1
|
Shang P, Xiang Y, Xing C, Chen S, Yuan F. Procyanidin-crosslinked gradient silk fibroin composite nanofiber scaffold with sandwich structure for rotator cuff repair. BIOMATERIALS ADVANCES 2025; 169:214183. [PMID: 39813740 DOI: 10.1016/j.bioadv.2025.214183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Improving the regeneration of the tendon-bone interface (TBI) helps to decrease the risk of rotator cuff retears after repair surgeries. Unfortunately, the lack of inherent healing capacity of the TBI, insufficient mechanical properties, and abnormal and persistent inflammation during repair are the key factors leading to suboptimal healing of the rotator cuff. Therefore, a high-strength rotator cuff repair material capable of regulating the unbalanced immune response and enhancing the regeneration of the TBI is urgently needed. In this study, a novel sandwiched silk fibroin composite nanofiber scaffold with a biomimetic gradient structure was prepared through layer-by-layer continuous electrospinning, and then procyanidin was utilized to further enhance the mechanical properties and biological activities of the scaffold. The physicochemical characterization revealed that the procyanidin-crosslinked sandwiched gradient scaffold (GMPC) possessed an appropriate porosity and pore size and superior mechanical properties. Cytocompatibility assessment and immunofluorescence staining indicated that GMPC allowed rapid adhesion, proliferation, and infiltration of osteoblasts. ELISA and macrophage polarization experiments further confirmed that GMPC could effectively inhibit excessive inflammation in injured tissues and regulate the polarization of macrophages to the beneficial phenotype. Therefore, the procyanidin-crosslinked sandwiched gradient nanofiber scaffold might be a promising candidate for rotator cuff repair.
Collapse
Affiliation(s)
- Panpan Shang
- School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technical University, 3888 Caolang Rd., Shanghai 201514, PR China; School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China.
| | - Yu Xiang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China
| | - Chenchen Xing
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, PR China.
| | - Feng Yuan
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai 200233, PR China.
| |
Collapse
|
2
|
Yoon JP, Park SJ, Kim DH, Choi YS, Lee HJ, Kim JY, Chung SW. Anti-Leukotriene Receptor Blockers Improve Tendon-Bone Interface Healing in a Rat Model of Acute Rotator Cuff Tear. Orthopedics 2025; 48:e105-e112. [PMID: 40052921 DOI: 10.3928/01477447-20250218-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
BACKGROUND Excessive expression of proinflammatory cytokines after rotator cuff (RC) surgery impairs the quality of tendon-bone interface (TBI) healing. There is evidence that the asthma drug montelukast (MS) inhibits the expression of proinflammatory cytokines. This study was conducted to verify the effect of MS administration on TBI healing after RC repair. MATERIALS AND METHODS Thirteen rats in the MS group were intraperitoneally administered 10 mg/kg of the drug daily for 2 weeks after RC surgery, and 13 rats in the control group were administered only 0.9% saline. The healing effect of the TBI was assessed through histologic and biomechanical analysis 4 weeks after tendon repair. RESULTS In the MS group, the expression of interleukin-1 beta (IL-1β; P<.01) and interleukin 6 (IL-6; P<.01) was significantly reduced compared with the control group. In the evaluation of supraspinatus fatty infiltration, the MS group showed significant inhibition of fatty infiltration compared with the control group (P<.001). Histologic analysis showed that the MS group had significant improvements in collagen density (P=.035) and alignment (P=.011). Biomechanical analysis after systemic administration of MS showed an increase in the cross-sectional area (P<.001) and elongation (P<.01) of the TBI. CONCLUSION The use of MS improved tendon elasticity through suppressing fatty infiltration and improving TBI collagen density and arrangement. The mechanism is down-regulation of IL-1β and IL-6. These results strongly support the use of MS as an anti-inflammatory agent that does not impair tendon healing. [Orthopedics. 2025;48(2):e105-e112.].
Collapse
|
3
|
Abesteh J, Al-Asadi M, Abdel Khalik H, Dagher D, Madden K, Bedi A, Khan M. The continuous fragility index of outcomes in rotator cuff repair augmentation randomized trials: a systematic review. J Shoulder Elbow Surg 2024:S1058-2746(24)00959-5. [PMID: 39742947 DOI: 10.1016/j.jse.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Symptomatic rotator cuff tears often undergo surgical repair, which may be paired with various augmentation strategies to enhance structural healing rates. While many randomized controlled trials (RCTs) evaluate augmentation techniques, the statistical robustness of many findings in these studies is unknown. This systematic review aims to evaluate the continuous fragility index (CFI) of RCTs on augmentation techniques for rotator cuff repairs. METHODS MEDLINE, Embase, and CENTRAL databases were comprehensively searched from inception to September 2023 for RCTs assessing the efficacy of at least 1 augmentation strategy during rotator cuff repair. Eligible studies reported at least 1 statistically significant finding for a continuous outcome. The CFI for eligible outcomes was calculated, with median CFI presented by type of augmentation and outcome. Multivariable regression was performed to identify associations between CFI and other outcome variables. RESULTS Nineteen RCTs (1305 patients) were included in the final analysis. The median CFI for the 86 outcomes analyzed was 5.85 (interquartile range [IQR]: 2.3-14.4). Augmentation-specific analysis demonstrated variability in CFIs, with the most robust outcomes found in platelet-rich plasma studies (median: 10.95; IQR: 3.3-19.0) and suture-spanning augmentation studies (median: 11.90; IQR: 11.45-14.35). Outcome-specific analysis demonstrated range of motion outcomes as most robust (median: 9.85; IQR: 7.58-14.0) and strength-related outcomes as most fragile (median: 2.00; IQR: 1.0-16.3). Multivariable regression identified larger sample size as a statistically significant predictor of greater CFI. Notably, loss to follow-up exceeded the CFI in 31.4% of outcomes. CONCLUSION The observed median CFI of 5.85 in augmentation trials is consistent with the CFI reported in orthopedic and sports medicine literature. However, almost a third of outcomes had a loss to follow-up exceeding their CFI, risking the reversal of study findings with more robust follow-up and outcomes. Clinicians and researchers should consider fragility in addition to P values when assessing study results, especially in the context of high loss to follow-up. Future trials should report the fragility of their findings.
Collapse
Affiliation(s)
- James Abesteh
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mohammed Al-Asadi
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hassaan Abdel Khalik
- Division of Orthopaedics, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Danielle Dagher
- Division of Orthopaedics, Department of Surgery, McMaster University, Hamilton, ON, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Kim Madden
- Division of Orthopaedics, Department of Surgery, McMaster University, Hamilton, ON, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Moin Khan
- Division of Orthopaedics, Department of Surgery, McMaster University, Hamilton, ON, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Tharakan S, Hadjiargyrou M, Ilyas A. The Clinical Application of Gel-Based Composite Scaffolds in Rotator Cuff Repair. Gels 2024; 11:2. [PMID: 39851973 PMCID: PMC11764754 DOI: 10.3390/gels11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025] Open
Abstract
Rotator cuff tears are a common injury that can be treated with or without surgical intervention. Gel-based scaffolds have gained significant attention in the field of tissue engineering, particularly for applications like rotator cuff repair. Scaffolds can be biological, synthetic, or a mixture of both materials. Collagen, a primary constituent of the extracellular matrix (ECM) in musculoskeletal tissues, is one of the most widely used materials for gel-based scaffolds in rotator cuff repair, but other ECM-based and synthetic-based composite scaffolds have also been utilized. These composite scaffolds can be engineered to mimic the biomechanical and biological properties of natural tissues, supporting the healing process and promoting regeneration. Various clinical studies examined the effectiveness of these composite scaffolds with collagen, ECM and synthetic polymers and provided outstanding results with remarkable improvements in range of motion (ROM), strength, and pain. This review explores the material composition, manufacturing process and material properties of gel-based composite scaffolds as well as their clinical outcomes for the treatment of rotator cuff injuries.
Collapse
Affiliation(s)
- Shebin Tharakan
- Bio-Nanotechnology and Biomaterials (BNB) Laboratory, New York Institute of Technology, Old Westbury, NY 11568, USA
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Laboratory, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
5
|
Yang D, Li Z, Jiang Z, Mei X, Zhang D, Wei Q. Causal relationship between sarcopenia and rotator cuff tears: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1436203. [PMID: 39534255 PMCID: PMC11555288 DOI: 10.3389/fendo.2024.1436203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Sarcopenia and rotator cuff tears are common among elderly patients. However, the role of sarcopenia in the management of rotator cuff tears has been often overlooked. This study aimed to elucidate the effects of sarcopenia-related traits on rotator cuff tears. Methods Two-sample Mendelian randomization (MR) analyses based on genome-wide association study data were used to evaluate the causal relationships among appendicular lean mass (ALM), usual walking pace, low hand grip strength, and rotator cuff tears. Multivariate Mendelian randomization (MVMR) analyses were used to evaluate the direct effects of each muscle trait on the causal relationship. Results Univariate MR analysis showed that ALM and usual walking pace were causally related to rotator cuff tears (odds ratio (OR) = 0.895; 95% confidence interval (CI), 0.758-0.966, P<0.001 and OR = 0.458, 95% CI, 0.276-0.762, P = 0.003, respectively), and there was no evidence of causality between low hand grip strength and rotator cuff tears (OR = 1.132, 95% CI, 0.913-1.404, P = 0.26). MVMR analysis confirmed the causal effects of ALM and walking pace on rotator cuff tears (OR = 0.918, 95% CI, 0.851-0.990, P = 0.03 and OR = 0.476, 95% CI, 0.304-0.746, P = 0.001, respectively). Conclusion A causal genetic relationship exists between sarcopenia and rotator cuff tears. Sarcopenia-related traits including low muscle mass and physical function, increase the risk of rotator cuff tears. These findings provide new clinical insights and evidence-based medicine to optimize management of rotator cuff tears.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of Orthopedics, Shenzhen Pingle Orthopedics Hospital(Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zheng Li
- Department of Orthopedics, Shenzhen Pingle Orthopedics Hospital(Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Ziqing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianzhong Mei
- Department of Orthopedics, Shenzhen Pingle Orthopedics Hospital(Pingshan District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Daguang Zhang
- Department of Orthopedics, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Qiushi Wei
- Traumatology & Orthopaedics Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Dong Y, Li J, Jiang Q, He S, Wang B, Yi Q, Cheng X, Gao X, Bai Y. Structure, ingredient, and function-based biomimetic scaffolds for accelerated healing of tendon-bone interface. J Orthop Translat 2024; 48:70-88. [PMID: 39185339 PMCID: PMC11342074 DOI: 10.1016/j.jot.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Background Tendon-bone interface (TBI) repair is slow and challenging owing to its hierarchical structure, gradient composition, and complex function. In this work, enlightened by the natural characteristics of TBI microstructure and the demands of TBI regeneration, a structure, composition, and function-based scaffold was fabricated. Methods: The biomimetic scaffold was designed based on the "tissue-inducing biomaterials" theory: (1) a porous scaffold was created with poly-lactic-co-glycolic-acid, nano-hydroxyapatite and loaded with BMP2-gelatinmp to simulate the bone (BP); (2) a hydrogel was produced from sodium alginate, type I collagen, and loaded with TGF-β3 to simulate the cartilage (CP); (3) the L-poly-lactic-acid fibers were oriented to simulate the tendon (TP). The morphology of tri-layered constructs, gelation kinetics, degradation rate, release kinetics and mechanical strength of the scaffold were characterized. Then, bone marrow mesenchymal stem cells (MSCs) and tenocytes (TT-D6) were cultured on the scaffold to evaluate its gradient differentiation inductivity. A rat Achilles tendon defect model was established, and BMSCs seeded on scaffolds were implanted into the lesionsite. The tendon-bone lesionsite of calcaneus at 4w and 8w post-operation were obtained for gross observation, radiological evaluation, biomechanical and histological assessment. Results The hierarchical microstructures not only endowed the scaffold with gradual composition and mechanical properties for matching the regional biophysical characteristics of TBI but also exhibited gradient differentiation inductivity through providing regional microenvironment for cells. Moreover, the scaffold seeded with cells could effectively accelerate healing in rat Achilles tendon defects, attributable to its enhanced differentiation performance. Conclusion The hierarchical scaffolds simulating the structural, compositional, and cellular heterogeneity of natural TBI tissue performed therapeutic effects on promoting regeneration of TBI and enhancing the healing quality of Achilles tendon. The translational potential of this article The novel scaffold showed the great efficacy on tendon to bone healing by offering a structural and compositional microenvironment. The results meant that the hierarchical scaffold with BMSCs may have a great potential for clinical application.
