1
|
Lin Z, Molloy MF, Sripada C, Kang J, Si Y. Population-weighted Image-on-scalar Regression Analyses of Large Scale Neuroimaging Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.21.25326171. [PMID: 40313311 PMCID: PMC12045411 DOI: 10.1101/2025.04.21.25326171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Recent advances in neuroimaging modeling highlight the importance of accounting for subgroup heterogeneity in population-based neuroscience research through various investigations in large scale neuroimaging data collection. To integrate survey methodology with neuroscience research, we present an imaging data analysis and yield population generalizability with screened subsets of data. The Adolescent Brain Cognitive Development (ABCD) Study has enrolled a large cohort of participants to reflect the individual variation of the U.S. population in adolescent development. To ensure population representation, the ABCD Study has released the base weights. We estimated the associations between brain activities and cognitive performance using the functional Magnetic Resonance Imaging (fMRI) data from the ABCD Study's N-Back working memory task. Notably, the imaging subsample exhibits differences from the baseline cohort in key child characteristics and such discrepancies cannot be addressed simply by applying the ABCD base weights. We developed new population weights specific to the subsample and included the adjusted weights in the image-on-scalar regression model. We validated the approach through synthetic simulations and applications to fMRI data from the ABCD Study. Our findings demonstrate that population weighting adjustments effectively capture active brain areas associated with cognition, enhancing the validity and generalizability of population neuroscience research.
Collapse
|
2
|
Rico-Olarte C, Lopez DM, Eskofier BM, Becker L. Electrophysiological Insights in Exergaming-Electroencephalography Data Recording and Movement Artifact Detection: Systematic Review. JMIR Serious Games 2025; 13:e50992. [PMID: 40194274 PMCID: PMC12012405 DOI: 10.2196/50992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/30/2024] [Accepted: 11/06/2024] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Exergames are interactive solutions that require physical activity and are commonly used in learning or rehabilitation settings. For cognitive rehabilitation with exergames, the assessment of the intervention progress can be conducted by verifying the changes in brain activity. Electroencephalography (EEG) is a well-known method for this evaluation. However, motion artifacts due to large body movements can impede signal quality. No comprehensive guide on the artifact removal methods in the context of exergaming has been found. OBJECTIVE This paper aimed to identify studies that have assessed EEG signals while a user interacts with an exergame and the applied methods for data handling and analysis with a focus on dealing with movement artifacts. METHODS This review included studies on human participants while engaging in exergames, where the primary outcome was brain activity measured by EEG. A total of 5 databases were searched at 3 time points: March 2021, October 2022, and February 2024. The Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies assessed methodological quality, rating studies as "good," "fair," or "poor." Data were synthesized quantitatively to identify characteristics across studies, including sample demographics and intervention details, and basic statistics (mean [SD]) were calculated. RESULTS A total of 494 papers were screened, resulting in 17 studies having been included. All studies carried out EEG recordings during exergame interactions, primarily assessing attention and concentration, with the alpha wave being the most analyzed EEG band. Common motion artifact removal methods included visual inspection and independent component analysis. The review identified significant risks of bias, with 2 studies rated as "good," 7 as "fair," and 8 as "poor." Due to the small number of studies and their heterogeneity, a meta-analysis was not feasible. CONCLUSIONS The study successfully identifies the feasibility of recording electrophysiological brain activity during exergaming and provides insights into EEG devices, analysis methods, and exergaming systems used in previous studies. However, limitations, such as the lack of sufficient detail on motion artifact removal and a focus on short-term effects, underscore the need for improved methodologies and reporting standards, with recommendations for enhancing reliability in cognitive rehabilitation with exergames.
Collapse
Affiliation(s)
- Carolina Rico-Olarte
- Telematics Department, Universidad del Cauca, Popayán, Colombia
- Machine Learning and Data Analytics Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Diego M Lopez
- Telematics Department, Universidad del Cauca, Popayán, Colombia
| | - Bjoern M Eskofier
- Machine Learning and Data Analytics Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Becker
- Department of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Cho I, Gutchess A. How Age and Culture Influence Cognition: A Lifespan Developmental Perspective. DEVELOPMENTAL REVIEW 2025; 75:101169. [PMID: 39669666 PMCID: PMC11633819 DOI: 10.1016/j.dr.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
It has long been assumed that cognitive aging is a universal phenomenon. However, increasing evidence substantiates the importance of individual differences in cognitive aging. How do experiential factors related to culture shape developmental trajectories of cognition? We propose a new model examining how age and culture influence cognitive processes, building on past models and expanding upon them to incorporate a lifespan developmental perspective. The current model posits that how age and culture interact to influence cognition depends on (a) the extent to which the cognitive task relies on top-down or bottom-up processes, and (b) for more top-down processes, the level of cognitive resources required to perform the task. To assess the validity of the model, we review literature not only from adulthood but also childhood, making this the first model to adopt a lifespan perspective in the study of culture and cognition. The current work advances understanding of cognitive aging by delineating the combined effects of biological aging processes, assumed to apply across cultures, and culture-dependent experiential aging processes, which reflect unique cultural experiences throughout one's lifespan. This approach enables understanding of comprehensive potential mechanisms that underlie the influence of culture on cognitive development across life stages.
Collapse
Affiliation(s)
- Isu Cho
- Department of Psychology, Sungkyunkwan University, Seoul, Korea
- Department of Psychology, Brandeis University, Waltham, Massachusetts, USA
| | - Angela Gutchess
- Department of Psychology, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
4
|
Bordes Edgar V, MacDonald B, Thames AD, McClintock SM. The time has come: discussing the clinical neuropsychology provider's role in cultural respect and inclusion. J Clin Exp Neuropsychol 2025:1-18. [PMID: 39852595 DOI: 10.1080/13803395.2025.2455126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
There has been both a national and global emphasis within the past 3 years to promote diversity, equity, inclusion (DEI), and cultural respect in healthcare and academia. One discipline and healthcare arena where this has been evident is the psychology field. Indeed, there has been rampant and widespread adoption and advancement of DEI and cultural respect across most of psychology. Unfortunately, not all psychology specialties have fully embraced DEI or focused on provider factors, one of which is clinical neuropsychology. Regarding DEI efforts and emphasis in clinical neuropsychology, the majority of research and education has primarily focused on patient demographic and neuropsychological test factors. While such patient demographic and test factors are important and merit significant attention, so too does the focus on the clinical neuropsychological provider. Unfortunately, the clinical neuropsychology specialty has provided little to no focus on the provider's role in DEI and cultural respect. The purpose of this critical review is to focus on the role of the clinical neuropsychologist and how it impacts DEI and cultural respect. Specifically, the review will inform the factors that impact the practice of clinical neuropsychology on the part of the provider including unconscious/implicit bias, diagnostic threat, and microaggressions. Also, the review will inform strategies to create a DEI responsive and culturally respectful clinical neuropsychological practice with the overarching goal to uncover the clinical neuropsychological role to advance and evolve the specialty through a DEI and culturally respectful lens. With considerable work completed in other aspects of DEI and cultural respect, the clinical neuropsychology specialty is well poised to now focus on the role of the provider. This focus can provide a constructive path forward to create new knowledge to advance the role of the provider to optimize overall clinical, research, and training practices.
