10.1038/s41467-024-49102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.
Collapse
Affiliation(s)
- Li Lin Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Chen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China
| | - Miao Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiao Dan Wu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, 315300, Ningbo, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 10 91405, Orsay, France
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, 5100642, Guangzhou, China.
| |
Collapse
|
5
|
Collins E, Shou H, Mao C, Whelan J, Jost R. Dynamic interactions between SPX proteins, the ubiquitination machinery, and signalling molecules for stress adaptation at a whole-plant level. Biochem J 2024; 481:363-385. [PMID: 38421035 DOI: 10.1042/bcj20230163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen. PSR repression is mediated by a small family of single SYG1/Pho81/XPR1 (SPX) domain proteins. The SPX domain binds higher order inositol pyrophosphates that signal cellular phosphorus status and modulate SPX protein interaction with PHOSPHATE STARVATION RESPONSE1 (PHR1), the central transcriptional regulator of PSR. Sequestration by SPX repressors restricts PHR1 access to PSR gene promoters. Here we focus on SPX4 that primarily acts in shoots and sequesters many transcription factors other than PHR1 in the cytosol to control processes beyond the classical PSR, such as nitrate, auxin, and jasmonic acid signalling. Unlike SPX1 and SPX2, SPX4 is subject to proteasomal degradation not only by singular E3 ligases, but also by SCF-CRL complexes. Emerging models for these different layers of control and their consequences for plant acclimation to the environment will be discussed.
Collapse
Affiliation(s)
- Emma Collins
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Ricarda Jost
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
6
|
Du J, Dong Y, Zhu H, Deng Y, Sa C, Yu Q, Li M. DNA damage-induced autophagy is regulated by inositol polyphosphate synthetases in Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119622. [PMID: 37913846 DOI: 10.1016/j.bbamcr.2023.119622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
DNA damage-induced autophagy is a new type of autophagy that differs from traditional macroautophagy; however, this type of autophagy has not been identified in the pathogenic fungus Candida albicans. Inositol polyphosphates are involved in the regulation of DNA damage repair and macroautophagy; however, whether inositol polyphosphates are involved in the regulation of DNA damage-induced autophagy remains unclear. In this study, we identified DNA damage-induced autophagy in C. albicans and systematically investigated the mechanisms of inositol polyphosphate pathway regulation. We found that the core machinery of macro autophagy is also essential for DNA damage-induced autophagy, and that inositol polyphosphate synthetases Kcs1, Ipk1, and Vip1 play a critical role in autophagy. In this study, we focused on Kcs1 and Vip1, which are responsible for the synthesis of inositol pyrophosphate. The kcs1Δ/Δ and vip1Δ/Δ strains exhibited reduced number of phagophore assembly sites (PAS) and autophagic bodies. The recruitment of autophagy-related gene 1 (Atg1) to PAS was significantly affected in the kcs1Δ/Δ and vip1Δ/Δ strains. Target of rapamycin complex 1 kinase activity was elevated in kcs1Δ/Δ and vip1Δ/Δ strains, which significantly inhibited the initiation of autophagy. Atg18 Localization was altered in these mutants. The absence of Kcs1 or Vip1 caused the downregulation of RAD53, a key gene in the DNA damage response. These data provide further understanding of the mechanism of autophagy regulation in C. albicans.
