1
|
Rouaud F, Meens MJ, Yvon R, Hautefort A, Legouis D, Mean I, Jond L, Maillard M, Kwak BR, Moll S, Seigneux SD, Feraille E, Citi S. The knock-out of paracingulin attenuates hypertension through modulation of kidney ion transport. Am J Physiol Renal Physiol 2025; 328:F737-F751. [PMID: 40204428 DOI: 10.1152/ajprenal.00271.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Hypertension is a major risk factor for human morbidity and mortality, and the junctional protein paracingulin (CGNL1, JACOP) is required for the development of hypertension in a Dahl salt-sensitive rat model and is linked to human hypertension in genome wide association studies. However, the mechanism through which CGNL1 may regulate hypertension is unknown. Here, we address this question using a mouse model, where hypertension is induced by unilateral nephrectomy and angiotensin II infusion (N+A protocol). Although untreated WT and CGNL1-KO mice showed similar blood pressure, the N+A protocol induced hypertension in WT mice but not in CGNL1-KO mice. We show by immunolocalization and transcriptomic analysis that CGNL1 is expressed throughout the kidney tubules and in the endothelium of blood vessels, but not in smooth muscle. The N+A protocol induced decreased potassium urinary excretion in wild-type (WT), but not in CGNL1-KO mice. Immunoblot analysis shows that the KO of CGNL1 blunted the N+A-induced changes in the expression levels and activation of tubular ion transporters, including the Na/H exchanger 3 (NHE3) and the thiazide-sensitive Na-Cl cotransporter (NCC), and blunted the angiotensin II-dependent changes in the levels and/or activation of AMP-activated protein kinase (AMPK), ERK and myosin light chain. In contrast, myography showed comparable vascular reactivity in thoracic aortas and mesenteric arteries isolated from WT or CGNL1-KO mice. Together, these results suggest the KO of CGNL1 attenuates hypertension by uncoupling angiotensin II signaling in kidney tubule cells, indicating a novel pathway of regulation of signaling by a junctional protein.NEW & NOTEWORTHY The knock-out of paracingulin (CGNL1) prevents the development of hypertension in a unilateral nephrectomy/angiotensin II infusion model (N+A) in mice and this antihypertensive effect likely depends on uncoupling of angiotensin II from stimulation of sodium transporter activity in kidney tubules rather than on alteration of resistance blood vessel contractility.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Merlijn J Meens
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Research Office, Faculty of Health, Medicine and Life Sciences, Maastricht, The Netherlands
| | - Raphaël Yvon
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Hautefort
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Isabelle Mean
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marc Maillard
- Department of Nephrology and Hypertension, Faculty of Medicine, University of Lausanne, Lausanne, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Solange Moll
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie De Seigneux
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eric Feraille
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Rouaud F, Maupérin M, Mutero-Maeda A, Citi S. Cingulin-nonmuscle myosin interaction plays a role in epithelial morphogenesis and cingulin nanoscale organization. J Cell Sci 2024; 137:jcs262353. [PMID: 39319625 PMCID: PMC11449440 DOI: 10.1242/jcs.262353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Cingulin (CGN) tethers nonmuscle myosin 2B (NM2B; heavy chain encoded by MYH10) to tight junctions (TJs) to modulate junctional and apical cortex mechanics. Here, we studied the role of the CGN-nonmuscle myosin 2 (NM2) interaction in epithelial morphogenesis and nanoscale organization of CGN by expressing wild-type and mutant CGN constructs in CGN-knockout Madin-Darby canine kidney (MDCK) epithelial cells. We show that the NM2-binding region of CGN is required to promote normal cyst morphogenesis of MDCK cells grown in three dimensions and to maintain the C-terminus of CGN in a distal position with respect to the ZO-2 (or TJP2)-containing TJ submembrane region, whereas the N-terminus of CGN is localized more proximal to the TJ membrane. We also show that the CGN mutant protein that causes deafness in human and mouse models is localized at TJs but does not bind to NM2B, resulting in decreased TJ membrane tortuosity. These results indicate that the interaction between CGN and NM2B regulates epithelial tissue morphogenesis and nanoscale organization of CGN and suggest that CGN regulates the auditory function of hair cells by organizing the actomyosin cytoskeleton to modulate the mechanics of the apical and junctional cortex.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| | - Marine Maupérin
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
4
|
