1
|
Diao H, Cernusak LA, Saurer M, Gessler A, Siegwolf RTW, Lehmann MM. Dry inside: progressive unsaturation within leaves with increasing vapour pressure deficit affects estimation of key leaf gas exchange parameters. THE NEW PHYTOLOGIST 2024; 244:1275-1287. [PMID: 39205457 DOI: 10.1111/nph.20078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Climate change not only leads to higher air temperatures but also increases the vapour pressure deficit (VPD) of the air. Understanding the direct effect of VPD on leaf gas exchange is crucial for precise modelling of stomatal functioning. We conducted combined leaf gas exchange and online isotope discrimination measurements on four common European tree species across a VPD range of 0.8-3.6 kPa, while maintaining constant temperatures without soil water limitation. In addition to applying the standard assumption of saturated vapour pressure inside leaves (ei), we inferred ei from oxygen isotope discrimination of CO2 and water vapour. ei desaturated progressively with increasing VPD, consistently across species, resulting in an intercellular relative humidity as low as 0.73 ± 0.11 at the highest tested VPD. Assuming saturation of ei overestimated the extent of reductions in stomatal conductance and CO2 mole fraction inside leaves in response to increasing VPD compared with calculations that accounted for unsaturation. In addition, a significant decrease in mesophyll conductance with increasing VPD only occurred when the unsaturation of ei was considered. We suggest that the possibility of unsaturated ei should not be overlooked in measurements related to leaf gas exchange and in stomatal models, especially at high VPD.
Collapse
Affiliation(s)
- Haoyu Diao
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, 8092, Switzerland
| | - Rolf T W Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
2
|
Stojanović M, Jocher G, Kowalska N, Szatniewska J, Zavadilová I, Urban O, Čáslavský J, Horáček P, Acosta M, Pavelka M, Marshall JD. Disaggregation of canopy photosynthesis among tree species in a mixed broadleaf forest. TREE PHYSIOLOGY 2024; 44:tpae064. [PMID: 38864558 PMCID: PMC11240116 DOI: 10.1093/treephys/tpae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.
Collapse
Affiliation(s)
- Marko Stojanović
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Georg Jocher
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
- Thünen-Institut für Agrarklimaschutz Bundesallee 68 38116 Braunschweig Germany
| | - Natalia Kowalska
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Justyna Szatniewska
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Ina Zavadilová
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Josef Čáslavský
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Petr Horáček
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Manuel Acosta
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - Marian Pavelka
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
| | - John D Marshall
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, Brno 603 00, Czech Republic
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
- Leibniz-Zentrum für Agrarlandschaftsforschung, Isotope Geochemistry and Gas Fluxes, Müncheberg 15374, Germany
- Department of Geological Sciences, Box 460, Gothenburg University, Gothenburg 40530, Sweden
| |
Collapse
|
3
|
Robert E, Lenz P, Bergeron Y, de Lafontaine G, Bouriaud O, Isabel N, Girardin MP. Future carbon sequestration potential in a widespread transcontinental boreal tree species: Standing genetic variation matters! GLOBAL CHANGE BIOLOGY 2024; 30:e17347. [PMID: 38822663 DOI: 10.1111/gcb.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Climate change (CC) necessitates reforestation/afforestation programs to mitigate its impacts and maximize carbon sequestration. But comprehending how tree growth, a proxy for fitness and resilience, responds to CC is critical to maximize these programs' effectiveness. Variability in tree response to CC across populations can notably be influenced by the standing genetic variation encompassing both neutral and adaptive genetic diversity. Here, a framework is proposed to assess tree growth potential at the population scale while accounting for standing genetic variation. We applied this framework to black spruce (BS, Picea mariana [Mill] B.S.P.), with the objectives to (1) determine the key climate variables having impacted BS growth response from 1974 to 2019, (2) examine the relative roles of local adaptation and the phylogeographic structure in this response, and (3) project BS growth under two Shared Socioeconomic Pathways while taking standing genetic variation into account. We modeled growth using a machine learning algorithm trained with dendroecological and genetic data obtained from over 2600 trees (62 populations divided in three genetic clusters) in four 48-year-old common gardens, and simulated growth until year 2100 at the common garden locations. Our study revealed that high summer and autumn temperatures negatively impacted BS growth. As a consequence of warming, this species is projected to experience a decline in growth by the end of the century, suggesting maladaptation to anticipated CC and a potential threat to its carbon sequestration capacity. This being said, we observed a clear difference in response to CC within and among genetic clusters, with the western cluster being more impacted than the central and eastern clusters. Our results show that intraspecific genetic variation, notably associated with the phylogeographic structure, must be considered when estimating the response of widespread species to CC.