Collapse
Affiliation(s)
- Veronica Bordes Edgar
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
- Division of Developmental Behavioral Pediatrics, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz MacDonald
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
- Division of Developmental Behavioral Pediatrics, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - April D Thames
- Semel Institute of Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Shawn M McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
- Perot Foundation Neuroscience Translational Research Center, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Mooraj Z, Salami A, Campbell KL, Dahl MJ, Kosciessa JQ, Nassar MR, Werkle-Bergner M, Craik FIM, Lindenberger U, Mayr U, Rajah MN, Raz N, Nyberg L, Garrett DD. Toward a functional future for the cognitive neuroscience of human aging. Neuron 2025; 113:154-183. [PMID: 39788085 DOI: 10.1016/j.neuron.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age. Crucially, however, neither is able to capture brain activity representing specific cognitive processes as they occur. In contrast, task-based functional imaging allows a direct probe into how aging affects real-time brain-behavior associations in any cognitive domain, from perception to higher-order cognition. Here, we outline why task-based functional neuroimaging must move center stage to better understand the neural bases of cognitive aging. In turn, we sketch a multi-modal, behavior-first research framework that is built upon cognitive experimentation and emphasizes the importance of theory and longitudinal design.
Collapse
Affiliation(s)
- Zoya Mooraj
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet & Stockholm University, 17165 Stockholm, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Julian Q Kosciessa
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, the Netherlands
| | - Matthew R Nassar
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Fergus I M Craik
- Rotman Research Institute at Baycrest, Toronto, ON M6A 2E1, Canada
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - M Natasha Rajah
- Department of Psychiatry, McGill University Montreal, Montreal, QC H3A 1A1, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| |
Collapse
|
6
|
Carreno CA, Evans ME, Lockhart BK, Chinaka O, Katz B, Bell MA, Howell BR. Optimizing infant neuroimaging methods to understand the neurodevelopmental impacts of early nutrition and feeding. Dev Cogn Neurosci 2025; 71:101481. [PMID: 39647348 PMCID: PMC11667636 DOI: 10.1016/j.dcn.2024.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
There is strong evidence proper nutrition is imperative for healthy infant neurodevelopment, providing the neural foundations for later cognition and behavior. Over the first years of life infants are supported by unique sources of nutrition (e.g., human milk, alternative milk sources). It is during this time that the brain undergoes its most drastic changes during postnatal development. Past research has examined associations between infant feeding and nutrition and morphological features of the brain, yet there remains a paucity of information on functional characteristics of neural activity during feeding. Within this article, we discuss how neuroimaging modalities can be optimized for researching the impacts of infant feeding and nutrition on brain function. We review past research utilizing EEG and fNIRS and describe our efforts to further develop neuroimaging approaches that allow for measurement of brain activity during active feeding with greater spatial resolution (e.g., fMRI and OPM-MEG). We also discuss current challenges, as well as the scientific and logistical limitations of each method. Once protocols have been optimized, these methods will provide the requisite insight into the underlying mechanisms of nutritional and feeding impacts on neurodevelopment, providing the missing piece in the field's efforts to understand this essential and ubiquitous part of early life.
Collapse
Affiliation(s)
- Claudia A Carreno
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Megan E Evans
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Translational Biology, Medicine, & Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Blakely K Lockhart
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Translational Biology, Medicine, & Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Oziomachukwu Chinaka
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Translational Biology, Medicine, & Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Martha Ann Bell
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Brittany R Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Peverill M, Russell JD, Keding TJ, Rich HM, Halvorson MA, King KM, Birn RM, Herringa RJ. Balancing Data Quality and Bias: Investigating Functional Connectivity Exclusions in the Adolescent Brain Cognitive Development℠ (ABCD Study) Across Quality Control Pathways. Hum Brain Mapp 2025; 46:e70094. [PMID: 39788921 PMCID: PMC11717557 DOI: 10.1002/hbm.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 01/12/2025] Open
Abstract
Analysis of resting state fMRI (rs-fMRI) typically excludes images substantially degraded by subject motion. However, data quality, including degree of motion, relates to a broad set of participant characteristics, particularly in pediatric neuroimaging. Consequently, when planning quality control (QC) procedures researchers must balance data quality concerns against the possibility of biasing results by eliminating data. In order to explore how researcher QC decisions might bias rs-fMRI findings and inform future research design, we investigated how a broad spectrum of participant characteristics in the Adolescent Brain and Cognitive Development (ABCD) study were related to participant inclusion/exclusion across versions of the dataset (the ABCD Community Collection and ABCD Release 4) and QC choices (specifically, motion scrubbing thresholds). Across all these conditions, we found that the odds of a participant's exclusion related to a broad spectrum of behavioral, demographic, and health-related variables, with the consequence that rs-fMRI analyses using these variables are likely to produce biased results. Consequently, we recommend that missing data be formally accounted for when analyzing rs-fMRI data and interpreting results. Our findings demonstrate the urgent need for better data acquisition and analysis techniques which minimize the impact of motion on data quality. Additionally, we strongly recommend including detailed information about quality control in open datasets such as ABCD.