Chen X, Li Z, Feng Y, Yang Z, Zhao B. Identification of PDZD11 as a Potential Biomarker Associated with Immune Infiltration for Diagnosis and Prognosis in Epithelial Ovarian Cancer. Int J Gen Med 2024; 17:2113-2128. [PMID: 38766598 PMCID: PMC11102278 DOI: 10.2147/ijgm.s459418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Evidence has indicated that PDZD11 is involved in regulating adherens junction. However, the distinct effect of its aberrant expression on epithelial ovarian cancer (EOC) awaits clarification. Methods In this study, public databases (Gene Expression Omnibus, The Cancer Genome Atlas, and The Genotype-Tissue Expression), online analysis tools (Kaplan-Meier plotter and TIMER), and data analysis methods (Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and the CIBERSORT algorithm) were fully utilized to analyze the differential expression, diagnostic efficiency, prognostic significance, potential function, and correlation with immune infiltration of PDZD11. The differential expression of PDZD11 was tested by immunohistochemistry in EOC tissues (78 cases) and control tissues (37 cases). Results Our results indicate that PDZD11 was remarkably overexpressed in EOC, which was associated with advanced cancer stages, no lymphatic metastasis status, and poor prognosis. Moreover, PDZD11 played a role in cell adhesion, cell proliferation, and immune responses. Also, PDZD11 was significantly related to the abundances of infiltrating immune cells in EOC, including neutrophils, macrophages, dendritic cells, CD8+ T cells, and CD4+ T cells, and its expression was positively co-expressed with well-known immune checkpoints, including TIGIT, TIM3, LAG3, CTLA4, and PD-1. Conclusion These results suggest that PDZD11 could be a potential diagnostic and prognostic biomarker associated with immune infiltration in EOC, and our findings might help elucidate the function of PDZD11 in carcinogenesis.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhuang Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yanying Feng
- Department of Cardiopulmonary Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhijun Yang
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Bingbing Zhao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
5
|
Segui-Perez C, Stapels DAC, Ma Z, Su J, Passchier E, Westendorp B, Wubbolts RW, Wu W, van Putten JPM, Strijbis K. MUC13 negatively regulates tight junction proteins and intestinal epithelial barrier integrity via protein kinase C. J Cell Sci 2024; 137:jcs261468. [PMID: 38345099 PMCID: PMC10984281 DOI: 10.1242/jcs.261468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability.
Collapse
Affiliation(s)
- Celia Segui-Perez
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Daphne A. C. Stapels
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Ziliang Ma
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 138648 Singapore, Singapore
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Jinyi Su
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Elsemieke Passchier
- UMAB, Department of Laboratory Pharmacy and Biomedical Genetics, Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Richard W. Wubbolts
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 138648 Singapore, Singapore
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Jos P. M. van Putten
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| |
Collapse
|
6
|
Flinois A, Méan I, Mutero-Maeda A, Guillemot L, Citi S. Paracingulin recruits CAMSAP3 to tight junctions and regulates microtubule and polarized epithelial cell organization. J Cell Sci 2024; 137:jcs260745. [PMID: 37013686 PMCID: PMC10184829 DOI: 10.1242/jcs.260745] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Paracingulin (CGNL1) is recruited to tight junctions (TJs) by ZO-1 and to adherens junctions (AJs) by PLEKHA7. PLEKHA7 has been reported to bind to the microtubule minus-end-binding protein CAMSAP3, to tether microtubules to the AJs. Here, we show that knockout (KO) of CGNL1, but not of PLEKHA7, results in the loss of junctional CAMSAP3 and its redistribution into a cytoplasmic pool both in cultured epithelial cells in vitro and mouse intestinal epithelium in vivo. In agreement, GST pulldown analyses show that CGNL1, but not PLEKHA7, interacts strongly with CAMSAP3, and the interaction is mediated by their respective coiled-coil regions. Ultrastructure expansion microscopy shows that CAMSAP3-capped microtubules are tethered to junctions by the ZO-1-associated pool of CGNL1. The KO of CGNL1 results in disorganized cytoplasmic microtubules and irregular nuclei alignment in mouse intestinal epithelial cells, altered cyst morphogenesis in cultured kidney epithelial cells, and disrupted planar apical microtubules in mammary epithelial cells. Together, these results uncover new functions of CGNL1 in recruiting CAMSAP3 to junctions and regulating microtubule cytoskeleton organization and epithelial cell architecture.