Collapse
Affiliation(s)
- Jiawen Du
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yixuan Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ying Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chula Sa
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Slocombe SP, Zúñiga-Burgos T, Chu L, Mehrshahi P, Davey MP, Smith AG, Camargo-Valero MA, Baker A. Overexpression of PSR1 in Chlamydomonas reinhardtii induces luxury phosphorus uptake. FRONTIERS IN PLANT SCIENCE 2023; 14:1208168. [PMID: 37575910 PMCID: PMC10413257 DOI: 10.3389/fpls.2023.1208168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 08/15/2023]
Abstract
Remediation using micro-algae offers an attractive solution to environmental phosphate (PO4 3-) pollution. However, for maximum efficiency, pre-conditioning of algae to induce 'luxury phosphorus (P) uptake' is needed. To replicate this process, we targeted the global regulator PSR1 (Myb transcription factor: Phosphate Starvation Response 1) for over-expression in algae. Manipulating a single gene (PSR1) drove uptake of both PO4 3- and a Mg2+ counter-ion leading to increased PolyP granule size, raising P levels 4-fold to 8% dry cell weight, and accelerated removal of PO4 3- from the medium. Examination of the gene expression profile showed that the P-starvation response was mimicked under P-replete conditions, switching on luxury uptake. Hyper-accumulation of P depended on a feed-forward mechanism, where a small set of 'Class I' P-transporter genes were activated despite abundant external PO4 3- levels. The transporters drove a reduction in external PO4 3- levels, permitting more genes to be expressed (Class II), leading to more P-uptake. Our data pointed toward a PSR1-independent mechanism for detection of external PO4 3- which suppressed Class II genes. This model provided a plausible mechanism for P-overplus where prior P-starvation elevates PSR1 and on P-resupply causes luxury P-uptake. This is because the Class I genes, which include P-transporter genes, are not suppressed by the excess PO4 3-. Taken together, these discoveries facilitate a bio-circular approach of recycling nutrients from wastewater back to agriculture.
Collapse
Affiliation(s)
- Stephen P. Slocombe
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Tatiana Zúñiga-Burgos
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
| | - Lili Chu
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Payam Mehrshahi
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Matthew P. Davey
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, Cambridge University, Cambridge, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, United Kingdom
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Manizales, Colombia
| | - Alison Baker
- School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
8
|
Architecture of chloroplast TOC-TIC translocon supercomplex. Nature 2023; 615:349-357. [PMID: 36702157 DOI: 10.1038/s41586-023-05744-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Chloroplasts rely on the translocon complexes in the outer and inner envelope membranes (the TOC and TIC complexes, respectively) to import thousands of different nuclear-encoded proteins from the cytosol1-4. Although previous studies indicated that the TOC and TIC complexes may assemble into larger supercomplexes5-7, the overall architectures of the TOC-TIC supercomplexes and the mechanism of preprotein translocation are unclear. Here we report the cryo-electron microscopy structure of the TOC-TIC supercomplex from Chlamydomonas reinhardtii. The major subunits of the TOC complex (Toc75, Toc90 and Toc34) and TIC complex (Tic214, Tic20, Tic100 and Tic56), three chloroplast translocon-associated proteins (Ctap3, Ctap4 and Ctap5) and three newly identified small inner-membrane proteins (Simp1-3) have been located in the supercomplex. As the largest protein, Tic214 traverses the inner membrane, the intermembrane space and the outer membrane, connecting the TOC complex with the TIC proteins. An inositol hexaphosphate molecule is located at the Tic214-Toc90 interface and stabilizes their assembly. Four lipid molecules are located within or above an inner-membrane funnel formed by Tic214, Tic20, Simp1 and Ctap5. Multiple potential pathways found in the TOC-TIC supercomplex may support translocation of different substrate preproteins into chloroplasts.
Collapse
|
9
|
Morales-Pineda M, García-Gómez ME, Bedera-García R, García-González M, Couso I. CO 2 Levels Modulate Carbon Utilization, Energy Levels and Inositol Polyphosphate Profile in Chlorella. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010129. [PMID: 36616258 PMCID: PMC9823770 DOI: 10.3390/plants12010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 05/15/2023]
Abstract
Microalgae have a growing recognition of generating biomass and capturing carbon in the form of CO2. The genus Chlorella has especially attracted scientists' attention due to its versatility in algal mass cultivation systems and its potential in mitigating CO2. However, some aspects of how these green microorganisms respond to increasing concentrations of CO2 remain unclear. In this work, we analyzed Chlorella sorokiniana and Chlorella vulgaris cells under low and high CO2 levels. We monitored different processes related to carbon flux from photosynthetic capacity to carbon sinks. Our data indicate that high concentration of CO2 favors growth and photosynthetic capacity of the two Chlorella strains. Different metabolites related to the tricarboxylic acid cycle and ATP levels also increased under high CO2 concentrations in Chlorella sorokiniana, reaching up to two-fold compared to low CO2 conditions. The signaling molecules, inositol polyphosphates, that regulate photosynthetic capacity in green microalgae were also affected by the CO2 levels, showing a deep profile modification of the inositol polyphosphates that over-accumulated by up to 50% in high CO2 versus low CO2 conditions. InsP4 and InsP6 increased 3- and 0.8-fold, respectively, in Chlorella sorokiniana after being subjected to 5% CO2 condition. These data indicate that the availability of CO2 could control carbon flux from photosynthesis to carbon storage and impact cell signaling integration and energy levels in these green cells. The presented results support the importance of further investigating the connections between carbon assimilation and cell signaling by polyphosphate inositols in microalgae to optimize their biotechnological applications.