Collapse
Affiliation(s)
- YuHan Dong
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - JiangFeng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiang Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - SiRong He
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - QiYing Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China
| | - XiTing Cheng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Bai
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
7
|
Song W, Guo Y, Liu W, Yao Y, Zhang X, Cai Z, Yuan C, Wang X, Wang Y, Jiang X, Wang H, Yu W, Li H, Zhu Y, Kong L, He Y. Circadian Rhythm-Regulated ADSC-Derived sEVs and a Triphasic Microneedle Delivery System to Enhance Tendon-to-Bone Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408255. [PMID: 39120049 DOI: 10.1002/adma.202408255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Modulating the inflammatory microenvironment to reconstruct the fibrocartilaginous layer while promoting tendon repair is crucial for enhancing tendon-to-bone healing in rotator cuff repair (RCR), a persistent challenge in orthopedics. Small extracellular vesicles (sEVs) hold significant potential to modulate inflammation, yet the efficient production of highly bioactive sEVs remains a substantial barrier to their clinical application. Moreover, achieving minimally invasive local delivery of sEVs to the tendon-to-bone interface presents significant technical difficulties. Herein, the circadian rhythm of adipose-derived stem cells is modulated to increase the yield and enhance the inflammatory regulatory capacity of sEVs. Circadian rhythm-regulated sEVs (CR-sEVs) enhance the cyclic adenosine monophosphate signaling pathway in macrophage (Mφ) via platelet factor 4 delivery, thereby inhibiting Mφ M1 polarization. Subsequently, a triphasic microneedle (MN) scaffold with a tip, stem, and base is designed for the local delivery of CR-sEVs (CR-sEVs/MN) at the tendon-to-bone junction, incorporating tendon-derived decellularized extracellular matrix in the base to facilitate tendon repair. CR-sEVs/MN mitigates inflammation, promotes fibrocartilage regeneration, and enhances tendon healing, thereby improving biomechanical strength and shoulder joint function in a rat RCR model. Combining CR-sEVs with this triphasic microneedle delivery system presents a promising strategy for enhancing tendon-to-bone healing in clinical settings.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Ying Guo
- Department of Cardiology, Heart Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Wencai Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yijing Yao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Xuancheng Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Zhuochang Cai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Chenrui Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xin Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yifei Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xiping Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Haoyuan Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Weilin Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Haiyan Li
- Chemical and Environmental Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe St., Melbourne, Victoria, 3000, Australia
| | - Yanlun Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Lingzhi Kong
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yaohua He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Orthopedic Surgery, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201500, P. R. China
| |
Collapse
|
8
|
Thamrongskulsiri N, Limskul D, Itthipanichpong T, Tanpowpong T, Kuptniratsaikul S. Similar Healing Rates of Arthroscopic Rotator Cuff Repair With and Without Bone Marrow Stimulation: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Sports Med 2024; 52:1855-1864. [PMID: 38251845 DOI: 10.1177/03635465231185340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Bone marrow stimulation (BMS) techniques such as microfracture, nanofracture, and the crimson duvet procedure expose the bone marrow of the proximal humerus to the rotator cuff tendon footprint. The effect of performing BMS on tendon healing is a subject of interest. PURPOSE To compare studies on arthroscopic rotator cuff repair with BMS versus without BMS for rotator cuff tears according to healing rates and clinical and radiological outcomes. STUDY DESIGN Systematic review and meta-analysis; Level of evidence, 2. METHODS The 2020 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed in conducting a search. Studies that compared arthroscopic rotator cuff repair with and without BMS were included if they provided postoperative patient-reported outcomes and healing rates. Dichotomous outcomes were expressed as mean differences (MDs), while continuous outcomes were expressed as odds ratio. RESULTS Included were 5 studies (N = 499 shoulders); 4 studies had level 1 evidence, and 1 study had level 2 evidence. The healing rate of rotator cuff repair was similar between the 2 groups (ie, with and without BMS) (odds ratio, 1.58 [95% CI, 0.63 to 4.00]; P = .33). Furthermore, there were no significant differences in the postoperative Constant score (MD, 1.41 [95% CI, -0.58 to 3.39]; P = .16), American Shoulder and Elbow Surgeons score (MD, 0.77 [95% CI, -1.43 to 2.96]; P = .49), or range of motion for forward flexion (MD, 2.45 [95% CI, -0.66 to 5.57]; P = .12) and external rotation (MD, 0.81 [95% CI, -2.35 to 3.97]; P = .62) at the final follow-up between the 2 groups. CONCLUSION The healing rate of rotator cuff repair was similar, regardless of whether BMS was performed or not. Additionally, there was no significant difference in postoperative patient-reported outcome scores, range of motion, and complications. REGISTRATION CRD42023388427 (PROSPERO).
Collapse
Affiliation(s)
- Napatpong Thamrongskulsiri
- Department of Anatomy, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Danaithep Limskul
- Department of Orthopaedics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thun Itthipanichpong
- Department of Orthopaedics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanathep Tanpowpong
- Department of Orthopaedics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somsak Kuptniratsaikul
- Department of Orthopaedics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Zhang J, Cai Z, Feng F, Peng Y, Cui Y, Xu Y. Age-different BMSCs-derived exosomes accelerate tendon-bone interface healing in rotator cuff tears model. Gene 2024; 895:148002. [PMID: 37979948 DOI: 10.1016/j.gene.2023.148002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Rotator cuff tears (RCTs) are culprit of shoulder pain and dysfunction. Tendon-bone interface (TBI) mal-healing is an essential contributor to retear after RCTs. Consequently, present project was conducted to investigate the role of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes on TBI healing. METHOD Young BMSCs (Y-BMSCs) and Aged BMSCs (A-BMSCs) were isolated from Young (3-month-old) and old (24-month-old) SD rats, and their-derived exosomes (A-BMSCs-exo and Y-BMSCs-exo) were identified. RCTs model was established, and A-BMSCs-exo and Y-BMSCs-exo were injected at the rotator cuff using hydrogel as a vehicle. Pathological changes of TBI were observed by HE, Sirius Red and Oil Red O staining. Western blotting and RT-qPCR were applied to assess the expression of extracellular matrix (ECM)-, tendon cell (TCs)-, osteogenic-, tendon-derived stem cell (TDSCs)- and angiogenic-associated proteins and mRNAs in TBI. RESULT Y-BMSCs exhibited increased activity, osteogenic and lipogenic abilities than A-BMSCs. After A-BMSCs-exo and Y-BMSCs-exo treatment, TBI displayed massive sharpey's fibers growing along the tendon longitudinally, and a collagen fiber-chondrocyte migration zone forming a typical tendon-noncalcified fibrocartilage-calcified fibrocartilage-bone structure. A-BMSCs-exo and Y-BMSCs-exo significantly upregulated the expression of collagen Col I/II/III, Aggrecan, TNMD, SCX, Runx2, OPN, CD45, Sox2, CD31 and VEGFR2 in TBI. In vitro, A-BMSCs-exo and Y-BMSCs-exo significantly enhanced the activity of TCs and TDSCs, TDSCs stemness, and reduced the osteogenic and lipogenic capacity of TDSCs. The effect of Y-BMSCs-exo was significantly stronger than that of A-BMSCs-exo. CONCLUSION BMSCs-derived exosomes facilitate ECM remodeling, osteogenic differentiation, angiogenesis, and stemness of TDSCs, thereby accelerating TBI healing in RCTs, with better outcomes using young individual-derived BMSCs.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| | - Zhijun Cai
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| | - Fanzhe Feng
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China
| | - Yufeng Peng
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China
| | - Yi Cui
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| | - Yongiqing Xu
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| |
Collapse
|
10
|
Xu B, Wang Y, He G, Tang KL, Guo L, Chen W. A novel and efficient murine model for investigating tendon-to-bone healing. J Orthop Surg Res 2024; 19:90. [PMID: 38273383 PMCID: PMC10809630 DOI: 10.1186/s13018-023-04496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Tendon-to-bone healing is a critical challenge in sports medicine, with its cellular and molecular mechanisms yet to be explored. An efficient murine model could significantly advance our understanding of this process. However, most existing murine animal models face limitations, including a propensity for bleeding, restricted operational space, and a steep learning curve. Thus, the need for a novel and efficient murine animal model to investigate the cellular and molecular mechanisms of tendon-to-bone healing is becoming increasingly evident. METHODS In our study, forty-four 9-week-old male C57/BL6 mice underwent transection and reattachment of the Achilles tendon insertion to investigate tendon-to-bone healing. At 2 and 4 weeks postoperatively, mice were killed for histological, Micro-CT, biomechanical, and real-time polymerase chain reaction tests. RESULTS Histological staining revealed that the original tissue structure was disrupted and replaced by a fibrovascular scar. Although glycosaminoglycan deposition was present in the cartilage area, the native structure had been destroyed. Biomechanical tests showed that the failure force constituted approximately 44.2% and 77.5% of that in intact tissues, and the ultimate tensile strength increased from 2 to 4 weeks postoperatively. Micro-CT imaging demonstrated a gradual healing process in the bone tunnel from 2 to 4 weeks postoperatively. The expression levels of ACAN, SOX9, Collagen I, and MMPs were detected, with all genes being overexpressed compared to the control group and maintaining high levels at 2 and 4 weeks postoperatively. CONCLUSIONS Our results demonstrate that the healing process in our model is aligned with the natural healing process, suggesting the potential for creating a new, efficient, and reproducible mouse animal model to investigate the cellular and molecular mechanisms of tendon-to-bone healing.
Collapse
Affiliation(s)
- Baoyun Xu
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Yunjiao Wang
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Gang He
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Kang-Lai Tang
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China.
| | - Lin Guo
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China.
| | - Wan Chen
- Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
11
|
Saveh-Shemshaki N, Barajaa MA, Otsuka T, Mirdamadi ES, Nair LS, Laurencin CT. Electroconductivity, a regenerative engineering approach to reverse rotator cuff muscle degeneration. Regen Biomater 2023; 10:rbad099. [PMID: 38020235 PMCID: PMC10676522 DOI: 10.1093/rb/rbad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Muscle degeneration is one the main factors that lead to the high rate of retear after a successful repair of rotator cuff (RC) tears. The current surgical practices have failed to treat patients with chronic massive rotator cuff tears (RCTs). Therefore, regenerative engineering approaches are being studied to address the challenges. Recent studies showed the promising outcomes of electroactive materials (EAMs) on the regeneration of electrically excitable tissues such as skeletal muscle. Here, we review the most important biological mechanism of RC muscle degeneration. Further, the review covers the recent studies on EAMs for muscle regeneration including RC muscle. Finally, we will discuss the future direction toward the application of EAMs for the augmentation of RCTs.
Collapse
Affiliation(s)
- Nikoo Saveh-Shemshaki
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Mohammed A Barajaa
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
| | - Elnaz S Mirdamadi
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
12
|
Li X, Ren Y, Xue Y, Zhang Y, Liu Y. Nanofibrous scaffolds for the healing of the fibrocartilaginous enthesis: advances and prospects. NANOSCALE HORIZONS 2023; 8:1313-1332. [PMID: 37614124 DOI: 10.1039/d3nh00212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
With the current developmental advancements in nanotechnology, nanofibrous scaffolds are being widely used. The healing of fibrocartilaginous enthesis is a slow and complex process, and while existing treatments have a certain effect on promoting their healing, these are associated with some limitations. The nanofibrous scaffold has the advantages of easy preparation, wide source of raw materials, easy adjustment, easy modification, can mimic the natural structure and morphology of the fibrocartilaginous enthesis, and has good biocompatibility, which can compensate for existing treatments and be combined with them to promote the repair of fibrocartilaginous enthesis. The nanofibrous scaffold can promote the healing of fibrocartilaginous enthesis by controlling the morphology and ensuring controlled drug release. Hence, the use of nanofibrous scaffold with stimulative response features in the musculoskeletal system has led us to imagine its potential application in fibrocartilaginous enthesis. Therefore, the healing of fibrocartilaginous enthesis based on a nanofibrous scaffold may be a novel therapeutic approach.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China.
| |
Collapse
|
13
|
Sethi P, Fares MY, Murthi A, Tokish JM, Abboud JA. The long head of the biceps tendon: a valuable tool in shoulder surgery. J Shoulder Elbow Surg 2023; 32:1801-1811. [PMID: 37245621 DOI: 10.1016/j.jse.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 05/30/2023]
Abstract
ANATOMY AND FUNCTION The long head of the biceps tendon (LHBT) has different properties and characteristics that render it a valuable tool in the hands of shoulder surgeons. Its accessibility, biomechanical strength, regenerative capabilities, and biocompatibility allow it to be a valuable autologous graft for repairing and augmenting ligamentous and muscular structures in the glenohumeral joint. SHOULDER SURGERY APPLICATIONS Numerous applications of the LHBT have been described in the shoulder surgery literature, including augmentation of posterior-superior rotator cuff repair, augmentation of subscapularis peel repair, dynamic anterior stabilization, anterior capsule reconstruction, post-stroke stabilization, and superior capsular reconstruction. Some of these applications have been described meticulously in technical notes and case reports, whereas others may require additional research to confirm clinical benefit and efficacy. CONCLUSION This review examines the role of the LHBT as a source of local autograft, with biological and biomechanical properties, in aiding outcomes of complex primary and revision shoulder surgery procedures.
Collapse
Affiliation(s)
- Paul Sethi
- Orthopedic and Neurosurgical Specialists, ONS Foundation, Greenwich, CT, USA
| | - Mohamad Y Fares
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA
| | - Anand Murthi
- Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - John M Tokish
- Department of Orthopedic Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Joseph A Abboud
- Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Zhou T, Han C, Weng X. Present situation and development prospects of the diagnosis and treatment of rotator cuff tears. Front Surg 2023; 10:857821. [PMID: 37440927 PMCID: PMC10333593 DOI: 10.3389/fsurg.2023.857821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Rotator cuff tears are an important cause of shoulder pain and are caused by degeneration or trauma of the shoulder tendon at the anatomical neck of the humeral head. The understanding and research of rotator cuff tears have a history of hundreds of years, and their etiology, diagnosis, and treatment have a complete system, but some detailed rules of diagnosis and treatment still have room for development. This research paper briefly introduces the diagnosis and treatment of rotator cuff tears. The current situation and its valuable research direction are described.