Collapse
Affiliation(s)
- Arielle Flinois
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Laurent Guillemot
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
7
|
Maupérin M, Sassi A, Méan I, Feraille E, Citi S. Knock Out of CGN and CGNL1 in MDCK Cells Affects Claudin-2 but Has a Minor Impact on Tight Junction Barrier Function. Cells 2023; 12:2004. [PMID: 37566083 PMCID: PMC10417749 DOI: 10.3390/cells12152004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Cingulin (CGN) and paracingulin (CGNL1) are cytoplasmic proteins of tight junctions (TJs), where they play a role in tethering ZO-1 to the actomyosin and microtubule cytoskeletons. The role of CGN and CGNL1 in the barrier function of epithelia is not completely understood. Here, we analyzed the effect of the knock out (KO) of either CGN or CGNL1 or both on the paracellular permeability of monolayers of kidney epithelial (MDCK) cells. KO cells displayed a modest but significant increase in the transepithelial resistance (TER) of monolayers both in the steady state and during junction assembly by the calcium switch, whereas the permeability of the monolayers to 3 kDa dextran was not affected. The permeability to sodium was slightly but significantly decreased in KO cells. This phenotype correlated with slightly increased mRNA levels of claudin-2, slightly decreased protein levels of claudin-2, and reduced junctional accumulation of claudin-2, which was rescued by CGN or CGNL1 but not by ZO-1 overexpression. These results confirm previous observations indicating that CGN and CGNL1 are dispensable for the barrier function of epithelia and suggest that the increase in the TER in clonal lines of MDCK cells KO for CGN, CGNL1, or both is due to reduced protein expression and junctional accumulation of the sodium pore-forming claudin, claudin-2.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Ali Sassi
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Eric Feraille
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
8
|
Sluysmans S, Salmaso A, Rouaud F, Méan I, Brini M, Citi S. The PLEKHA7-PDZD11 complex regulates the localization of the calcium pump PMCA and calcium handling in cultured cells. J Biol Chem 2022; 298:102138. [PMID: 35714771 PMCID: PMC9307954 DOI: 10.1016/j.jbc.2022.102138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/11/2023] Open
Abstract
The plasma membrane calcium ATPase (PMCA) extrudes calcium from the cytosol to the extracellular space to terminate calcium-dependent signaling. Although the distribution of PMCA is crucial for its function, the molecular mechanisms that regulate the localization of PMCA isoforms are not well understood. PLEKHA7 is implicated by genetic studies in hypertension and the regulation of calcium handling. PLEKHA7 recruits the small adapter protein PDZD11 to adherens junctions, and together they control the trafficking and localization of plasma membrane associated proteins, including the Menkes copper ATPase. Since PDZD11 binds to the C-terminal domain of b-isoforms of PMCA, PDZD11 and its interactor PLEKHA7 could control the localization and activity of PMCA. Here, we test this hypothesis using cultured cell model systems. We show using immunofluorescence microscopy and a surface biotinylation assay that KO of either PLEKHA7 or PDZD11 in mouse kidney collecting duct epithelial cells results in increased accumulation of endogenous PMCA at lateral cell–cell contacts and PDZ-dependent ectopic apical localization of exogenous PMCA4x/b isoform. In HeLa cells, coexpression of PDZD11 reduces membrane accumulation of overexpressed PMCA4x/b, and analysis of cytosolic calcium transients shows that PDZD11 counteracts calcium extrusion activity of overexpressed PMCA4x/b, but not PMCA4x/a, which lacks the PDZ-binding motif. Moreover, KO of PDZD11 in either endothelial (bEnd.3) or epithelial (mouse kidney collecting duct) cells increases the rate of calcium extrusion. Collectively, these results suggest that the PLEKHA7–PDZD11 complex modulates calcium homeostasis by regulating the localization of PMCA.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Andrea Salmaso
- Department of Biology, University of Padua, Padua, Italy
| | - Florian Rouaud
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Marisa Brini
- Department of Biology, University of Padua, Padua, Italy.