Collapse
Affiliation(s)
- Etienne Robert
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Quebec, Canada
| | - Patrick Lenz
- Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Quebec City, Quebec, Canada
| | - Yves Bergeron
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada
- Institut de Recherche Sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada
| | - Guillaume de Lafontaine
- Canada Research Chair in Integrative Biology of the Northern Flora, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Olivier Bouriaud
- Ștefan Cel Mare University of Suceava, Suceava, Romania
- IGN, ENSG, Laboratoire d'Inventaire Forestier - LIF, Nancy, France
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Quebec, Canada
| | - Martin P Girardin
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, Quebec, Canada
- Institut de Recherche Sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada
| |
Collapse
|
4
|
Fernandez-Tschieder E, Marshall JD, Binkley D. Carbon budget at the individual-tree scale: dominant Eucalyptus trees partition less carbon belowground. THE NEW PHYTOLOGIST 2024. [PMID: 38641865 DOI: 10.1111/nph.19764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/06/2024] [Indexed: 04/21/2024]
Abstract
Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.
Collapse
Affiliation(s)
- Ezequiel Fernandez-Tschieder
- National Institute of Agricultural Technology (INTA), Agricultural Experimental Station of Delta del Paraná, Campana, B2804, Argentina
- Graduate Degree Program in Ecology, Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Leibniz-Zentrum für Agrarlandschaftsforschung, Müncheberg, 15374, Germany
- Department of Geological Sciences, Gothenburg University, Gothenburg, 405 30, Sweden
- Department of Energy and Matter Fluxes, Czech Globe, Belidla, 603 00, Czechia
| | - Dan Binkley
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
5
|
He Y, Zhang R, Li P, Men L, Xu M, Wang J, Niu S, Tian D. Nitrogen enrichment delays the drought threshold responses of leaf photosynthesis in alpine grassland plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169560. [PMID: 38154633 DOI: 10.1016/j.scitotenv.2023.169560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Extreme drought is found to cause a threshold response in photosynthesis in ecosystem level. However, the mechanisms behind this phenomenon are not well understood, highlighting the importance of revealing the drought thresholds for multiple leaf-level photosynthetic processes. Thus, we conducted a long-term experiment involving precipitation reduction and nitrogen (N) addition. Moreover, an extreme drought event occurred within the experimental period. We found the presence of drought thresholds for multiple leaf-level photosynthetic processes, with the leaf light-saturated carbon assimilation rate (Asat) displaying the highest threshold (10.76 v/v%) and the maximum rate of carboxylation by Rubisco (Vcmax) showing the lowest threshold (5.38 v/v%). Beyond the drought thresholds, the sensitivities of leaf-level photosynthetic processes to soil water content could be greater. Moreover, N addition lowered the drought thresholds of Asat and stomatal conductance (gs), but had no effect on that of Vcmax. Among species, plants with higher leaf K concentration traits had a lower drought threshold of Asat. Overall, this study highlights that leaf photosynthesis may be suppressed abruptly as soil water content surpasses the drought threshold. However, N enrichment helps to improve the resistance via delaying drought threshold response. These new findings have important implications for understanding the nonlinearity of ecosystem productivity response and early warning management in the scenario of combined extreme drought events and continuous N deposition.
Collapse
Affiliation(s)
- Yicheng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Pengyu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Lu Men
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Meng Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Marshall JD, Tarvainen L, Zhao P, Lim H, Wallin G, Näsholm T, Lundmark T, Linder S, Peichl M. Components explain, but do eddy fluxes constrain? Carbon budget of a nitrogen-fertilized boreal Scots pine forest. THE NEW PHYTOLOGIST 2023; 239:2166-2179. [PMID: 37148187 DOI: 10.1111/nph.18939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) fertilization increases biomass and soil organic carbon (SOC) accumulation in boreal pine forests, but the underlying mechanisms remain uncertain. At two Scots pine sites, one undergoing annual N fertilization and the other a reference, we sought to explain these responses. We measured component fluxes, including biomass production, SOC accumulation, and respiration, and summed them into carbon budgets. We compared the resulting summations to ecosystem fluxes measured by eddy covariance. N fertilization increased most component fluxes (P < 0.05), especially SOC accumulation (20×). Only fine-root, mycorrhiza, and exudate production decreased, by 237 (SD = 28) g C m-2 yr-1 . Stemwood production increases were ascribed to this partitioning shift, gross primary production (GPP), and carbon-use efficiency, in that order. The methods agreed in their estimates of GPP in both stands (P > 0.05), but the components detected an increase in net ecosystem production (NEP) (190 (54) g C m-2 yr-1 ; P < 0.01) that eddy covariance did not (19 (62) g C m-2 yr-1 ; ns). The pairing of plots, the simplicity of the sites, and the strength of response provide a compelling description of N effects on the C budget. However, the disagreement between methods calls for further paired tests of N fertilization effects in simple forest ecosystems.
