1
|
Tedeschi BBB, Henrique T, Vila APS, Rodrigues GH, Kawasaki-Oyama RS, Pavarino ÉC, de Jesus Morais P, Possebon VS, Júnior VS, Castanhole-Nunes MMU, Goloni-Bertollo EM. Evaluation of hypoxia-inducible factor-1 and 2 alpha inhibitory compounds in the oral cavity and pharyngeal cancer. Biomed Pharmacother 2025; 186:118024. [PMID: 40174539 DOI: 10.1016/j.biopha.2025.118024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Hypoxia in the tumor environment leads to an activation of genotypes that favors the tumor, promoting angiogenesis, epithelial-mesenchymal transition, cell invasion, and metastasis. It is considered a prognostic factor related to the progression and aggressiveness of Head and Neck Cancer (HNC). Hypoxia-inducible factor (HIF) is the main gene activated by hypoxia and has been associated with tumor advancement. Thus, this work aims to evaluate the performance of the compounds Acriflavine, Resveratrol, Topotecan, and RNA interference (siRNA) as HIF inhibitors as well as a therapeutic approach. Molecular docking results have suggested that the evaluated compounds present potential interactions with HIF-1α and HIF-2α. In vitro analysis, they demonstrated that treatments with Acriflavine and Topotecan caused a decrease in the gene expression of HIFs in the HN13 cell line (carcinoma of the oral cavity). Furthermore, treatments performed with siRNAs effectively inhibited gene expression of HIFs in HN13 and FaDu (carcinoma of the pharynx) cell lines. Considering the role of hypoxia and HIFs in tumor aggressiveness; the present study shows the potential of the evaluated compounds as a therapeutic use for the prevention of tumor progression in head and neck cancer.
Collapse
Affiliation(s)
- Bianca Barbério Bogdan Tedeschi
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Tiago Henrique
- Laboratory of Molecular Markers and Bioinformatics- LMMB, Faculty of Medicine of São José do Rio Preto/SP, FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Ana Paula Simedan Vila
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Gabriela Helena Rodrigues
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Rosa Sayoko Kawasaki-Oyama
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Érika Cristina Pavarino
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Peterson de Jesus Morais
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Vitória Scavacini Possebon
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Vilson Serafim Júnior
- São Paulo State University, UNESP/IBILCE, R. Cristóvão Colombo, 2265 - Jardim Nazareth, São José do Rio Preto, SP 15054-000, Brazil
| | - Márcia Maria Urbanin Castanhole-Nunes
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil
| | - Eny Maria Goloni-Bertollo
- Molecular Biology and Genetics Research Unit- UPGEM, Faculty of Medicine of São José do Rio Preto/SP - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP 15090-000, Brazil.
| |
Collapse
|
2
|
Cai W, Li Z, Wang W, Liu S, Li Y, Sun X, Sutton R, Deng L, Liu T, Xia Q, Huang W. Resveratrol in animal models of pancreatitis and pancreatic cancer: A systematic review with machine learning. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156538. [PMID: 40037107 DOI: 10.1016/j.phymed.2025.156538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/27/2024] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Resveratrol (RES), a common type of plant polyphenols, has demonstrated promising therapeutic efficacy and safety in animal models of pancreatitis and pancreatic cancer. However, a comprehensive analysis of these data is currently unavailable. This study aimed to systematically review the preclinical evidence regarding RES's effects on animal models of pancreatitis and pancreatic cancer via meta-analyses and optimised machine learning techniques. METHODS Animal studies published from inception until June 30th 2024, were systematically retrieved and manually filtrated across databases including PubMed, EMBASE, Web of Science, Ovid MEDLINE, Scopus, and Cochrane Library. Methodological quality of the included studies was evaluated following the SYRCLE's RoB tool. Predefined outcomes included histopathology and relevant biochemical parameters for acute pancreatitis, and tumour weight/tumour volume for pancreatic cancer, comparing treatment and model groups. Pooled effect sizes of the outcomes were calculated using STATA 17.0 software. Machine learning techniques were employed to predict the optimal usage and dosage of RES in pancreatitis models. RESULTS A total of 50 studies comprising 33 for acute pancreatitis, 1 chronic pancreatitis, and 16 for pancreatic cancer were included for data synthesis after screening 996 records. RES demonstrated significant improvements on pancreatic histopathology score, pancreatic function parameters (serum amylase and lipase), inflammatory markers (TNF-α, IL-1β, IL-6, and pancreatic myeloperoxidase), oxidative biomarkers (malondialdehyde and superoxide dismutase), and lung injury (lung histopathology and myeloperoxidase) in acute pancreatitis models. In pancreatic cancer models, RES notably reduced tumour weight and volume. Machine learning highlighted tree-structured Parzen estimator-optimised gradient boosted decision tree model as achieving the best performance, identifying course after disease induction, total dosage, single dosage, and total number of doses as critical factors for improving pancreatic histology. Optimal single dosage was 20-105 mg/kg with 3 to 9 doses. CONCLUSION This study comprehensively demonstrates the therapeutic effects of RES in mitigating pancreatitis and pancreatic cancer in animal models. Anti-inflammatory, anti-oxidative, and anti-tumour growth properties are potential mechanisms of action for RES.
Collapse
Affiliation(s)
- Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyu Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Wang
- Chinese Evidence-based Medicine and Cochrane China Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuying Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Sun
- Chinese Evidence-based Medicine and Cochrane China Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Lihui Deng
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Liu K, Zhu Y, Gao W, Han X, Zhang Q, Zhao Y, Zu Y. Resveratrol alleviates heart failure by activating foxo3a to counteract oxidative stress and apoptosis. Biomed Pharmacother 2024; 181:117716. [PMID: 39626375 DOI: 10.1016/j.biopha.2024.117716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Resveratrol has been extensively studied for its multifaceted health benefits. Nonetheless, the pharmacological mechanisms of resveratrol for heart failure remain elusive, especially the cardioprotective effects. To address this knowledge gap, we performed high-throughput drug screening using zebrafish and discovered that resveratrol significantly alleviated heart failure, including rescuing abnormalities in heart rate, blood flow, cardiac output, and nppb overexpression. Mechanically, calcium optical mapping revealed that resveratrol diminished the prolongation of calcium duration at 90 % repolarization (CaD90). Membrane potential assay demonstrated that resveratrol alleviated mitochondrial damage, subsequently relieved the excessive accumulation of reactive oxygen species (ROS). Tunel staining further showed that resveratrol inhibited cardiomyocyte apoptosis both in zebrafish and human AC16 cell. Given the close relationship between the Forkhead Box O (foxo) family and oxidative stress and apoptosis, we used qPCR and noted that resveratrol could regulate the heart failure-induced expressions of foxo1b and foxo3a to normal levels. Furthermore, we conducted in situ hybridization to confirm the effective down-regulation patterns of foxo3a after resveratrol treatment. To investigate whether resveratrol's effects are mediated via foxo3a, we used gardenoside to inhibit foxo3a expression, noting that resveratrol's cardioprotective effects were reduced with foxo3a inhibition. Overall, our study underscores the molecular mechanisms by which resveratrol confers cardioprotection and provides a reference for heart failure therapeutic approaches.
Collapse
Affiliation(s)
- Kuang Liu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Yihao Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjie Gao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xuhui Han
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qinghua Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
4
|
Dai Y, Guan X, Guo F, Kong X, Ji S, Shang D, Bai C, Zhang Q, Zhao L. Botanical drugs and their natural compounds: a neglected treasury for inhibiting the carcinogenesis of pancreatic ductal adenocarcinoma. PHARMACEUTICAL BIOLOGY 2024; 62:853-873. [PMID: 39520705 PMCID: PMC11552278 DOI: 10.1080/13880209.2024.2421759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
CONTEXT Pancreatic ductal adenocarcinoma (PDAC), which is characterized by its malignant nature, presents challenges for early detection and is associated with a poor prognosis. Any strategy that can interfere with the beginning or earlier stage of PDAC greatly delays disease progression. In response to this intractable problem, the exploration of new drugs is critical to reduce the incidence of PDAC. OBJECTIVE In this study, we summarize the mechanisms of pancreatitis-induced PDAC and traditional Chinese medicine (TCM) theory and review the roles and mechanisms of botanical drugs and their natural compounds that can inhibit the process of pancreatitis-induced PDAC. METHODS With the keywords 'chronic pancreatitis', 'TCM', 'Chinese medicinal formulae', 'natural compounds', 'PDAC' and 'pancreatic cancer', we conducted an extensive literature search of the PubMed, Web of Science, and other databases to identify studies that effectively prevent PDAC in complex inflammatory microenvironments. RESULTS We summarized the mechanism of pancreatitis-induced PDAC. Persistent inflammatory microenvironments cause multiple changes in the pancreas itself, including tissue damage, abnormal cell differentiation, and even gene mutation. According to TCM, pancreatitis-induced PDAC is the process of 'dampness-heat obstructing the spleen and deficiency due to stagnation' induced by a variety of pathological factors. A variety of botanical drugs and their natural compounds, such as Chaihu classical formulae, flavonoids, phenolics, terpenoids, etc., may be potential drugs to interfere with the development of PDAC via reshaping the inflammatory microenvironment by improving tissue injury and pancreatic fibrosis. CONCLUSIONS Botanical drugs and their natural compounds show great potential for preventing PDAC in complex inflammatory microenvironments.