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Cingulin binds to the ZU5 domain of scaffolding protein ZO-1 to promote its extended conformation, stabilization, and tight junction accumulation. J Biol Chem 2022; 298:101797. [PMID: 35259394 PMCID: PMC9010756 DOI: 10.1016/j.jbc.2022.101797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Zonula occludens-1 (ZO-1), the major scaffolding protein of tight junctions (TJs), recruits the cytoskeleton-associated proteins cingulin (CGN) and paracingulin (CGNL1) to TJs by binding to their N-terminal ZO-1 interaction motif. The conformation of ZO-1 can be either folded or extended, depending on cytoskeletal tension and intramolecular and intermolecular interactions, and only ZO-1 in the extended conformation recruits the transcription factor DbpA to TJs. However, the sequences of ZO-1 that interact with CGN and CGNL1 and the role of TJ proteins in ZO-1 TJ assembly are not known. Here, we used glutathione-S-transferase pulldowns and immunofluorescence microscopy to show that CGN and CGNL1 bind to the C-terminal ZU5 domain of ZO-1 and that this domain is required for CGN and CGNL1 recruitment to TJs and to phase-separated ZO-1 condensates in cells. We show that KO of CGN, but not CGNL1, results in decreased accumulation of ZO-1 at TJs. Furthermore, ZO-1 lacking the ZU5 domain showed decreased accumulation at TJs, was detectable along lateral contacts, had a higher mobile fraction than full-length ZO-1 by fluorescence recovery after photobleaching analysis, and had a folded conformation, as determined by structured illumination microscopy of its N-terminal and C-terminal ends. The CGN–ZU5 interaction promotes the extended conformation of ZO-1, since binding of the CGN–ZO-1 interaction motif region to ZO-1 resulted in its interaction with DbpA in cells and in vitro. Together, these results show that binding of CGN to the ZU5 domain of ZO-1 promotes ZO-1 stabilization and accumulation at TJs by promoting its extended conformation.
Collapse
|
10
|
Kinoshita N, Yamamoto TS, Yasue N, Takagi C, Fujimori T, Ueno N. Force-dependent remodeling of cytoplasmic ZO-1 condensates contributes to cell-cell adhesion through enhancing tight junctions. iScience 2022; 25:103846. [PMID: 35198899 PMCID: PMC8850805 DOI: 10.1016/j.isci.2022.103846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 12/01/2022] Open
Abstract
The physiological importance of biomolecular condensates is widely recognized, but how it is controlled in time and space during development is largely unknown. Here, we show that a tight junction protein ZO-1 forms cytoplasmic condensates in the trophectoderm (TE) of the mouse embryo before E4.0. These disappear via dissolution, and ZO-1 accumulates at the cell junction as the blastocyst cavity grows and internal pressure on TE cells increases. In contrast, this dissolution was less evident in TE cells attached to the inner cell mass because they receive weaker tensile forces. Furthermore, analyses using MDCK cells demonstrated that the ZO-1 condensates are generated and maintained by liquid-liquid phase separation. Our study also highlights that the dynamics of these condensates depends on the physical environment via an interaction between ZO-1 and F-actin. We propose that the force-dependent regulation of ZO-1 condensation contributes to the establishment of robust cell-cell adhesion during early development. ZO-1 forms cytoplasmic droplets via liquid-liquid phase separation In hatching mouse embryos, ZO-1 droplets dissolve and it localizes to cell junctions In MDCK cells, ZO-1 forms droplets in response to mechanical environments Interaction with F-actin negatively regulates ZO-1 phase separation
Collapse
Affiliation(s)
- Noriyuki Kinoshita
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan.,School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Takamasa S Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Naoko Yasue
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Chiyo Takagi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Toshihiko Fujimori
- Division of Embryology, Department of Developmental Biology, National Institute for Basic Biology, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan.,School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan.,School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.,Unit of Quantitative and Imaging Biology, International Research Collaboration Center, National Institutes of Natural Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
11
|
The ACE2 Receptor for Coronavirus Entry Is Localized at Apical Cell—Cell Junctions of Epithelial Cells. Cells 2022; 11:cells11040627. [PMID: 35203278 PMCID: PMC8870730 DOI: 10.3390/cells11040627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Transmembrane proteins of adherens and tight junctions are known targets for viruses and bacterial toxins. The coronavirus receptor ACE2 has been localized at the apical surface of epithelial cells, but it is not clear whether ACE2 is localized at apical Cell—Cell junctions and whether it associates with junctional proteins. Here we explored the expression and localization of ACE2 and its association with transmembrane and tight junction proteins in epithelial tissues and cultured cells by data mining, immunoblotting, immunofluorescence microscopy, and co-immunoprecipitation experiments. ACE2 mRNA is abundant in epithelial tissues, where its expression correlates with the expression of the tight junction proteins cingulin and occludin. In cultured epithelial cells ACE2 mRNA is upregulated upon differentiation and ACE2 protein is widely expressed and co-immunoprecipitates with the transmembrane proteins ADAM17 and CD9. We show by immunofluorescence microscopy that ACE2 colocalizes with ADAM17 and CD9 and the tight junction protein cingulin at apical junctions of intestinal (Caco-2), mammary (Eph4) and kidney (mCCD) epithelial cells. These observations identify ACE2, ADAM17 and CD9 as new epithelial junctional transmembrane proteins and suggest that the cytokine-enhanced endocytic internalization of junction-associated protein complexes comprising ACE2 may promote coronavirus entry.