Collapse
Affiliation(s)
- John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
- Leibniz-Zentrum für Agrarlandschaftsforschung, Isotopen-Biogeochemie and Gasflüsse, Müncheberg, 15374, Germany
| | - Lasse Tarvainen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Peng Zhao
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| | - Hyungwoo Lim
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, Tartu, 50409, Estonia
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE-405 30, Sweden
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| | - Tomas Lundmark
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| | - Sune Linder
- Southern Swedish Forest Research Centre, SLU, PO Box 190, Lomma, SE-234 22, Sweden
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SE-901 83, Sweden
| |
Collapse
|
7
|
Guo J, Beverly DP, Ewers BE, Williams DG. Stomatal, mesophyll and biochemical limitations to photosynthesis and their relationship with leaf structure over an elevation gradient in two conifers. PHOTOSYNTHESIS RESEARCH 2023; 157:85-101. [PMID: 37212937 DOI: 10.1007/s11120-023-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/29/2023] [Indexed: 05/23/2023]
Abstract
Photosynthetic responses across complex elevational gradients provides insight into fundamental processes driving responses of plant growth and net primary production to environmental change. Gas exchange of needles and twig water potential were measured in two widespread coniferous tree species, Pinus contorta and Picea engelmannii, over an 800-m elevation gradient in southeastern Wyoming, USA. We hypothesized that limitations to photosynthesis imposed by mesophyll conductance (gm) would be greatest at the highest elevation sites due to higher leaf mass per area (LMA) and that estimations of maximum rate of carboxylation (Vcmax) without including gm would obscure elevational patterns of photosynthetic capacity. We found that gm decreased with elevation for P. contorta and remained constant for P. engelmannii, but in general, limitation to photosynthesis by gm was small. Indeed, estimations of Vcmax when including gm were equivalent to those estimated without including gm and no correlation was found between gm and LMA nor between gm and leaf N. Stomatal conductance (gs) and biochemical demand for CO2 were by far the most limiting processes to photosynthesis at all sites along the elevation gradient. Photosynthetic capacity (A) and gs were influenced strongly by differences in soil water availability across the elevation transect, while gm was less responsive to water availability. Based on our analysis, variation in gm plays only a minor role in driving patterns of photosynthesis in P. contorta and P. engelmannii across complex elevational gradients in dry, continental environments of the Rocky Mountains and accurate modeling of photosynthesis, growth and net primary production in these forests may not require detailed estimation of this trait value.
Collapse
Affiliation(s)
- Jiemin Guo
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA.
| | - Daniel P Beverly
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
- Biology Department, Indiana University, Bloomington, IN, USA
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - David G Williams
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
8
|
Okamoto A, Koyama K, Bhusal N. Diurnal Change of the Photosynthetic Light-Response Curve of Buckbean ( Menyanthes trifoliata), an Emergent Aquatic Plant. PLANTS (BASEL, SWITZERLAND) 2022; 11:174. [PMID: 35050061 PMCID: PMC8779618 DOI: 10.3390/plants11020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/02/2022]
Abstract
Understanding plant physiological responses to high temperature is an important concern pertaining to climate change. However, compared with terrestrial plants, information about aquatic plants remains limited. Since the degree of midday depression of photosynthesis under high temperature depends on soil water conditions, it is expected that emergent aquatic plants, for which soil water conditions are always saturated, will show different patterns compared with terrestrial plants. We investigated the diurnal course of the photosynthetic light-response curve and incident light intensity for a freshwater emergent plant, buckbean (Menyanthes trifoliata L.; Menyanthaceae) in a cool temperate region. The effect of midday depression was observed only on a very hot day, but not on a moderately hot day, in summer. The diurnal course of photosynthetic light-response curves on this hot day showed that latent morning reduction of photosynthetic capacity started at dawn, preceding the apparent depression around the midday, in agreement with results reported in terrestrial plants. We concluded that (1) midday depression of emergent plants occurs when the stress intensity exceeds the species' tolerance, and (2) measurements of not only photosynthetic rate under field conditions but also diurnal course of photosynthetic light-response curve are necessary to quantify the effect of midday depression.
Collapse
Affiliation(s)
- Azumi Okamoto
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inadacho, Obihiro 080-8555, Japan
| | - Kohei Koyama
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inadacho, Obihiro 080-8555, Japan
| | - Narayan Bhusal
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;
| |
Collapse
|