1
|
Demartsev V, Averly B, Johnson-Ulrich L, Sridhar VH, Leonardos L, Vining A, Thomas M, Manser MB, Strandburg-Peshkin A. Mapping vocal interactions in space and time differentiates signal broadcast versus signal exchange in meerkat groups. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230188. [PMID: 38768207 PMCID: PMC11391280 DOI: 10.1098/rstb.2023.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 05/22/2024] Open
Abstract
Animal vocal communication research traditionally focuses on acoustic and contextual features of calls, yet substantial information is also contained in response selectivity and timing during vocalization events. By examining the spatiotemporal structure of vocal interactions, we can distinguish between 'broadcast' and 'exchange' signalling modes, with the former potentially serving to transmit signallers' general state and the latter reflecting more interactive signalling behaviour. Here, we tracked the movements and vocalizations of wild meerkat (Suricata suricatta) groups simultaneously using collars to explore this distinction. We found evidence that close calls (used for maintaining group cohesion) are given as signal exchanges. They are typically given in temporally structured call-response sequences and are also strongly affected by the social environment, with individuals calling more when they have more neighbours and juveniles responding more to adults than the reverse. In contrast, short note calls appear mainly in sequences produced by single individuals and show little dependence on social surroundings, suggesting a broadcast signalling mode. Despite these differences, both call categories show similar clustering in space and time at a group level. Our results highlight how the fine-scale structure of vocal interactions can give important insights into the usage and function of signals in social groups. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics.'
Collapse
Affiliation(s)
- Vlad Demartsev
- Department of Biology, University of Konstanz , Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz , Konstanz 78464, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior , Konstanz 78467, Germany
- Kalahari Research Centre , Van Zylsrus 8467, South Africa
| | - Baptiste Averly
- Department of Biology, University of Konstanz , Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz , Konstanz 78464, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior , Konstanz 78467, Germany
- Kalahari Research Centre , Van Zylsrus 8467, South Africa
| | - Lily Johnson-Ulrich
- Kalahari Research Centre , Van Zylsrus 8467, South Africa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich , Zurich 8057, Switzerland
| | - Vivek H Sridhar
- Department of Biology, University of Konstanz , Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz , Konstanz 78464, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior , Konstanz 78467, Germany
| | - Leonardos Leonardos
- Department of Biology, University of Konstanz , Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz , Konstanz 78464, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior , Konstanz 78467, Germany
| | - Alexander Vining
- Department of Biology, University of Konstanz , Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz , Konstanz 78464, Germany
- Animal Behavior Graduate Group, University of California , Davis, CA 95616, USA
| | - Mara Thomas
- Department of Biology, University of Konstanz , Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz , Konstanz 78464, Germany
| | - Marta B Manser
- Kalahari Research Centre , Van Zylsrus 8467, South Africa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich , Zurich 8057, Switzerland
- Interdisciplinary Center for the Evolution of Language, University of Zurich , Zurich 8057, Switzerland
| | - Ariana Strandburg-Peshkin
- Department of Biology, University of Konstanz , Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz , Konstanz 78464, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior , Konstanz 78467, Germany
- Kalahari Research Centre , Van Zylsrus 8467, South Africa
| |
Collapse
|
2
|
Grijseels DM, Fairbank DA, Miller CT. A model of marmoset monkey vocal turn-taking. Proc Biol Sci 2024; 291:20240150. [PMID: 38955229 PMCID: PMC11334984 DOI: 10.1098/rspb.2024.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Vocal turn-taking has been described in a diversity of species. Yet, a model that is able to capture the various processes underlying this social behaviour across species has not been developed. To this end, here we recorded a large and diverse dataset of marmoset monkey vocal behaviour in social contexts comprising one, two and three callers and developed a model to determine the keystone factors that affect the dynamics of these natural communicative interactions. Notably, marmoset turn-taking did not abide by coupled-oscillator dynamics, but rather call timing was overwhelmingly stochastic in these exchanges. Our features-based model revealed four key factors that encapsulate the majority of patterns evident in the behaviour, ranging from internal processes, such as particular states of the individual driving increased calling, to social context-driven suppression of calling. These findings indicate that marmoset vocal turn-taking is affected by a broader suite of mechanisms than previously considered and that our model provides a predictive framework with which to further explicate this natural behaviour at both the behavioural and neurobiological levels, and for direct comparisons with the analogous behaviour in other species.