Collapse
Affiliation(s)
- Tianjun Zhou
- Department of Orthopedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Chang Han
- Department of Orthopedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Xisheng Weng
- Department of Orthopedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
15
|
Bai L, Han Q, Meng Z, Chen B, Qu X, Xu M, Su Y, Qiu Z, Xue Y, He J, Zhang J, Yin Z. Bioprinted living tissue constructs with layer-specific, growth factor-loaded microspheres for improved enthesis healing of a rotator cuff. Acta Biomater 2022; 154:275-289. [PMID: 36328126 DOI: 10.1016/j.actbio.2022.10.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Substantial challenges remain in constructing the native tendon-to-bone interface for rotator cuff healing owing to the enthesis tissues' highly organized structural and compositional gradients. Herein, we propose to bioprint living tissue constructs with layer-specific growth factors (GFs) to promote enthesis regeneration by guiding the zonal differentiation of the loaded stem cells in situ. The sustained release of tenogenic, chondrogenic, and osteogenic GFs was achieved via microsphere-based delivery carriers embedded in the bioprinted constructs. Compared to the basal construct without GFs, the layer-specific tissue analogs realized region-specific differentiation of stem cells in vitro. More importantly, bioprinted living tissue constructs with layer-specific GFs rapidly enhanced the enthesis regeneration in a rabbit rotator cuff tear model in terms of biomechanical restoration, collagen deposition, and alignment, showing gradient interface of fibrocartilage structures with aligned collagen fibrils and an ultimate load failure of 154.3 ± 9.5 N resembling those of native enthesis tissues in 12 weeks. This exploration provides a feasible strategy to engineer living tissue constructions with region-specific differentiation potentials for the functional repair of gradient enthesis tissues. STATEMENT OF SIGNIFICANCE: Previous studies that employed acellular layer-specific scaffolds or stem cells for the reconstruction of the rotator cuff faced challenges due to their insufficient capability to rebuild the anisotropic compositional and structural gradients of native enthesis tissues. This manuscript proposed a living tissue construct with layer-specific, GFs-loaded µS, which can direct in situ and region-specific differentiation of the embedded stem cells to tenogenic, chondrogenic, and osteogenic lineages for functional regeneration of the enthesis tissues. This bioprinted living tissue construct with the unique capability to reduce fibrovascular scar tissue formation and simultaneously facilitate enthesis tissue remodeling might provide a promising strategy to repair complex and gradient tissues in the future.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zijie Meng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, 450003, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanwen Su
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan Xue
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
16
|
Vervaecke AJ, Carbone AD, Abraham A, Bernstein Z, Laudier D, Verborgt O, Galatz LM, Huang AH. Tendon progenitor cells as biological augmentation improve functional gait and reduce scar formation after rotator cuff repair. J Shoulder Elbow Surg 2022; 31:2366-2380. [PMID: 35671924 PMCID: PMC9588545 DOI: 10.1016/j.jse.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND High rates of structural failure are reported after rotator cuff repairs due to inability to recreate the native enthesis during healing. The development of biological augmentation methods that mitigate scar formation and regenerate the enthesis is still an unmet need. Since neonatal enthesis is capable of regeneration after injury, this study tested whether delivery of neonatal tendon progenitor cells (TPCs) into the adult injured environment can enhance functional and structural supraspinatus enthesis and tendon healing. METHODS TPCs were isolated from Ai14 Rosa26-TdTomato mouse Achilles tendons and labeled using adenovirus-Cre. Fifty-two CB57BL/6J mice underwent detachment and acute repair of the supraspinatus tendon and received either a fibrin-only or TPC-fibrin gel. Immunofluorescence analysis was carried out to determine cellularity (DAPI), fibrocartilage (SOX9), macrophages (F4/80), myofibroblasts (α-smooth muscle actin), and scar (laminin). Assays for function (gait and biomechanical testing) and structure (micro-computed tomography imaging, picrosirius red/Alcian Blue staining, type I and III collagen staining) were carried out. RESULTS Analysis of TdTomato cells after injury showed minimal retention of TPCs by day 7 and day 14, with detected cells localized near the bursa and deltoid rather than the enthesis/tendon. However, TPC delivery led to significantly increased %Sox9+ cells in the enthesis at day 7 after injury and decreased laminin intensity across almost all time points compared to fibrin-only treatment. Similarly, TPC-treated mice showed gait recovery by day 14 (paw area and stride length) and day 28 (stance time), while fibrin-treated mice failed to recover gait parameters. Despite improved gait, biomechanical testing showed no differences between groups. Structural analysis by micro-computed tomography suggests that TPC application improves cortical thickness after surgery compared to fibrin. Superior collagen alignment at the neo-enthesis was also observed in the TPC-augmented group at day 28, but no difference was detected in type I and III collagen intensity. CONCLUSION We found that neonatal TPCs improved and restored functional gait by reducing overall scar formation, improving enthesis collagen alignment, and altering bony composition response after supraspinatus tendon repair. TPCs did not appear to integrate into the healing tissue, suggesting improved healing may be due to paracrine effects at early stages. Future work will determine the factors secreted by TPCs to develop translational targets.
Collapse
Affiliation(s)
- Alexander J Vervaecke
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Orthopaedic Center Antwerp, AZ Monica, Antwerp, Belgium
| | - Andrew D Carbone
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Adam Abraham
- Department of Orthopaedics, University of Michigan, Ann Arbor, Mich, USA
| | - Zachary Bernstein
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Damien Laudier
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA
| | - Olivier Verborgt
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Orthopaedic Center Antwerp, AZ Monica, Antwerp, Belgium
| | - Leesa M Galatz
- Department of Orthopaedics, The Mount Sinai Hospital, New York, NY, USA.
| | - Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Chen J, Lou J, Wang W, Xu G. Association of Preoperative Vitamin D Deficiency With Retear Rate and Early Pain After Arthroscopic Rotator Cuff Repair: A Retrospective Cohort Study. Orthop J Sports Med 2022; 10:23259671221130315. [PMID: 36276423 PMCID: PMC9580096 DOI: 10.1177/23259671221130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Although the function of vitamin D in bone metabolism has been well studied, the question remains whether vitamin D deficiency impairs tendon healing after rotator cuff repair. Purpose To investigate the correlation between preoperative vitamin D deficiency and the retear rate and pain after arthroscopic rotator cuff repair. Study Design Cohort study; Level of evidence, 3. Methods Patients with full-thickness rotator cuff tears who underwent arthroscopic rotator cuff repair between January 2018 and August 2019 were enrolled. Included patients were divided into a control group (vitamin D level ≥20 μg/L) and a deficiency group (vitamin D level <20 μg/L). We investigated the association between preoperative vitamin D level and patient characteristics, MRI findings, pain and function scores (visual analog scale [VAS] for pain; Constant-Murley; University of California, Los Angeles; and American Shoulder and Elbow Surgeons scores), and healing status using the Pearson or Spearman correlation coefficient. The clinical characteristics were compared between the groups using the chi-square test or Fisher exact test. Results Included were 89 patients (control group, 44 patients; deficiency group, 45 patients). The mean vitamin D levels were 25.07 ± 5.38 and 14.61 ± 3.43 μg/L in the control and deficiency groups, respectively (P < .001); otherwise, there were no significant differences between the groups in the variables under study. Vitamin D levels were not related to age, symptom duration, tear size, extent of retraction, VAS pain score preoperatively and at 6 and 24 months postoperatively, or any function scores. Supraspinatus fatty infiltration and VAS scores at 1 and 3 months postoperatively were significantly associated with vitamin D level (r = -0.360, -0.362, and -0.316, respectively; P < .05 for all). VAS scores were significantly lower in the control group than in the deficiency group at postoperative 1 month (1.09 ± 0.56 vs 1.47 ± 0.66, respectively) and 3 months (1.14 ± 0.77 vs 1.44 ± 0.66) (P < .05 for both). The retear rate was significantly lower in the control group than in the deficiency group (9.09% vs 26.67%, respectively; P < .05). Conclusion Our study revealed that preoperative vitamin D deficiency was associated with a higher retear rate and early pain (1 and 3 months) after arthroscopic rotator cuff repair.
Collapse
Affiliation(s)
- Jun Chen
- Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, Dongyang, People’s Republic of China
| | - Juexiang Lou
- Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, Dongyang, People’s Republic of China
| | - Weikai Wang
- Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, Dongyang, People’s Republic of China
| | - Guohong Xu
- Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, Dongyang, People’s Republic of China.,Guohong Xu, MD, Department of Orthopedics, Dongyang People’s Hospital, Wenzhou Medical University, 60 Wuning West Road, 322100, Dongyang, People’s Republic of China ()
| |
Collapse
|
18
|
Does the critical shoulder angle influence retear and functional outcome after arthroscopic rotator cuff repair? A systematic review and meta-analysis. Arch Orthop Trauma Surg 2022; 143:2653-2663. [PMID: 36194254 DOI: 10.1007/s00402-022-04640-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/25/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE This systematic review and meta-analysis aimed to evaluate the correlation between increased critical shoulder angle (CSA) and higher retear rates and functional outcomes after arthroscopic rotator cuff repair (ARCR). METHODS PubMed, Embase, Web of Science, and Cochrane Library databases published before January 2022 were comprehensively searched. Two reviewers independently reviewed the titles and abstracts using the specified criteria. Studies were included if the authors clearly described the correlation between the CSA and rotator cuff repair. Data on patient characteristics, mean CSA, retear rate, and the functional score was pooled from the selected articles. A meta-analysis was performed using Review Manager (RevMan) 5.4.1 software, 2020 (Cochrane Collaboration, Copenhagen, Denmark). RESULTS Eleven articles involving 1449 patients from 7 countries were included. The ages of the patients ranged from 45 to 75 years. The follow-up period ranged from 6 to 96 months. The mean CSA was greater in the retear group than in the non-retear group after ARCR (mean difference 2.73°; 95% confidence interval [CI] 0.69-4.77) (p = 0.009). Three studies evaluated the association between increased CSA and the postoperative retear rate. All three studies showed a higher postoperative retear rate in patients with an increased CSA (odds ratio 5.35; 95% CI 2.02-14.15; p = 0.0007). No association was found between CSA and Constant-Murley (Constant), the University of California at Los Angeles (UCLA), or Visual Analog Scale (VAS) scores during the follow-up period of 24-96 months (p > 0.05). CONCLUSIONS This systematic review and meta-analysis showed that CSA correlates highly with rotator cuff retear after ARCR. In addition, the postoperative retear rate of the rotator cuff increased with increased CSA. CSA appeared to not affect worse functional outcomes in patients after ARCR.
Collapse
|
19
|
Zhang X, Wang D, Wang Z, Ling SKK, Yung PSH, Tuan RS, Ker DFE. Clinical perspectives for repairing rotator cuff injuries with multi-tissue regenerative approaches. J Orthop Translat 2022; 36:91-108. [PMID: 36090820 PMCID: PMC9428729 DOI: 10.1016/j.jot.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background In the musculoskeletal system, bone, tendon, and muscle form highly integrated multi-tissue units such as the rotator cuff complex, which facilitates functional and dynamic movement of the shoulder joint. Understanding the intricate interplay among these tissues within clinical, biological, and engineering contexts is vital for addressing challenging issues in treatment of musculoskeletal disorders and injuries. Methods A wide-ranging literature search was performed, and findings related to the socioeconomic impact of rotator cuff tears, the structure-function relationship of rotator cuff bone-tendon-muscle units, pathophysiology of injury, current clinical treatments, recent state-of-the-art advances (stem cells, growth factors, and exosomes) as well as their regulatory approval, and future strategies aimed at engineering bone-tendon-muscle musculoskeletal units are outlined. Results Rotator cuff injuries are a significant socioeconomic burden on numerous healthcare systems that may be addressed by treating the rotator cuff as a single complex, given its highly integrated structure-function relationship as well as degenerative pathophysiology and limited healing in bone-tendon-muscle musculoskeletal tissues. Current clinical practices for treating rotator cuff injuries, including the use of commercially available devices and evolving trends in surgical management have benefited patients while advances in application of stem/progenitor cells, growth factors, and exosomes hold clinical potential. However, such efforts do not emphasize targeted regeneration of bone-tendon-muscle units. Strategies aimed at regenerating bone-tendon-muscle units are thus expected to address challenging issues in rotator cuff repair. Conclusions The rotator cuff is a highly integrated complex of bone-tendon-muscle units that when injured, has severe consequences for patients and healthcare systems. State-of-the-art clinical treatment as well as recent advances have resulted in improved patient outcome and may be further enhanced by engineering bone-tendon-muscle multi-tissue grafts as a potential strategy for rotator cuff injuries. Translational Potential of this Article This review aims to bridge clinical, tissue engineering, and biological aspects of rotator cuff repair and propose a novel therapeutic strategy by targeted regeneration of multi-tissue units. The presentation of these wide-ranging and multi-disciplinary concepts are broadly applicable to regenerative medicine applications for musculoskeletal and non-musculoskeletal tissues.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Zuyong Wang
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Samuel Ka-kin Ling
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Patrick Shu-hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, Hong Kong
- School of Biomedical Sciences, Hong Kong
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong
| |
Collapse
|
20
|
Saveh Shemshaki N, Kan HM, Barajaa M, Otsuka T, Lebaschi A, Mishra N, Nair LS, Laurencin CT. Muscle degeneration in chronic massive rotator cuff tears of the shoulder: Addressing the real problem using a graphene matrix. Proc Natl Acad Sci U S A 2022; 119:e2208106119. [PMID: 35939692 PMCID: PMC9388153 DOI: 10.1073/pnas.2208106119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Massive rotator cuff tears (MRCTs) of the shoulder cause disability and pain among the adult population. In chronic injuries, the tendon retraction and subsequently the loss of mechanical load lead to muscle atrophy, fat accumulation, and fibrosis formation over time. The intrinsic repair mechanism of muscle and the successful repair of the torn tendon cannot reverse the muscle degeneration following MRCTs. To address these limitations, we developed an electroconductive matrix by incorporating graphene nanoplatelets (GnPs) into aligned poly(l-lactic acid) (PLLA) nanofibers. This study aimed to understand 1) the effects of GnP matrices on muscle regeneration and inhibition of fat formation in vitro and 2) the ability of GnP matrices to reverse muscle degenerative changes in vivo following an MRCT. The GnP matrix significantly increased myotube formation, which can be attributed to enhanced intracellular calcium ions in myoblasts. Moreover, the GnP matrix suppressed adipogenesis in adipose-derived stem cells. These results supported the clinical effects of the GnP matrix on reducing fat accumulation and muscle atrophy. The histological evaluation showed the potential of the GnP matrix to reverse muscle atrophy, fat accumulation, and fibrosis in both supraspinatus and infraspinatus muscles at 24 and 32 wk after the chronic MRCTs of the rat shoulder. The pathological evaluation of internal organs confirmed the long-term biocompatibility of the GnP matrix. We found that reversing muscle degenerative changes improved the morphology and tensile properties of the tendon compared with current surgical techniques. The long-term biocompatibility and the ability of the GnP matrix to treat muscle degeneration are promising for the realization of MRCT healing and regeneration.