Collapse
Affiliation(s)
- Yunfei Dai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xi Guan
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Kong
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of pharmacy, Dalian Medical University, Dalian, China
| | - Shuqi Ji
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changchuan Bai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingkai Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Shi C, Wen Z, Yang Y, Shi L, Liu D. NAD+ metabolism and therapeutic strategies in cardiovascular diseases. ATHEROSCLEROSIS PLUS 2024; 57:1-12. [PMID: 38974325 PMCID: PMC11223091 DOI: 10.1016/j.athplu.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central and pleiotropic metabolite involved in cellular energy metabolism, cell signaling, DNA repair, and protein modifications. Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic stress and aging directly affect the cardiovascular system. Compelling data suggest that NAD + levels decrease with age, obesity, and hypertension, which are all notable risk factors for CVD. In addition, the therapeutic elevation of NAD + levels reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular disorders. In preclinical models, NAD + boosting can also expand the health span, prevent metabolic syndrome, and decrease blood pressure. Moreover, NAD + storage by genetic, pharmacological, or natural dietary NAD + -increasing strategies has recently been shown to be effective in improving the pathophysiology of cardiac and vascular health in different animal models, and human health. Here, we review and discuss NAD + -related mechanisms pivotal for vascular health and summarize recent experimental evidence in NAD + research directly related to vascular disease, including atherosclerosis, and coronary artery disease. Finally, we comparatively assess distinct NAD + precursors for their clinical efficacy and the efficiency of NAD + elevation in the treatment of major CVD. These findings may provide ideas for new therapeutic strategies to prevent and treat CVD in the clinic.
Collapse
Affiliation(s)
- Chongxu Shi
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
| | - Zhaozhi Wen
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
| | - Yihang Yang
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
| | - Linsheng Shi
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Science, Nantong University, Nantong, China
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
- Co-Innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| |
Collapse
|
6
|
Zhou Q, Cao T, Li F, Zhang M, Li X, Zhao H, Zhou Y. Mitochondria: a new intervention target for tumor invasion and metastasis. Mol Med 2024; 30:129. [PMID: 39179991 PMCID: PMC11344364 DOI: 10.1186/s10020-024-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Mitochondria, responsible for cellular energy synthesis and signal transduction, intricately regulate diverse metabolic processes, mediating fundamental biological phenomena such as cell growth, aging, and apoptosis. Tumor invasion and metastasis, key characteristics of malignancies, significantly impact patient prognosis. Tumor cells frequently exhibit metabolic abnormalities in mitochondria, including alterations in metabolic dynamics and changes in the expression of relevant metabolic genes and associated signal transduction pathways. Recent investigations unveil further insights into mitochondrial metabolic abnormalities, revealing their active involvement in tumor cell proliferation, resistance to chemotherapy, and a crucial role in tumor cell invasion and metastasis. This paper comprehensively outlines the latest research advancements in mitochondrial structure and metabolic function. Emphasis is placed on summarizing the role of mitochondrial metabolic abnormalities in tumor invasion and metastasis, including alterations in the mitochondrial genome (mutations), activation of mitochondrial-to-nuclear signaling, and dynamics within the mitochondria, all intricately linked to the processes of tumor invasion and metastasis. In conclusion, the paper discusses unresolved scientific questions in this field, aiming to provide a theoretical foundation and novel perspectives for developing innovative strategies targeting tumor invasion and metastasis based on mitochondrial biology.
Collapse
Affiliation(s)
- Quanling Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Tingping Cao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Fujun Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ming Zhang
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Xiaohui Li
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Ya Zhou
- Department of Pathophysiology, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Department of Physics, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Guizhou, 563000, China.
| |
Collapse
|
7
|
Yu S, Zhang L, Yang Y, Wang M, Liu T, Ji W, Liu Y, Lv H, Zhao Y, Chen X, Hu T. Polydopamine-Based Resveratrol-Hyaluronidase Nanomedicine Inhibited Pancreatic Cancer Cell Invasive Phenotype in Hyaluronic Acid Enrichment Tumor Sphere Model. ACS Pharmacol Transl Sci 2024; 7:1013-1022. [PMID: 38633596 PMCID: PMC11020062 DOI: 10.1021/acsptsci.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 04/19/2024]
Abstract
The dense storm microenvironment formed by an excessively cross-linked extracellular matrix, such as hyaluronic acid and collagens, serves as a major barrier that prevents drugs from reaching the deeper tumor. Current traditional two-dimensional (2D) cultures are not capable of modeling this drug delivery barrier in vitro. Thus, tumor spheroids have become increasingly important in cancer research due to their three-dimensional structure. Currently, various methods have been developed to construct tumor spheroids. However, there are still challenges, such as lengthy construction time, complex composition of added growth factors, and high cultivation costs. To address this technical bottleneck, our study combined the GelMA hydrogel system to develop a rapid and high-yield method for tumor spheroids generation. Additionally, we proposed an evaluation scheme to assess the effects of drugs on tumor spheroids. Building on the hyaluronic acid-rich pathological tumor microenvironment, we constructed a resveratrol-loaded nano-drug delivery system with tumor stroma modulation capability and used a three-dimensional (3D) tumor sphere model to simulate in vivo tumor conditions. This process was utilized to completely evaluate the ability of the nano-drug delivery system to enhance the deep penetration of resveratrol in the tumor microenvironment, providing new insights into future oncology drug screening, efficacy assessment, and drug delivery methods.
Collapse
Affiliation(s)
- Shuo Yu
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department
of General Surgery, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710000, China
| | - Lu Zhang
- National
& Local Joint Engineering Research Center of Biodiagnosis and
Biotherapy, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yanshen Yang
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710000, China
| | - Meijuan Wang
- Department
of Anesthesia, Guangdong Provincial People’s
Hospital, Guangzhou 510080, China
| | - Tingting Liu
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Wenwen Ji
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yang Liu
- Department
of General Surgery, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Hao Lv
- Department
of General Surgery, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Yang Zhao
- National
& Local Joint Engineering Research Center of Biodiagnosis and
Biotherapy, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710004, China
| | - Xi Chen
- National
& Local Joint Engineering Research Center of Biodiagnosis and
Biotherapy, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710004, China
| | - Tinghua Hu
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
8
|
Zeb F, Naqeeb H, Osaili T, Faris ME, Ismail LC, Obaid RS, Naja F, Radwan H, Hasan H, Hashim M, AlBlooshi S, Alam I. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr Res 2024; 124:21-42. [PMID: 38364552 DOI: 10.1016/j.nutres.2024.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
A growing body of evidence suggests that cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. In recent years, the molecular crosstalk between polyphenols and gut microbiota has emerged as a promising pathway for cancer prevention. Polyphenols, abundant in many plant-based foods, possess diverse bioactive properties, including antioxidant, anti-inflammatory, and anticancer activities. The gut microbiota, a complex microbial community residing in the gastrointestinal tract, plays a crucial role in a host's health and disease risks. This review highlights cancer suppressive and oncogenic mechanisms of gut microbiota, the intricate interplay between gut microbiota modulation and polyphenol biotransformation, and the potential therapeutic implications of this interplay in cancer prevention. Furthermore, this review explores the molecular mechanisms underpinning the synergistic effects of polyphenols and the gut microbiota, such as modulation of signaling pathways and immune response and epigenetic modifications in animal and human studies. The current review also summarizes the challenges and future directions in this field, including the development of personalized approaches that consider interindividual variations in gut microbiota composition and function. Understanding the molecular crosstalk could offer new perspectives for the development of personalized cancer therapies targeting the polyphenol-gut axis. Future clinical trials are needed to validate the potential role of polyphenols and gut microbiota as innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanam Cancer Hospital and Research Center Peshawar, Pakistan; Department of Human Nutrition and Dietetics, Women University Mardan, Pakistan
| | - Tareq Osaili
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - MoezAllslam Ezzat Faris
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Women's and Reproductive Health, University of Oxford, Nuffield, Oxford, United Kingdom
| | - Reyad Shakir Obaid
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Farah Naja
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Hadia Radwan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Hayder Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Mona Hashim
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Sharifa AlBlooshi
- College of Natural and Health Sciences, Zayed University, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Pakistan
| |
Collapse
|
9
|
Olmedo I, Martínez D, Carrasco-Rojas J, Jara JA. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci 2023; 331:122065. [PMID: 37659591 DOI: 10.1016/j.lfs.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Martínez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Toxicological and Pharmacological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Zhu M, Shen H, Wang B, He Y, Chen J, Ren J, Zhang Z, Jian X. LRP1 as a promising therapeutic target for gastrointestinal tumors: Inhibiting proliferation, invasion and migration of cancer cells. Oncol Lett 2023; 26:432. [PMID: 37664649 PMCID: PMC10472044 DOI: 10.3892/ol.2023.14019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most common types of tumors worldwide. The lack of cancer biomarkers and targeted drug resistance are barriers to achieving effective cancer therapy. Low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane protein that has multiple functions due to its ability to recognize different ligands; however, the role of LRP1 in GI cancer cells remains unclear. The present study aimed to investigate the role of LRP1 in GI tumors. The Cancer Genome Atlas database was used to analyze the potential correlation between expression of LRP1 and prognosis in patients with GI cancer. Bioinformatics analysis was utilized and the expression of LRP1 was simultaneously validated in GI cancer at the cellular level through western blot experiments. LRP1 was expressed at high levels in HGC-27, HepG2 and BxPC-3 cells. LRP1 expression in GI cancer cells was knocked down using lentivirus-mediated shRNA and the effects on biological functions were observed. LRP1 knockdown suppressed the proliferation, invasion and migration of GI cancer cells. LRP1 knockdown inhibited CD36 gene expression in HepG2 and BxPC-3 cells. LRP1 knockdown inhibited the proliferation, invasion and migration of GI cancer cells, suggesting that LRP1 may be a novel target for treatment of GI tumors.