Collapse
Affiliation(s)
- Dori M. Grijseels
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, USA
| | - Daniella A. Fairbank
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, USA
| | - Cory T. Miller
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Osiecka AN, Fearey J, Ravignani A, Burchardt LS. Isochrony in barks of Cape fur seal ( Arctocephalus pusillus pusillus) pups and adults. Ecol Evol 2024; 14:e11085. [PMID: 38463637 PMCID: PMC10920323 DOI: 10.1002/ece3.11085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Animal vocal communication often relies on call sequences. The temporal patterns of such sequences can be adjusted to other callers, follow complex rhythmic structures or exhibit a metronome-like pattern (i.e., isochronous). How regular are the temporal patterns in animal signals, and what influences their precision? If present, are rhythms already there early in ontogeny? Here, we describe an exploratory study of Cape fur seal (Arctocephalus pusillus pusillus) barks-a vocalisation type produced across many pinniped species in rhythmic, percussive bouts. This study is the first quantitative description of barking in Cape fur seal pups. We analysed the rhythmic structures of spontaneous barking bouts of pups and adult females from the breeding colony in Cape Cross, Namibia. Barks of adult females exhibited isochrony, that is they were produced at fairly regular points in time. Instead, intervals between pup barks were more variable, that is skipping a bark in the isochronous series occasionally. In both age classes, beat precision, that is how well the barks followed a perfect template, was worse when barking at higher rates. Differences could be explained by physiological factors, such as respiration or arousal. Whether, and how, isochrony develops in this species remains an open question. This study provides evidence towards a rhythmic production of barks in Cape fur seal pups and lays the groundwork for future studies to investigate the development of rhythm using multidimensional metrics.
Collapse
Affiliation(s)
- Anna N. Osiecka
- Department of Vertebrate Ecology and Zoology, Faculty of BiologyUniversity of GdańskGdańskPoland
- Behavioural Ecology Group, Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jack Fearey
- Sea Search Research and Conservation NPCCape TownSouth Africa
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and ConservationUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Andrea Ravignani
- Comparative Bioacoustics GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Center for Music in the Brain, Department of Clinical MedicineAarhus UniversityAarhus CDenmark
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Lara S. Burchardt
- Comparative Bioacoustics GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Leibniz‐Zentrum Allgemeine SprachwissenschaftBerlinGermany
| |
Collapse
|
4
|
Greenfield MD, Merker B. Coordinated rhythms in animal species, including humans: Entrainment from bushcricket chorusing to the philharmonic orchestra. Neurosci Biobehav Rev 2023; 153:105382. [PMID: 37673282 DOI: 10.1016/j.neubiorev.2023.105382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Coordinated group displays featuring precise entrainment of rhythmic behavior between neighbors occur not only in human music, dance and drill, but in the acoustic or optical signaling of a number of species of arthropods and anurans. In this review we describe the mechanisms of phase resetting and phase and tempo adjustments that allow the periodic output of signaling individuals to be aligned in synchronized rhythmic group displays. These mechanisms are well described in some of the synchronizing arthropod species, in which conspecific signals reset an individual's endogenous output oscillators in such a way that the joint rhythmic signals are locked in phase. Some of these species are capable of mutually adjusting both the phase and tempo of their rhythmic signaling, thereby achieving what is called perfect synchrony, a capacity which otherwise is found only in humans. We discuss this disjoint phylogenetic distribution of inter-individual rhythmic entrainment in the context of the functions such entrainment might perform in the various species concerned, and the adaptive circumstances in which it might evolve.
Collapse
Affiliation(s)
- Michael D Greenfield
- ENES Bioacoustics Research Lab, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.
| | - Bjorn Merker
- Independent Scholar, SE-29194 Kristianstad, Sweden
| |
Collapse
|
5
|
Ręk P, Magrath RD. The quality of avian vocal duets can be assessed independently of the spatial separation of signallers. Sci Rep 2023; 13:16438. [PMID: 37777561 PMCID: PMC10543378 DOI: 10.1038/s41598-023-43508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Interactions among groups are often mediated through signals, including coordinated calls such as duets, and the degree of temporal coordination within a group can affect signal efficacy. However, in addition to intrinsic duet quality, the spatial arrangement of callers also affects the timing of calls. So, can listeners discriminate temporal effects caused by intrinsic duet quality compared to spatial arrangement? Such discrimination would allow assessment of quality of duets produced by a pair, as distinct from transient extrinsic spatial effects. To address this issue, we studied experimentally the influence of intrinsic duet quality and spatial arrangement on the efficacy of Australian magpie-lark (Grallina cyanoleuca) vocal duets. Breeding pairs duet at varying distances from each other and to multiple neighbours. Coordinated duets are more effective territorial signals than uncoordinated duets, but it remains unclear whether listeners can discriminate the effects of quality and spatial arrangement. Our playback experiment showed that any deviation from perfect regularity of partners' notes reduced duet efficacy, but that lack of coordination due to spatial separation (slower tempo and offset of notes) had a lower effect on efficacy than effects due to intrinsic quality (irregularity). Our results therefore provide experimental evidence that the temporal organisation of group vocalisations could signal coalition quality independently of spatial effects.
Collapse
Affiliation(s)
- Paweł Ręk
- Department of Behavioural Ecology, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland.