Collapse
|
12
|
Sluysmans S, Méan I, Xiao T, Boukhatemi A, Ferreira F, Jond L, Mutero A, Chang CJ, Citi S. PLEKHA5, PLEKHA6, and PLEKHA7 bind to PDZD11 to target the Menkes ATPase ATP7A to the cell periphery and regulate copper homeostasis. Mol Biol Cell 2021; 32:ar34. [PMID: 34613798 PMCID: PMC8693958 DOI: 10.1091/mbc.e21-07-0355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
Copper homeostasis is crucial for cellular physiology and development, and its dysregulation leads to disease. The Menkes ATPase ATP7A plays a key role in copper efflux, by trafficking from the Golgi to the plasma membrane upon cell exposure to elevated copper, but the mechanisms that target ATP7A to the cell periphery are poorly understood. PDZD11 interacts with the C-terminus of ATP7A, which contains sequences involved in ATP7A trafficking, but the role of PDZD11 in ATP7A localization is unknown. Here we identify PLEKHA5 and PLEKHA6 as new interactors of PDZD11 that bind to the PDZD11 N-terminus through their WW domains similarly to the junctional protein PLEKHA7. Using CRISPR-KO kidney epithelial cells, we show by immunofluorescence microscopy that WW-PLEKHAs (PLEKHA5, PLEKHA6, PLEKHA7) recruit PDZD11 to distinct plasma membrane localizations and that they are required for the efficient anterograde targeting of ATP7A to the cell periphery in elevated copper conditions. Pull-down experiments show that WW-PLEKHAs promote PDZD11 interaction with the C-terminus of ATP7A. However, WW-PLEKHAs and PDZD11 are not necessary for ATP7A Golgi localization in basal copper, ATP7A copper-induced exit from the Golgi, and ATP7A retrograde trafficking to the Golgi. Finally, measuring bioavailable and total cellular copper, metallothionein-1 expression, and cell viability shows that WW-PLEKHAs and PDZD11 are required for maintaining low intracellular copper levels when cells are exposed to elevated copper. These data indicate that WW-PLEKHAs-PDZD11 complexes regulate the localization and function of ATP7A to promote copper extrusion in elevated copper.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Amina Boukhatemi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Flavio Ferreira
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Lionel Jond
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Annick Mutero
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
13
|
Sluysmans S, Méan I, Jond L, Citi S. WW, PH and C-Terminal Domains Cooperate to Direct the Subcellular Localizations of PLEKHA5, PLEKHA6 and PLEKHA7. Front Cell Dev Biol 2021; 9:729444. [PMID: 34568338 PMCID: PMC8458771 DOI: 10.3389/fcell.2021.729444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
PLEKHA5, PLEKHA6, and PLEKHA7 (WW-PLEKHAs) are members of the PLEKHA family of proteins that interact with PDZD11 through their tandem WW domains. WW-PLEKHAs contribute to the trafficking and retention of transmembrane proteins, including nectins, Tspan33, and the copper pump ATP7A, at cell-cell junctions and lateral membranes. However, the structural basis for the distinct subcellular localizations of PLEKHA5, PLEKHA6, and PLEKHA7 is not clear. Here we expressed mutant and chimeric proteins of WW-PLEKHAs in cultured cells to clarify the role of their structural domains in their localization. We found that the WW-mediated interaction between PLEKHA5 and PDZD11 is required for their respective association with cytoplasmic microtubules. The PH domain of PLEKHA5 is required for its localization along the lateral plasma membrane and promotes the lateral localization of PLEKHA7 in a chimeric molecule. Although the PH domain of PLEKHA7 is not required for its localization at the adherens junctions (AJ), it promotes a AJ localization of chimeric proteins. The C-terminal region of PLEKHA6 and PLEKHA7 and the coiled-coil region of PLEKHA7 promote their localization at AJ of epithelial cells. These observations indicate that the localizations of WW-PLEKHAs at specific subcellular sites, where they recruit PDZD11, are the result of multiple cooperative protein-lipid and protein-protein interactions and provide a rational basis for the identification of additional proteins involved in trafficking and sorting of WW-PLEKHAs.