Collapse
Affiliation(s)
- Nikoo Saveh Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
| | - Amir Lebaschi
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030
| | - Neha Mishra
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269
- Connecticut Veterinary Medical Diagnostic Laboratory, Storrs, CT
| | - Lakshmi S. Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
21
|
Otto A, LeVasseur MR, Baldino JB, Muench LN, Bellas N, Uyeki C, Trudeau MT, Mancini MR, McCarthy MBR, Mazzocca AD. Clinical Outcomes After Arthroscopic Rotator Cuff Repair With a Fibrin Scaffold Containing Growth Factors and Autologous Progenitor Cells Derived from cBMA. Arthrosc Sports Med Rehabil 2022; 4:e1629-e1637. [PMID: 36312725 PMCID: PMC9596864 DOI: 10.1016/j.asmr.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To report the clinical outcomes after biologically augmented rotator cuff repair (RCR) with a fibrin scaffold derived from autologous whole blood and supplemented with concentrated bone marrow aspirate (cBMA) harvested at the proximal humerus. Methods Patients who underwent arthroscopic RCR with biologic augmentation using a fibrin clot scaffold (“Mega- Clot”) containing progenitor cells and growth factors from proximal humerus BMA and autologous whole blood between April 2015 and January 2018 were prospectively followed. Only high-risk patients in primary and revision cases that possessed relevant comorbidities or physically demanding occupation were included. Minimum follow-up for inclusion was 1 year. The visual analog score for pain (VAS), American Shoulder and Elbow Surgeons (ASES), Simple Shoulder Test (SST), Single Assessment Numerical Evaluation (SANE), and Constant-Murley scores were collected preoperatively and at final follow-up. In vitro analyses of the cBMA and fibrin clot using nucleated cell count, colony forming units, and live/dead assays were used to quantify the substrates. Results Thirteen patients (56.9 ± 7.7 years) were included. The mean follow-up was 26.9 ± 17.7 months (n = 13). There were significant improvements in all outcome scores from the preoperative to the postoperative state: VAS (5.6 ± 2.5 to 3.1 ± 3.2; P < .001), ASES (42.0 ± 17.1 to 65.5 ± 30.6; P < .001), SST (3.2 ± 2.8 to 6.5 ± 4.7; P = .002), SANE (11.5 ± 15.6 to 50.3 ± 36.5; P < .001), and Constant-Murley (38.9 ± 17.5 to 58.1 ± 26.3; P < .001). Six patients (46%) had retears on postoperative MRI, despite all having improvements in pain and function except one. All failures were chronic rotator cuff tears, and all were revision cases except one (1.6 ± 0.5 previous RCRs). The representative sample of harvested cBMA showed an average of 28.5 ± 9.1 × 106 nucleated cells per mL. Conclusions Arthroscopic rotator cuff repairs that are biologically augmented with a fibrin scaffold containing growth factors and autologous progenitor cells derived from autologous whole blood and humeral cBMA can improve clinical outcomes in primary, as well as revision cases in high-risk patients. However, the incidence of retears remains a concern in this population, demanding further improvements in biologic augmentation. Level of Evidence IV, therapeutic case series.
Collapse
Affiliation(s)
- Alexander Otto
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
- Department of Trauma, Orthopaedic, Plastic and Hand Surgery, University Hospital of Augsburg, Augsburg, Germany
| | - Matthew R. LeVasseur
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Joshua B. Baldino
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Lukas N. Muench
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
| | - Nicholas Bellas
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Colin Uyeki
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Maxwell T. Trudeau
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Michael R. Mancini
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Mary Beth R. McCarthy
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Augustus D. Mazzocca
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
- Address correspondence to Augustus D. Mazzocca, M.D., M.S., Division of Sports Medicine Mass General Hospital, Department of Orthopaedic Surgery Massachusetts General Hospital & Harvard Medical School, Boston, MA, U.S.A.
| |
Collapse
|
22
|
Functional and radiologic results of the crimson duvet procedure in rotator cuff treatment: a randomized controlled clinical trial. J Shoulder Elbow Surg 2022; 31:1200-1207. [PMID: 35007748 DOI: 10.1016/j.jse.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff tears are one of the more frequent pathologies of the shoulder. Arthroscopic techniques and biologic augmentation have been developed to improve the rate and quality of healing. The crimson duvet procedure (CDP) theoretically provides mesenchymal stem cells through microfracture treatment of the footprint. The aim of this research was to evaluate the effect of CDP in patients who had undergone arthroscopic surgery for complete rotator cuff repair. METHODS A prospective randomized clinical trial was performed in a total of 123 patients, consisting of 59 women and 64 men, with a mean age of 58 years. We included patients with a clinical and radiologic diagnosis of a complete rotator cuff tear. All patients were treated with arthroscopic rotator cuff repair. In group 1, the surface of the footprint was débrided; in group 2, the footprint underwent microfracture. The primary outcome was the nonhealing rate, which was detected by magnetic resonance imaging (MRI) or ultrasonography, and the secondary outcome was the functional result. A Sugaya classification of I to III was considered to indicate healing. For clinical evaluation, the American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form (ASES) and Constant scores were evaluated, along with the range of motion. The functional evaluation was performed preoperatively and at 6 months and 1 year postoperatively. The radiologic (MRI or ultrasonography) evaluation was performed at 6 months. Neither the patients nor the radiologists and physical therapists who performed the postoperative evaluations were informed of the random selection. RESULTS We observed a healing rate of 85.11% in the control group and 93.7% in the CDP group, which was not significant (P = .19). However, a significant improvement in function was observed in all patients. The ASES score improved from 68.9 (SD 13.8) preoperatively to 92.2 at 6 months and to 96.4 (SD 6.2) at 12 months (P < .05), but no difference was observed between the groups. A similar level of improvement was observed in the Constant score. CONCLUSION The arthroscopic repair of complete rotator cuff tears presents good and excellent clinical results in most patients. Nevertheless, nonhealing occurs at a rate that depends mainly on the age of the patient and the size of the tear. The addition of CDP did not improve the functional results or the healing rate.
Collapse
|
23
|
Li Y, Chen C, Jiang J, Liu S, Zhang Z, Xiao L, Lian R, Sun L, Luo W, Tim‐yun Ong M, Yuk‐wai Lee W, Chen Y, Yuan Y, Zhao J, Liu C, Li Y. Bioactive Film-Guided Soft-Hard Interface Design Technology for Multi-Tissue Integrative Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105945. [PMID: 35322573 PMCID: PMC9130887 DOI: 10.1002/advs.202105945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Control over soft-to-hard tissue interfaces is attracting intensive worldwide research efforts. Herein, a bioactive film-guided soft-hard interface design (SHID) for multi-tissue integrative regeneration is shown. Briefly, a soft bioactive film with good elasticity matchable to native ligament tissue, is incorporated with bone-mimic components (calcium phosphate cement, CPC) to partially endow the soft-film with hard-tissue mimicking feature. The hybrid film is elegantly compounded with a clinical artificial ligament to act as a buffer zone to bridge the soft (ligament) and hard tissues (bone). Moreover, the bioactive film-decorated ligament can be rolled into a 3D bio-instructive implant with spatial-controllable distribution of CPC bioactive motifs. CPC then promotes the recruitment and differentiation of endogenous cells in to the implant inside part, which enables a vascularized bone growth into the implant, and forms a structure mimicking the biological ligament-bone interface, thereby significantly improving osteointegration and biomechanical property. Thus, this special design provides an effective SHID-guided implant-bioactivation strategy unreached by the traditional manufacturing methods, enlightening a promising technology to develop an ideal SHID for translational use in the future.
Collapse
Affiliation(s)
- Yamin Li
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Can Chen
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Jia Jiang
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Shengyang Liu
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Zeren Zhang
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Lan Xiao
- Centre for Biomedical TechnologiesQueensland University of TechnologyThe Australia‐China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM)60 Musk Avenue, Kelvin GroveBrisbaneQLD4059Australia
| | - Ruixian Lian
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Lili Sun
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Wei Luo
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Michael Tim‐yun Ong
- Department of Orthopaedics and TraumatologyFaculty of MedicinePrince of Wales HospitalThe Chinese University of Hong KongShatinHong KongChina
| | - Wayne Yuk‐wai Lee
- Department of Orthopaedics and TraumatologyLi Ka Shing Institute of Health SciencesFaculty of MedicinePrince of Wales HospitalThe Chinese University of Hong KongShatinHong KongChina
| | - Yunsu Chen
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yuan Yuan
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Jinzhong Zhao
- Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Changsheng Liu
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| | - Yulin Li
- Engineering Research Centre for Biomedical Materials of Ministry of EducationThe Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Material Science and EngineeringFrontiers Science Center for Materiobiology and Dynamic ChemistryEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
24
|
Prabhakar A, Kanthalu Subramanian JN, Swathikaa P, Kumareswaran S, Subramanian K. Current concepts on management of cuff tear. J Clin Orthop Trauma 2022; 28:101808. [PMID: 35402155 PMCID: PMC8983388 DOI: 10.1016/j.jcot.2022.101808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 01/02/2023] Open
Abstract
Among pathologies of the shoulder, rotator cuff tear is the most common. Diagnosis of cuff tear around mid twenties is unusual, but the prevalence increases significantly after the age of forty. The prevalence after the age of 60 is around 20-30%. A well recognised feature of cuff tear is being asymptomatic but, tear progression in asymptomatic is a known consequence. The spectrum of cuff tear ranges from partial, full thickness cuff tear with or without retraction. The mainstay of treatment for partial thickness cuff tear is systematic rehabilitation and for the full thickness cuff tear an initial rehabilitation is an accepted management. Failed rehabilitation for 3 months, acute traumatic tear, younger age, intractable pain, good quality muscle would be the indications for repair of a full thickness cuff tear. Though there are defined indications for surgical intervention in the full thickness rotator cuff tear, differentiating an asymptomatic tear that would not progress or identifying a tear that would become better with rehabilitation is an undeniable challenge for even the most experienced surgeon. Rehabilitation in cuff tear consists of strengthening the core stabilizers along with rotator cuff and deltoid muscles. In a symptomatic cuff tear that merits surgical intervention the objective is to do an anatomical foot print repair. In scenarios where the cuff is retracted, one has to settle for a medialised repair. As, a repair done in tension is more likely to fail than a tensionless medialised repair. The success rate of all these non anatomical procedures varies from series to series but it approximates around 60-80%. Augmenting cuff repair to enhance biological healing is a recent advance in rotator cuff repair surgery. The augmentation factors can be growth factors like PRP, scaffolds both auto and allografts. The outcome of these procedures from literature has been variable. As there are no major harmful effects, it can be viewed as another future step in bringing better outcomes to patients having rotator cuff tear surgery. Despite being the commonest shoulder pathology, the rotator cuff tear still remains as a condition with varied presenting features and a wide variety of management options. The goal of the treatment is to achieve pain free shoulders with good function. Correcting altered scapular kinematics by systematic rehabilitation of the shoulder would be the first choice in all partial thickness cuff tear and also as an initial management of full thickness cuff tears. Failure of rehabilitation would be the step forward for a surgical intervention. While embarking on a surgical procedure, correct patient selection, sound surgical technique, appropriate counselling about expected outcome are the most essential in patient satisfaction.
Collapse
Affiliation(s)
- Akil Prabhakar
- Department of Orthopaedics, Velammal Medical College and Research Institute, Velammal Village, Madurai-Tuticorin Ring Road, Anuppanadi, Tamil Nadu, 625009, India
| | | | - P. Swathikaa
- Department of Orthopaedics, Velammal Medical College and Research Institute, Velammal Village, Madurai-Tuticorin Ring Road, Anuppanadi, Tamil Nadu, 625009, India
| | | | - K.N. Subramanian
- Department of Orthopaedics, Velammal Medical College and Research Institute, Velammal Village, Madurai-Tuticorin Ring Road, Anuppanadi, Tamil Nadu, 625009, India
| |
Collapse
|
25
|
Colbath G, Murray A, Siatkowski S, Pate T, Krussig M, Pill S, Hawkins R, Tokish J, Mercuri J. Autograft Long Head Biceps Tendon Can Be Used as a Scaffold for Biologically Augmenting Rotator Cuff Repairs. Arthroscopy 2022; 38:38-48. [PMID: 34126215 PMCID: PMC8665938 DOI: 10.1016/j.arthro.2021.05.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE We create a viable, mechanically expanded autograft long head biceps tendon (LHBT) scaffold for biologically augmenting the repair of torn rotator cuffs. METHODS The proximal aspect of the tenotomized LHBTs was harvested from patients during rotator cuff repair surgery and was mechanically formed into porous scaffolds using a surgical graft expander. LHBT scaffolds were evaluated for change in area, tensile properties, and tenocyte viability before and after expansion. The ability of endogenous tenocytes derived from the LHBT scaffold to promote tenogenic differentiation of human adipose-derived mesenchymal stromal cells (ADMSCs) was also determined. RESULTS Autograft LHBTs were successfully expanded using a modified surgical graft expander to create a porous scaffold containing viable resident tenoctyes from patients undergoing rotator cuff repair. LHBT scaffolds had significantly increased area (length: 24.91 mm [13.91, 35.90] × width: 22.69 mm [1.87, 34.50]; P = .011) compared with the native LHBT tendon (length: 27.16 mm [2.70, 33.62] × width: 6.68 mm [5.62, 7.74]). The structural properties of the autograft were altered, including the ultimate tensile strength (LHBT scaffold: .56 MPa [.06, 1.06] vs. native LHBT: 2.35 MPa [1.36, 3.33]; P = .002) and tensile modulus (LHBT scaffold: 4.72 MPa [-.80, 1.24] versus native LHBT: 37.17 MPa [24.56, 49.78]; P = .001). There was also a reduction in resident tenocyte percent viability (LHBT scaffold: 38.52% [17.94, 59.09] vs. native LHBT: 68.87% [63.67, 74.37]; P =.004). Tenocytes derived from the LHBT scaffold produced soluble signals that initiated ADMSC differentiation into an immature tenocyte-like phenotype, as indicated by an 8.7× increase in scleraxis (P = .040) and a 3.6× increase in collagen type III mRNA expression (P = .050) compared with undifferentiated ADMSC controls. CONCLUSIONS The ability to produce a viable autologous scaffold from the proximal biceps tendon having dimensions, porosity, mechanical characteristics, native ECM components, and viable tenocytes that produce bioactive signals conducive to supporting the biologic augmentation of rotator cuff repair surgery has been demonstrated. CLINICAL RELEVANCE This biologically active construct may help to improve the quality of healing and regeneration at the repair site of rotator cuff tears, especially those at high risk for retear.