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601, Australia.
| | - Robert D Magrath
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601, Australia
| |
Collapse
|
6
|
Verga L, Kotz SA, Ravignani A. The evolution of social timing. Phys Life Rev 2023; 46:131-151. [PMID: 37419011 DOI: 10.1016/j.plrev.2023.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023]
Abstract
Sociality and timing are tightly interrelated in human interaction as seen in turn-taking or synchronised dance movements. Sociality and timing also show in communicative acts of other species that might be pleasurable, but also necessary for survival. Sociality and timing often co-occur, but their shared phylogenetic trajectory is unknown: How, when, and why did they become so tightly linked? Answering these questions is complicated by several constraints; these include the use of divergent operational definitions across fields and species, the focus on diverse mechanistic explanations (e.g., physiological, neural, or cognitive), and the frequent adoption of anthropocentric theories and methodologies in comparative research. These limitations hinder the development of an integrative framework on the evolutionary trajectory of social timing and make comparative studies not as fruitful as they could be. Here, we outline a theoretical and empirical framework to test contrasting hypotheses on the evolution of social timing with species-appropriate paradigms and consistent definitions. To facilitate future research, we introduce an initial set of representative species and empirical hypotheses. The proposed framework aims at building and contrasting evolutionary trees of social timing toward and beyond the crucial branch represented by our own lineage. Given the integration of cross-species and quantitative approaches, this research line might lead to an integrated empirical-theoretical paradigm and, as a long-term goal, explain why humans are such socially coordinated animals.
Collapse
Affiliation(s)
- Laura Verga
- Comparative Bioacoustic Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustic Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Jadoul Y, Ravignani A. Modelling the emergence of synchrony from decentralized rhythmic interactions in animal communication. Proc Biol Sci 2023; 290:20230876. [PMID: 37464759 PMCID: PMC10354483 DOI: 10.1098/rspb.2023.0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
To communicate, an animal's strategic timing of rhythmic signals is crucial. Evolutionary, game-theoretical, and dynamical systems models can shed light on the interaction between individuals and the associated costs and benefits of signalling at a specific time. Mathematical models that study rhythmic interactions from a strategic or evolutionary perspective are rare in animal communication research. But new inspiration may come from a recent game theory model of how group synchrony emerges from local interactions of oscillatory neurons. In the study, the authors analyse when the benefit of joint synchronization outweighs the cost of individual neurons sending electrical signals to each other. They postulate there is a benefit for pairs of neurons to fire together and a cost for a neuron to communicate. The resulting model delivers a variant of a classical dynamical system, the Kuramoto model. Here, we present an accessible overview of the Kuramoto model and evolutionary game theory, and of the 'oscillatory neurons' model. We interpret the model's results and discuss the advantages and limitations of using this particular model in the context of animal rhythmic communication. Finally, we sketch potential future directions and discuss the need to further combine evolutionary dynamics, game theory and rhythmic processes in animal communication studies.
Collapse
Affiliation(s)
- Yannick Jadoul
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen 6525 XD, The Netherlands
| | - Andrea Ravignani
- Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen 6525 XD, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
8
|
Anichini M, de Reus K, Hersh TA, Valente D, Salazar-Casals A, Berry C, Keller PE, Ravignani A. Measuring rhythms of vocal interactions: a proof of principle in harbour seal pups. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210477. [PMID: 36871583 PMCID: PMC9985970 DOI: 10.1098/rstb.2021.0477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Rhythmic patterns in interactive contexts characterize human behaviours such as conversational turn-taking. These timed patterns are also present in other animals, and often described as rhythm. Understanding fine-grained temporal adjustments in interaction requires complementary quantitative methodologies. Here, we showcase how vocal interactive rhythmicity in a non-human animal can be quantified using a multi-method approach. We record vocal interactions in harbour seal pups (Phoca vitulina) under controlled conditions. We analyse these data by combining analytical approaches, namely categorical rhythm analysis, circular statistics and time series analyses. We test whether pups' vocal rhythmicity varies across behavioural contexts depending on the absence or presence of a calling partner. Four research questions illustrate which analytical approaches are complementary versus orthogonal. For our data, circular statistics and categorical rhythms suggest that a calling partner affects a pup's call timing. Granger causality suggests that pups predictively adjust their call timing when interacting with a real partner. Lastly, the ADaptation and Anticipation Model estimates statistical parameters for a potential mechanism of temporal adaptation and anticipation. Our analytical complementary approach constitutes a proof of concept; it shows feasibility in applying typically unrelated techniques to seals to quantify vocal rhythmic interactivity across behavioural contexts. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.
