1
|
Wu Z, Gong Y, Zohner CM, Vitasse Y, Li M, Nie Y, Buonaiuto DM, Morellato LPC, Guo Z, Wang S, Wang N, Wang H, Fu YH. Stabilizing mechanisms enable dioecious trees to maintain synchrony in spring budburst under climate warming. THE NEW PHYTOLOGIST 2025. [PMID: 40491238 DOI: 10.1111/nph.70290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/25/2025] [Indexed: 06/11/2025]
Abstract
Climate change could reduce dioecious plant fitness if the phenology of males and females responds differently to temperature. However, the extent to which spring phenological responses to climate differ between sexes in wind-pollinated dioecious trees remains poorly understood. Here, we combined ground observations with climate-controlled experiments to investigate sexual differences in spring budburst in Ginkgo biloba, Fraxinus chinensis, and Eucommia ulmoides. In 96% of in situ cases, male trees initiated budburst earlier than females, on average by 3.0 ± 0.4 d. This disparity was more pronounced in warmer regions. The experiment indicated that background climate is a key predictor of sexual disparity in budburst, with the largest differences observed in twigs originating from regions with higher mean annual temperatures and precipitation. However, these disparities declined in areas where mean annual temperatures exceeded 17.1°C, indicating nonlinear trends. This pattern aligns with the warming treatments, where sexual disparities decreased under spring warming of 2-10°C. These results suggest that while sexual disparities can be larger in warmer climates, dioecious trees possess stabilizing mechanisms, including photoperiod and chilling requirements, to maintain synchrony under warming conditions. Our findings enhance understanding of sex-specific phenological responses to climate change, with important implications for future species conservation and ecosystem management.
Collapse
Affiliation(s)
- Zhaofei Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Yufeng Gong
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, 8092, Switzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Mingwei Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yangjing Nie
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Daniel M Buonaiuto
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
- Northeast Climate Adaptation Science Center, University of Massachusetts, Amherst, MA, 01003, USA
| | - Leonor Patricia Cerdeira Morellato
- Department of Biodiversity, Phenology Lab, Biosciences Institute, Center for Research on Biodiversity Dynamics and Climate Change, UNESP Rio Claro - São Paulo State University, São Paulo, 13506-900, Brazil
| | - Zhendong Guo
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shuxin Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Nan Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hongzhou Wang
- School of National Safety and Emergency Management, Beijing Normal University, Beijing, 100875, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Ekrem RK, Jacobsen A, Kokko H, Kaiser TS. How an Insect Converts Time Into Space: Temporal Niches Aid Coexistence via Modifying the Amount of Habitat Available for Reproduction. Ecol Lett 2025; 28:e70139. [PMID: 40444370 PMCID: PMC12123478 DOI: 10.1111/ele.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025]
Abstract
Temporal niches do not automatically promote coexistence. We combine field data on the marine midge Clunio marinus with a model. In Roscoff (Brittany, France) sympatric C. marinus timing strains emerge at full moon (FM strain) or just before new moon (NM strain). We show that NM individuals reproduce and lay eggs when the water level is higher than during FM strain reproduction, and that this shift partially segregates larvae according to elevation. Modelling the underlying dynamics shows that the causality from temporal to spatial niches is crucial for coexistence: for hypothetical strains which differ in the temporal niche used for reproduction so that they use equivalently low water levels for egg-laying, the dynamics show priority effects, not coexistence. While general theory on temporal niches is rather complex, we highlight the understudied possibility that timing traits cause differences in space use, and coexistence is unproblematic as it results from spatial niches.