Collapse
Affiliation(s)
- Gregory Colbath
- Medical Group of the Carolinas, Department of Orthopaedic Surgery, Spartanburg Regional, Spartanburg, SC
| | - Alison Murray
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC,Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, SC
| | - Sandra Siatkowski
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC,Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, SC
| | - Taylor Pate
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC,Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, SC
| | - Mario Krussig
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC,Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, SC
| | - Stephan Pill
- Steadman Hawkins Clinic of the Carolinas, Department of Orthopaedic Surgery, Prisma Health, Greenville, SC
| | - Richard Hawkins
- Steadman Hawkins Clinic of the Carolinas, Department of Orthopaedic Surgery, Prisma Health, Greenville, SC
| | - John Tokish
- Mayo Clinic, Department of Orthopaedic Surgery, Phoenix, AZ
| | - Jeremy Mercuri
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC,Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, SC
| |
Collapse
|
26
|
Zhao J, Luo M, Liang G, Pan J, Han Y, Zeng L, Yang W, Liu J. What Factors Are Associated with Symptomatic Rotator Cuff Tears: A Meta-analysis. Clin Orthop Relat Res 2022; 480:96-105. [PMID: 34424222 PMCID: PMC8673964 DOI: 10.1097/corr.0000000000001949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/02/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuff tears are common. A previous systematic review reported on factors associated with rotator cuff tears; however, it included relatively few studies and few variables, and in addition, it had considerable heterogeneity. To identify the factors associated with symptomatic rotator cuff tears and to help guide clinicians to potentially modifiable factors, we felt a broader and more inclusive meta-analysis would be useful. QUESTIONS/PURPOSES In this systematic review and meta-analysis, we asked what (1) demographic, (2) disease, and (3) imaging factors are associated with symptomatic rotator cuff tears? METHODS PubMed, Embase, and Web of Science were searched, and the search period were from the inception of each database through February 2021. The keywords included "risk factor," "rotator cuff injury," "rotator cuff tears," and "rotator cuff tendinitis." All comparative studies on symptomatic rotator cuff tears were included. We considered that the diagnosis of rotator cuff tear could be made by any imaging tool (MRI or ultrasound). We considered either partial- or full-thickness tears to be a rotator cuff tear. No language restrictions were applied. Twenty-six articles from 14 countries involving 9809 individuals, consisting of 3164 patients and 6645 controls, were included. The Newcastle-Ottawa Scale and the Agency for Healthcare Research and Quality (AHRQ) scale were used to evaluate the risk of bias of the included studies, and the highest scores were 9 and 11, respectively. The Newcastle-Ottawa Scale was used for retrospective comparative studies, and the AHRQ was used to evaluate prospective comparative studies. The eight retrospective comparative studies we included were scored from 4 to 9. The quality score of the 18 prospective comparative studies ranged from 6 to 9. Publication bias was explored using the Egger test. Heterogeneity was estimated using the I2 value. If there was no heterogeneity (I2 ≤ 50%), a fixed-effects model was used to determine the overall effect size; if there was heterogeneity (I2 > 50%), a random-effects model was used to merge the effect values. A meta-analysis was performed with RevMan 5.3, and the risk ratio (RR) and weighted mean difference of related factors were calculated. RESULTS Our meta-analysis identified the following demographic factors associated with an increased risk of rotator cuff tears: older age (mean difference 3.1 [95% CI 1.4 to 4.8]; p < 0.001), greater BMI (mean difference 0.77 [95% CI 0.37 to 1.17]; p < 0.001), smoking (RR 1.32 [95% CI 1.17 to 1.49]; p < 0.001), dominant arm (RR 1.15 [95% CI 1.06 to 1.24]; p < 0.001), greater height (mean difference 0.9 [95% CI 0.4 to 1.4]; p < 0.001), and heavier weight (mean difference 2.24 [95% CI 0.82 to 3.66]; p = 0.002). Regarding disease factors, we found that traumatic events (RR 1.91 [95% CI 1.40 to 2.54]; p < 0.001) and hypertension (RR 1.50 [95% CI 1.32 to 1.70]; p < 0.001) were associated with symptomatic rotator cuff tears. Regarding imaging factors, we found that the following three factors were associated with symptomatic rotator cuff tears: greater acromion index (mean difference 0.11 [95% CI 0.06 to 0.16]; p < 0.001), greater critical shoulder angle (mean difference 1.9 [95% CI 1.5 to 2.3]; p < 0.001), and smaller glenoid version angle (mean difference -1.3 [95% CI -1.9 to -0.8]; p < 0.001). We found no association between the patient's sex or the presence or absence of thyroid disease and the likelihood of a rotator cuff tear being present. CONCLUSION This study identified several factors associated with symptomatic rotator cuff tears, including blood glucose, blood pressure, weight, and smoking. Clinicians may seek to modify these factors, possibly in patients with symptomatic rotator cuff tears, but also in symptomatic patients who have not yet been diagnosed with rotator cuff tears because there would be no harm or risk associated with modifying any of the factors we identified. Future research should further study whether addressing these factors can delay the progression and size of rotator cuff tears.Level of Evidence Level III, prognostic study.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, Guagnzhou, China
- Research Team on Bone and Joint Degeneration and Injury, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Minghui Luo
- Research Team on Bone and Joint Degeneration and Injury, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Guihong Liang
- Research Team on Bone and Joint Degeneration and Injury, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Jianke Pan
- Research Team on Bone and Joint Degeneration and Injury, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Yanhong Han
- Research Team on Bone and Joint Degeneration and Injury, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Lingfeng Zeng
- Research Team on Bone and Joint Degeneration and Injury, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Weiyi Yang
- Research Team on Bone and Joint Degeneration and Injury, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Jun Liu
- Research Team on Bone and Joint Degeneration and Injury, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China
| |
Collapse
|
27
|
Zhao J, Pan J, Zeng LF, Wu M, Yang W, Liu J. Risk factors for full-thickness rotator cuff tears: a systematic review and meta-analysis. EFORT Open Rev 2021; 6:1087-1096. [PMID: 34909227 PMCID: PMC8631239 DOI: 10.1302/2058-5241.6.210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Rotator cuff tears are a common condition of the shoulder, and 20.7% of people with the condition have a full-thickness rotator cuff tear. The purpose of this study was to explore the risk factors for full-thickness rotator cuff tears and to provide evidence to support the accurate diagnosis of full-thickness rotator cuff tears. Studies from PubMed, Embase and Web of Science published before 30 January 2021 were retrieved. All cohort studies and cross-sectional studies on risk factors for full-thickness rotator cuff tears were included. A meta-analysis was performed in RevMan 5.3 to calculate the relative risks (RRs) or weighted mean differences (WMDs) of related risk factors. Stata 15.1 was used for the quantitative analysis of publication bias. In total, 11 articles from six countries, including 4047 cases, with 1518 cases and 2529 controls, were included. The meta-analysis showed that age (MD = 0.76, 95% CI: 0.24 to 1.28, P = 0.004), hypertension (RR = 1.46, 95% CI: 1.17 to 1.81, P = 0.0007) and critical shoulder angle (CSA) (MD = 2.02, 95% CI: 1.55 to 2.48, P < 0.00001) were risk factors for full-thickness rotator cuff tears. Our results also suggested that body mass index, sex, dominant hand, smoking, diabetes mellitus and thyroid disease were not risk factors for full-thickness rotator cuff tears. Early identification of risk factors for full-thickness rotator cuff tears is helpful in identifying high-risk patients and choosing the appropriate treatment.
Cite this article: EFORT Open Rev 2021;6:1087-1096. DOI: 10.1302/2058-5241.6.210027
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, China
| | - Jianke Pan
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China.,Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, China
| | - Ling-Feng Zeng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China.,Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, China
| | - Ming Wu
- The Second School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, China
| | - Weiyi Yang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China.,Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, China
| | - Jun Liu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, China.,Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, China
| |
Collapse
|
28
|
Liu C, Jiang S, Wu Y, Liu L, Su S, Liang T, He R, Guo Z, Zhang Y, Lin Z, Niu W, Zhu L, Xu T, Wang K. The Regenerative Role of Gelatin in PLLA Electrospun Membranes for the Treatment of Chronic Massive Rotator Cuff Injuries. Macromol Biosci 2021; 22:e2100281. [PMID: 34708919 DOI: 10.1002/mabi.202100281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Indexed: 11/08/2022]
Abstract
Failing to regenerate native tendon tissue in chronic massive rotator cuff tears (CMRCTs) results in high retear rates after surgery. Gelatin is a hydrolyzed form of collagen which is bioactive and biocompatible. This study intends to investigate the suitability of integrating gelatin to poly (l-lactic acid) (PLLA) fibrous membranes for promoting the healing of CMRCTs. PLLA/Gelatin electrospun membranes (PGEM) are fabricated using electrospinning technology. The fourier transform infrared, static contact angles are tested sequentially. Cytocompatibility is evaluated with rat tendon fibroblasts and human umbilical endothelial cells (HUEVCs) lines. CMRCTs rat models are established and assigned into three groups (the sham group, the repaired group, and the augmentation group) to perform histomorphological and biomechanical evaluations. Gelatin is successfully integrated into PLLA fibrous membranes by the electrospinning technique. In vitro studies indicate that PGEM shows a great cytocompatibility for rat tendon fibroblasts and HUEVCs. In vivo studies find that applications of PGEM significantly promote well-aligned collagen I fibers formation and enhance biomechanical properties of the repaired tendon in CMRCTs rat models. In summary, gelatin promotes tendon fibroblasts and HUEVCs adhesion, migration, and proliferation on the PLLA fibrous membranes, and PGEM may provide a great prospect for clinical application.
Collapse
Affiliation(s)
- Chang Liu
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Shihai Jiang
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, 04103, Germany
| | - Yu Wu
- Department of Plastic and Aesthetic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Libiao Liu
- East China Institute of Digital Medical Engineering, Shangrao, 334000, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shouwen Su
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zeyue Guo
- East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynaecology, Maternal and Child Health Care Hospital of Jiaozuo, Jiaozuo, 454000, China
| | - Zhidong Lin
- East China Institute of Digital Medical Engineering, Shangrao, 334000, China.,Department of Orthopedics, The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wei Niu
- Department of Orthopedics, The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Zhu
- Department of Plastic and Aesthetic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.,Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, China
| | - Kun Wang
- Department of Joint and Trauma Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
29
|
Zhao J, Luo M, Liang G, Wu M, Pan J, Zeng LF, Yang W, Liu J. Risk Factors for Supraspinatus Tears: A Meta-analysis of Observational Studies. Orthop J Sports Med 2021; 9:23259671211042826. [PMID: 34660827 PMCID: PMC8516389 DOI: 10.1177/23259671211042826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The pathogenesis of rotator cuff tears remains unclear, and there is a lack of high-quality evidence-based research on the risk factors for supraspinatus tears. Purpose: To explore 10 potential risk factors for supraspinatus muscle tears. Study Design: Systematic review; Level of evidence, 3. Methods: This review was conducted according to the MOOSE (Meta-analysis Of Observational Studies in Epidemiology) guidelines. PubMed, Embase, and Web of Science were searched for cohort, case-control and cross-sectional studies published before January 2021 on supraspinatus tears. The following potential risk factors were analyzed: age, body mass index, male sex, female sex, arm dominance, diabetes mellitus, smoking, hypertension, thyroid disease, and the critical shoulder angle (CSA). Risk ratios (RRs) or weighted mean differences (WMDs) of related risk were calculated. The Egger test was used to evaluate publication bias. Results: A total of 9 articles from 8 countries were included; among the 3240 patients, 687 were included in the supraspinatus tear group, and 2553 were included in the nonsupraspinatus tear group. The meta-analysis showed that older age (WMD, 3.36 [95% confidence interval (CI), 0.53-6.20]; P = .02), male sex (RR, 0.87 [95% CI, 0.78-0.97]; P = .01), smoking (RR, 2.21 [95% CI, 1.56-3.14]; P < .00001), diabetes (RR, 1.67 [95% CI, 1.03-2.70]; P = .04), hypertension (RR, 1.51 [95% CI, 1.16-1.97]; P = .002), and the CSA (WMD, 2.25 [95% CI, 1.39-3.12]; P < .00001) were risk factors for supraspinatus tears. Conclusion: Older age, male sex, smoking, diabetes, hypertension, and a higher CSA were found to be risk factors for supraspinatus tears in this meta-analysis review. Identifying risk factors for supraspinatus tears early can help clinicians identify these high-risk patients and choose appropriate treatments.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, People's Republic of China
| | - Minghui Luo
- Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, People's Republic of China.,The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, People's Republic of China
| | - Guihong Liang
- Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, People's Republic of China.,The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, People's Republic of China
| | - Ming Wu
- The Second School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, People's Republic of China
| | - Jianke Pan
- Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, People's Republic of China.,The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, People's Republic of China
| | - Ling-Feng Zeng
- Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, People's Republic of China.,The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, People's Republic of China
| | - Weiyi Yang
- Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, People's Republic of China.,The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, People's Republic of China
| | - Jun Liu
- Guangdong Academy of Traditional Chinese Medicine, Research Team on Bone and Joint Degeneration and Injury, Guangzhou, People's Republic of China.,The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Traditional Chinese Medicine), Guangzhou, People's Republic of China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, People's Republic of China
| |
Collapse
|
30
|
Ren Y, Zhang S, Wang Y, Jacobson DS, Reisdorf RL, Kuroiwa T, Behfar A, Moran SL, Steinmann SP, Zhao C. Effects of purified exosome product on rotator cuff tendon-bone healing in vitro and in vivo. Biomaterials 2021; 276:121019. [PMID: 34325337 PMCID: PMC9707649 DOI: 10.1016/j.biomaterials.2021.121019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Exosomes have multiple therapeutic targets, but the effects on healing rotator cuff tear (RCT) remain unclear. As a circulating exosome, purified exosome product (PEP) has the potential to lead to biomechanical improvement in RCT. Here, we have established a simple and efficient approach that identifies the function and underlying mechanisms of PEP on cell-cell interaction using a co-culture model in vitro. In the in vivo trial, adult female Sprague-Dawley rats underwent unilateral surgery to transect and repair the supraspinatus tendon to its insertion site with or without PEP. PEP promoted the migration and confluence of osteoblast cells and tenocytes, especially during direct cell-cell contact. Expression of potential genes for RCT in vitro and in vivo models were consistent with biomechanical tests and semiquantitative histologic scores, indicating accelerated strength and healing of the RC in response to PEP. Our observations suggest that circulating exosomes provide an effective option to improve the healing speed of RCT after surgical repair. The regeneration of enthesis following PEP treatment appears to be related to a mutually reinforcing relationship between direct cell-cell contact and PEP activity, suggesting a dual approach to the healing process.