Collapse
Affiliation(s)
- Matthew Peverill
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| | - Justin D. Russell
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| | - Taylor J. Keding
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
- Department of
PsychologyYale UniversityNew Haven, CTUSA
| | - Hailey M. Rich
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| | | | - Kevin M. King
- Department of
PsychologyUniversity of WashingtonSeattle, WAUSA
| | - Rasmus M. Birn
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| | - Ryan J. Herringa
- Department of
PsychiatryUniversity of Wisconsin–MadisonMadison, WIUSA
| |
Collapse
|
8
|
Hass S, Liebscher M, Richter A, Fliessbach K, Laske C, Sodenkamp S, Peters O, Hellmann-Regen J, Ersözlü E, Priller J, Spruth EJ, Altenstein S, Röske S, Schneider A, Schütze H, Spottke A, Esser A, Teipel S, Kilimann I, Wiltfang J, Rostamzadeh A, Glanz W, Incesoy EI, Lüsebrink F, Dechent P, Hetzer S, Scheffler K, Wagner M, Jessen F, Düzel E, Glöckner F, Schott BH, Wirth M, Klimecki O. Environmental enrichment is associated with favorable memory-related functional brain activity patterns in older adults. Front Aging Neurosci 2024; 16:1451850. [PMID: 39777046 PMCID: PMC11704887 DOI: 10.3389/fnagi.2024.1451850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background In humans, environmental enrichment (EE), as measured by the engagement in a variety of leisure activities, has been associated with larger hippocampal structure and better memory function. The present cross-sectional study assessed whether EE during early life (13-30 years) and midlife (30-65 years) is associated with better preserved memory-related brain activity patterns in older age. Methods In total, 372 cognitively unimpaired older adults (aged ≥60 years old) of the DZNE-Longitudinal Study on Cognitive Impairment and Dementia (DELCODE; DRKS00007966) were investigated. EE was operationalized using items of the Lifetime of Experiences Questionnaire (LEQ), which measures the self-reported participation in a variety of leisure activities in early life and midlife. The preservation of memory-related functional brain activity was assessed using single-value scores, which relate older adults' brain activity patterns in the temporo-parieto-occipital memory network to those of young adults during visual memory encoding (FADE and SAME scores). Results EE during early life and midlife was significantly associated with higher SAME scores during novelty processing (n = 372, β = 0.13, p = 0.011). Thus, older participants with higher EE showed greater similarity of functional brain activity patterns during novelty processing with young adults. This positive association was observed most strongly in participants with subjective cognitive decline (SCD, n = 199, β = 0.20, p = 0.006). Conclusion More frequent participation in a variety of leisure activities in early life and midlife is associated with more successful aging of functional brain activity patterns in the memory network of older adults, including participants at increased risk for dementia. Longitudinal studies are needed to clarify whether higher EE during life could help preserve memory network function in later life.
Collapse
Affiliation(s)
- Simon Hass
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Maxie Liebscher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (CIRC), Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn and University of Bonn, Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Department of Psychiatry and Psychotherapy, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sebastian Sodenkamp
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Neuroscience, Charité - Universitaetsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Julian Hellmann-Regen
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Neuroscience, Charité - Universitaetsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Ersin Ersözlü
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Neuroscience, Charité - Universitaetsmedizin Berlin, Berlin, Germany
- ECRC Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitaetsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- UK DRI, University of Edinburgh, Edinburgh, United Kingdom
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Sandra Röske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn and University of Bonn, Bonn, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Anna Esser
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ayda Rostamzadeh
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Enise I. Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn and University of Bonn, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Franka Glöckner
- Chair of Behavioral Psychotherapy, Institute for Clinical Psychology and Psychotherapy, Dresden University of Technology, Dresden, Germany
| | - Björn Hendrik Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Olga Klimecki
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Faculty of Biopsychology, Dresden University of Technology, Dresden, Germany
| | | |
Collapse
|
9
|
Steinberg SN, King TZ. Within-Individual BOLD Signal Variability and its Implications for Task-Based Cognition: A Systematic Review. Neuropsychol Rev 2024; 34:1115-1164. [PMID: 37889371 DOI: 10.1007/s11065-023-09619-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Within-individual blood oxygen level-dependent (BOLD) signal variability, intrinsic moment-to-moment signal fluctuations within a single individual in specific voxels across a given time course, is a relatively new metric recognized in the neuroimaging literature. Within-individual BOLD signal variability has been postulated to provide information beyond that provided by mean-based analysis. Synthesis of the literature using within-individual BOLD signal variability methodology to examine various cognitive domains is needed to understand how intrinsic signal fluctuations contribute to optimal performance. This systematic review summarizes and integrates this literature to assess task-based cognitive performance in healthy groups and few clinical groups. Included papers were published through October 17, 2022. Searches were conducted on PubMed and APA PsycInfo. Studies eligible for inclusion used within-individual BOLD signal variability methodology to examine BOLD signal fluctuations during task-based functional magnetic resonance imaging (fMRI) and/or examined relationships between task-based BOLD signal variability and out-of-scanner behavioral measure performance, were in English, and were empirical research studies. Data from each of the included 19 studies were extracted and study quality was systematically assessed. Results suggest that variability patterns for different cognitive domains across the lifespan (ages 7-85) may depend on task demands, measures, variability quantification method used, and age. As neuroimaging methods explore individual-level contributions to cognition, within-individual BOLD signal variability may be a meaningful metric that can inform understanding of neurocognitive performance. Further research in understudied domains/populations, and with consistent quantification methods/cognitive measures, will help conceptualize how intrinsic BOLD variability impacts cognitive abilities in healthy and clinical groups.
Collapse
Affiliation(s)
- Stephanie N Steinberg
- Department of Psychology, Georgia State University, Urban Life Building, 11th Floor, 140 Decatur St, Atlanta, GA, 30303, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Urban Life Building, 11th Floor, 140 Decatur St, Atlanta, GA, 30303, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
10
|
Schultz KR, McGrath S, Keary TA, Meng CK, Batchos E, Evans L, Fields D, Cummings A, Fornalski N. A multidisciplinary approach to assessment and management of long COVID cognitive concerns. Life Sci 2024; 357:123068. [PMID: 39299386 DOI: 10.1016/j.lfs.2024.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Cognitive dysfunction is a commonly reported feature of Long COVID (LC). With the overlap of assessment and treatment for cognitive concerns across multiple disciplines, coupled with current guidelines supporting interdisciplinary care, the aim of this clinically focused article is to provide a review of current guidelines and research related to assessment and interventions to address LC-related cognitive concerns within clinical practice from a multidisciplinary perspective, incorporating best practices for collaboration among Clinical Neuropsychologists, Rehabilitation Psychologists, and Speech-Language Pathologists. Current guidelines for assessment and interventions for cognitive functioning are provided, with clinical suggestions for best practices offered. Additional considerations related to diversity and variable patient presentations are identified. This article provides guidance based on current research and practice standards regarding the utilization of a multidisciplinary, collaborative approach to provide comprehensive assessment and treatment for individuals with LC-related cognitive concerns.