Collapse
Affiliation(s)
- Mengying Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hao Shen
- Lab Center, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Bili Wang
- Lab Center, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China
| | - Yingfei He
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jin Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jun Ren
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhezhong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xu Jian
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
11
|
Oliveira NMT, Dos Santos AE, Corso CR, Galindo CM, Adami ER, da Silva LCM, de Lima LTF, de Santana Filho AP, Dittrich RL, Klassen G, de Souza Ramos EA, Sassaki GL, Acco A. Chemical characterization and antineoplastic effect of oligosaccharides from Cabernet Franc red wine in mammary tumor model in mice. J Nutr Biochem 2023; 113:109253. [PMID: 36565967 DOI: 10.1016/j.jnutbio.2022.109253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The present study characterized oligosaccharide compounds (Oligo) in Cabernet Franc red wine and investigated its antineoplastic effects against mammary tumor cells in vivo and in vitro, isolated or in combination with chemotherapy. The Oligo fraction was characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. The complex mixture of Oligo showed high amounts of oligoxyloglucuronans, oligorhamnogalacturonans, oligoarabinogalactans, and oligoglucans, such as trehalose and isomaltotriose. To investigate the antineoplastic effects of Oligo, Female Swiss mice were subcutaneously inoculated with Ehrlich tumor cells and then received vehicle (distilled water, p.o.), Oligo solution (9, 35, or 70 mg/kg, p.o.), or methotrexate (1.5 mg/kg, i.p.). The treatments were administered in a conventional (21-d) or chemopreventive (42-d) protocol. Oligo reduced the growth of Ehrlich tumors in both protocols and increased the effectiveness of methotrexate in controlling tumor growth. Oligo did not reduce the viability of MCF-7, MDA-MB-231, MDA-MB-436, and HB4a human breast cells that were cultured for 48 h, showing no cytotoxicity. Overall, Oligo exerted an in vivo antineoplastic effect and modulated immune blood cells, dependent on treatment time, and was not directly cytotoxic to tumor cells. Thus, Oligo may indirectly regulate tumor cell development and may be a promising drug for cancer therapy in combination with methotrexate.
Collapse
Affiliation(s)
| | - André Eduardo Dos Santos
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | - Giseli Klassen
- Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Self-nanoemulsifying drug delivery system for pancreatic cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Are Aspects of Integrative Concepts Helpful to Improve Pancreatic Cancer Therapy? Cancers (Basel) 2023; 15:cancers15041116. [PMID: 36831465 PMCID: PMC9953994 DOI: 10.3390/cancers15041116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous clinical studies have been conducted to improve the outcomes of patients suffering from pancreatic cancer. Different approaches using targeted therapeutic strategies and precision medicine methods have been investigated, and synergies and further therapeutic advances may be achieved through combinations with integrative methods. For pancreatic tumors, a particular challenge is the presence of a microenvironment and a dense stroma, which is both a physical barrier to drug penetration and a complex entity being controlled by the immune system. Therefore, the state of immunological tolerance in the tumor microenvironment must be overcome, which is a considerable challenge. Integrative approaches, such as hyperthermia, percutaneous irreversible electroporation, intra-tumoral injections, phytotherapeutics, or vitamins, in combination with standard-oncological therapies, may potentially contribute to the control of pancreatic cancer. The combined application of standard-oncological and integrative methods is currently being studied in ongoing clinical trials. An actual overview is given here.
Collapse
|
14
|
Florio R, De Filippis B, Veschi S, di Giacomo V, Lanuti P, Catitti G, Brocco D, di Rienzo A, Cataldi A, Cacciatore I, Amoroso R, Cama A, De Lellis L. Resveratrol Derivative Exhibits Marked Antiproliferative Actions, Affecting Stemness in Pancreatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24031977. [PMID: 36768301 PMCID: PMC9916441 DOI: 10.3390/ijms24031977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies, with an increasing incidence and limited response to current therapeutic options. Therefore, more effective and low-toxic agents are needed to improve PC patients' outcomes. Resveratrol (RSV) is a natural polyphenol with multiple biological properties, including anticancer effects. In this study, we explored the antiproliferative activities of newly synthetized RSV analogues in a panel of PC cell lines and evaluated the physicochemical properties of the most active compound. This derivative exhibited marked antiproliferative effects in PC cells through mechanisms involving DNA damage, apoptosis induction, and interference in cell cycle progression, as assessed using flow cytometry and immunoblot analysis of cell cycle proteins, PARP cleavage, and H2AX phosphorylation. Notably, the compound induced a consistent reduction in the PC cell subpopulation with a CD133+EpCAM+ stem-like phenotype, paralleled by dramatic effects on cell clonogenicity. Moreover, the RSV derivative had negligible toxicity against normal HFF-1 cells and, thus, good selectivity index values toward PC cell lines. Remarkably, its higher lipophilicity and stability in human plasma, as compared to RSV, might ensure a better permeation along the gastrointestinal tract. Our results provide insights into the mechanisms of action contributing to the antiproliferative activity of a synthetic RSV analogue, supporting its potential value in the search for effective and safe agents in PC treatment.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Viviana di Giacomo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa di Rienzo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| | - Laura De Lellis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| |
Collapse
|
15
|
Li BQ, Liu XY, Mao T, Zheng TH, Zhang P, Zhang Q, Zhang Y, Li XY. The research progress of anti-inflammatory and anti-fibrosis treatment of chronic pancreatitis. Front Oncol 2022; 12:1050274. [PMID: 36505827 PMCID: PMC9730810 DOI: 10.3389/fonc.2022.1050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic progressive inflammatory disease of the pancreas, caused by multiple factors and accompanied by irreversible impairment of pancreatic internal and external secretory functions. Pathologically, atrophy of the pancreatic acini, tissue fibrosis or calcification, focal edema, inflammation, and necrosis are observed. Clinical manifestations include recurrent or persistent abdominal pain, diarrhea, emaciation, and diabetes. In addition, CP is prone to develop into pancreatic cancer(PC) due to persistent inflammation and fibrosis. The disease course is prolonged and the clinical prognosis is poor. Currently, clinical treatment of CP is still based on symptomatic treatment and there is a lack of effective etiological treatment. Encouragingly, experiments have shown that a variety of active substances have great potential in the etiological treatment of chronic pancreatitis. In this paper, we will review the pathogenesis of CP, as well as the research progress on anti-inflammatory and anti-fibrotic therapies, which will provide new ideas for the development of subsequent clinical studies and formulation of effective treatment programs, and help prevent CP from developing into pancreatic cancer and reduce the prevalence of PC as much as possible.
Collapse
|
16
|
Dias Viegas FP, Gontijo VS, de Freitas Silva M, Cristancho Ortiz CJ, Franco GDRR, Ernesto JT, Damasio CM, Fernandes Silva IM, Campos TG, Viegas C. Curcumin, Resveratrol and Cannabidiol as Natural Key Prototypes in Drug Design for Neuroprotective Agents. Curr Neuropharmacol 2022; 20:1297-1328. [PMID: 34825873 PMCID: PMC9881080 DOI: 10.2174/1570159x19666210712152532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022] Open
Abstract
Nowadays, neurodegenerative diseases (NDs), such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a great challenge in different scientific fields, such as neuropharmacology, medicinal chemistry, molecular biology and medicine, as all these pathologies remain incurable, with high socioeconomic impacts and high costs for governmental health services. Due to their severity and multifactorial pathophysiological complexity, the available approved drugs for clinic have not yet shown adequate effectiveness and exhibited very restricted options in the therapeutic arsenal; this highlights the need for continued drug discovery efforts in the academia and industry. In this context, natural products, such as curcumin (1), resveratrol (2) and cannabidiol (CBD, 3) have been recognized as important sources, with promising chemical entities, prototype models and starting materials for medicinal organic chemistry, as their molecular architecture, multifunctional properties and single chemical diversity could facilitate the discovery, optimization and development of innovative drug candidates with improved pharmacodynamics and pharmacokinetics compared to the known drugs and, perhaps, provide a chance for discovering novel effective drugs to combat NDs. In this review, we report the most recent efforts of medicinal chemists worldwide devoted to the exploration of curcumin (1), resveratrol (2) and cannabidiol (CBD, 3) as starting materials or privileged scaffolds in the design of multi-target directed ligands (MTDLs) with potential therapeutic properties against NDs, which have been published in the scientific literature during the last 10 years of research and are available in PubMed, SCOPUS and Web of Science databases.
Collapse
Affiliation(s)
- Flávia P. Dias Viegas
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil
| | - Vanessa Silva Gontijo
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Matheus de Freitas Silva
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil
| | - Cindy Juliet Cristancho Ortiz
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil
| | - Graziella dos Reis Rosa Franco
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil
| | - Januário Tomás Ernesto
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Caio Miranda Damasio
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Isabela Marie Fernandes Silva
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Thâmara Gaspar Campos
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Claudio Viegas
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil,Address correspondence to this author at the PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil; Tel: +55 35 37011880; E-mail:
| |
Collapse
|
17
|
Periyasamy L, Muruganantham B, Park WY, Muthusami S. Phyto-targeting the CEMIP Expression as a Strategy to Prevent Pancreatic Cancer Metastasis. Curr Pharm Des 2022; 28:922-946. [PMID: 35236267 DOI: 10.2174/1381612828666220302153201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Metastasis of primary pancreatic cancer (PC) to adjacent or distant organs is responsible for the poor survival rate of affected individuals. Chemotherapy, radiotherapy, and immunotherapy are currently being prescribed to treat PC in addition to surgical resection. Surgical resection is the preferred treatment for PC that leads to 20% of 5-year survival, but only less than 20% of patients are eligible for surgical resection because of the poor prognosis. To improve the prognosis and clinical outcome, early diagnostic markers need to be identified, and targeting them would be of immense benefit to increase the efficiency of the treatment. Cell migration-inducing hyaluronan-binding protein (CEMIP) is identified as an important risk factor for the metastasis of various cancers, including PC. Emerging studies have pointed out the crucial role of CEMIP in the regulation of various signaling mechanisms, leading to enhanced migration and metastasis of PC. METHODS The published findings on PC metastasis, phytoconstituents, and CEMIP were retrieved from Pubmed, ScienceDirect, and Cochrane Library. Computational tools, such as gene expression profiling interactive analysis (GEPIA) and Kaplan-Meier (KM) plotter, were used to study the relationship between CEMIP expression and survival of PC individuals. RESULTS Gene expression analysis using the GEPIA database identified a stupendous increase in the CEMIP transcript in PC compared to adjacent normal tissues. KM plotter analysis revealed the impact of CEMIP on the overall survival (OS) and disease-free survival (DFS) among PC patients. Subsequently, several risk factors associated with PC development were screened, and their ability to regulate CEMIP gene expression was analyzed using computational tools. CONCLUSION The current review is focused on gathering information regarding the regulatory role of phytocomponents in PC migration and exploring their possible impact on the CEMIP expression.