Collapse
Affiliation(s)
- Ye Ren
- Department of Orthopedic Surgery, Mayo Clinic Rochester, Rochester, MN, USA; Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuwei Zhang
- Department of Orthopedic Surgery, Mayo Clinic Rochester, Rochester, MN, USA
| | - Yicun Wang
- Department of Orthopedic Surgery, Mayo Clinic Rochester, Rochester, MN, USA
| | - Daniel S Jacobson
- Department of Orthopedic Surgery, Mayo Clinic Rochester, Rochester, MN, USA
| | - Ramona L Reisdorf
- Department of Orthopedic Surgery, Mayo Clinic Rochester, Rochester, MN, USA
| | - Tomoyuki Kuroiwa
- Department of Orthopedic Surgery, Mayo Clinic Rochester, Rochester, MN, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic Rochester, MN, USA
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic Rochester, Rochester, MN, USA
| | - Scott P Steinmann
- Department of Orthopedic Surgery, University of Tennessee Health Science Center College of Medicine, Chattanooga, TN, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic Rochester, Rochester, MN, USA.
| |
Collapse
|
31
|
Morikawa D, LeVasseur MR, Luczak SB, Mancini MR, Bellas N, McCarthy MBR, Cote MP, Berthold DP, Muench LN, Mazzocca AD. Decreased Colony-Forming Ability of Subacromial Bursa-Derived Cells During Revision Arthroscopic Rotator Cuff Repair. Arthrosc Sports Med Rehabil 2021; 3:e1047-e1054. [PMID: 34430884 PMCID: PMC8365201 DOI: 10.1016/j.asmr.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/14/2021] [Indexed: 02/06/2023] Open
Abstract
Purpose To compare the cellular viability and differentiation potential of subacromial bursa-derived cells (SBDCs) located over the rotator cuff muscle and tendon of patients undergoing primary versus revision arthroscopic rotator cuff repair (ARCR). Methods Subacromial bursa was harvested from 18 primary (57.1 ± 4.6 years) and 12 revision ARCRs (57.3 ± 6.7 years). Bursa was collected from 2 sites (over rotator cuff tendon and muscle), digested with collagenase, and grown in culture. The number of nucleated cells, colony-forming units (CFUs), differentiation potential, and mesenchymal stem cell surface markers were compared in primary and revision cases. Results There was no difference in the number of nucleated cells between primary and revision ARCR harvested from the subacromial bursa overlying the tendon (3019.3 ± 1420.6 cells/mg and 3541.7 ± 2244.2 cells/mg, respectively; P = .912) or muscle (2753.5 ± 1547.1 cells/mg and 2989.0 ± 2231.4 cells/mg, respectively; P = .777). There was no difference in the number of CFUs between primary and revision ARCR over the rotator cuff tendon (81.5 ± 49.5 CFUs and 53.0 ± 36.9 CFUs, respectively; P = .138), but there were significantly fewer CFUs over the muscle in revision cases (28.1 ± 22.7 CFUs) compared with primary cases (55.7 ± 34.5 CFUs) (P = .031). SBDCs from revision ARCR expressed characteristic mesenchymal stem cell surface epitopes and had multidifferentiation potentials for chondrogenesis, osteogenesis, and adipogenesis. Conclusions SBDCs harvested over the rotator cuff muscle demonstrated significantly decreased colony-forming abilities in revision arthroscopic rotator cuff repairs compared with primary repairs. However, the subacromial bursa retains its pluripotent differentiation potential for chondrogenic, osteogenic, and adipogenic lineages in the revision setting. Clinical Relevance The subacromial bursa may play a role in the healing response of the repaired rotator cuff. This capacity is not necessarily diminished in the revision setting and may be harnessed as an orthobiologic.
Collapse
Affiliation(s)
- Daichi Morikawa
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A.,Department of Orthopaedic Surgery, Juntendo University, Tokyo, Japan
| | - Matthew R LeVasseur
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - S Brandon Luczak
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Michael R Mancini
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Nicholas Bellas
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Mary Beth R McCarthy
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Mark P Cote
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| | - Daniel P Berthold
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A.,Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
| | - Lukas N Muench
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A.,Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
| | - Augustus D Mazzocca
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, Connecticut, U.S.A
| |
Collapse
|
32
|
He J, Ping S, Yu F, Yuan X, Wang J, Qi J. Mesenchymal stem cell-derived exosomes: therapeutic implications for rotator cuff injury. Regen Med 2021; 16:803-815. [PMID: 34261369 DOI: 10.2217/rme-2020-0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rotator cuff injuries are a common clinical condition of the shoulder joint. Surgery that involves reattaching the torn tendon to its humeral head bony attachment has a somewhat lower success rate. The scar tissue formed during healing of the rotator cuff leads to poor tendon-related mechanical properties. To promote healing, a range of genetic interventions, as well as cell transplantation, and many other techniques have been explored. In recent years, the therapeutic promise of mesenchymal stem cells (MSCs) has been well documented in animal and clinical studies. Some data have suggested that MSCs can promote angiogenesis, reduce inflammation and cell proliferation and increase collagen deposition. These functions are likely paracrine effects of MSCs, particularly mediated through exosomes. Here, we review the use of MSCs-related exosomes in tissues and organs. We also discuss their potential utility for treating rotator cuff injuries, and explore the underlying mechanisms of their effects.
Collapse
Affiliation(s)
- Jinbing He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shuai Ping
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, PR China
| | - Fangyang Yu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, PR China
| | - Xi Yuan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jiang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jun Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
33
|
Yang R, Li G, Zhuang C, Yu P, Ye T, Zhang Y, Shang P, Huang J, Cai M, Wang L, Cui W, Deng L. Gradient bimetallic ion-based hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. SCIENCE ADVANCES 2021; 7:eabg3816. [PMID: 34162547 PMCID: PMC8221628 DOI: 10.1126/sciadv.abg3816] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/29/2021] [Indexed: 05/11/2023]
Abstract
Although gradients play an essential role in guiding the function of tissues, achieving synchronous regeneration of gradient tissue injuries remains a challenge. Here, a gradient bimetallic (Cu and Zn) ion-based hydrogel was first constructed via the one-step coordinative crosslinking of sulfhydryl groups with copper and zinc ions for the microstructure reconstruction of the tendon-to-bone insertion. In this bimetallic hydrogel system, zinc and copper ions could not only act as crosslinkers but also provide strong antibacterial effects and induce regenerative capacity in vitro. The capability of hydrogels in simultaneously promoting tenogenesis and osteogenesis was further verified in a rat rotator cuff tear model. It was found that the Cu/Zn gradient layer could induce considerable collagen and fibrocartilage arrangement and ingrowth at the tendon-to-bone interface. Overall, the gradient bimetallic ion-based hydrogel ensures accessibility and provides opportunities to regenerate inhomogeneous tissue with physiological complexity or interface tissue.
Collapse
Affiliation(s)
- Renhao Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Gen Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Chengyu Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Pei Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Tingjun Ye
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Yin Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Peiyang Shang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Jingjing Huang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301 Middle Yanchang Road, Shanghai 200072, P. R. China
| | - Lei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China.
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China.
| |
Collapse
|
34
|
He X, Huang Z, Liu W, Liu Y, Qian H, Lei T, Hua L, Hu Y, Zhang Y, Lei P. Electrospun polycaprolactone/hydroxyapatite/ZnO films as potential biomaterials for application in bone-tendon interface repair. Colloids Surf B Biointerfaces 2021; 204:111825. [PMID: 33984615 DOI: 10.1016/j.colsurfb.2021.111825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/07/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
The bone-tendon interface (BTI) is a graded structure consisting of bone, mineralized and nonmineralized fibrocartilage, and tendons. Due to the complexity of the BTI structure, BTI healing is particularly challenging. To achieve a better material for BTI healing, polycaprolactone (PCL)/hydroxyapatite (HA)/ZnO films were constructed by the electrospinning method; in addition, the relevant material characteristics were tested. After culturing MC3T-E1 cells, ATDC5 cells, mouse primary fibrochondrocytes, and mouse primary tenocytes on films, PCL-5%HA-1%ZnO films (HA and ZnO weight ratios of 5% and 1%, respectively) displayed superior cell compatibility and cell adhesion. PCL-5%HA-1%ZnO films also promoted osteogenesis, chondrogenesis, fibrocartilage formation, and tendon healing. The antibacterial characteristics of PCL-5%HA-1%ZnO films were also identified in this study. The PCL-5%HA-1%ZnO films have great application potential in the field of BTI repair.
Collapse
Affiliation(s)
- Xi He
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zongwang Huang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Wenbin Liu
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yanling Liu
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Hu Qian
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Ting Lei
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Long Hua
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yihe Hu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China; Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Pengfei Lei
- Department of Orthopaedical Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
35
|
Campbell TM, Gao L, Laneuville O, Louati H, Uhthoff HK, Trudel G. Rotator cuff anchor repair: Histological changes associated with the recovering mechanical properties in a rabbit model. J Tissue Eng Regen Med 2021; 15:567-576. [PMID: 33817988 DOI: 10.1002/term.3195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
Rotator cuff anchor repair is an increasingly common surgical procedure but the failure rate remains high. In order to improve surgical outcomes, a better understanding of postrepair histological and cellular responses at the tendon-bone attachment site (enthesis) is needed. We examined operated shoulders from 42 New Zealand female white rabbits. The animals underwent unilateral supraspinatus detachment followed by anchor repair a week later. To assess enthesis reformation, fibrocartilage staining area and the number of chondrocytes or nonchondrocytes were quantified at 0, 1, 2, and 4 weeks postrepair. Using linear regression, we correlated these results with the load to failure and stiffness recorded during mechanical testing of the tendons. Fibrocartilage staining and chondrocyte number increased during the first 2 weeks of enthesis formation. Between 2 and 4 weeks, fibrocartilage staining plateaued while chondrocyte number decreased. The presence of nonchondrocytes remained similar between 0- and 1-week postrepair but then decreased abruptly at 2 weeks. There was a linear correlation between fibrocartilage staining area and load to failure as well as stiffness. Nonchondrocyte number negatively correlated with stiffness. Early plateau of fibrocartilage staining and decrease in chondrocytes between 2 and 4 weeks postrepair suggest a blunted enthesis formation response in our animal model.
Collapse
Affiliation(s)
- T Mark Campbell
- Department of Physical Medicine and Rehabilitation, Elisabeth Bruyère Hospital, Ottawa, Ontario, Canada.,Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario, Canada
| | - Le Gao
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Odette Laneuville
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hakim Louati
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Hans K Uhthoff
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Orthopaedic Surgery, Department of Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario, Canada.,Division of Orthopaedic Surgery, Department of Surgery, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Zhou YL, Yang QQ, Zhang L, Tang JB. Nanoparticle-coated sutures providing sustained growth factor delivery to improve the healing strength of injured tendons. Acta Biomater 2021; 124:301-314. [PMID: 33444793 DOI: 10.1016/j.actbio.2021.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/08/2023]
Abstract
Tendon injuries are common diseases. The healing capacity of tendon is limited due to its special composition of extra-cellular matrix and hypocellularity and hypovascularity. The purpose of this study was to evaluate the effectiveness of nanoparticle-coated sutures carrying growth factors for accelerating tendon repair. A variety of experimental methods had been used to investigate the characteristics and therapeutic effects of the modified sutures. Nanoparticles could adhere uniformly to the surface of the suture through polydopamine. Even sutured in the tendon, most of nanoparticles were still remained on the surface of suture, and the loaded proteins could spread into the tendon tissues. In vivo study, the ultimate strength of repaired tendons treated with bFGF and VEGFA-releasing sutures was significantly greater than the tendons repaired with control sutures at multiple time-points, whether in the chicken model of flexor tendon injury or the rat model of Achilles tendon injury. At week 6, the adhesion score in the bFGF and VEGFA-releasing suture group was significantly lower than those of the control suture group. Tendon gliding excursion was significantly longer in the bFGF and VEGFA-releasing suture group than that in the control bare sutures. Work of digital flexion was significantly decreased in the bFGF and VEGFA-releasing suture group. In a word, we developed a platform for local and continuous delivery of growth factors based on the nanoparticle-coated sutures, which could effectively deliver growth factors to tissues and control the release of growth factors. This growth factors delivery system is an attractive therapeutic tool to repair injured tendons. STATEMENT OF SIGNIFICANCE: Tendon rupture is a common clinical injury, due to the special character of the tendon with mainly extra cellular matrix and hypocellularity and hypovascularity, the healing capacity of the injured tendon is limited. In this study, nanoparticle-coated surgical sutures carrying growth factors were prepared to accelerate tendon repair. After treatment, bFGF and VEGFA loaded nanoparticle-coated sutures can significantly enhance tendon healing, and significantly improve tendon gliding function and effectively inhibit the formation of adhesion. Moreover, these nanoparticle-coated sutures have good biocompatibility and no obvious tissue reaction, which provides more guarantee for further clinical application. This is an attractive and promising approach that uses surgical suture as a growth factor delivery tool to repair tendon injury, which can simplify the treatment. And this kind of bioactive sutures may be applied to other tissue repair, such as muscle, nerve, intestinal canal, blood vessel, skin, and so on.