Collapse
Affiliation(s)
- Katlin R Schultz
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, United States of America.
| | - Shana McGrath
- Outpatient Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Therese Anne Keary
- Memory and Psychological Services, Inc., Brecksville, OH, United States of America
| | - Chelsea K Meng
- Memory and Psychological Services, Inc., Brecksville, OH, United States of America
| | - Elisabeth Batchos
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, United States of America
| | - Lauren Evans
- Outpatient Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Danelle Fields
- Memory and Psychological Services, Inc., Brecksville, OH, United States of America
| | - Annie Cummings
- Outpatient Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Nicole Fornalski
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
11
|
Soch J, Richter A, Kizilirmak JM, Schütze H, Ziegler G, Altenstein S, Brosseron F, Dechent P, Fliessbach K, Freiesleben SD, Glanz W, Gref D, Heneka MT, Hetzer S, Incesoy EI, Kilimann I, Kimmich O, Kleineidam L, Kuhn E, Laske C, Lohse A, Lüsebrink F, Munk MH, Peters O, Preis L, Priller J, Ramirez A, Roeske S, Rostamzadeh A, Roy-Kluth N, Scheffler K, Schmid M, Schneider A, Spottke A, Spruth EJ, Teipel S, Wiltfang J, Jessen F, Wagner M, Düzel E, Schott BH. Single-value brain activity scores reflect both severity and risk across the Alzheimer's continuum. Brain 2024; 147:3789-3803. [PMID: 38743817 PMCID: PMC11531847 DOI: 10.1093/brain/awae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/22/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional MRI activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive ageing. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analysed subsequent memory functional MRI data from individuals with SCD, MCI and AD dementia as well as healthy controls and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-centre DELCODE study (n = 468). Based on the individual participants' whole-brain functional MRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity and APOE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to healthy controls, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aβ-positive and Aβ-negative individuals in SCD and AD-rel, and between ApoE ɛ4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.
Collapse
Affiliation(s)
- Joram Soch
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), 10117 Berlin, Germany
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS), 04103 Leipzig, Germany
| | - Anni Richter
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, 39120 Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, 39120 Magdeburg, Germany
| | - Jasmin M Kizilirmak
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Research Area Educational Careers and Graduate Employment, German Center for Higher Education Research and Science Studies (DZHW), 30159 Hannover, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, 39120 Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, 39120 Magdeburg, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg August University, 37075 Göttingen, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Silka Dawn Freiesleben
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Daria Gref
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Enise I Incesoy
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, 39120 Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, 39120 Magdeburg, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), 18147 Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Okka Kimmich
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Elizabeth Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Lukas Preis
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, 81675 Munich, Germany
- Centre for Clinical Brain Sciences, University of Edinburgh and UK DRI, Edinburgh EH16 4SB, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50924 Cologne, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Ayda Rostamzadeh
- Medical Faculty, Department of Psychiatry, University of Cologne, 50924 Cologne, Germany
| | - Nina Roy-Kluth
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Institute for Medical Biometry, University Hospital Bonn, 53127 Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), 18147 Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, 37075 Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany
- Medical Faculty, Department of Psychiatry, University of Cologne, 50924 Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, 37075 Göttingen, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| |
Collapse
|
12
|
Tennant IA, Hull DM, Fagan MA, Casaletto KB, Heaton RK, James Bateman C, Erickson KI, Forrester T, Boyne M. Assessment of cross-cultural measurement invariance of the NIH toolbox fluid cognition measures between Jamaicans and African-Americans. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:1343-1351. [PMID: 36167328 DOI: 10.1080/23279095.2022.2126939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The NIH Toolbox Cognitive Battery (NIHTB-CB) was developed as a common-metric, computerized cognitive screener for research. Although extensively normed and validated in Americans of different ethnicities, there is little data on how generalizable such results would be when used outside of the United States. The objective of this study was to assess measurement invariance (MI) of the NIHTB-CB across Jamaican and African-American samples and determine appropriateness of comparisons across groups. Multi-group confirmatory factor analyses using a single-factor model were conducted using five tests of fluid cognitive abilities from the NIHTB-CB, which assess working memory, episodic memory, processing speed, and executive function. MI was tested sequentially for configural, metric and scalar invariance. 125 Jamaican and 154 American adults of African descent were included. The Jamaican mean age was 31.6 ± 8.6 years (57% males) compared to 43.5 ± 15.5 years (25% males) for the African-American group. The Jamaicans had on average 11.3 ± 2.7 years of education compared to 13.9 ± 2.6 years for the African-Americans. We found metric and configural invariance across both samples but not scalar invariance. These findings suggest that the single factor emerging from the NIHTB-CB measures the same construct, i.e. fluid cognitive ability, in both groups and hence the battery is appropriate for assessments within cultures. However, lack of scalar invariance indicates that direct cross-cultural comparisons of performance levels should be interpreted with caution, also suggesting that U.S. normative standards are not generalizable to the Jamaican population.