Collapse
Affiliation(s)
- Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| |
Collapse
|
18
|
Yuan P, Tang C, Chen B, Lei P, Song J, Xin G, Wang Z, Hui Y, Yao W, Wang G, Zhao G. miR‑32‑5p suppresses the proliferation and migration of pancreatic adenocarcinoma cells by targeting TLDC1. Mol Med Rep 2021; 24:752. [PMID: 34468015 PMCID: PMC8430301 DOI: 10.3892/mmr.2021.12392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most fatal types of cancer in humans. However, the molecular mechanisms underlying the migration and invasion abilities of PAAD cells remain unclear. The aim of the present study was to explore the regulatory roles of microRNA (miR)‑32‑5p in PAAD cells. miR‑32‑5p mimic and inhibitor were used to transfect the human PAAD AsPC‑1 cell line to determine the role of miR‑32‑5p in cell proliferation and metastasis. The starBase database predicted the binding of miR‑32‑5p to the target gene TBC/LysM‑associated domain containing 1 (TLDC1). Further analyses were performed to assess miR‑32‑5p and TLDC1 expression levels in healthy and PAAD tissues, as well as the association between miR‑32‑5p or TLDC1 expression and the prognosis of patients with PAAD. The interaction between miR‑32‑5p and TLDC1 was verified using the dual‑luciferase reporter assay. miR‑32‑5p and TLDC1 expression levels were detected by reverse transcription‑quantitative PCR and western blotting, respectively. The Cell Counting Kit‑8 assay was utilised to assess cell proliferation, whereas the wound‑healing and Transwell assays were conducted to assess cell migration and invasion, respectively. miR‑32‑5p expression levels were markedly lower in PAAD tissue compared with those in healthy tissue, and were significantly lower in PAAD cell lines compared with those in the human pancreatic duct cell line HPDE6, which corresponded with poor prognosis. miR‑32‑5p significantly inhibited the proliferation of PAAD cells and markedly reduced migration and invasion compared with the negative controls. miR‑32‑5p was shown to target TLDC1, with miR‑32‑5p expression in PAAD being negatively correlated with TLDC1 expression. High TLDC1 expression levels were associated with a poorer prognosis compared with low TLDC1 expression levels. Co‑transfection of miR‑32‑5p mimic and pcDNA/TLDC1 demonstrated that TLDC1 significantly reversed miR‑32‑5p‑mediated inhibition of the proliferation, migration and invasion of PAAD cells. Overall, the present study demonstrated that miR‑32‑5p may serve as a tumor‑suppressor gene by inhibiting the proliferation and migration and invasion of PAAD cells via the downregulation of TLDC1. Therefore, miR‑32‑5p may serve as a potential diagnostic or prognostic marker for PAAD.
Collapse
Affiliation(s)
- Peng Yuan
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Chaofeng Tang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Bendong Chen
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Peng Lei
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jianjun Song
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Guojun Xin
- Department of Hepatobiliary Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zuozheng Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Weijie Yao
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Genwang Wang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Guozhong Zhao
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
19
|
Effect of Resveratrol Treatment on Human Pancreatic Cancer Cells through Alterations of Bcl-2 Family Members. Molecules 2021; 26:molecules26216560. [PMID: 34770968 PMCID: PMC8588171 DOI: 10.3390/molecules26216560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic cancers are among of the most lethal types of neoplasms, and are mostly detected at an advanced stage. Conventional treatment methods such as chemotherapy or radiotherapy often do not bring the desired therapeutic effects. For this reason, natural compounds are increasingly being used as adjuvants in cancer therapy. Polyphenolic compounds, including resveratrol, are of particular interest. The aim of this study is to analyze the antiproliferative and pro-apoptotic mechanisms of resveratrol on human pancreatic cells. The study was carried out on three human pancreatic cancer cell lines: EPP85-181P, EPP85-181RNOV (mitoxantrone-resistant cells) and AsPC-1, as well as the normal pancreatic cell line H6c7. The cytotoxicity of resveratrol in the tested cell lines was assessed by the colorimetric method (MTT) and the flow cytometry method. Three selected concentrations of the compound (25, 50 and 100 µM) were tested in the experiments during a 48-h incubation. TUNEL and Comet assays, flow cytometry, immunocytochemistry, confocal microscopy, real-time PCR and Western Blot analyses were used to evaluate the pleiotropic effect of resveratrol. The results indicate that resveratrol is likely to be anticarcinogenic by inhibiting human pancreatic cancer cell proliferation. In addition, it affects the levels of Bcl-2 pro- and anti-apoptotic proteins. However, it should be emphasized that the activity of resveratrol was specific for each of the tested cell lines, and the most statistically significant changes were observed in the mitoxantrone-resistant cells.
Collapse
|
20
|
Resveratrol inhibits the migration, invasion and epithelial-mesenchymal transition in liver cancer cells through up- miR-186-5p expression. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:582-590. [PMID: 34986537 DOI: 10.3724/zdxbyxb-2021-0197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To investigate the molecular mechanism of resveratrol inhibiting the metastasis of liver cancer . HepG2 and Huh7 cells were treated with different concentrations of resveratrol, and the cell viability was determined by CCK-8 assay to determine the optimal concentration of resveratrol for subsequent experiments. The expressions of miR-186-5p in liver cancer tissues and liver cancer cells were determined by quantitative real-time RT-PCR. The migration and invasion of HepG2 and Huh7 cells were detected by wound healing assay and Transwell assay, and the expression levels of epithelial-mesenchymal transition (EMT) related proteins were determined by Western blotting. Resveratrol with concentration of had no effect on the viability of HepG2 and Huh7 cells, so the concentration of resveratrol in subsequent experiments was 6.25 μmol/L. Resveratrol inhibited the wound healing and invasion of liver cancer cells; increased the expression of E-cadherin, and decreased the expression of vimentin and Twist1. The expression of miR-186-5p was significantly down-regulated in liver cancer tissues and cells compared with the adjacent tissues and normal liver cells (both <0.05). Furthermore, resveratrol induced the expression of miR-186-5p in liver cancer cells (both <0.01). Overexpression of miR-186-5p suppressed the migration, invasion and EMT of liver cancer cells. Knockdown of miR-186-5p blocked the inhibition effects of resveratrol on the migration, invasion and EMT of liver cancer cells. Resveratrol could inhibit the metastasis of liver cancer , which might be associated with up-regulating miR-186-5p.
Collapse
|
21
|
Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int 2021; 21:468. [PMID: 34488773 PMCID: PMC8422731 DOI: 10.1186/s12935-021-02179-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) induces breast cancer malignancy. Recent clinical and preclinical studies have demonstrated an association between overexpressed and activated STAT3 and breast cancer progression, proliferation, metastasis, and chemoresistance. Resveratrol (RES), a naturally occurring phytoalexin, has demonstrated anti-cancer activity in several disease models. Furthermore, RES has also been shown to regulate the STAT3 signaling cascade via its anti-oxidant and anti-inflammatory effects. In the present review, we describe the STAT3 cascade signaling pathway and address the therapeutic targeting of STAT3 by RES as a tool to mitigate breast cancer.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
22
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ''tumor debulking'' rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting 'natural agents' that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
23
|
Md S, Alhakamy NA, Aldawsari HM, Ahmad J, Alharbi WS, Asfour HZ. Resveratrol loaded self-nanoemulsifying drug delivery system (SNEDDS) for pancreatic cancer: Formulation design, optimization and in vitro evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Li D, Ding Z, Du K, Ye X, Cheng S. Reactive Oxygen Species as a Link between Antioxidant Pathways and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5583215. [PMID: 34336103 PMCID: PMC8324391 DOI: 10.1155/2021/5583215] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules that can oxidize proteins, lipids, and DNA. Under physiological conditions, ROS are mainly generated in the mitochondria during aerobic metabolism. Under pathological conditions, excessive ROS disrupt cellular homeostasis. High levels of ROS result in severe oxidative damage to the cellular machinery. However, a low/mild level of ROS could serve as a signal to trigger cell survival mechanisms. To prevent and cope with oxidative damage to biomolecules, cells have developed various antioxidant and detoxifying mechanisms. Meanwhile, ROS can initiate autophagy, a process of self-clearance, which helps to reduce oxidative damage by engulfing and degrading oxidized substance. This review summarizes the interactions among ROS, autophagy, and antioxidant pathways. The effects of natural phytochemicals on autophagy induction, antioxidation, and dual-function are also discussed.