Collapse
Affiliation(s)
- Marianna Anichini
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Department of Biological Sciences, Faculty of Natural Sciences, Norwegian University of Science and Technology N-6025 Ålesund, Norway.,Hanse-Wissenschaftskolleg Institute for Advanced Study, 'Brain' Research Area, 27753 Delmenhorst, Germany.,Division Animal Physiology and Behaviour, Department for Neuroscience, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Koen de Reus
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Artificial Intelligence Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - Taylor A Hersh
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Daria Valente
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Anna Salazar-Casals
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Research Department, Sealcentre Pieterburen, 9968 AG Pieterburen, The Netherlands
| | - Caroline Berry
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, NSW 2751, Australia.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark
| |
Collapse
|
9
|
Wang T, Kong Y, Zhang H, Li Y, Hou R, Dunn DW, Hou X, Huang K, Li B. Do golden snub-nosed monkeys use deceptive alarm calls during competition for food? iScience 2023; 26:106098. [PMID: 36852160 PMCID: PMC9958509 DOI: 10.1016/j.isci.2023.106098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/13/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Tactical deception can be beneficial for social animals during intra-specific competition. However, the use of tactical deception in wild mammals is predicted to be rare. We tested whether a food-provisioned free-ranging band of golden snub-nosed monkeys (Rhinopithecus roxellana) use alarm calls in a functionally deceptive manner to gain access to food resources, whether the rate of deceptive alarm calls varies among individuals, and whether there are any counter-deception behaviors. We used a hexagonal camera array consisting of 10 cameras to record videos during feeding, which allowed us to identify individual alarm callers. We found evidence that these monkeys use deceptive alarms and that adult females were more likely to use such calls than other individuals. The monkeys increased their rates of response to alarm calls when competition for food was high. However, we found no direct evidence of any counter-deception strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China,Qingyang No.6 Middle School, Qingyang 745000, China
| | - Yuchen Kong
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - He Zhang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yuhang Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Rong Hou
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Derek W. Dunn
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiduo Hou
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China,Corresponding author
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
10
|
Interpersonal synchronization of spontaneously generated body movements. iScience 2023; 26:106104. [PMID: 36852275 PMCID: PMC9958360 DOI: 10.1016/j.isci.2023.106104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Interpersonal movement synchrony (IMS) is central to social behavior in several species. In humans, IMS is typically studied using structured tasks requiring participants to produce specific body movements. Instead, spontaneously generated (i.e., not instructed) movements have received less attention. To test whether spontaneous movements synchronize interpersonally, we recorded full-body kinematics from dyads of participants who were only asked to sit face-to-face and to look at each other. We manipulated interpersonal (i) visual contact and (ii) spatial proximity. We found that spontaneous movements synchronized across participants only when they could see each other and regardless of interpersonal spatial proximity. This synchronization emerged very rapidly and did not selectively entail homologous body parts (as in mimicry); rather, the synchrony generalized to nearly all possible combinations of body parts. Hence, spontaneous behavior alone can lead to IMS. More generally, our results highlight that IMS can be studied under natural and unconstrained conditions.
Collapse
|
11
|
Abreu F, Pika S. Turn-taking skills in mammals: A systematic review into development and acquisition. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.987253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
How human language evolved remains one of the most intriguing questions in science, and different approaches have been used to tackle this question. A recent hypothesis, the Interaction Engine Hypothesis, postulates that language was made possible through the special capacity for social interaction involving different social cognitive skills (e.g., joint attention, common ground) and specific characteristics such as face-to-face interaction, mutual gaze and turn-taking, the exchange of rapid communicative turns. Recently, it has been argued that this turn-taking infrastructure may be a foundational and ancient mechanism of the layered system of language because communicative turn-taking has been found in human infants and across several non-human primate species. Moreover, there is some evidence for turn-taking in different mammalian taxa, especially those capable of vocal learning. Surprisingly, however, the existing studies have mainly focused on turn-taking production of adult individuals, while little is known about its emergence and development in young individuals. Hence, the aim of the current paper was 2-fold: First, we carried out a systematic review of turn-taking development and acquisition in mammals to evaluate possible research bias and existing gaps. Second, we highlight research avenues to spur more research into this domain and investigate if distinct turn-taking elements can be found in other non-human animal species. Since mammals exhibit an extended development period, including learning and strong parental care, they represent an excellent model group in which to investigate the acquisition and development of turn-taking abilities. We performed a systematic review including a wide range of terms and found 21 studies presenting findings on turn-taking abilities in infants and juveniles. Most of these studies were from the last decade, showing an increased interest in this field over the years. Overall, we found a considerable variation in the terminologies and methodological approaches used. In addition, studies investigating turn-taking abilities across different development periods and in relation to different social partners were very rare, thereby hampering direct, systematic comparisons within and across species. Nonetheless, the results of some studies suggested that specific turn-taking elements are innate, while others are acquired during development (e.g., flexibility). Finally, we pinpoint fruitful research avenues and hypotheses to move the field of turn-taking development forward and improve our understanding of the impact of turn-taking on language evolution.