Collapse
Affiliation(s)
- Ingrid A Tennant
- Department of Surgery, Radiology, Anaesthesia and Intensive Care, The University of the West Indies, Mona, Jamaica
| | - Darrell M Hull
- Department of Educational Psychology, University of North Texas, Denton, TX, USA
| | - Marcus A Fagan
- Center for Research Design and Analysis, Texas Women's University, Denton, TX, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Caryl James Bateman
- Department of Sociology, Psychology and Social Work, The University of the West Indies, Mona, Jamaica
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- College of Science, Health, Engineering, and Education, Murdoch University, Murdoch, Australia
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Terrence Forrester
- Solutions for Developing Countries, The University of the West Indies, Mona, Jamaica
| | - Michael Boyne
- Department of Medicine, The University of the West Indies, Mona, Jamaica
| |
Collapse
|
13
|
Harden BJ, McKelvey LM, Poehlmann JA, Edwards RC, Anunziata F, Beasley L, Bomberger M, Chinaka O, De La Cruz S, Gurka K, Parkinson M. The HEALthy Brain and Child Development Study (HBCD) experience: Recruiting and retaining diverse families in a longitudinal, multi-method early childhood study. Dev Cogn Neurosci 2024; 69:101421. [PMID: 39106549 PMCID: PMC11347061 DOI: 10.1016/j.dcn.2024.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social, and emotional development beginning prenatally and planned through early childhood. Given its aim to examine the impact of adversity and protective factors on children's outcomes, the recruitment and retention of families who have a wide diversity in experiences are essential. However, the unfortunate history of inequitable treatment of underrepresented families in research and the risks with which some participants will contend (e.g., substance use) makes their recruitment and retention in social science and neuroscience research particularly challenging. This article explores strategies that the HBCD Study has developed to recruit and retain participants, including marginalized, underserved, and hard-to-reach populations, capitalizing on the extant literature and the researchers' own experiences. In this paper, we address strategies to recruit and retain families within HBCD, including: 1) creating experiences that engender trust and promote relationships; 2) maintaining connections with participants over time; 3) ensuring appropriate compensation and supports; 4) considerations for study materials and procedures; and 5) community engagement. The implementation of these strategies may increase representation and inclusiveness, as well as improve the quality of the resulting data.
Collapse
Affiliation(s)
- Brenda Jones Harden
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States.
| | - Lorraine M McKelvey
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Julie A Poehlmann
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Renee C Edwards
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Florencia Anunziata
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Lana Beasley
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Melissa Bomberger
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Oziomachukwu Chinaka
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Sheila De La Cruz
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Kelly Gurka
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| | - Micaela Parkinson
- University of Maryland, 3942 Campus Drive, Suite 3304, College Park, MD 20742, United States
| |
Collapse
|
14
|
Adams RA, Zor C, Mihalik A, Tsirlis K, Brudfors M, Chapman J, Ashburner J, Paulus MP, Mourão-Miranda J. Voxelwise Multivariate Analysis of Brain-Psychosocial Associations in Adolescents Reveals 6 Latent Dimensions of Cognition and Psychopathology. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:915-927. [PMID: 38588854 DOI: 10.1016/j.bpsc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Adolescence heralds the onset of considerable psychopathology, which may be conceptualized as an emergence of altered covariation between symptoms and brain measures. Multivariate methods can detect such modes of covariation or latent dimensions, but none specifically relating to psychopathology have yet been found using population-level structural brain data. Using voxelwise (instead of parcellated) brain data may strengthen latent dimensions' brain-psychosocial relationships, but this creates computational challenges. METHODS We obtained voxelwise gray matter density and psychosocial variables from the baseline (ages 9-10 years) Adolescent Brain Cognitive Development (ABCD) Study cohort (N = 11,288) and employed a state-of-the-art segmentation method, sparse partial least squares, and a rigorous machine learning framework to prevent overfitting. RESULTS We found 6 latent dimensions, 4 of which pertain specifically to mental health. The mental health dimensions were related to overeating, anorexia/internalizing, oppositional symptoms (all ps < .002) and attention-deficit/hyperactivity disorder symptoms (p = .03). Attention-deficit/hyperactivity disorder was related to increased and internalizing symptoms related to decreased gray matter density in dopaminergic and serotonergic midbrain areas, whereas oppositional symptoms were related to increased gray matter in a noradrenergic nucleus. Internalizing symptoms were related to increased and oppositional symptoms to reduced gray matter density in the insular, cingulate, and auditory cortices. Striatal regions featured strongly, with reduced caudate nucleus gray matter in attention-deficit/hyperactivity disorder and reduced putamen gray matter in oppositional/conduct problems. Voxelwise gray matter density generated stronger brain-psychosocial correlations than brain parcellations. CONCLUSIONS Voxelwise brain data strengthen latent dimensions of brain-psychosocial covariation, and sparse multivariate methods increase their psychopathological specificity. Internalizing and externalizing symptoms are associated with opposite gray matter changes in similar cortical and subcortical areas.
Collapse
Affiliation(s)
- Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom.
| | - Cemre Zor
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Konstantinos Tsirlis
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Mikael Brudfors
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - James Chapman
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | | | - Janaina Mourão-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|
15
|
Grasso-Cladera A, Bremer M, Ladouce S, Parada F. A systematic review of mobile brain/body imaging studies using the P300 event-related potentials to investigate cognition beyond the laboratory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:631-659. [PMID: 38834886 DOI: 10.3758/s13415-024-01190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The P300 ERP component, related to the onset of task-relevant or infrequent stimuli, has been widely used in the Mobile Brain/Body Imaging (MoBI) literature. This systematic review evaluates the quality and breadth of P300 MoBI studies, revealing a maturing field with well-designed research yet grappling with standardization and global representation challenges. While affirming the reliability of measuring P300 ERP components in mobile settings, the review identifies significant hurdles in standardizing data cleaning and processing techniques, impacting comparability and reproducibility. Geographical disparities emerge, with studies predominantly in the Global North and a dearth of research from the Global South, emphasizing the need for broader inclusivity to counter the WEIRD bias in psychology. Collaborative projects and mobile EEG systems showcase the feasibility of reaching diverse populations, which is essential to advance precision psychiatry and to integrate varied data streams. Methodologically, a trend toward ecological validity is noted, shifting from lab-based to real-world settings with portable EEG system advancements. Future hardware developments are expected to balance signal quality and sensor intrusiveness, enriching data collection in everyday contexts. Innovative methodologies reflect a move toward more natural experimental settings, prompting critical questions about the applicability of traditional ERP markers, such as the P300 outside structured paradigms. The review concludes by highlighting the crucial role of integrating mobile technologies, physiological sensors, and machine learning to advance cognitive neuroscience. It advocates for an operational definition of ecological validity to bridge the gap between controlled experiments and the complexity of embodied cognitive experiences, enhancing both theoretical understanding and practical application in study design.