Collapse
Affiliation(s)
- Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zongxian Ding
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Kaili Du
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xiangshi Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shixue Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
25
|
Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediators Inflamm 2021; 2021:9918379. [PMID: 34220337 PMCID: PMC8219436 DOI: 10.1155/2021/9918379] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor cells undergo invasion and metastasis through epithelial-to-mesenchymal cell transition (EMT) by activation of alterations in extracellular matrix (ECM) protein-encoding genes, enzymes responsible for the breakdown of ECM, and activation of genes that drive the transformation of the epithelial cell to the mesenchymal type. Inflammatory cytokines such as TGFβ, TNFα, IL-1, IL-6, and IL-8 activate transcription factors such as Smads, NF-κB, STAT3, Snail, Twist, and Zeb that drive EMT. EMT drives primary tumors to metastasize in different parts of the body. T and B cells, dendritic cells (DCs), and tumor-associated macrophages (TAMs) which are present in the tumor microenvironment induce EMT. The current review elucidates the interaction between EMT tumor cells and immune cells under the microenvironment. Such complex interactions provide a better understanding of tumor angiogenesis and metastasis and in defining the aggressiveness of the primary tumors. Anti-inflammatory molecules in this context may open new therapeutic options for the better treatment of tumor progression. Targeting EMT and the related mechanisms by utilizing natural compounds may be an important and safe therapeutic alternative in the treatment of tumor growth.
Collapse
|
26
|
Djamgoz MBA, Jentzsch V. Integrative Management of Pancreatic Cancer (PDAC): Emerging Complementary Agents and Modalities. Nutr Cancer 2021; 74:1139-1162. [PMID: 34085871 DOI: 10.1080/01635581.2021.1934043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. The standard first-line treatment for PDAC is gemcitabine chemotherapy which, unfortunately, offers only limited chance of a lasting cure. This review further evaluates the hypothesis that the effectiveness of gemcitabine can be improved by combining it with evidence-based complementary measures. Previously, supported by clinical trial data, we suggested that a number of dietary factors and nutraceuticals can be integrated with gemcitabine therapy. Here, we evaluate a further 10 agents for which no clinical trials have (yet) been carried out but there are promising data from in vivo and/or in vitro studies including experiments involving combined treatments with gemcitabine. Two groups of complementary agents are considered: Dietary factors (resveratrol, epigallocatechin gallate, vitamin B9, capsaicin, quercetin and sulforaphane) and nutraceutical agents (artemisinin, garcinol, thymoquinone and emodin). In addition, we identified seven promising agents for which there is currently only basic (mostly in vitro) data. Finally, as a special case of combination therapy, we highlighted synergistic drug combinations involving gemcitabine with "repurposed" aspirin or metformin. We conclude overall that integrated management of PDAC currently is likely to produce the best outcome for patients and for this a wide range of complementary measures is available.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Nicosia, Cyprus
| | - Valerie Jentzsch
- Department of Life Sciences, Imperial College London, London, UK
- Department of Health Policy, London School of Economics and Political Science, London, UK
| |
Collapse
|
27
|
Marinheiro D, Ferreira BJML, Oskoei P, Oliveira H, Daniel-da-Silva AL. Encapsulation and Enhanced Release of Resveratrol from Mesoporous Silica Nanoparticles for Melanoma Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1382. [PMID: 33809119 PMCID: PMC8000002 DOI: 10.3390/ma14061382] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
Chemotherapy has limited success in the treatment of malignant melanoma due to fast development of drug resistance and the low bioavailability of chemotherapeutic drugs. Resveratrol (RES) is a natural polyphenol with recognized preventive and therapeutic anti-cancer properties. However, poor RES solubility hampers its bioactivity, thus creating a demand for suitable drug delivery systems to improve it. This work aimed to assess the potential of RES-loaded mesoporous silica nanoparticles (MSNs) for human melanoma treatment. RES was efficiently loaded (efficiency > 93%) onto spheroidal (size~60 nm) MSNs. The encapsulation promoted the amorphization of RES and enhanced the release in vitro compared to non-encapsulated RES. The RES release was pH-dependent and markedly faster at pH 5.2 (acid environment in some tumorous tissues) than at pH 7.4 in both encapsulated and bulk forms. The RES release from loaded MSNs was gradual with time, without a burst effect, and well-described by the Weibull model. In vitro cytotoxicity studies on human A375 and MNT-1 melanoma cellular cultures showed a decrease in the cell viability with increasing concentration of RES-loaded MSNs, indicating the potent action of the released RES in both cell lines. The amelanotic cell line A375 was more sensitive to RES concentration than the melanotic MNT-1 cells.
Collapse
Affiliation(s)
- Diogo Marinheiro
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bárbara J. M. L. Ferreira
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Párástu Oskoei
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (P.O.); (H.O.)
| | - Helena Oliveira
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal; (P.O.); (H.O.)
| | - Ana L. Daniel-da-Silva
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
28
|
Dasgupta A, Shukla SK, Vernucci E, King RJ, Abrego J, Mulder SE, Mullen NJ, Graves G, Buettner K, Thakur R, Murthy D, Attri KS, Wang D, Chaika NV, Pacheco CG, Rai I, Engle DD, Grandgenett PM, Punsoni M, Reames BN, Teoh-Fitzgerald M, Oberley-Deegan R, Yu F, Klute KA, Hollingsworth MA, Zimmerman MC, Mehla K, Sadoshima J, Tuveson DA, Singh PK. SIRT1-NOX4 signaling axis regulates cancer cachexia. J Exp Med 2021; 217:151806. [PMID: 32441762 PMCID: PMC7336299 DOI: 10.1084/jem.20190745] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Approximately one third of cancer patients die due to complexities related to cachexia. However, the mechanisms of cachexia and the potential therapeutic interventions remain poorly studied. We observed a significant positive correlation between SIRT1 expression and muscle fiber cross-sectional area in pancreatic cancer patients. Rescuing Sirt1 expression by exogenous expression or pharmacological agents reverted cancer cell–induced myotube wasting in culture conditions and mouse models. RNA-seq and follow-up analyses showed cancer cell–mediated SIRT1 loss induced NF-κB signaling in cachectic muscles that enhanced the expression of FOXO transcription factors and NADPH oxidase 4 (Nox4), a key regulator of reactive oxygen species production. Additionally, we observed a negative correlation between NOX4 expression and skeletal muscle fiber cross-sectional area in pancreatic cancer patients. Knocking out Nox4 in skeletal muscles or pharmacological blockade of Nox4 activity abrogated tumor-induced cachexia in mice. Thus, we conclude that targeting the Sirt1–Nox4 axis in muscles is an effective therapeutic intervention for mitigating pancreatic cancer–induced cachexia.
Collapse
Affiliation(s)
- Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Ryan J King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Scott E Mulder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Nicholas J Mullen
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Gavin Graves
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Kyla Buettner
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Ravi Thakur
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Kuldeep S Attri
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Dezhen Wang
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Nina V Chaika
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Camila G Pacheco
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Ibha Rai
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Dannielle D Engle
- Cancer Center at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Paul M Grandgenett
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Michael Punsoni
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Bradley N Reames
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Melissa Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Rebecca Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE
| | - Kelsey A Klute
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Michael A Hollingsworth
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - David A Tuveson
- Cancer Center at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.,The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
29
|
Srivani G, Behera SK, Dariya B, Aliya S, Alam A, Nagaraju GP. Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer. Exp Cell Res 2020; 394:112126. [PMID: 32485183 DOI: 10.1016/j.yexcr.2020.112126] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 11/25/2022]
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) has been recognized as one of the essential regulators that is expressed in greater levels in pancreatic cancer (PC) and is connected with poor prognosis. Resveratrol was identified as a natural compound with many biological functions, with anti-inflammatory, antioxidant, and anticancer effects that inhibit the proliferation and progression of PC cells caused by HIF-1α. The current investigation explored the binding affinity and ligand efficacy of resveratrol against HIF-1α using an in silico approach, and the execution of molecular dynamics simulation (MDS) increased the prediction precision of these outcomes. This is the first study that provides an in silico characterization of the interaction between resveratrol and HIF-1α and its spatial structural arrangements in pancreatic cancer therapy, providing an in-depth analysis of their drug target interactions.
Collapse
Affiliation(s)
- Gowru Srivani
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Santosh Kumar Behera
- Biomedical Informatics Centre, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, 751 023, India
| | - Begum Dariya
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Sheik Aliya
- Department of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, Telangana, 500085, India
| | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan, 304022, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
García-Heredia JM, Carnero A. Role of Mitochondria in Cancer Stem Cell Resistance. Cells 2020; 9:E1693. [PMID: 32679735 PMCID: PMC7407626 DOI: 10.3390/cells9071693] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) are associated with the mechanisms of chemoresistance to different cytotoxic drugs or radiotherapy, as well as with tumor relapse and a poor prognosis. Various studies have shown that mitochondria play a central role in these processes because of the ability of this organelle to modify cell metabolism, allowing survival and avoiding apoptosis clearance of cancer cells. Thus, the whole mitochondrial cycle, from its biogenesis to its death, either by mitophagy or by apoptosis, can be targeted by different drugs to reduce mitochondrial fitness, allowing for a restored or increased sensitivity to chemotherapeutic drugs. Once mitochondrial misbalance is induced by a specific drug in any of the processes of mitochondrial metabolism, two elements are commonly boosted: an increment in reactive nitrogen/oxygen species and, subsequently, activation of the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avda. de la Reina Mercedes 6, 41012 Seville, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
31
|
Qian W, Xiao Q, Wang L, Qin T, Xiao Y, Li J, Yue Y, Zhou C, Duan W, Ma Q, Ma J. Resveratrol slows the tumourigenesis of pancreatic cancer by inhibiting NFκB activation. Biomed Pharmacother 2020; 127:110116. [PMID: 32428833 DOI: 10.1016/j.biopha.2020.110116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumour with an extremely poor prognosis due to its insidious initiation and a lack of therapeutic strategies. Resveratrol suppresses pancreatic cancer progression and attenuates pancreatitis by modulating multiple targets, including nuclear factor kappa B (NFκB) signalling pathways. However, the effect of resveratrol on pancreatic cancer initiation and its mechanisms remain unclear. In this study, we utilised the LSL-KrasG12D/+; Pdx1-Cre (KC) spontaneous pancreatic precancerous lesion mouse model to explore the anti-tumourigenesis mechanisms of resveratrol in vivo. In vitro acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasias (PanINs) formation assays were performed by pancreatic acinar cell 3-dimensional (3D) culture. Histopathological analysis was used to examine the pathological morphology of pancreatic tissues. Resveratrol prevented the progression of pancreatic precancerous lesions and inhibited the activation of NFκB signalling pathway-related molecules in KC mouse pancreatic tissues. In addition, resveratrol reduced the severity of cerulein-induced pancreatitis and the formation of ADM/PanINs in vivo and in vitro, which may be related to its effect on NFκB inactivation. Furthermore, pancreatic acinar 3D culture demonstrated that activation of the NFκB signalling pathway promoted the formation of ADM/PanINs in vitro, and this initiating effect of NFκB was blocked by resveratrol. Resveratrol slowed the tumourigenesis of pancreatic cancer by inhibiting NFκB activation.