Collapse
|
12
|
Gugnowska K, Novembre G, Kohler N, Villringer A, Keller PE, Sammler D. Endogenous sources of interbrain synchrony in duetting pianists. Cereb Cortex 2022; 32:4110-4127. [PMID: 35029645 PMCID: PMC9476614 DOI: 10.1093/cercor/bhab469] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
When people interact with each other, their brains synchronize. However, it remains unclear whether interbrain synchrony (IBS) is functionally relevant for social interaction or stems from exposure of individual brains to identical sensorimotor information. To disentangle these views, the current dual-EEG study investigated amplitude-based IBS in pianists jointly performing duets containing a silent pause followed by a tempo change. First, we manipulated the similarity of the anticipated tempo change and measured IBS during the pause, hence, capturing the alignment of purely endogenous, temporal plans without sound or movement. Notably, right posterior gamma IBS was higher when partners planned similar tempi, it predicted whether partners' tempi matched after the pause, and it was modulated only in real, not in surrogate pairs. Second, we manipulated the familiarity with the partner's actions and measured IBS during joint performance with sound. Although sensorimotor information was similar across conditions, gamma IBS was higher when partners were unfamiliar with each other's part and had to attend more closely to the sound of the performance. These combined findings demonstrate that IBS is not merely an epiphenomenon of shared sensorimotor information but can also hinge on endogenous, cognitive processes crucial for behavioral synchrony and successful social interaction.
Collapse
Affiliation(s)
- Katarzyna Gugnowska
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome 00161, Italy
| | - Natalie Kohler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Peter E Keller
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW 2751, Australia
| | - Daniela Sammler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| |
Collapse
|
13
|
Ravignani A, Lumaca M, Kotz SA. Interhemispheric Brain Communication and the Evolution of Turn-Taking in Mammals. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.916956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the last 20 years, research on turn-taking and duetting has flourished in at least three, historically separate disciplines: animal behavior, language sciences, and music cognition. While different in scope and methods, all three ultimately share one goal—namely the understanding of timed interactions among conspecifics. In this perspective, we aim at connecting turn-taking and duetting across species from a neural perspective. While we are still far from a defined neuroethology of turn-taking, we argue that the human neuroscience of turn-taking and duetting can inform animal bioacoustics. For this, we focus on a particular concept, interhemispheric connectivity, and its main white-matter substrate, the corpus callosum. We provide an overview of the role of corpus callosum in human neuroscience and interactive music and speech. We hypothesize its mechanistic connection to turn-taking and duetting in our species, and a potential translational link to mammalian research. We conclude by illustrating empirical venues for neuroethological research of turn-taking and duetting in mammals.
Collapse
|
14
|
Vanderhoff EN, Bernal Hoverud N. Perspectives on Antiphonal Calling, Duetting and Counter-Singing in Non-primate Mammals: An Overview With Notes on the Coordinated Vocalizations of Bamboo Rats (Dactylomys spp., Rodentia: Echimyidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.906546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Temporally coordinated interactive vocalizations are important means of communication between individuals in various animal taxa. In mammals, interactive calling and singing can be highly synchronized to create either overlapping or antiphonal duets while in others, competitors antagonistically vocalize, engaging in counter-singing. Among non-primate mammals these vocalizations are considered rare and poorly understood. We provide an overview of antiphonal calling, duetting and counter-singing in non-primate mammals. Many of these coordinated vocalizations play a role in social interactions and allow mammals to convey information to other members of the social unit in visually inaccessible environments. South American Bamboo rats Dactylomys spp. are arboreal bamboo specialists found in dense bamboo thickets in Bolivia, Peru, Ecuador, Brazil and Colombia. These nocturnal rodents are rarely seen but can be easily heard because of their loud and distinctive staccato vocalizations. We provide some evidence that Bamboo rats engage in duetting, and as such they provide another case of a mammalian species, in which to investigate temporally coordinated interactive singing. We urge researchers to work toward common definitions of temporally coordinated vocalizations and to search for more mammals that utilize such vocalizations.
Collapse
|
15
|
Haiduk F, Fitch WT. Understanding Design Features of Music and Language: The Choric/Dialogic Distinction. Front Psychol 2022; 13:786899. [PMID: 35529579 PMCID: PMC9075586 DOI: 10.3389/fpsyg.2022.786899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
Music and spoken language share certain characteristics: both consist of sequences of acoustic elements that are combinatorically combined, and these elements partition the same continuous acoustic dimensions (frequency, formant space and duration). However, the resulting categories differ sharply: scale tones and note durations of small integer ratios appear in music, while speech uses phonemes, lexical tone, and non-isochronous durations. Why did music and language diverge into the two systems we have today, differing in these specific features? We propose a framework based on information theory and a reverse-engineering perspective, suggesting that design features of music and language are a response to their differential deployment along three different continuous dimensions. These include the familiar propositional-aesthetic ('goal') and repetitive-novel ('novelty') dimensions, and a dialogic-choric ('interactivity') dimension that is our focus here. Specifically, we hypothesize that music exhibits specializations enhancing coherent production by several individuals concurrently-the 'choric' context. In contrast, language is specialized for exchange in tightly coordinated turn-taking-'dialogic' contexts. We examine the evidence for our framework, both from humans and non-human animals, and conclude that many proposed design features of music and language follow naturally from their use in distinct dialogic and choric communicative contexts. Furthermore, the hybrid nature of intermediate systems like poetry, chant, or solo lament follows from their deployment in the less typical interactive context.