Collapse
Affiliation(s)
| | - Marko Bremer
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile
- Facultad de Psicología, Programa de Magíster en Neurociencia Social, Diego Portales University, Santiago, Chile
| | - Simon Ladouce
- Department Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Francisco Parada
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile.
| |
Collapse
|
16
|
Hernandez H, Baez S, Medel V, Moguilner S, Cuadros J, Santamaria-Garcia H, Tagliazucchi E, Valdes-Sosa PA, Lopera F, OchoaGómez JF, González-Hernández A, Bonilla-Santos J, Gonzalez-Montealegre RA, Aktürk T, Yıldırım E, Anghinah R, Legaz A, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, García AM, Huepe D, Caterina GD, Soto-Añari M, Birba A, Sainz-Ballesteros A, Coronel C, Herrera E, Abasolo D, Kilborn K, Rubido N, Clark R, Herzog R, Yerlikaya D, Güntekin B, Parra MA, Prado P, Ibanez A. Brain health in diverse settings: How age, demographics and cognition shape brain function. Neuroimage 2024; 295:120636. [PMID: 38777219 PMCID: PMC11812057 DOI: 10.1016/j.neuroimage.2024.120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.
Collapse
Affiliation(s)
- Hernan Hernandez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Harvard Medical School, Boston, MA, USA
| | - Jhosmary Cuadros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal 5001, Venezuela
| | - Hernando Santamaria-Garcia
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; University of Buenos Aires, Argentina
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Tuba Aktürk
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Ebru Yıldırım
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Agustina Legaz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Görsev G Yener
- Faculty of Medicine, Izmir University of Economics, 35330, Izmir, Turkey; Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of Edinburgh, Scotland, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Alberto A Fernández Lucas
- Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andréss, Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | | | - Carlos Coronel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ruaridh Clark
- Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, UK
| | - Ruben Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris 75013, France
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Bahar Güntekin
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Biophysics, School of Medicine, Istanbul Medipol University, Turkey
| | - Mario A Parra
- Department of Psychological Sciences and Health, University of Strathclyde, United Kingdom and Associate Researcher of the Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Cognitive Neuroscience Center, Universidad de San Andrés and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Crone EA, Bol T, Braams BR, de Rooij M, Franke B, Franken I, Gazzola V, Güroğlu B, Huizenga H, Hulshoff Pol H, Keijsers L, Keysers C, Krabbendam L, Jansen L, Popma A, Stulp G, van Atteveldt N, van Duijvenvoorde A, Veenstra R. Growing Up Together in Society (GUTS): A team science effort to predict societal trajectories in adolescence and young adulthood. Dev Cogn Neurosci 2024; 67:101403. [PMID: 38852381 PMCID: PMC11214182 DOI: 10.1016/j.dcn.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Our society faces a great diversity of opportunities for youth. The 10-year Growing Up Together in Society (GUTS) program has the long-term goal to understand which combination of measures best predict societal trajectories, such as school success, mental health, well-being, and developing a sense of belonging in society. Our leading hypothesis is that self-regulation is key to how adolescents successfully navigate the demands of contemporary society. We aim to test these questions using socio-economic, questionnaire (including experience sampling methods), behavioral, brain (fMRI, sMRI, EEG), hormonal, and genetic measures in four large cohorts including adolescents and young adults. Two cohorts are designed as test and replication cohorts to test the developmental trajectory of self-regulation, including adolescents of different socioeconomic status thereby bridging individual, family, and societal perspectives. The third cohort consists of an entire social network to examine how neural and self-regulatory development influences and is influenced by whom adolescents and young adults choose to interact with. The fourth cohort includes youth with early signs of antisocial and delinquent behavior to understand patterns of societal development in individuals at the extreme ends of self-regulation and societal participation, and examines pathways into and out of delinquency. We will complement the newly collected cohorts with data from existing large-scale population-based and case-control cohorts. The study is embedded in a transdisciplinary approach that engages stakeholders throughout the design stage, with a strong focus on citizen science and youth participation in study design, data collection, and interpretation of results, to ensure optimal translation to youth in society.
Collapse
Affiliation(s)
- Eveline A Crone
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Leiden University, Institute of Psychology, the Netherlands.
| | - Thijs Bol
- Department of Sociology, University of Amsterdam, the Netherlands
| | - Barbara R Braams
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Mark de Rooij
- Leiden University, Institute of Psychology, the Netherlands
| | - Barbara Franke
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Cognitive Neuroscience and Human Genetics, Nijmegen, the Netherlands
| | - Ingmar Franken
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience (KNAW) and University of Amsterdam, Amsterdam, the Netherlands
| | - Berna Güroğlu
- Leiden University, Institute of Psychology, the Netherlands
| | - Hilde Huizenga
- Department of Psychology, University of Amsterdam, the Netherlands
| | | | - Loes Keijsers
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience (KNAW) and University of Amsterdam, Amsterdam, the Netherlands
| | - Lydia Krabbendam
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Lucres Jansen
- Department of Child and Adolescent Psychiatry & Psychosocial Care, AmsterdamUMC and Research Institute Amsterdam Public Health, Amsterdam, the Netherlands
| | - Arne Popma
- Department of Child and Adolescent Psychiatry & Psychosocial Care, AmsterdamUMC and Research Institute Amsterdam Public Health, Amsterdam, the Netherlands
| | - Gert Stulp
- University of Groningen, Department of Sociology / Inter-University Center for Social Science Theory and Methodology, Groningen, the Netherlands
| | - Nienke van Atteveldt
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | | | - René Veenstra
- University of Groningen, Department of Sociology / Inter-University Center for Social Science Theory and Methodology, Groningen, the Netherlands
| |
Collapse
|
19
|
Marzoratti A, Evans TM. Why and how to collect representative study samples in educational neuroscience research. Trends Neurosci Educ 2024; 35:100231. [PMID: 38879200 DOI: 10.1016/j.tine.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 12/05/2024]
Abstract
BACKGROUND Educational neuroscience research, which investigates the neurobiological mechanisms of learning, has historically incorporated samples drawn mostly from white, middle-class, and/or suburban populations. However, sampling in research without attending to representation can lead to biased interpretations and results that are less generalizable to an intended target population. Prior research revealing differences in neurocognitive outcomes both within- and across-groups further suggests that such practices may obscure significant effects with practical implications. BARRIERS Negative attitudes among historically marginalized communities, stemming from historical mistreatment, biased research outcomes, and implicit or explicit attitudes among research teams, can hinder diverse participation. Qualities of the research process including language requirements, study locations, and time demands create additional barriers. SOLUTIONS Flexible data collection approaches, community engaugement, and transparent reporting could build trust and enhance sampling diversity. Longer-term solutions include prioritizing research questions relevant to marginalized communities, increasing workforce diversity, and detailed reporting of sample demographics. Such concerted efforts are essential for robust educational neuroscience research to maximize positive impacts broadly across learners.