Collapse
Affiliation(s)
- Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qigui Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Tao Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ying Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yangyang Yue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jiguang Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
32
|
Khusbu FY, Zhou X, Roy M, Chen FZ, Cao Q, Chen HC. Resveratrol induces depletion of TRAF6 and suppresses prostate cancer cell proliferation and migration. Int J Biochem Cell Biol 2019; 118:105644. [PMID: 31712163 DOI: 10.1016/j.biocel.2019.105644] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Although the early diagnosis of prostate cancer (PCa) enhances life expectancy with a 5-year survival rate of 100 %, metastasized-PCa is the fundamental reason for death by PCa, hence requires an advanced and target-directed treatment strategy. Metastasis is considered to be initiated with the epithelial-mesenchymal transition (EMT) event in which tumor cells change their epithelial characteristics into mesenchymal form and exacerbates the cancer progression. Herein, we investigated the effect and mechanism of resveratrol function in PCa cell proliferation and migration and reported that TNF-receptor associated factor 6 (TRAF6), an unconventional E3 ligase, is a key mediator of resveratrol function to inhibit PCa cell growth and proliferation and targeted for lysosomal degradation by resveratrol. MTT and cell counting demonstrated that resveratrol inhibited the viability and proliferation in DU145 and PC3 cells. Resveratrol (50 μM) mediated the degradation of TRAF6 which in turn facilitated repression of the NF-κB pathway. Also, wound healing and transwell migration assays and level of EMT-related proteins showed that resveratrol used TRAF6, at least in part to inhibit cell migration. Overexpression of TRAF6 augmented EMT in PCa by upregulating the expression of transcription factor SLUG. Moreover, TRAF6 overexpression was closely associated with EMT process through the NF-κB pathway. Our exploration exhibited that resveratrol may inhibit EMT through the TRAF6/NF-κB/SLUG axis. Altogether, this study represents that TRAF6 acts as an intermediary of resveratrol action to suppress PCa cell proliferation and migration, and concerns future attention to obtain as a therapeutic target for the treatment of PCa.
Collapse
Affiliation(s)
- Farjana Yeasmin Khusbu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Xi Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Mridul Roy
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fang-Zhi Chen
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qian Cao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Han-Chun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
33
|
Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, Aguilera A, González Mateo G. Natural Plants Compounds as Modulators of Epithelial-to-Mesenchymal Transition. Front Pharmacol 2019; 10:715. [PMID: 31417401 PMCID: PMC6682706 DOI: 10.3389/fphar.2019.00715] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a self-regulated physiological process required for tissue repair that, in non-controled conditions may lead to fibrosis, angiogenesis, loss of normal organ function or cancer. Although several molecular pathways involved in EMT regulation have been described, this process does not have any specific treatment. This article introduces a systematic review of effective natural plant compounds and their extract that modulates the pathological EMT or its deleterious effects, through acting on different cellular signal transduction pathways both in vivo and in vitro. Thereby, cryptotanshinone, resveratrol, oxymatrine, ligustrazine, osthole, codonolactone, betanin, tannic acid, gentiopicroside, curcumin, genistein, paeoniflorin, gambogic acid and Cinnamomum cassia extracts inhibit EMT acting on transforming growth factor-β (TGF-β)/Smads signaling pathways. Gedunin, carnosol, celastrol, black rice anthocyanins, Duchesnea indica, cordycepin and Celastrus orbiculatus extract downregulate vimectin, fibronectin and N-cadherin. Sulforaphane, luteolin, celastrol, curcumin, arctigenin inhibit β-catenin signaling pathways. Salvianolic acid-A and plumbagin block oxidative stress, while honokiol, gallic acid, piperlongumine, brusatol and paeoniflorin inhibit EMT transcription factors such as SNAIL, TWIST and ZEB. Plectranthoic acid, resveratrol, genistein, baicalin, polyphyllin I, cairicoside E, luteolin, berberine, nimbolide, curcumin, withaferin-A, jatrophone, ginsenoside-Rb1, honokiol, parthenolide, phoyunnanin-E, epicatechin-3-gallate, gigantol, eupatolide, baicalin and baicalein and nitidine chloride inhibit EMT acting on other signaling pathways (SIRT1, p38 MAPK, NFAT1, SMAD, IL-6, STAT3, AQP5, notch 1, PI3K/Akt, Wnt/β-catenin, NF-κB, FAK/AKT, Hh). Despite the huge amount of preclinical data regarding EMT modulation by the natural compounds of plant, clinical translation is poor. Additionally, this review highlights some relevant examples of clinical trials using natural plant compounds to modulate EMT and its deleterious effects. Overall, this opens up new therapeutic alternatives in cancer, inflammatory and fibrosing diseases through the control of EMT process.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Therapeutic and Pharmacology Department, Health and Human Science Research, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Pedro Majano
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain
| | - José Antonio Sánchez-Toméro
- Department and Nephrology, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Rafael Selgas
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Manuel López-Cabrera
- Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| | - Abelardo Aguilera
- Molecular Biology Unit, Research Institute of University Hospital La Princesa (IP), Madrid, Spain.,Renal research network REDINREN, Madrid, Spain
| | - Guadalupe González Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, Madrid, Spain.,Renal research network REDINREN, Madrid, Spain.,Molecular Biology Research Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| |
Collapse
|
34
|
|
35
|
Breuss JM, Atanasov AG, Uhrin P. Resveratrol and Its Effects on the Vascular System. Int J Mol Sci 2019; 20:E1523. [PMID: 30934670 PMCID: PMC6479680 DOI: 10.3390/ijms20071523] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 12/18/2022] Open
Abstract
Resveratrol, the phenolic substance isolated initially from Veratrum grandiflorum and richly present in grapes, wine, peanuts, soy, and berries, has been attracting attention of scientists and medical doctors for many decades. Herein, we review its effects on the vascular system. Studies utilizing cell cultures and pre-clinical models showed that resveratrol alleviates oxidative stress and inflammation. Furthermore, resveratrol suppresses vascular smooth muscle cell proliferation, promotes autophagy, and has been investigated in the context of vascular senescence. Pre-clinical models unambiguously demonstrated numerous vasculoprotective effects of resveratrol. In clinical trials, resveratrol moderately diminished systolic blood pressure in hypertensive patients, as well as blood glucose in patients with diabetes mellitus. Yet, open questions remain, as exemplified by a recent report which states that the intake of resveratrol might blunt certain positive effects of exercise in older persons, and further research addressing the framework for long-term use of resveratrol as a food supplement, will stay in demand.
Collapse
Affiliation(s)
- Johannes M Breuss
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
36
|
Zhao Y, Yuan X, Li X, Zhang Y. Resveratrol significantly inhibits the occurrence and development of cervical cancer by regulating phospholipid scramblase 1. J Cell Biochem 2019; 120:1527-1531. [PMID: 30350320 DOI: 10.1002/jcb.27335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 01/24/2023]
Abstract
Cervical cancer (CC) is one of the most common female malignancies, and resveratrol is a polyphenol isolated from the skins of grapes, which has been reported to significantly alter the cellular physiology of tumor cells. However, little is known about the role of phospholipid scramblase 1 (PLSCR1) in pathogenesis of CC. Here, we demonstrated that resveratrol could significantly inhibit both the growth of HeLa cells and expression of PLSCR1. These results suggest that resveratrol-mediated cell growth inhibition can be regulated by PLSCR1.
Collapse
Affiliation(s)
- Yanhua Zhao
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiying Yuan
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang Li
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Zubair H, Azim S, Khan MA, Patel GK, Ahmad A, Pai S, Singh S, Singh AP. Epigenetic Control of Pancreatic Carcinogenesis and Its Regulation by Natural Products. EPIGENETICS OF CANCER PREVENTION 2019:251-270. [DOI: 10.1016/b978-0-12-812494-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Lohse I, Wildermuth E, Brothers SP. Naturally occurring compounds as pancreatic cancer therapeutics. Oncotarget 2018; 9:35448-35457. [PMID: 30459936 PMCID: PMC6226042 DOI: 10.18632/oncotarget.26234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023] Open
Abstract
Naturally occurring small molecule compounds have long been in the spotlight of pancreatic cancer research as potential therapeutics to prevent cancer progression and sensitize chemoresistant tumors. The hope is that terminal pancreatic cancer patients receiving aggressive chemotherapy can benefit from an increase in treatment efficacy without adding further toxicity by way of utilizing natural compounds. While preclinical studies on a number of natural compounds, such as resveratrol, curcumin, rapalogs and cannabinoids, show promising preclinical results, little has translated into clinical practice, though a number of other compounds hold clinical potential. Nevertheless, recent advances in compound formulation may increase the clinical utility of these compounds.