Collapse
Affiliation(s)
- Felix Haiduk
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - W. Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Matzinger T, Fitch WT. Voice modulatory cues to structure across languages and species. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200393. [PMID: 34719253 PMCID: PMC8558770 DOI: 10.1098/rstb.2020.0393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Voice modulatory cues such as variations in fundamental frequency, duration and pauses are key factors for structuring vocal signals in human speech and vocal communication in other tetrapods. Voice modulation physiology is highly similar in humans and other tetrapods due to shared ancestry and shared functional pressures for efficient communication. This has led to similarly structured vocalizations across humans and other tetrapods. Nonetheless, in their details, structural characteristics may vary across species and languages. Because data concerning voice modulation in non-human tetrapod vocal production and especially perception are relatively scarce compared to human vocal production and perception, this review focuses on voice modulatory cues used for speech segmentation across human languages, highlighting comparative data where available. Cues that are used similarly across many languages may help indicate which cues may result from physiological or basic cognitive constraints, and which cues may be employed more flexibly and are shaped by cultural evolution. This suggests promising candidates for future investigation of cues to structure in non-human tetrapod vocalizations. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part I)'.
Collapse
Affiliation(s)
- Theresa Matzinger
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- Department of English, University of Vienna, 1090 Vienna, Austria
| | - W. Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- Department of English, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Dotov D, Trainor LJ. Cross-frequency coupling explains the preference for simple ratios in rhythmic behaviour and the relative stability across non-synchronous patterns. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200333. [PMID: 34420377 DOI: 10.1098/rstb.2020.0333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rhythms are important for understanding coordinated behaviours in ecological systems. The repetitive nature of rhythms affords prediction, planning of movements and coordination of processes within and between individuals. A major challenge is to understand complex forms of coordination when they differ from complete synchronization. By expressing phase as ratio of a cycle, we adapted levels of the Farey tree as a metric of complexity mapped to the range between in-phase and anti-phase synchronization. In a bimanual tapping task, this revealed an increase of variability with ratio complexity, a range of hidden and unstable yet measurable modes, and a rank-frequency scaling law across these modes. We use the phase-attractive circle map to propose an interpretation of these findings in terms of hierarchical cross-frequency coupling (CFC). We also consider the tendency for small-integer attractors in the single-hand repeated tapping of three-interval rhythms reported in the literature. The phase-attractive circle map has wider basins of attractions for such ratios. This work motivates the question whether CFC intrinsic to neural dynamics implements low-level priors for timing and coordination and thus becomes involved in phenomena as diverse as attractor states in bimanual coordination and the cross-cultural tendency for musical rhythms to have simple interval ratios. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Dobromir Dotov
- LIVELab, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S4K1.,Psychology, Neuroscience and Behaviour, McMaster University, Ontario, Canada
| | - Laurel J Trainor
- LIVELab, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S4K1.,Psychology, Neuroscience and Behaviour, McMaster University, Ontario, Canada.,Rotman Research Institute, Toronto, Canada
| |
Collapse
|
18
|
Greenfield MD, Aihara I, Amichay G, Anichini M, Nityananda V. Rhythm interaction in animal groups: selective attention in communication networks. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200338. [PMID: 34420386 DOI: 10.1098/rstb.2020.0338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Animals communicating interactively with conspecifics often time their broadcasts to avoid overlapping interference, to emit leading, as opposed to following, signals or to synchronize their signalling rhythms. Each of these adjustments becomes more difficult as the number of interactants increases beyond a pair. Among acoustic species, insects and anurans generally deal with the problem of group signalling by means of 'selective attention' in which they focus on several close or conspicuous neighbours and ignore the rest. In these animals, where signalling and receiving are often dictated by sex, the process of selective attention in signallers may have a parallel counterpart in receivers, which also focus on close neighbours. In birds and mammals, local groups tend to be extended families or clans, and group signalling may entail complex timing mechanisms that allow for attention to all individuals. In general, the mechanisms that allow animals to communicate in groups appear to be fully interwoven with the basic process of rhythmic signalling. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Michael D Greenfield
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.,Equipe Neuro-Ethologie Sensorielle, ENES/Neuro-PSI, CNRS UMR 9197, University of Lyon/Saint-Etienne, 42023 Saint Etienne, France
| | - Ikkyu Aihara
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Guy Amichay
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78467 Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Marianna Anichini
- Hanse-Wissenschaftskolleg Institute for Advanced Study, 'Brain' Research Area, 27753 Delmenhorst, Germany.,Animal Physiology and Behavior Group, Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Vivek Nityananda