Collapse
Affiliation(s)
- Analia Marzoratti
- School of Education & Human Development, University of Virginia, Ridley Hall 126, P.O. Box 800784, 405 Emmet Street South, Charlottesville, VA, United States.
| | - Tanya M Evans
- School of Education & Human Development, University of Virginia, Ridley Hall 126, P.O. Box 800784, 405 Emmet Street South, Charlottesville, VA, United States
| |
Collapse
|
20
|
Wienke AS, Mathes B. Socioeconomic Inequalities Affect Brain Responses of Infants Growing Up in Germany. Brain Sci 2024; 14:560. [PMID: 38928558 PMCID: PMC11201481 DOI: 10.3390/brainsci14060560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Developmental changes in functional neural networks are sensitive to environmental influences. This EEG study investigated how infant brain responses relate to the social context that their families live in. Event-related potentials of 255 healthy, awake infants between six and fourteen months were measured during a passive auditory oddball paradigm. Infants were presented with 200 standard tones and 48 randomly distributed deviants. All infants are part of a longitudinal study focusing on families with socioeconomic and/or cultural challenges (Bremen Initiative to Foster Early Childhood Development; BRISE; Germany). As part of their familial socioeconomic status (SES), parental level of education and infant's migration background were assessed with questionnaires. For 30.6% of the infants both parents had a low level of education (≤10 years of schooling) and for 43.1% of the infants at least one parent was born abroad. The N2-P3a complex is associated with unintentional directing of attention to deviant stimuli and was analysed in frontocentral brain regions. Age was utilised as a control variable. Our results show that tone deviations in infants trigger an immature N2-P3a complex. Contrary to studies with older children or adults, the N2 amplitude was more positive for deviants than for standards. This may be related to an immature superposition of the N2 with the P3a. For infants whose parents had no high-school degree and were born abroad, this tendency was increased, indicating that facing multiple challenges as a young family impacts on the infant's early neural development. As such, attending to unexpected stimulus changes may be important for early learning processes. Variations of the infant N2-P3a complex may, thus, relate to early changes in attentional capacity and learning experiences due to familial challenges. This points towards the importance of early prevention programs.
Collapse
Affiliation(s)
| | - Birgit Mathes
- Bremer Initiative to Foster Early Childhood Development (BRISE), Faculty for Human and Health Sciences, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
21
|
Luo AC, Sydnor VJ, Pines A, Larsen B, Alexander-Bloch AF, Cieslak M, Covitz S, Chen AA, Esper NB, Feczko E, Franco AR, Gur RE, Gur RC, Houghton A, Hu F, Keller AS, Kiar G, Mehta K, Salum GA, Tapera T, Xu T, Zhao C, Salo T, Fair DA, Shinohara RT, Milham MP, Satterthwaite TD. Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy. Nat Commun 2024; 15:3511. [PMID: 38664387 PMCID: PMC11045762 DOI: 10.1038/s41467-024-47748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.
Collapse
Affiliation(s)
- Audrey C Luo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sydney Covitz
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew A Chen
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Eric Feczko
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Alexandre R Franco
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fengling Hu
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory Kiar
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giovanni A Salum
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tinashe Tapera
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Chenying Zhao
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Taylor Salo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Ebner NC, Horta M, El-Shafie D. New directions for studying the aging social-cognitive brain. Curr Opin Psychol 2024; 56:101768. [PMID: 38104362 PMCID: PMC10939782 DOI: 10.1016/j.copsyc.2023.101768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
The study of social cognition has extended across the lifespan with a recent special focus on the impacts of aging on the social-cognitive brain. This review summarizes current knowledge on social perception, theory of mind, empathy, and social behavior from a social-cognitive neuroscience of aging perspective and identifies new directions for studying the aging social-cognitive brain. These new directions highlight the need for (i) standardized operationalization and analysis of social-cognitive constructs; (ii) use of naturalistic paradigms to enhance ecological validity of social-cognitive measures; (iii) application of repeated assessments via single-N designs for robust delineation of social-cognitive processes in the aging brain; (iv) increased representation of vulnerable aging populations in social-cognitive brain research to enhance diversity, promote generalizability, and allow for cross-population comparisons.
Collapse
Affiliation(s)
- Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, USA.
| | - Marilyn Horta
- Department of Psychology, University of Florida, Gainesville, FL, USA; Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Dalia El-Shafie
- Department of Psychology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Moser JS, Munia TTK, Louis CC, Anderson GE, Aviyente S. Errors elicit frontoparietal theta-gamma coupling that is modulated by endogenous estradiol levels. Int J Psychophysiol 2024; 197:112299. [PMID: 38215947 PMCID: PMC10922427 DOI: 10.1016/j.ijpsycho.2024.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Cognitive control-related error monitoring is intimately involved in behavioral adaptation, learning, and individual differences in a variety of psychological traits and disorders. Accumulating evidence suggests that a focus on women's health and ovarian hormones is critical to the study of such cognitive brain functions. Here we sought to identify a novel index of error monitoring using a time-frequency based phase amplitude coupling (t-f PAC) measure and examine its modulation by endogenous levels of estradiol in females. Forty-three healthy, naturally cycling young adult females completed a flanker task while continuous electroencephalogram was recorded on four occasions across the menstrual cycle. Results revealed significant error-related t-f PAC between theta phase generated in fronto-central areas and gamma amplitude generated in parietal-occipital areas. Moreover, this error-related theta-gamma coupling was enhanced by endogenous levels of estradiol both within females across the cycle as well as between females with higher levels of average circulating estradiol. While the role of frontal midline theta in error processing is well documented, this paper extends the extant literature by illustrating that error monitoring involves the coordination between multiple distributed systems with the slow midline theta activity modulating the power of gamma-band oscillatory activity in parietal regions. They further show enhancement of inter-regional coupling by endogenous estradiol levels, consistent with research indicating modulation of cognitive control neural functions by the endocrine system in females. Together, this work identifies a novel neurophysiological marker of cognitive control-related error monitoring in females that has implications for neuroscience and women's health.