Collapse
Affiliation(s)
| | | | | | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Chen Y, Xie H, Xie T, Yang X, Pang Y, Ye S. Elevated Expression of PDZD11 Is Associated With Poor Prognosis and Immune Infiltrates in Hepatocellular Carcinoma. Front Genet 2021; 12:669928. [PMID: 34093661 PMCID: PMC8176286 DOI: 10.3389/fgene.2021.669928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Epithelial cells are held together by tight and adherent junctions, which are destroyed by the activation of epithelial-to-mesenchymal transition (EMT). The PLEKHA7-PDZD11 complex has been reported to be important for epithelial cell adhesion and connecting tissues. However, there is no research regarding the expression and role of PDZD11 in liver hepatocellular carcinoma (LIHC) progression. Here, we analyzed PDZD11 mRNA expression and its clinical results in LIHC patient RNA sequencing data based on different open databases. Furthermore, we examined differences in PDZD11 expression in LIHC tissues and cell lines using western blotting and real-time qPCR. These results are the first to report that the mRNA and protein levels of PDZD11 are significantly overexpressed in LIHC. Moreover, high expression of PDZD11 was correlated with poor overall survival in patients with LIHC. Gene regulatory network analysis suggested that PDZD11 is mainly involved in copper ion homeostasis, proteasome, and oxidative phosphorylation pathways. Interestingly, we found that PDZD11 levels were positively correlated with the abundance of immune infiltrates. In particular, higher infiltration levels of CD4+ T cells and macrophage subsets significantly affected LIHC patient prognosis. Taken together, these results demonstrate that PDZD11 could be a potential diagnostic and prognostic biomarker in LIHC.
Collapse
Affiliation(s)
- Yao Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haifeng Xie
- Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xunjun Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilin Pang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - SongDao Ye
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers 2020; 9:1848212. [PMID: 33300427 DOI: 10.1080/21688370.2020.1848212] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial and endothelial cell-cell contacts are established and maintained by several intercellular junctional complexes. These structurally and biochemically differentiated regions on the plasma membrane primarily include tight junctions (TJs), and anchoring junctions. While the adherens junctions (AJs) provide essential adhesive and mechanical properties, TJs hold the cells together and form a near leak-proof intercellular seal by the fusion of adjacent cell membranes. AJs and TJs play essential roles in vascular permeability. Considering their involvement in several key cellular functions such as barrier formation, proliferation, migration, survival, and differentiation, further research is warranted on the composition and signaling pathways regulating cell-cell junctions to develop novel therapeutics for diseases such as organ injuries. The current review article presents our current state of knowledge on various cell-cell junctions, their molecular composition, and mechanisms regulating their expression and function in endothelial and epithelial cells.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center , Augusta, GA, USA
| |
Collapse
|
16
|
Yao Y, Feng Q, Shen J. Myosin light chain kinase regulates intestinal permeability of mucosal homeostasis in Crohn's disease. Expert Rev Clin Immunol 2020; 16:1127-1141. [PMID: 33183108 DOI: 10.1080/1744666x.2021.1850269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Researchers have investigated the potential role of intestinal permeability in Crohn's disease pathogenesis. Intestinal permeability is usually mediated by cytoskeleton and intercellular junctions. The myosin light chain kinase (MLCK) is an enzyme that activates the myosin light chain to exert its function related to cytoskeleton contraction and tight junction regulation. The correlation between MLCK and Crohn's disease pathogenesis has been consistently proven. Areas covered: This study aims to expand the understanding of the regulation and function of MLCK in Crohn's disease. An extensive literature search in the MEDLINE database (via PubMed) has been performed up to Oct. 2020. The roles of MLCK in tight junction activation, intestinal permeability enhancement, and cell signal regulation are comprehensively discussed. Expert opinion: Targeting the MLCK-related pathways such as TNF-α in CD treatment has been put into clinical use. More accurate targeting such as MLCK and TNFR2 has been proposed to reduce side effects. MLCK may also have the potential to become biomarkers in fields like CD activity. With the application of cutting age research methods and tools, the MLCK research could be accelerated.