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
19
|
de Reus K, Soma M, Anichini M, Gamba M, de Heer Kloots M, Lense M, Bruno JH, Trainor L, Ravignani A. Rhythm in dyadic interactions. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200337. [PMID: 34420383 DOI: 10.1098/rstb.2020.0337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review paper discusses rhythmic interactions and distinguishes them from non-rhythmic interactions. We report on communicative behaviours in social and sexual contexts, as found in dyads of humans, non-human primates, non-primate mammals, birds, anurans and insects. We discuss observed instances of rhythm in dyadic interactions, identify knowledge gaps and propose suggestions for future research. We find that most studies on rhythmicity in interactive signals mainly focus on one modality (acoustic or visual) and we suggest more work should be performed on multimodal signals. Although the social functions of interactive rhythms have been fairly well described, developmental research on rhythms used to regulate social interactions is still lacking. Future work should also focus on identifying the exact timing mechanisms involved. Rhythmic signalling behaviours are widespread and critical in regulating social interactions across taxa, but many questions remain unexplored. A multidisciplinary, comparative cross-species approach may help provide answers. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Koen de Reus
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Masayo Soma
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Marianna Anichini
- Hanse-Wissenschaftskolleg Institute for Advanced Study, 'Brain' Research Area, Delmenhorst, Germany.,Division of Animal Physiology and Behaviour, Department of Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Miriam Lense
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Laurel Trainor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Pouw W, de Jonge‐Hoekstra L, Harrison SJ, Paxton A, Dixon JA. Gesture-speech physics in fluent speech and rhythmic upper limb movements. Ann N Y Acad Sci 2021; 1491:89-105. [PMID: 33336809 PMCID: PMC8246948 DOI: 10.1111/nyas.14532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
It is commonly understood that hand gesture and speech coordination in humans is culturally and cognitively acquired, rather than having a biological basis. Recently, however, the biomechanical physical coupling of arm movements to speech vocalization has been studied in steady-state vocalization and monosyllabic utterances, where forces produced during gesturing are transferred onto the tensioned body, leading to changes in respiratory-related activity and thereby affecting vocalization F0 and intensity. In the current experiment (n = 37), we extend this previous line of work to show that gesture-speech physics also impacts fluent speech. Compared with nonmovement, participants who are producing fluent self-formulated speech while rhythmically moving their limbs demonstrate heightened F0 and amplitude envelope, and such effects are more pronounced for higher-impulse arm versus lower-impulse wrist movement. We replicate that acoustic peaks arise especially during moments of peak impulse (i.e., the beat) of the movement, namely around deceleration phases of the movement. Finally, higher deceleration rates of higher-mass arm movements were related to higher peaks in acoustics. These results confirm a role for physical impulses of gesture affecting the speech system. We discuss the implications of gesture-speech physics for understanding of the emergence of communicative gesture, both ontogenetically and phylogenetically.
Collapse
Affiliation(s)
- Wim Pouw
- Center for the Ecological Study of Perception and ActionUniversity of ConnecticutStorrsConnecticut
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenthe Netherlands
- Institute for PsycholinguisticsMax Planck NijmegenNijmegenthe Netherlands
| | - Lisette de Jonge‐Hoekstra
- Center for the Ecological Study of Perception and ActionUniversity of ConnecticutStorrsConnecticut
- Faculty of Behavioral and Social SciencesUniversity of GroningenGroningenthe Netherlands
- Royal Dutch KentalisSint‐Michielsgestelthe Netherlands
| | - Steven J. Harrison
- Center for the Ecological Study of Perception and ActionUniversity of ConnecticutStorrsConnecticut
- Department of KinesiologyUniversity of ConnecticutStorrsConnecticut
| | - Alexandra Paxton
- Center for the Ecological Study of Perception and ActionUniversity of ConnecticutStorrsConnecticut
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticut
| | - James A. Dixon
- Center for the Ecological Study of Perception and ActionUniversity of ConnecticutStorrsConnecticut
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticut
| |
Collapse
|
21
|
Filippi P. Emotional Voice Intonation: A Communication Code at the Origins of Speech Processing and Word-Meaning Associations? JOURNAL OF NONVERBAL BEHAVIOR 2020. [DOI: 10.1007/s10919-020-00337-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
The aim of the present work is to investigate the facilitating effect of vocal emotional intonation on the evolution of the following processes involved in language: (a) identifying and producing phonemes, (b) processing compositional rules underlying vocal utterances, and (c) associating vocal utterances with meanings. To this end, firstly, I examine research on the presence of these abilities in animals, and the biologically ancient nature of emotional vocalizations. Secondly, I review research attesting to the facilitating effect of emotional voice intonation on these abilities in humans. Thirdly, building on these studies in animals and humans, and through taking an evolutionary perspective, I provide insights for future empirical work on the facilitating effect of emotional intonation on these three processes in animals and preverbal humans. In this work, I highlight the importance of a comparative approach to investigate language evolution empirically. This review supports Darwin’s hypothesis, according to which the ability to express emotions through voice modulation was a key step in the evolution of spoken language.