Collapse
Affiliation(s)
- You Lang Zhou
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Qian Qian Yang
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Luzhong Zhang
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jin Bo Tang
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
37
|
Zhao D, Han YH, Pan JK, Yang WY, Zeng LF, Liang GH, Liu J. The clinical efficacy of leukocyte-poor platelet-rich plasma in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. J Shoulder Elbow Surg 2021; 30:918-928. [PMID: 33220417 DOI: 10.1016/j.jse.2020.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The efficacy of platelet-rich plasma (PRP) in the arthroscopic treatment of rotator cuff injury has been reported in the literature. However, conclusions have been inconsistent and more often related to differences in the types of PRP used. Therefore, to minimize these differences, we performed a meta-analysis of only studies investigating leukocyte-poor PRP to evaluate whether PRP promotes and improves the effects of arthroscopic rotator cuff repair. METHODS A comprehensive search of the PubMed, Embase, and Cochrane Library databases was conducted to evaluate the efficacy of leukocyte-poor PRP in arthroscopic rotator cuff repair. The available data were extracted, and the methodologic quality of the included studies was evaluated by the Cochrane risk-of-bias assessment tool. RESULTS In total, 10 randomized controlled trials involving 742 patients were included. The results of the meta-analysis showed that treatment with leukocyte-poor PRP performed better than the control treatment in relieving postoperative pain in the short-term (mean difference [MD], -0.57; 95% confidence interval [CI], -0.79 to -0.35; P < .0001) and medium- and long-term (MD, -0.18; 95% CI, -0.34 to -0.03; P = .02) follow-up groups. However, the changes in the MD in the visual analog scale score were below the minimal clinically important difference. Regarding the Constant shoulder (MD, 3.35; 95% CI, 1.68-5.02; P < .0001) and University of California, Los Angeles (MD, 1.73; 95% CI, 0.94-2.52; P < .0001) scores, statistically significant differences were found in favor of leukocyte-poor PRP over the control treatment. However, the changes in the MD in both the Constant and University of California, Los Angeles scores were below the minimal clinically important difference. Moreover, during medium- and long-term follow-up, the retear rate in the leukocyte-poor PRP group was lower than that in the control group regardless of the rotator cuff tear size (small and medium [<3 cm] [risk ratio (RR), 0.64; 95% CI, 0.43-0.97; P = .03] vs. medium and large [>3 cm] [RR, 0.51; 95% CI, 0.34-0.77; P = .001]) and surgical repair method (single-row repair [RR, 0.61; 95% CI, 0.43-0.87; P = .007] vs. double-row suture bridge repair [RR, 0.57; 95% CI, 0.38-0.84; P = .005]). CONCLUSION According to our study, leukocyte-poor PRP can significantly reduce the postoperative retear rate in the medium and long term regardless of the tear size and the method used for rotator cuff repair. However, the use of leukocyte-poor PRP failed to show clinically meaningful effects in terms of postoperative pain and patient-reported outcomes.
Collapse
Affiliation(s)
- Di Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hong Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Ke Pan
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Yi Yang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Feng Zeng
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Gui-Hong Liang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| |
Collapse
|
38
|
Abstract
Hip abductor tendon tear is a difficult problem to manage. The hip abductor mechanism is made up of the gluteus medius and minimus muscles, both of which contribute to stabilising the pelvis through the gait cycle. Tears of these tendons are likely due to iatrogenic injury during arthroplasty and chronic degenerative tendinopathy. Ultrasound and magnetic resonance imaging have provided limited clues regarding the pattern of disease and further work is required to clarify both the macro and microscopic pattern of disease. While surgery has been attempted over the last 2 decades, the outcomes are variable and the lack of high-quality studies have limited the uptake of surgical repair. Hip abductor tendon tears share many features with rotator cuff tears, hence, innovations in surgical techniques, materials and biologics may apply to both pathologies.
Collapse
Affiliation(s)
- Mark F Zhu
- The University of Auckland, Auckland, New Zealand.,Auckland City Hospital, Auckland, New Zealand
| | | | | | - Simon W Young
- The University of Auckland, Auckland, New Zealand.,North Shore Hospital, Auckland, New Zealand
| | - Jacob T Munro
- The University of Auckland, Auckland, New Zealand.,Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
39
|
Cao Y, Yang S, Zhao D, Li Y, Cheong SS, Han D, Li Q. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Translat 2020; 23:89-100. [PMID: 32514393 PMCID: PMC7267011 DOI: 10.1016/j.jot.2020.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background The anatomical properties of the enthesis of the rotator cuff are hardly regained during the process of healing. The tendon-to-bone interface is normally replaced by fibrovascular tissue instead of interposition fibrocartilage, which impairs biomechanics in the shoulder and causes dysfunction. Tissue engineering offers a promising strategy to regenerate a biomimetic interface. Here, we report heterogeneous tendon-to-bone interface engineering based on a 3D-printed multiphasic scaffold. Methods A multiphasic poly(ε-caprolactone) (PCL)–PCL/tricalcium phosphate (TCP)–PCL/TCP porous scaffold was manufactured using 3D printing technology. The three phases of the scaffold were designed to mimic the graded tissue regions in the tendon-to-bone interface—tendon, fibrocartilage, and bone. Fibroblasts, bone marrow–derived mesenchymal stem cells, and osteoblasts were separately encapsulated in gelatin methacrylate (GelMA) and loaded seriatim on the relevant phases of the scaffold, by which a cells/GelMA-multiphasic scaffold (C/G-MS) construct, replicating the native interface, was fabricated. Cell proliferation, viability, and chondrogenic differentiation were evaluated in vitro. The C/G-MS constructs were further examined to determine the potential of regenerating a continuous interface with gradual transition of teno-, fibrocartilage- and osteo-like tissues in vivo. Results In vitro tests confirmed the good cytocompatibility of the constructs. After seven days in culture, cellular microfilament staining indicated that not only could cells well proliferate in GelMA hydrogels but also efficiently attach to and grow on scaffold fibres. Moreover, by immunolocalizing collagen type II, chondrogenesis was identified in the intermediate phase of the C/G-MS construct that had been treated with transforming growth factor β3 for 21 days. After subcutaneous implantation in mice, the C/G-MS construct exhibited a heterogeneous and graded structure up to eight weeks, with distinguished matrix distribution observed at one week. Overall, gene expression of tenogenic, chondrogenic, and osteogenic markers showed increasing patterns for eight weeks. Among them, expression of collagen type X gene was found drastically increasing during eight weeks, indicating progressive formation of calcifying cartilage within the constructs. Conclusion Our findings demonstrate that the stratified manner of fabrication based on the 3D-printed multiphasic scaffold is an effective strategy for tendon-to-bone interface engineering in terms of efficient cell seeding, chondrogenic potential, and distinct matrix deposition in varying phases. The translational potential of this article We fabricated a biomimetic tendon-to-bone interface by using a 3D-printed multiphasic scaffold and adopting a stratified cell-seeding manner with GelMA. The biomimetic interface might have applications in tendon-to-bone repair in the rotator cuff. It can not only be an alternative to a biological fixation device but also offer an ex vivo living graft to replace the damaged enthesis.
Collapse
Affiliation(s)
- Yi Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sou San Cheong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 17/F, No. 1 Building, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 19/F, No. 1 Building, 639 Zhi Zao Ju Road, Shanghai, 200011, PR China.
| |
Collapse
|
40
|
Reifenrath J, Wellmann M, Kempfert M, Angrisani N, Welke B, Gniesmer S, Kampmann A, Menzel H, Willbold E. TGF-β3 Loaded Electrospun Polycaprolacton Fibre Scaffolds for Rotator Cuff Tear Repair: An in Vivo Study in Rats. Int J Mol Sci 2020; 21:E1046. [PMID: 32033294 PMCID: PMC7036781 DOI: 10.3390/ijms21031046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Biological factors such as TGF-β3 are possible supporters of the healing process in chronic rotator cuff tears. In the present study, electrospun chitosan coated polycaprolacton (CS-g-PCL) fibre scaffolds were loaded with TGF-β3 and their effect on tendon healing was compared biomechanically and histologically to unloaded fibre scaffolds in a chronic tendon defect rat model. The biomechanical analysis revealed that tendon-bone constructs with unloaded scaffolds had significantly lower values for maximum force compared to native tendons. Tendon-bone constructs with TGF-β3-loaded fibre scaffolds showed only slightly lower values. In histological evaluation minor differences could be observed. Both groups showed advanced fibre scaffold degradation driven partly by foreign body giant cell accumulation and high cellular numbers in the reconstructed area. Normal levels of neutrophils indicate that present mast cells mediated rather phagocytosis than inflammation. Fibrosis as sign of foreign body encapsulation and scar formation was only minorly present. In conclusion, TGF-β3-loading of electrospun PCL fibre scaffolds resulted in more robust constructs without causing significant advantages on a cellular level. A deeper investigation with special focus on macrophages and foreign body giant cells interactions is one of the major foci in further investigations.
Collapse
Affiliation(s)
- Janin Reifenrath
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Mathias Wellmann
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
| | - Merle Kempfert
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Nina Angrisani
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Haubergstraße 3, 30625 Hannover, Germany
| | - Sarah Gniesmer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Clinic for Cranio–Maxillo–Facial Surgery, Hannover Medical School, Carl–Neuberg–Straße 1, 30625 Hannover, Germany
| | - Andreas Kampmann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
- Clinic for Cranio–Maxillo–Facial Surgery, Hannover Medical School, Carl–Neuberg–Straße 1, 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
| | - Elmar Willbold
- Department of Orthopaedic Surgery, Hannover Medical School, Anna–von–Borries Str. 1–3, 30625 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
41
|
Lamplot JD, Rodeo SA, Brophy RH. A Practical Guide for the Current Use of Biologic Therapies in Sports Medicine. Am J Sports Med 2020; 48:488-503. [PMID: 31038990 DOI: 10.1177/0363546519836090] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Over the past decade, there has been an increased interest in the use of biologic therapies in sports medicine. Although these technologies are in relatively early stages of development, there have been substantial increases in marketing, patient demand, and clinical utilization of biologics, including platelet-rich plasma, bone marrow aspirate concentrate, and other cell-derived therapies. Direct-to-consumer marketing of biologics has also proliferated but is largely unregulated, and clinicians must accurately convey the safety and efficacy profiles of these therapies to patients. Because most insurance companies consider biologic treatments to be experimental or investigational for orthopaedic applications given the lack of high-quality evidence to support their efficacy, patients receiving these treatments often make substantial out-of-pocket payments. With a range of treatment costs among centers offering biologics, there is a need for appropriate and sustainable pricing and reimbursement models. Clinicians utilizing biologics must also have a thorough understanding of the recently clarified Food and Drug Administration guidelines that regulate the clinical use of cell and tissue products. There is a lack of consensus on the optimal preparation, source, delivery method, and dosing of biologic therapies, which has been exacerbated by a lack of sufficient experimental detail in most published studies. Future research must better identify the biologic target of treatment, adhere to better standards of reporting, and better integrate researchers, industry, and regulatory bodies to optimize applications.
Collapse
Affiliation(s)
- Joseph D Lamplot
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, New York, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
42
|
Taye N, Karoulias SZ, Hubmacher D. The "other" 15-40%: The Role of Non-Collagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. J Orthop Res 2020; 38:23-35. [PMID: 31410892 PMCID: PMC6917864 DOI: 10.1002/jor.24440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Extracellular matrix (ECM) determines the physiological function of all tissues, including musculoskeletal tissues. In tendon, ECM provides overall tissue architecture, which is tailored to match the biomechanical requirements of their physiological function, that is, force transmission from muscle to bone. Tendon ECM also constitutes the microenvironment that allows tendon-resident cells to maintain their phenotype and that transmits biomechanical forces from the macro-level to the micro-level. The structure and function of adult tendons is largely determined by the hierarchical organization of collagen type I fibrils. However, non-collagenous ECM proteins such as small leucine-rich proteoglycans (SLRPs), ADAMTS proteases, and cross-linking enzymes play critical roles in collagen fibrillogenesis and guide the hierarchical bundling of collagen fibrils into tendon fascicles. Other non-collagenous ECM proteins such as the less abundant collagens, fibrillins, or elastin, contribute to tendon formation or determine some of their biomechanical properties. The interfascicular matrix or endotenon and the outer layer of tendons, the epi- and paratenon, includes collagens and non-collagenous ECM proteins, but their function is less well understood. The ECM proteins in the epi- and paratenon may provide the appropriate microenvironment to maintain the identity of distinct tendon cell populations that are thought to play a role during repair processes after injury. The aim of this review is to provide an overview of the role of non-collagenous ECM proteins and less abundant collagens in tendon development and homeostasis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:23-35, 2020.
Collapse
Affiliation(s)
- Nandaraj Taye
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Stylianos Z. Karoulias
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| |
Collapse
|
43
|
Rey-Vinolas S, Castaño O, Ruiz-Macarrilla L, Llorens X, Mora JM, Engel E, Mateos-Timoneda MA. Development of a novel automatable fabrication method based on electrospinning co electrospraying for rotator cuff augmentation patches. PLoS One 2019; 14:e0224661. [PMID: 31725745 PMCID: PMC6855444 DOI: 10.1371/journal.pone.0224661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/18/2019] [Indexed: 01/02/2023] Open
Abstract
Rotator cuff tear is one of the most common shoulder diseases. Rotator cuff augmentation (RCA) is trying to solve the high retear failure percentage after the surgery procedures (20-90%). The ideal augmentation patch must provide a temporal mechanical support during the healing process. In this work, we proposed a simple method for the fabrication of synthetic RCA patches. This method combines the use of electrospraying to produce poly-L-lactic-co-ε-caprolactone (PLC) films in an organogel form and electrospinning to produce poly(lactic) acid (PLA) nanofibers. The device consists in a combination of layers, creating a multilayered construct, enabling the possibility of tuning its mechanical properties and thickness. Besides, both techniques are simple to escalate for industrial production. A complete characterization has been performed to optimize the involved number of layers and production time of PLC films and PLA nanofibers fabrication, obtaining a final optimal configuration for RCA devices. Structural, mechanical and suture properties were evaluated. Also, the possibility of surface functionalization to improve the bioactivity of the scaffold was studied, adding aligned electrospun PLA nanofibers on the surface of the device to mimic the natural tendon topography. Surface modification was characterized by culturing adult normal human dermal fibroblasts. Lack of toxicity was detected for material presented, and cell alignment shape orientation guided by aligned fibers, mimicking tendon structure, was obtained. Cell proliferation and protein production were also evaluated.