Collapse
Affiliation(s)
- Yiran Yao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
17
|
Shah J, Rouaud F, Guerrera D, Vasileva E, Popov LM, Kelley WL, Rubinstein E, Carette JE, Amieva MR, Citi S. A Dock-and-Lock Mechanism Clusters ADAM10 at Cell-Cell Junctions to Promote α-Toxin Cytotoxicity. Cell Rep 2019; 25:2132-2147.e7. [PMID: 30463011 DOI: 10.1016/j.celrep.2018.10.088] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
We previously identified PLEKHA7 and other junctional proteins as host factors mediating death by S. aureus α-toxin, but the mechanism through which junctions promote toxicity was unclear. Using cell biological and biochemical methods, we now show that ADAM10 is docked to junctions by its transmembrane partner Tspan33, whose cytoplasmic C terminus binds to the WW domain of PLEKHA7 in the presence of PDZD11. ADAM10 is locked at junctions through binding of its cytoplasmic C terminus to afadin. Junctionally clustered ADAM10 supports the efficient formation of stable toxin pores. Instead, disruption of the PLEKHA7-PDZD11 complex inhibits ADAM10 and toxin junctional clustering. This promotes toxin pore removal from the cell surface through an actin- and macropinocytosis-dependent process, resulting in cell recovery from initial injury and survival. These results uncover a dock-and-lock molecular mechanism to target ADAM10 to junctions and provide a paradigm for how junctions regulate transmembrane receptors through their clustering.
Collapse
Affiliation(s)
- Jimit Shah
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Diego Guerrera
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Lauren M Popov
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William L Kelley
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211-4 Geneva, Switzerland
| | - Eric Rubinstein
- INSERM, Université Paris-Sud, UMRS_935, 94807 Villejuif Cedex, France
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1211-4 Geneva, Switzerland; Institute for Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland.
| |
Collapse
|
18
|
Rouaud F, Vasileva E, Spadaro D, Tsukita S, Citi S. R40.76 binds to the α domain of ZO-1: role of ZO-1 (α+) in epithelial differentiation and mechano-sensing. Tissue Barriers 2019; 7:e1653748. [PMID: 31438766 PMCID: PMC6748370 DOI: 10.1080/21688370.2019.1653748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The barrier function of epithelia and endothelia depends on tight junctions, which are formed by the polymerization of claudins on a scaffold of ZO proteins. Two differentially spliced isoforms of ZO-1 have been described, depending on the presence of the α domain, but the function of this domain is unclear. ZO-1 also contains a C-terminal ZU5 domain, which is involved in a mechano-sensitive intramolecular interaction with the central (ZPSG) region of ZO-1. Here we use immunoblotting and immunofluorescence to map the binding sites for commercially available monoclonal and polyclonal antibodies against ZO-1, and for a new polyclonal antibody (R3) that we developed against the ZO-1 C-terminus. We demonstrate that antibody R40.76 binds to the α domain, and the R3 antibody binds to the ZU5 domain. The (α+) isoform of ZO-1 shows higher expression in epithelial versus endothelial cells, and in differentiated versus undifferentiated primary keratinocytes, suggesting a link to epithelial differentiation and a potential molecular adaptation to junctions subjected to stronger mechanical forces. These results provide new tools and hypotheses to investigate the role of the α and ZU5 domains in ZO-1 mechano-sensing and dynamic interactions with the cytoskeleton and junctional ligands.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Cell Biology, Faculty of Sciences, University of Geneva , Geneva , Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva , Geneva , Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Faculty of Sciences, University of Geneva , Geneva , Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva , Geneva , Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Faculty of Sciences, University of Geneva , Geneva , Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva , Geneva , Switzerland
| | - Sachiko Tsukita
- Strategic Innovation and Research Center, Teikyo University , Tokyo , Japan.,Graduate School of Frontier Biosciences, Osaka University , Osaka , Japan
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva , Geneva , Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva , Geneva , Switzerland
| |
Collapse
|