Collapse
|
22
|
Moore BL, Connor RC, Allen SJ, Krützen M, King SL. Acoustic coordination by allied male dolphins in a cooperative context. Proc Biol Sci 2020; 287:20192944. [PMID: 32228413 DOI: 10.1098/rspb.2019.2944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Synchronous displays are hallmarks of many animal societies, ranging from the pulsing flashes of fireflies, to military marching in humans. Such displays are known to facilitate mate attraction or signal relationship quality. Across many taxa, synchronous male displays appear to be driven by competition, while synchronous displays in humans are thought to be unique in that they serve a cooperative function. Indeed, it is well established that human synchrony promotes cooperative endeavours and increases success in joint action tasks. We examine another system in which synchrony is tightly linked to cooperative behaviour. Male bottlenose dolphins form long-lasting, multi-level, cooperative alliances in which they engage in coordinated efforts to coerce single oestrus females. Previous work has revealed the importance of motor synchrony in dolphin alliance behaviour. Here, we demonstrate that allied dolphins also engage in acoustic coordination whereby males will actively match the tempo and, in some cases, synchronize the production of their threat vocalization when coercing females. This finding demonstrates that male dolphins are capable of acoustic coordination in a cooperative context and, moreover, suggests that both motor and acoustic coordination are features of coalitionary behaviour that are not limited to humans.
Collapse
Affiliation(s)
- Bronte L Moore
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Richard C Connor
- Biology Department, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
| | - Simon J Allen
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.,Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Michael Krützen
- Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Stephanie L King
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
23
|
Kelley DB, Ballagh IH, Barkan CL, Bendesky A, Elliott TM, Evans BJ, Hall IC, Kwon YM, Kwong-Brown U, Leininger EC, Perez EC, Rhodes HJ, Villain A, Yamaguchi A, Zornik E. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication. J Neurosci 2020; 40:22-36. [PMID: 31896561 PMCID: PMC6939475 DOI: 10.1523/jneurosci.0736-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
In many species, vocal communication is essential for coordinating social behaviors including courtship, mating, parenting, rivalry, and alarm signaling. Effective communication requires accurate production, detection, and classification of signals, as well as selection of socially appropriate responses. Understanding how signals are generated and how acoustic signals are perceived is key to understanding the neurobiology of social behaviors. Here we review our long-standing research program focused on Xenopus, a frog genus which has provided valuable insights into the mechanisms and evolution of vertebrate social behaviors. In Xenopus laevis, vocal signals differ between the sexes, through development, and across the genus, reflecting evolutionary divergence in sensory and motor circuits that can be interrogated mechanistically. Using two ex vivo preparations, the isolated brain and vocal organ, we have identified essential components of the vocal production system: the sexually differentiated larynx at the periphery, and the hindbrain vocal central pattern generator (CPG) centrally, that produce sex- and species-characteristic sound pulse frequencies and temporal patterns, respectively. Within the hindbrain, we have described how intrinsic membrane properties of neurons in the vocal CPG generate species-specific vocal patterns, how vocal nuclei are connected to generate vocal patterns, as well as the roles of neurotransmitters and neuromodulators in activating the circuit. For sensorimotor integration, we identified a key forebrain node that links auditory and vocal production circuits to match socially appropriate vocal responses to acoustic features of male and female calls. The availability of a well supported phylogeny as well as reference genomes from several species now support analysis of the genetic architecture and the evolutionary divergence of neural circuits for vocal communication. Xenopus thus provides a vertebrate model in which to study vocal communication at many levels, from physiology, to behavior, and from development to evolution. As one of the most comprehensively studied phylogenetic groups within vertebrate vocal communication systems, Xenopus provides insights that can inform social communication across phyla.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027,
| | - Irene H Ballagh
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Zoology, University of British Columbia, Vancouver V6T132, Canada
| | - Charlotte L Barkan
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Taffeta M Elliott
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Psychology and Education, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801
| | - Ben J Evans
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Ian C Hall
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Benedictine University, Lisle, Illinois 60532
| | - Young Mi Kwon
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Ursula Kwong-Brown
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Elizabeth C Leininger
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Division of Natural Sciences, New College of Florida, Sarasota, Florida 34243
| | - Emilie C Perez
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Heather J Rhodes
- Department of Biology, Boston University, Boston, Massachusetts 02215
- Department of Biology, Denison University, Granville, Ohio 43023, and
| | - Avelyne Villain
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Ayako Yamaguchi
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Erik Zornik
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|