Collapse
Affiliation(s)
- Ines Lohse
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, University of Miami, Miami, FL, USA.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Erin Wildermuth
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shaun P Brothers
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, University of Miami, Miami, FL, USA.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
39
|
Zhou C, Qian W, Ma J, Cheng L, Jiang Z, Yan B, Li J, Duan W, Sun L, Cao J, Wang F, Wu E, Wu Z, Ma Q, Li X. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1. Cell Prolif 2018; 52:e12514. [PMID: 30341797 PMCID: PMC6430460 DOI: 10.1111/cpr.12514] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES Gemcitabine is a standard treatment for advanced pancreatic cancer patients but can cause chemoresistance during treatment. The chemoresistant cells have features of cancer stem cells (CSCs). Resveratrol has been reported to overcome the resistance induced by gemcitabine. However, the mechanism by which resveratrol enhances chemosensitivity remains elusive. Here, we explored the mechanism by which resveratrol enhanced chemosensitivity and the role of sterol regulatory element binding protein 1 (SREBP1) in gemcitabine-induced stemness. MATERIALS AND METHODS The pancreatic cancer cell lines MiaPaCa-2 and Panc-1 were treated under different conditions. Methyl thiazolyl tetrazolium and colony formation assays were performed to evaluate effects on proliferation. Flow cytometry was conducted to detect apoptosis. Oil red O staining was performed to examine lipid synthesis. The sphere formation assay was applied to investigate the stemness of cancer cells. Immunohistochemistry was performed on tumour tissue obtained from treated KPC mice. RESULTS Resveratrol enhanced the sensitivity of gemcitabine and inhibited lipid synthesis via SREBP1. Knockdown of SREBP1 limited the sphere formation ability and suppressed the expression of CSC markers. Furthermore, suppression of SREBP1 induced by resveratrol reversed the gemcitabine-induced stemness. These results were validated in a KPC mouse model. CONCLUSIONS Our data provide evidence that resveratrol reverses the stemness induced by gemcitabine by targeting SREBP1 both in vitro and in vivo. Thus, resveratrol can be an effective chemotherapy sensitizer, and SREBP1 may be a rational therapeutic target.
Collapse
Affiliation(s)
- Cancan Zhou
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Weikun Qian
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Jiguang Ma
- Department of AnesthesiologyFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Liang Cheng
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Zhengdong Jiang
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Bin Yan
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Jie Li
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Wanxing Duan
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Liankang Sun
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Junyu Cao
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Fengfei Wang
- Department of NeurosurgeryNeuroscience Institute, Baylor Scott and White HealthTempleTexas,Neuroscience Institute, Baylor Scott & White HealthTempleTexas,Department of SurgeryTexas A & M University Health Science Center, College of MedicineTempleTexas,Department of NeurologyBaylor Scott & White HealthTempleTexas
| | - Erxi Wu
- Department of NeurosurgeryNeuroscience Institute, Baylor Scott and White HealthTempleTexas,Neuroscience Institute, Baylor Scott & White HealthTempleTexas,Department of SurgeryTexas A & M University Health Science Center, College of MedicineTempleTexas,Department of Pharmaceutical SciencesTexas A & M University College of PharmacyCollege StationTexas
| | - Zheng Wu
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Qingyong Ma
- Department of Hepatobiliary SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| | - Xuqi Li
- Department of General SurgeryFirst Affiliated Hospital, Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
40
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
41
|
Hsieh TC, Wu ST, Bennett DJ, Doonan BB, Wu E, Wu JM. Functional/activity network (FAN) analysis of gene-phenotype connectivity liaised by grape polyphenol resveratrol. Oncotarget 2018; 7:38670-38680. [PMID: 27232943 PMCID: PMC5122419 DOI: 10.18632/oncotarget.9578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/08/2016] [Indexed: 01/09/2023] Open
Abstract
Resveratrol is a polyphenol that has witnessed an unprecedented yearly growth in PubMed citations since the late 1990s. Based on the diversity of cellular processes and diseases resveratrol reportedly affects and benefits, it is likely that the interest in resveratrol will continue, although uncertainty regarding its mechanism in different biological systems remains. We hypothesize that insights on disease-modulatory activities of resveratrol might be gleaned by systematically dissecting the publicly available published data on chemicals and drugs. In this study, we tested our hypothesis by querying DTome (Drug-Target Interactome), a web-based tool containing data compiled from open-source databases including DrugBank, PharmGSK, and Protein Interaction Network Analysis (PINA). Four direct protein targets (DPT) and 219 DPT-associated genes were identified for resveratrol. The DPT-associated genes were scrutinized by WebGestalt (WEB-based Gene SeT Analysis Toolkit). This enrichment analysis resulted in 10 identified KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Refined analysis of KEGG pathways showed that 2 — one linked to p53 and a second to prostate cancer — have functional connectivity to resveratrol and its four direct protein targets. These results suggest that a functional activity network (FAN) approach may be considered as a new paradigm for guiding future studies of resveratrol. FAN analysis resembles a BioGPS, with capability for mapping a Web-based scientific track that can productively and cost effectively connect resveratrol to its primary and secondary target proteins and to its biological functions.
Collapse
Affiliation(s)
- Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, U.S.A
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Dylan John Bennett
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, U.S.A
| | - Barbara B Doonan
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, U.S.A
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott and White Health, Temple, Texas, 76508, U.S.A.,Department of Surgery, Texas A&M College of Medicine, Temple, Texas 76504, U.S.A.,Department of Pharmaceutical Sciences, Texas A&M Health Science Center, College Station, Texas 77843, U.S.A
| | - Joseph M Wu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, U.S.A
| |
Collapse
|
42
|
Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18122589. [PMID: 29194365 PMCID: PMC5751192 DOI: 10.3390/ijms18122589] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
43
|
Jiang Z, Chen K, Cheng L, Yan B, Qian W, Cao J, Li J, Wu E, Ma Q, Yang W. Resveratrol and cancer treatment: updates. Ann N Y Acad Sci 2017; 1403:59-69. [PMID: 28945938 DOI: 10.1111/nyas.13466] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
Cancer, a growing health problem worldwide, affects millions of people every year. The overall survival rates of most cancers have been prolonged owing to the efforts of clinicians and scientists. However, some tumors develop resistance to chemoradiotherapeutic agents, and the cancer research community continues to search for effective sensitizers. Resveratrol, a natural polyphenolic phytoalexin, has shown promising effects in inhibiting proliferation and cancer progression in several tumor models. However, its molecular mechanisms and applications in chemotherapy and radiotherapy have yet to be fully determined. In this concise review, we highlight the role and related molecular mechanisms of resveratrol in cancer treatment. In particular, we focus on the role of resveratrol in the tumor microenvironment and the sensitization of cancer cells for chemotherapy and radiotherapy. Resveratrol shows promising efficacies in cancer treatment and may be applied in clinical therapy, but it requires further clinical study.
Collapse
Affiliation(s)
- Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bin Yan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Junyu Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
44
|
Resveratrol limits epithelial to mesenchymal transition through modulation of KHSRP/hnRNPA1-dependent alternative splicing in mammary gland cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:291-298. [PMID: 28088441 DOI: 10.1016/j.bbagrm.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/29/2022]
Abstract
Resveratrol (RESV) is a natural polyphenolic compound endowed with anti-inflammatory, anti-proliferative, as well as pro-apoptotic activities that make it a potential anti-tumor compound. Here we show that RESV counteracts the TGF-β-induced Epithelial to Mesenchymal Transition (EMT) phenotype in mammary gland cells and affects the alternative exon usage of pre-mRNAs that encode crucial factors in adhesion and migration -including CD44, ENAH, and FGFR2- in a panel of immortalized and transformed mammary gland cells. RESV causes a shift from the mesenchymal-specific forms of these factors to the respective epithelial forms and increases the expression of the RNA-binding proteins KHSRP and hnRNPA1. From a mechanistic point of view, we show that the combined silencing of KHSRP and hnRNPA1 prevents the RESV-dependent inclusion of the epithelial-type exons in the Cd44 pre-mRNA. Our findings support an unexpected regulatory mechanism where RESV limits EMT by controlling gene expression at post-transcriptional level.
Collapse
|
45
|
Xu H, Jia F, Singh PK, Ruan S, Zhang H, Li X. Synergistic anti-glioma effect of a coloaded nano-drug delivery system. Int J Nanomedicine 2016; 12:29-40. [PMID: 28031711 PMCID: PMC5179207 DOI: 10.2147/ijn.s116367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The anti-glioma effect of temozolomide (Tem) is sometimes undermined by the emerging resistance. Recently, resveratrol (Res), herbal medicine extracted from grape seeds, has been demonstrated for its potential use in chemosensitization. In the current study, both these drugs were loaded simultaneously into nanoparticles with methoxy poly(ethylene glycol)-poly epsilon caprolactone (mPEG-PCL) as drug carriers in order to achieve better antitumor efficiency. Tem/Res-coloaded mPEG-PCL nanoparticles were constructed, characterized, and tested for antitumor effect on glioma cells by using in vitro and xenograft model system. The nanoparticle constructs were satisfactory with drug loading content (Res =~12.4%; Tem =~9.3%) and encapsulation capacity of >85% for both the drugs. In addition, the coencapsulation led to better in vitro stability of the nanoparticles than Tem-loaded nanoparticles. An in vitro uptake study demonstrated a high uptake efficiency of the nanoparticles by glioma cells. The synergistic antitumor effect against glioma cells was observed in the combinational treatment of Res and Tem. Tem/Res-coloaded nanoparticles induced higher apoptosis in U87 glioma cells as compared to cells treated by the combination of free drugs. Tem/Res-coloaded particles caused more effective inhibition of phosphor-Akt, leading to upregulation of the downstream apoptotic proteins. In addition, the in vivo study showed the superior tumor delaying effect of coloaded nanoparticles than that of free drug combination. These results suggest that Tem/Res-coloaded nanoparticles could be a potential useful chemotherapeutic formulation for glioma therapy.