Collapse
Affiliation(s)
- Runa K. Ekrem
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Alexander Jacobsen
- Max Planck Research Group Biological ClocksMax Planck Institute for Evolutionary BiologyPlönGermany
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- iomE & IQCBUniversity of MainzMainzGermany
| | - Tobias S. Kaiser
- Max Planck Research Group Biological ClocksMax Planck Institute for Evolutionary BiologyPlönGermany
| |
Collapse
|
3
|
Zu K, Chen F, Li Y, Shrestha N, Fang X, Ahmad S, Nabi G, Wang Z. Climate change impacts flowering phenology in Gongga Mountains, Southwest China. PLANT DIVERSITY 2024; 46:774-782. [PMID: 39811806 PMCID: PMC11725964 DOI: 10.1016/j.pld.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 01/16/2025]
Abstract
Flowering phenology of plants, which is important for reproductive growth, has been shown to be influenced by climate change. Understanding how flowering phenology responds to climate change and exploring the variation of this response across plant groups can help predict structural and functional changes in plant communities in response to ongoing climate change. Here, we used long-term collections of 33 flowering plant species from the Gongga Mountains (Mt. Gongga hereafter), a biodiversity hotspot, to investigate how plant flowering phenology changed over the past 70 years in response to climate change. We found that mean flowering times in Mt. Gongga were delayed in all vegetation types and elevations over the last 70 years. Furthermore, flowering time was delayed more in lowlands than at high elevations. Interestingly, we observed that spring-flowering plants show earlier flowering times whereas summer/autumn plants show delayed flowering times. Non-synchronous flowering phenology across species was mainly driven by changes in temperature and precipitation. We also found that the flowering phenology of 78.8% plant species was delayed in response to warming temperatures. Our findings also indicate that the magnitude and direction of variation in plant flowering times vary significantly among species along elevation gradients. Shifts in flowering time might cause trophic mismatches with co-occurring and related species, affecting both forest ecosystem structure and function.
Collapse
Affiliation(s)
- Kuiling Zu
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fusheng Chen
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Yaoqi Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xiangmin Fang
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Shahid Ahmad
- School of Ecology and Environment, Hainan University, Haikou 570228, Hainan, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Zhiheng Wang
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Austin MW, Smith AB, Olsen KM, Hoch PC, Krakos KN, Schmocker SP, Miller-Struttmann NE. Climate change increases flowering duration, driving phenological reassembly and elevated co-flowering richness. THE NEW PHYTOLOGIST 2024; 243:2486-2500. [PMID: 39049577 DOI: 10.1111/nph.19994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Changes to flowering phenology are a key response of plants to climate change. However, we know little about how these changes alter temporal patterns of reproductive overlap (i.e. phenological reassembly). We combined long-term field (1937-2012) and herbarium records (1850-2017) of 68 species in a flowering plant community in central North America and used a novel application of Bayesian quantile regression to estimate changes to flowering season length, altered richness and composition of co-flowering assemblages, and whether phenological shifts exhibit seasonal trends. Across the past century, phenological shifts increased species' flowering durations by 11.5 d on average, which resulted in 94% of species experiencing greater flowering overlap at the community level. Increases to co-flowering were particularly pronounced in autumn, driven by a greater tendency of late season species to shift the ending of flowering later and to increase flowering duration. Our results demonstrate that species-level phenological shifts can result in considerable phenological reassembly and highlight changes to flowering duration as a prominent, yet underappreciated, effect of climate change. The emergence of an autumn co-flowering mode emphasizes that these effects may be season-dependent.
Collapse
Affiliation(s)
- Matthew W Austin
- Herbarium, Missouri Botanical Garden, St Louis, MO, 63110, USA
- Living Earth Collaborative, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Adam B Smith
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Peter C Hoch
- Herbarium, Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Kyra N Krakos
- Department of Biology, Maryville University in Saint Louis, St Louis, MO, 63141, USA
- Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Stefani P Schmocker
- Missouri Botanical Garden, St Louis, MO, 63110, USA
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
| | - Nicole E Miller-Struttmann
- Missouri Botanical Garden, St Louis, MO, 63110, USA
- Department of Natural Sciences and Mathematics, Webster University, St Louis, MO, 63119, USA
| |
Collapse
|
5
|
Peng S, Ramirez-Parada TH, Mazer SJ, Record S, Park I, Ellison AM, Davis CC. Incorporating plant phenological responses into species distribution models reduces estimates of future species loss and turnover. THE NEW PHYTOLOGIST 2024. [PMID: 38531810 DOI: 10.1111/nph.19698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate-sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges. Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel 'phenology-informed' SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology-informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting. When examining the range changes of all species, our phenology-informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes. Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait-based SDMs across spatial and taxonomic scales.