Collapse
|
10
|
Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. Deciphering the function and evolution of the target of rapamycin signaling pathway in microalgae. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6993-7005. [PMID: 35710309 PMCID: PMC9664231 DOI: 10.1093/jxb/erac264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Microalgae constitute a highly diverse group of photosynthetic microorganisms that are widely distributed on Earth. The rich diversity of microalgae arose from endosymbiotic events that took place early in the evolution of eukaryotes and gave rise to multiple lineages including green algae, the ancestors of land plants. In addition to their fundamental role as the primary source of marine and freshwater food chains, microalgae are essential producers of oxygen on the planet and a major biotechnological target for sustainable biofuel production and CO2 mitigation. Microalgae integrate light and nutrient signals to regulate cell growth. Recent studies identified the target of rapamycin (TOR) kinase as a central regulator of cell growth and a nutrient sensor in microalgae. TOR promotes protein synthesis and regulates processes that are induced under nutrient stress such as autophagy and the accumulation of triacylglycerol and starch. A detailed analysis of representative genomes from the entire microalgal lineage revealed that the highly conserved central components of the TOR pathway are likely to have been present in the last eukaryotic common ancestor, and the loss of specific TOR signaling elements at an early stage in the evolution of microalgae. Here we examine the evolutionary conservation of TOR signaling components in diverse microalgae and discuss recent progress of this signaling pathway in these organisms.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
11
|
Henriques R, Calderan-Rodrigues MJ, Luis Crespo J, Baena-González E, Caldana C. Growing of the TOR world. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6987-6992. [PMID: 36377640 PMCID: PMC9664224 DOI: 10.1093/jxb/erac401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Rossana Henriques
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland
- Environmental Research Institute, Lee Road, Cork, T23 XE10, Ireland
| | | | - José Luis Crespo
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, Sevilla, Spain
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB-NOVA, 2780-157 Oeiras, Portugal
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
12
|
Xing J, Zhao R, Zhang Q, Huang X, Yin T, Zhang J, Xu B. Genome-Wide Identification and Characterization of the LpSAPK Family Genes in Perennial Ryegrass Highlight LpSAPK9 as an Active Regulator of Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:922564. [PMID: 35720565 PMCID: PMC9201779 DOI: 10.3389/fpls.2022.922564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
SAPK/SnRK2 family genes play crucial roles in plant growth, development, and abiotic stress responses. The objective of this study was to identify and characterize the LpSAPK genes in perennial ryegrass (Lolium perenne L.). The results showed that there are 10 LpSAPKs in perennial ryegrass that could be classified into three groups with similar genic (exon-intron) structures to their orthologous genes in Arabidopsis and other grass species. Ka/Ks analysis suggested that the LpSAPKs and their orthologs were under purifying selection to maintain their conserved function during evolution. Nine out of ten LpSAPKs were localized in the cytoplasm and nucleus with the exception of LpSAPK5 which was only observed in the cytoplasm. Most LpSAPKs were responsive to various abiotic stress and hormonal (ABA, cytokinin, and ethylene) treatments but were downregulated in leaves and upregulated in roots, suggesting that there were unknown cis elements in promoters of these genes or unidentified post-transcriptional mechanism responsible for the tissue-dependent stress-regulated expression of these LpSAPKs. Furthermore, LpSAPK9 was identified as a candidate positive regulator in drought tolerance using a yeast ectopic expression system, and LpSAPK9 showed contrasting expression changes in drought-sensitive and -tolerant ryegrass varieties, suggesting that expression levels of LpSAPK9 were related to ryegrass drought tolerance. These results will facilitate further functional analysis of LpSAPKs for molecular breeding of ryegrass and other related grass species.
Collapse
|