Collapse
Affiliation(s)
- Huae Xu
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing
| | - Feng Jia
- Department of Neurosurgery, Yancheng City No 1 People's Hospital, The Fourth Affiliated Hospital of Nantong Medical College, Yancheng, People's Republic of China
| | - Pankaj Kumar Singh
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shu Ruan
- Department of Endocrinology, Yancheng Third Hospital, The Affiliated Hospital of Southeast University Medical College, Yancheng
| | - Hao Zhang
- Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaolin Li
- Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
46
|
Kim CW, Hwang KA, Choi KC. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1787-1796. [PMID: 27912881 DOI: 10.1016/j.phymed.2016.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Increased epithelial-mesenchymal transition (EMT) and cell migration and invasion abilities of cancer cells play important roles in the metastatic process of cancer. Resveratrol is a stilbenoid, a type of natural polyphenol found in the skin of grapes, berries, and peanuts. A number of experiments have examined resveratrol's ability to target diverse pathways associated with carcinogenesis and cancer progression. PURPOSE This article aims to present updated overview of the knowledge that resveratrol and its metabolites or analogs have the potential to inhibit metastasis of cancer via affecting many signaling pathways related with EMT, cancer migration, and invasion in diverse organs of the body. CHAPTERS This article starts with a short introduction describing diverse beneficial effects of resveratrol including cancer prevention and the aim of the present study. To address the effects of resveratrol on cancer metastasis, mechanisms of EMT, migration, invasion, and their relevance with cancer metastasis, anti-metastatic effects of resveratrol through EMT-related signaling pathways and inhibitory effects of resveratrol on migration and invasion are highlighted. In addition, anti-metastatic potential of resveratrol metabolites and analogs is addressed. CONCLUSION Resveratrol was demonstrated to turn back the EMT process induced by diverse signaling pathways in several cellular and animal cancer models. In addition, resveratrol can exert chemopreventive efficacies on migration and invasion of cancer cells by inhibiting the related pathways and target molecules. Although these findings display the anti-metastatic potential of resveratrol, more patient-oriented clinical studies demonstrating the marked efficacies of resveratrol in humans are still needed.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
47
|
Jiang Z, Chen X, Chen K, Sun L, Gao L, Zhou C, Lei M, Duan W, Wang Z, Ma Q, Ma J. YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine. Nutrients 2016; 8:nu8100546. [PMID: 27669292 PMCID: PMC5083973 DOI: 10.3390/nu8100546] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Resveratrol, a natural polyphenol present in most plants, inhibits the growth of numerous cancers both in vitro and in vivo. Aberrant expression of YAP has been reported to activate multiple growth-regulatory pathways and confer anti-apoptotic abilities to many cancer cells. However, the role of resveratrol in YES-activated protein (YAP) expression and that of YAP in pancreatic cancer cells’ response to gemcitabine resistance remain elusive. In this study, we found that resveratrol suppressed the proliferation and cloning ability and induced the apoptosis of pancreatic cancer cells. These multiple biological effects might result from the activation of AMP-activation protein kinase (AMPK) (Thr172) and, thus, the induction of YAP cytoplasmic retention, Ser127 phosphorylation, and the inhibition of YAP transcriptional activity by resveratrol. YAP silencing by siRNA or resveratrol enhanced the sensitivity of gemcitabine in pancreatic cancer cells. Taken together, these findings demonstrate that resveratrol could increase the sensitivity of pancreatic cancer cells to gemcitabine by inhibiting YAP expression. More importantly, our work reveals that resveratrol is a potential anticancer agent for the treatment of pancreatic cancer, and YAP may serve as a promising target for sensitizing pancreatic cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Xin Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Liankang Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Luping Gao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Meng Lei
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
48
|
Duan J, Yue W, E J, Malhotra J, Lu SE, Gu J, Xu F, Tan XL. In vitro comparative studies of resveratrol and triacetylresveratrol on cell proliferation, apoptosis, and STAT3 and NFκB signaling in pancreatic cancer cells. Sci Rep 2016; 6:31672. [PMID: 27539371 PMCID: PMC4990919 DOI: 10.1038/srep31672] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
Resveratrol (RES) has been studied extensively as an anticancer agent. However, the anticancer effects of triacetylresveratrol (TRES, an acetylated analog of RES) which has higher bioavailability have not been well established. We comparatively evaluated their effects on cell proliferation, apoptosis and the molecular changes in STAT3, NFκB and apoptotic signaling pathways in pancreatic cancer cells. Apoptosis was determined by flow cytometry. The nuclear translocation and interaction of STAT3 and NFκB were detected by Western blotting and immunoprecipitation, respectively. Both TRES and RES inhibited cell viability, and induced apoptosis of pancreatic cancer cells in a concentration and incubation time-dependent manner. TRES, similarly to RES, inhibited the phosphorylation of STAT3 and NFκB, down-regulated Mcl-1, and up-regulated Bim and Puma in pancreatic cancer cells. Remarkably, we, for the first time, observed that both TRES and RES suppressed the nuclear translocation, and interrupted the interaction of STAT3 and NFκB in PANC-1 cells. Comparative anticancer effects of TRES and RES on pancreatic cancer suggested that TRES with higher bioavailability may be a potential agent for pancreatic cancer prevention and treatment. Further in vivo experiments and functional studies are warranted to investigate whether TRES exhibits better beneficial effects than RES in mice and humans.
Collapse
Affiliation(s)
- JingJing Duan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA.,Department of Pharmacy, 6th People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai 201499, P. R. China
| | - Wen Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA
| | - JianYu E
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA
| | - Shou-En Lu
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA.,Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jun Gu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201, USA
| | - Feng Xu
- Department of Pharmacy, 6th People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai 201499, P. R. China
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
49
|
Borska S, Pedziwiatr M, Danielewicz M, Nowinska K, Pula B, Drag-Zalesinska M, Olbromski M, Gomulkiewicz A, Dziegiel P. Classical and atypical resistance of cancer cells as a target for resveratrol. Oncol Rep 2016; 36:1562-8. [PMID: 27431533 DOI: 10.3892/or.2016.4930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
The phenomenon of cancer cell resistance to chemotherapeutics is the main cause of insensitivity to anticancer therapy. Thus, the current challenge remains searching for substances sensitising the activity of cytostatic drugs. In this respect, resveratrol is a very promising therapeutic agent. It has pleiotropic effect on cancer cells, which can play a key role in numerous resistance mechanisms, both classical and atypical. The purpose of the present study was to assess the effect of resveratrol on the inhibition of human pancreatic cancer cell proliferation and on the level of cytostatic resistance-associated proteins. The study was performed on human pancreatic cancer cell lines EPP85-181P (control), EPP85-181RDB (daunorubicin resistance) and EPP85-181PRNOV (mitoxantrone resistance). The effect of resveratrol on the viability and proliferation of the studied cell lines was evaluated by SRB assay, whereas cell cycle arrest and cytostatic accumulation by FACS. Western blot analysis was used to determine the level of P-glycoprotein, topoisomerase II α and β and immunofluorescence technique to visualise the proteins in the cells. Resveratrol inhibited proliferation of all studied cell lines. Phase-specific cell cycle arrest depended on the type of cancer cells. Resveratrol decreased the level and activity of P-gp in EPP85-181RDB cells. In EPP85-181PRNOV cells, expression of both TopoII isoforms increased in a statistically significant manner. The results of in vitro studies support the possibility of potential use of resveratrol in breaking cancer cell resistance to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sylwia Borska
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Monika Pedziwiatr
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Monika Danielewicz
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Nowinska
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Bartosz Pula
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | | | - Mateusz Olbromski
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | | | - Piotr Dziegiel
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
50
|
Cao L, Chen X, Xiao X, Ma Q, Li W. Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways. Int J Oncol 2016; 49:735-43. [PMID: 27278736 DOI: 10.3892/ijo.2016.3559] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that there is a strong relationship between diabetes mellitus (DM) and pancreatic cancer. Our previous study revealed that hyperglycemia could enhance the invasive and migratory activities of pancreatic cancer cells. Resveratrol, a natural polyphenolic phytoalexin, has many biological and pharmaceutical properties, including antioxidant and anti-tumorigenic capabilities. The aim of the present study was to evaluate whether resveratrol affects hyperglycemia-induced reactive oxygen species (ROS) production as well as the invasion and migration of pancreatic cancer and its underlying mechanisms. Human pancreatic cancer Panc-1 cells were exposed to high glucose condition with or without resveratrol, N-acetylcysteine (NAC, a scavenger of free radicals), PD 98059 (an ERK inhibitor) or SB 203580 (a p38 MAPK inhibitor). The intracellular ROS and hydrogen peroxide (H2O2) were determined using 2,7-dichlorodihydrofluorecein diacetate and H2O2 assay. MTT, wound healing assay and transwell matrigel invasion assay were used to detect the proliferation, migration and invasion potential of cancer cells. The expressions of uPA, E-cadherin and Glut-1 were examined using QT-PCR and western blot analysis at mRNA and protein levels. The activation of p-ERK, p-p38 and p-NF-κB were measured by western blot analysis. The results of the present study showed that resveratrol could significantly decrease high glucose-induced production of ROS and H2O2 in Panc-1 cells. Resveratrol was also able to inhibit high glucose-induced proliferation, migration and invasion of pancreatic cancer cells. High glucose-modulated expression of uPA, E-cadherin and Glut-1 were inhibited by resveratrol. In addition, high glucose-induced activation of ERK and p38 MAPK signaling pathways as well as the transcription factor NF-κB could also be suppressed by resveratrol. Furthermore, resveratrol was able to suppress H2O2-induced migration and invasion abilities of pancreatic cancer cells. Taken together, these data indicate that resveratrol plays an important role in suppressing hyperglycemia-driven ROS-induced pancreatic cancer progression by inhibiting the ERK and p38 MAPK signaling pathways, providing evidence that resveratrol might be a potential candidate for chemoprevention of pancreatic cancer.
Collapse
Affiliation(s)
- Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|