Collapse
Affiliation(s)
- Shijia Peng
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - Tadeo H Ramirez-Parada
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93105, USA
| | - Susan J Mazer
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93105, USA
| | - Sydne Record
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME, 04469, USA
| | - Isaac Park
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93105, USA
| | - Aaron M Ellison
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
- Sound Solutions for Sustainable Science, Boston, MA, 02135, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
6
|
Ramirez-Parada TH, Park IW, Record S, Davis CC, Ellison AM, Mazer SJ. Plasticity and not adaptation is the primary source of temperature-mediated variation in flowering phenology in North America. Nat Ecol Evol 2024; 8:467-476. [PMID: 38212525 DOI: 10.1038/s41559-023-02304-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
Phenology varies widely over space and time because of its sensitivity to climate. However, whether phenological variation is primarily generated by rapid organismal responses (plasticity) or local adaptation remains unresolved. Here we used 1,038,027 herbarium specimens representing 1,605 species from the continental United States to measure flowering-time sensitivity to temperature over time (Stime) and space (Sspace). By comparing these estimates, we inferred how adaptation and plasticity historically influenced phenology along temperature gradients and how their contributions vary among species with different phenology and native climates and among ecoregions differing in species composition. Parameters Sspace and Stime were positively correlated (r = 0.87), of similar magnitude and more frequently consistent with plasticity than adaptation. Apparent plasticity and adaptation generated earlier flowering in spring, limited responsiveness in late summer and delayed flowering in autumn in response to temperature increases. Nonetheless, ecoregions differed in the relative contributions of adaptation and plasticity, from consistently greater importance of plasticity (for example, southeastern United States plains) to their nearly equal importance throughout the season (for example, Western Sierra Madre Piedmont). Our results support the hypothesis that plasticity is the primary driver of flowering-time variation along temperature gradients, with local adaptation having a widespread but comparatively limited role.
Collapse
Affiliation(s)
- Tadeo H Ramirez-Parada
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
| | - Isaac W Park
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Sydne Record
- Department of Wildlife, Fisheries and Conservation Biology, University of Maine, Orono, ME, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Aaron M Ellison
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Sound Solutions for Sustainable Science, Boston, MA, USA
| | - Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Xie Y, Thammavong HT, Berry LG, Huang CH, Park DS. Sex-dependent phenological responses to climate vary across species' ranges. Proc Natl Acad Sci U S A 2023; 120:e2306723120. [PMID: 37956437 PMCID: PMC10691327 DOI: 10.1073/pnas.2306723120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/27/2023] [Indexed: 11/15/2023] Open
Abstract
Anthropogenic climate change has significantly altered the flowering times (i.e., phenology) of plants worldwide, affecting their reproduction, survival, and interactions. Recent studies utilizing herbarium specimens have uncovered significant intra- and inter-specific variation in flowering phenology and its response to changes in climate but have mostly been limited to animal-pollinated species. Thus, despite their economic and ecological importance, variation in phenological responses to climate remain largely unexplored among and within wind-pollinated dioecious species and across their sexes. Using both herbarium specimens and volunteer observations of cottonwood (Populus) species, we examined how phenological sensitivity to climate varies across species, their ranges, sexes, and phenophases. The timing of flowering varied significantly across and within species, as did their sensitivity to spring temperature. In particular, male flowering generally happened earlier in the season and was more sensitive to warming than female flowering. Further, the onset of flowering was more sensitive to changes in temperature than leaf out. Increased temporal gaps between male and female flowering time and between the first open flower date and leaf out date were predicted for the future under two climate change scenarios. These shifts will impact the efficacy of sexual reproduction and gene flow among species. Our study demonstrates significant inter- and intra-specific variation in phenology and its responses to environmental cues, across species' ranges, phenophases, and sex, in wind-pollinated species. These variations need to be considered to predict accurately the effects of climate change and assess their ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN47907