Collapse
Affiliation(s)
- Sergi Rey-Vinolas
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Oscar Castaño
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Serra Hunter Fellow, Electronics and Biomedical Engineering Department, University of Barcelona (UB), Barcelona, Spain
- Bioelectronics Unit and Nanobioengineering Lab., Institute for Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | | | - Xavier Llorens
- Fundació Joan Costa Roma, Consorci Sanitari de Terrassa, Terrassa, Spain
- Servei de C.O.T., Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - José M. Mora
- Fundació Joan Costa Roma, Consorci Sanitari de Terrassa, Terrassa, Spain
- Servei de C.O.T., Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Department of Materials Science and Metallurgical Engineering, EEBE campus, Technical University of Catalonia (UPC), Barcelona, Spain
| | - Miguel A. Mateos-Timoneda
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Department of Materials Science and Metallurgical Engineering, EEBE campus, Technical University of Catalonia (UPC), Barcelona, Spain
| |
Collapse
|
44
|
Willbold E, Wellmann M, Welke B, Angrisani N, Gniesmer S, Kampmann A, Hoffmann A, Cassan D, Menzel H, Hoheisel AL, Glasmacher B, Reifenrath J. Possibilities and limitations of electrospun chitosan‐coated polycaprolactone grafts for rotator cuff tear repair. J Tissue Eng Regen Med 2019; 14:186-197. [DOI: 10.1002/term.2985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/27/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Elmar Willbold
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Mathias Wellmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
| | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
| | - Nina Angrisani
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Sarah Gniesmer
- Clinic for Cranio‐Maxillo‐Facial SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Andreas Kampmann
- Clinic for Cranio‐Maxillo‐Facial SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Andrea Hoffmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| | - Dominik Cassan
- Institute for Technical ChemistryBraunschweig University of Technology Braunschweig Germany
| | - Henning Menzel
- Institute for Technical ChemistryBraunschweig University of Technology Braunschweig Germany
| | - Anna Lena Hoheisel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
- Institute for Multiphase ProcessesLeibniz University Hannover Hannover Germany
| | - Birgit Glasmacher
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
- Institute for Multiphase ProcessesLeibniz University Hannover Hannover Germany
| | - Janin Reifenrath
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic SurgeryHannover Medical School Hannover Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical School Hannover Germany
| |
Collapse
|
45
|
Song W, Ma Z, Wang C, Li H, He Y. Pro-chondrogenic and immunomodulatory melatonin-loaded electrospun membranes for tendon-to-bone healing. J Mater Chem B 2019; 7:6564-6575. [PMID: 31588948 DOI: 10.1039/c9tb01516g] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reconstructing the native structure of the tendon-to-bone insertion site (enthesis) in rotator cuff repair has always been a great challenge for orthopedic surgeons. Difficulty arises mainly due to the limited enthesis regenerative capability and severe inflammatory cell infiltration, which result in fibrovascular scar formation instead of native cartilage-like enthesis. Therefore, tissue engineering scaffolds with pro-chondrogenic and immunomodulatory capabilities may offer a new strategy for native enthesis regeneration. In this study, melatonin-loaded aligned polycaprolactone (PCL) electrospun fibrous membranes were fabricated. The sustained release of melatonin from this membrane significantly promoted the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in a long-term chondroid pellet model. After the membranes were implanted in a rat acute rotator cuff tear model, melatonin-loaded PCL membranes inhibited macrophage infiltration in the tendon-to-bone interface at the early healing phase, increasing chondroid zone formation, promoting collagen maturation, decreasing fibrovascular tissue formation and eventually improving the biomechanical strength of the regenerated enthesis. Taken together, melatonin-loaded PCL membranes possess great clinical application potential for tendon-to-bone healing.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Zhijie Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Haiyan Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China. and Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, 147 Jiankang Road, Shanghai 201599, China
| |
Collapse
|
46
|
Saveh-Shemshaki N, S.Nair L, Laurencin CT. Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomater 2019; 94:64-81. [PMID: 31128319 DOI: 10.1016/j.actbio.2019.05.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/27/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
The rotator cuff consists of a cuff of soft tissue responsible for rotating the shoulder. Rotator cuff tendon tears are responsible for a significant source of disability and pain in the adult population. Most rotator cuff tendon tears occur at the bone-tendon interface. Tear size, patient age, fatty infiltration of muscle, have a major influence on the rate of retear after surgical repair. The high incidence of retears (up to 94% in some studies) after surgery makes rotator cuff injuries a critical musculoskeletal problem to address. The limitations of current treatments motivate regenerative engineering approaches for rotator cuff regeneration. Various fiber-based matrices are currently being investigated due to their structural similarity with native tendons and their ability to promote regeneration. This review will discuss the current approaches for rotator cuff regeneration, recent advances in fabrication and enhancement of nanofiber-based matrices and the development and use of complex nano/microstructures for rotator cuff regeneration. STATEMENT OF SIGNIFICANCE: Regeneration paradigms for musculoskeletal tissues involving the rotator cuff of the shoulder have received great interest. Novel technologies based on nanomaterials have emerged as possible robust solutions for rotator cuff injury and treatment due to structure/property relationships. The aim of the review submitted is to comprehensively describe and evaluate the development and use of nano-based material technologies for applications to rotator cuff tendon healing and regeneration.
Collapse
|
47
|
Freedman BR, Rodriguez AB, Hillin CD, Weiss SN, Han B, Han L, Soslowsky LJ. Tendon healing affects the multiscale mechanical, structural and compositional response of tendon to quasi-static tensile loading. J R Soc Interface 2019; 15:rsif.2017.0880. [PMID: 29467258 DOI: 10.1098/rsif.2017.0880] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
Tendon experiences a variety of multiscale changes to its extracellular matrix during mechanical loading at the fascicle, fibre and fibril levels. For example, tensile loading of tendon increases its stiffness, with organization of collagen fibres, and increases cell strain in the direction of loading. Although applied macroscale strains correlate to cell and nuclear strains in uninjured tendon, the multiscale response during tendon healing remains unknown and may affect cell mechanosensing and response. Therefore, this study evaluated multiscale structure-function mechanisms in response to quasi-static tensile loading in uninjured and healing tendons. We found that tendon healing affected the macroscale mechanical and structural response to mechanical loading, evidenced by decreases in strain stiffening and collagen fibre realignment. At the micro- and nanoscales, healing resulted in increased collagen fibre disorganization, nuclear disorganization, decreased change in nuclear aspect ratio with loading, and decreased indentation modulus compared to uninjured tendons. Taken together, this work supports a new concept of nuclear strain transfer attenuation during tendon healing and identifies several multiscale properties that may contribute. Our work also provides benchmarks for the biomechanical microenvironments that tendon cells may experience following cell delivery therapies.
Collapse
Affiliation(s)
- Benjamin R Freedman
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Ashley B Rodriguez
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Cody D Hillin
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Stephanie N Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Biao Han
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| |
Collapse
|
48
|
Overlay repair with a synthetic collagen scaffold improves the quality of healing in a rat rotator cuff repair model. J Shoulder Elbow Surg 2019; 28:949-958. [PMID: 30723031 DOI: 10.1016/j.jse.2018.11.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Augmenting repairs with extracellular matrix-based scaffolds is a common option for rotator cuff tears. In this study, a new collagen scaffold was assessed for its efficacy in augmenting rotator cuff repair. METHODS The collagen scaffold was assessed in vitro for cytocompatibility and retention of tenocyte phenotype using alamarBlue assays, fluorescent imaging, and real-time polymerase chain reaction. Immunogenicity was assessed in vitro by the activation of human monocytes. In vivo, by use of a modified rat rotator cuff defect model, supraspinatus tendon repairs were carried out in 40 animals. Overlay augmentation with the collagen scaffold was compared with unaugmented repairs. At 6 and 12 weeks postoperatively, the repairs were tested biomechanically to evaluate repair strength, as well as histologically to assess quality of healing. RESULTS The collagen scaffold supported human tendon-derived cell growth in vitro, with cells demonstrating proliferation and appearing morphologically tenocytic over the experimental period. No immunogenic responses were provoked compared with suture material control. In vivo, augmentation with the scaffold improved the histologic scores at 12 weeks (8.4 of 15 vs 6.4 of 15, P = .032). However, no significant difference was detected with mechanical testing. CONCLUSION The new collagen scaffold was supportive of cell growth in vitro and generated a minimal acute inflammatory response. In vivo, we observed an improvement in the histologic appearance of the repair at 12 weeks. However, a meaningful increase in biomechanical strength was not achieved. Further modification and improvement of the scaffold are required prior to consideration for clinical use.
Collapse
|
49
|
Su W, Wang Z, Jiang J, Liu X, Zhao J, Zhang Z. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane. Int J Nanomedicine 2019; 14:1835-1847. [PMID: 30880983 PMCID: PMC6417852 DOI: 10.2147/ijn.s183842] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background These normal entheses are not reestablished after repair despite significant advances in surgical techniques. There is a significant need to develop integrative biomaterials, facilitating functional tendon-to-bone integration. Materials and methods We fabricated a highly interconnective graphene oxide-doped electrospun poly(lactide-co-glycolide acid) (GO-PLGA) nanofibrous membrane by electrospinning technique and evaluated them using in vitro cell assays. Then, we established rabbit models, the PLGA and GO-PLGA nanofibrous membranes were used to augment the rotator cuff repairs. The animals were killed postoperatively, which was followed by micro-computed tomography, histological and biomechanical evaluation. Results GO was easily mixed into PLGA filament without changing the three dimensional microstructure. An in vitro evaluation demonstrated that the PLGA membranes incorporated with GO accelerated the proliferation of BMSCs and furthered the Osteogenic differentiation of BMSCs. In addition, an in vivo assessment further revealed that the local application of GO-PLGA membrane to the gap between the tendon and the bone in a rabbit model promoted the healing enthesis, increased new bone and cartilage generation, and improved collagen arrangement and biomechanical properties in comparison with repair with PLGA only. Conclusion The electrospun GO-PLGA fibrous membrane provides an effective approach for the regeneration of tendon to bone enthesis.
Collapse
Affiliation(s)
- Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,
| | - Zhiying Wang
- Suzhou Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiang Su, China,
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,
| | - Xiaoyun Liu
- Suzhou Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiang Su, China,
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,
| | - Zhijun Zhang
- Suzhou Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiang Su, China,
| |
Collapse
|
50
|
Schubert MF, Noah AC, Bedi A, Gumucio JP, Mendias CL. Reduced Myogenic and Increased Adipogenic Differentiation Capacity of Rotator Cuff Muscle Stem Cells. J Bone Joint Surg Am 2019; 101:228-238. [PMID: 30730482 PMCID: PMC6791507 DOI: 10.2106/jbjs.18.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Fat accumulation commonly occurs in chronically torn rotator cuff muscles, and increased fat within the rotator cuff is correlated with poor clinical outcomes. The extent of lipid deposition is particularly pronounced in injured rotator cuff muscles compared with other commonly injured muscles such as the gastrocnemius. Satellite cells, which are a tissue-resident muscle stem-cell population, can differentiate into fat cells. We hypothesized that satellite cells from the rotator cuff have greater intrinsic adipogenic differentiation potential than do gastrocnemius satellite cells, and this difference is due to variations in epigenetic imprinting between the cells. METHODS Satellite cells from gastrocnemius and rotator cuff muscles of mice were cultured in adipogenic media, and the capacity to differentiate into mature muscle cells and adipogenic cells was assessed (n ≥ 9 plates per muscle group). We also performed DNA methylation analysis of gastrocnemius and rotator cuff satellite cells to determine whether epigenetic differences were present between the 2 groups (n = 5 mice per group). RESULTS Compared with the gastrocnemius, satellite cells from the rotator cuff had a 23% reduction in myogenic differentiation and an 87% decrease in the expression of the differentiated muscle cell marker MRF4 (myogenic regulatory factor 4). With respect to adipogenesis, rotator cuff satellite cells had a 4.3-fold increase in adipogenesis, a 12-fold increase in the adipogenic transcription factor PPARγ (peroxisome proliferator-activated receptor gamma), and a 65-fold increase in the adipogenic marker FABP4 (fatty-acid binding protein 4). Epigenetic analysis identified 355 differentially methylated regions of DNA between rotator cuff and gastrocnemius satellite cells, and pathway enrichment analysis suggested that these regions were involved with lipid metabolism and adipogenesis. CONCLUSIONS Satellite cells from rotator cuff muscles have reduced myogenic and increased adipogenic differentiation potential compared with gastrocnemius muscles. There appears to be a cellular and genetic basis behind the generally poor rates of rotator cuff muscle healing. CLINICAL RELEVANCE The reduced myogenic and increased adipogenic capacity of rotator cuff satellite cells is consistent with the increased fat content and poor muscle healing rates often observed for chronically torn rotator cuff muscles. For patients undergoing rotator cuff repair, transplantation of autologous satellite cells from other muscles less prone to fatty infiltration may improve clinical outcomes.
Collapse
Affiliation(s)
- Manuel F. Schubert
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew C. Noah
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Asheesh Bedi
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Jonathan P. Gumucio
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Christopher L. Mendias
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan,Hospital for Special Surgery, New York, NY,Departments of Physiology and Biophysics and Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| |
Collapse
|