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY41099
| | - Hanna T. Thammavong
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Lily G. Berry
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Chingyan H. Huang
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Daniel S. Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
8
|
Park DS, Xie Y, Ellison AM, Lyra GM, Davis CC. Complex climate-mediated effects of urbanization on plant reproductive phenology and frost risk. THE NEW PHYTOLOGIST 2023; 239:2153-2165. [PMID: 36942966 DOI: 10.1111/nph.18893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited. Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering). Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions. Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47906, USA
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - Yingying Xie
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47906, USA
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41099, USA
| | - Aaron M Ellison
- Harvard University Herbaria, Harvard University, Cambridge, MA, 02135, USA
- Sound Solutions for Sustainable Science, Boston, MA, 02135, USA
| | - Goia M Lyra
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
- Programa de Pós Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
9
|
Davis CC. The herbarium of the future. Trends Ecol Evol 2022; 38:412-423. [PMID: 36549958 DOI: 10.1016/j.tree.2022.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
The ~400 million specimens deposited across ~3000 herbaria are essential for: (i) understanding where plants have lived in the past, (ii) forecasting where they may live in the future, and (iii) delineating their conservation status. An open access 'global metaherbarium' is emerging as these specimens are digitized, mobilized, and interlinked online. This virtual biodiversity resource is attracting new users who are accelerating traditional applications of herbaria and generating basic and applied scientific innovations, including e-monographs and floras produced by diverse, interdisciplinary, and inclusive teams; robust machine-learning algorithms for species identification and phenotyping; collection and synthesis of ecological trait data at large spatiotemporal and phylogenetic scales; and exhibitions and installations that convey the beauty of plants and the value of herbaria in addressing broader societal issues.
Collapse
Affiliation(s)
- Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Mazer SJ, Hunter DJ, Hove AA, Dudley LS. Context-dependent concordance between physiological divergence and phenotypic selection in sister taxa with contrasting phenology and mating systems. AMERICAN JOURNAL OF BOTANY 2022; 109:1757-1779. [PMID: 35652277 DOI: 10.1002/ajb2.16016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
PREMISE The study of phenotypic divergence of, and selection on, functional traits in closely related taxa provides the opportunity to detect the role of natural selection in driving diversification. If the strength or direction of selection in field populations differs between taxa in a pattern that is consistent with the phenotypic difference between them, then natural selection reinforces the divergence. Few studies have sought evidence for such concordance for physiological traits. METHODS Herbarium specimen records were used to detect phenological differences between sister taxa independent of the effects on flowering time of long-term variation in the climate across collection sites. In the field, physiological divergence in photosynthetic rate, transpiration rate, and instantaneous water-use efficiency were recorded during vegetative growth and flowering in 13 field populations of two taxon pairs of Clarkia, each comprising a self-pollinating and a outcrossing taxon. RESULTS Historically, each selfing taxon flowered earlier than its outcrossing sister taxon, independent of the effects of local long-term climatic conditions. Sister taxa differed in all focal traits, but the degree and (in one case) the direction of divergence depended on life stage. In general, self-pollinating taxa had higher gas exchange rates, consistent with their earlier maturation. In 6 of 18 comparisons, patterns of selection were concordant with the phenotypic divergence (or lack thereof) between sister taxa. CONCLUSIONS Patterns of selection on physiological traits measured in heterogeneous conditions do not reliably reflect divergence between sister taxa, underscoring the need for replicated studies of the direction of selection within and among taxa.
Collapse
Affiliation(s)
- Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - David J Hunter
- Department of Mathematics and Computer Science, Westmont College, Santa Barbara, CA, 93108
| | - Alisa A Hove
- Biology Department, Warren Wilson College, P.O. Box 9000, Asheville, NC, 28815, USA
| | - Leah S Dudley
- Department of Biological and Environmental Sciences, East Central University, Ada, OK, 74820, USA
| |
Collapse
|
11
|
Xie Y, Thammavong HT, Park DS. The ecological implications of intra- and inter-species variation in phenological sensitivity. THE NEW PHYTOLOGIST 2022; 236:760-773. [PMID: 35801834 PMCID: PMC9796043 DOI: 10.1111/nph.18361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plant-pollinator mutualisms rely upon the synchrony of interacting taxa. Climate change can disrupt this synchrony as phenological responses to climate vary within and across species. However, intra- and interspecific variation in phenological responses is seldom considered simultaneously, limiting our understanding of climate change impacts on interactions among taxa across their ranges. We investigated how variation in phenological sensitivity to climate can alter ecological interactions simultaneously within and among species using natural history collections and citizen science data. We focus on a unique system, comprising a wide-ranged spring ephemeral with varying color morphs (Claytonia virginica) and its specialist bee pollinator (Andrena erigeniae). We found strongly opposing trends in the phenological sensitivities of plants vs their pollinators. Flowering phenology was more sensitive to temperature in warmer regions, whereas bee phenology was more responsive in colder regions. Phenological sensitivity varied across flower color morphs. Temporal synchrony between flowering and pollinator activity was predicted to change heterogeneously across the species' ranges in the future. Our work demonstrates the complexity and fragility of ecological interactions in time and the necessity of incorporating variation in phenological responses across multiple axes to understand how such interactions will change in the future.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47906USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47906USA
| | | | - Daniel S. Park
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47906USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47906USA
| |
Collapse
|
12
|
Savage JA, Kiecker T, McMann N, Park D, Rothendler M, Mosher K. Leaf out time correlates with wood anatomy across large geographic scales and within local communities. THE NEW PHYTOLOGIST 2022; 235:953-964. [PMID: 35179794 PMCID: PMC9313884 DOI: 10.1111/nph.18041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
There is a long-standing idea that the timing of leaf production in seasonally cold climates is linked to xylem anatomy, specifically vessel diameter because of the hydraulic requirements of expanding leaves. We tested for a relationship between the timing of leaf out and vessel diameter in 220 plants in three common gardens accounting for species' phylogenetic relationships. We investigated how vessel diameter related to wood porosity, plant height and leaf length. We also used dye perfusion tests to determine whether plants relied on xylem produced during the previous growing season at the time of leaf out. In all three gardens, there was later leaf out in species with wider vessels. Ring-porous species had the widest vessels, exhibited latest leaf out and relied less on xylem made during the previous growing season than diffuse-porous species. Wood anatomy and leaf phenology did not exhibit a phylogenetic signal. The timing of leaf out is correlated with wood anatomy across species regardless of species' geographic origin and phylogenetic relationships. This correlation could be a result of developmental and physiological links between leaves and wood or tied to a larger safety efficiency trade-off.
Collapse
Affiliation(s)
| | - Thomas Kiecker
- Department of BiologyUniversity of MinnesotaDuluthMN55812USA
| | - Natalie McMann
- Department of BiologyUniversity of MinnesotaDuluthMN55812USA
| | - Daniel Park
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907USA
| | | | - Kennedy Mosher
- Department of BiologyUniversity of MinnesotaDuluthMN55812USA
| |
Collapse
|
13
|
New directions in tropical phenology. Trends Ecol Evol 2022; 37:683-693. [PMID: 35680467 DOI: 10.1016/j.tree.2022.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
Abstract
Earth's most speciose biomes are in the tropics, yet tropical plant phenology remains poorly understood. Tropical phenological data are comparatively scarce and viewed through the lens of a 'temperate phenological paradigm' expecting phenological traits to respond to strong, predictably annual shifts in climate (e.g., between subfreezing and frost-free periods). Digitized herbarium data greatly expand existing phenological data for tropical plants; and circular data, statistics, and models are more appropriate for analyzing tropical (and temperate) phenological datasets. Phylogenetic information, which remains seldom applied in phenological investigations, provides new insights into phenological responses of large groups of related species to climate. Consistent combined use of herbarium data, circular statistical distributions, and robust phylogenies will rapidly advance our understanding of tropical - and temperate - phenology.
Collapse
|