Collapse
Affiliation(s)
- Jason S Moser
- Department of Psychology, Michigan State University, United States of America.
| | - Tamanna T K Munia
- Department of Electrical and Computer Engineering, Michigan State University, United States of America
| | - Courtney C Louis
- Department of Psychology, Michigan State University, United States of America
| | - Grace E Anderson
- Department of Psychology, Michigan State University, United States of America
| | - Selin Aviyente
- Department of Electrical and Computer Engineering, Michigan State University, United States of America
| |
Collapse
|
24
|
Shaaban CE, Rosso AL. Racial, Ethnic, and Geographic Diversity in Population Neuroscience. Curr Top Behav Neurosci 2024; 68:67-85. [PMID: 38844714 PMCID: PMC11629388 DOI: 10.1007/7854_2024_475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
In this chapter, we consider lack of racial, ethnic, and geographic diversity in research studies from a public health perspective in which representation of a target population is critical. We review the state of the research field with respect to racial, ethnic, and geographic diversity in study participants. We next focus on key factors which can arise from the lack of diversity and can negatively impact external validity. Finally, we argue that the public's health, and future research, will ultimately be served by approaches from both recruitment and representation science and population neuroscience, and we close with recommendations from these two fields to improve diversity in studies.
Collapse
Affiliation(s)
- C Elizabeth Shaaban
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Andrea L Rosso
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Soh Y, Whitmer RA, Mayeda ER, Glymour MM, Eng CW, Peterson RL, George KM, Chen R, Quesenberry CP, Mungas DM, DeCarli CS, Gilsanz P. Timing and level of educational attainment and late-life cognition in the KHANDLE study. Alzheimers Dement 2024; 20:593-600. [PMID: 37751937 PMCID: PMC10842991 DOI: 10.1002/alz.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION The timing of educational attainment may modify its effects on late-life cognition, yet most studies evaluate education only at a single time point. METHODS Kaiser Healthy Aging and Diverse Life Experiences (KHANDLE) Study cohort participants (N = 554) reported educational attainment (dichotomized at any college education) at two time points, and we classified them as having low, high, or later-life high educational attainment. Linear mixed-effects models estimated associations between educational attainment change groups and domain-specific cognitive outcomes (z-standardized). RESULTS Compared to low educational attainment, high (β= 0.59 SD units; 95% confidence interval [CI]: 0.39, 0.79) and later-life high educational attainment (β = 0.22; 95% CI: 0.00, 0.44) were associated with higher executive function. Only high educational attainment was associated with higher verbal episodic memory (β = 0.27; 95% CI: 0.06, 0.48). DISCUSSION Level and timing of educational attainment are both associated with domain-specific cognition. A single assessment for educational attainment may inadequately characterize protective associations with late-life cognition. HIGHLIGHTS Few studies have examined both level and timing of educational attainment on cognition. Marginalized populations are more likely to attain higher education in adulthood. Higher educational attainment in late life is also associated with higher cognition.
Collapse
Affiliation(s)
- Yenee Soh
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
| | - Rachel A. Whitmer
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCaliforniaUSA
- Department of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Elizabeth Rose Mayeda
- Department of EpidemiologyUniversity of California, Los Angeles Fielding School of Public HealthLos AngelesCaliforniaUSA
| | - M. Maria Glymour
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Chloe W. Eng
- Department of Epidemiology and Population HealthStanford UniversityStanfordCaliforniaUSA
| | - Rachel L. Peterson
- School of Public and Community Health SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Kristen M. George
- Department of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Ruijia Chen
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Dan M. Mungas
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Charles S. DeCarli
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Paola Gilsanz
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
| |
Collapse
|
26
|
Atilano-Barbosa D, Barrios FA. Brain morphological variability between whites and African Americans: the importance of racial identity in brain imaging research. Front Integr Neurosci 2023; 17:1027382. [PMID: 38192686 PMCID: PMC10773238 DOI: 10.3389/fnint.2023.1027382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/14/2023] [Indexed: 01/10/2024] Open
Abstract
In a segregated society, marked by a historical background of inequalities, there is a consistent under-representation of ethnic and racial minorities in biomedical research, causing disparities in understanding genetic and acquired diseases as well as in the effectiveness of clinical treatments affecting different groups. The repeated inclusion of small and non-representative samples of the population in neuroimaging research has led to generalization bias in the morphological characterization of the human brain. A few brain morphometric studies between Whites and African Americans have reported differences in orbitofrontal volumetry and insula cortical thickness. Nevertheless, these studies are mostly conducted in small samples and populations with cognitive impairment. For this reason, this study aimed to identify brain morphological variability due to racial identity in representative samples. We hypothesized that, in neurotypical young adults, there are differences in brain morphometry between participants with distinct racial identities. We analyzed the Human Connectome Project (HCP) database to test this hypothesis. Brain volumetry, cortical thickness, and cortical surface area measures of participants identified as Whites (n = 338) or African Americans (n = 56) were analyzed. Non-parametrical permutation analysis of covariance between these racial identity groups adjusting for age, sex, education, and economic income was implemented. Results indicated volumetric differences in choroid plexus, supratentorial, white matter, and subcortical brain structures. Moreover, differences in cortical thickness and surface area in frontal, parietal, temporal, and occipital brain regions were identified between groups. In this regard, the inclusion of sub-representative minorities in neuroimaging research, such as African American persons, is fundamental for the comprehension of human brain morphometric diversity and to design personalized clinical brain treatments for this population.
Collapse
Affiliation(s)
| | - Fernando A. Barrios
- Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla, Mexico
| |
Collapse
|
27
|
Franco-Rocha OY, Lewis KA, Longoria KD, De La Torre Schutz A, Wright ML, Kesler SR. Cancer-related cognitive impairment in racial and ethnic minority groups: a scoping review. J Cancer Res Clin Oncol 2023; 149:12561-12587. [PMID: 37432455 DOI: 10.1007/s00432-023-05088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Disparities in cognitive function among racial and ethnic groups have been reported in non-cancer conditions, but cancer-related cognitive impairment (CRCI) in racial and ethnic minority groups is poorly understood. We aimed to synthesize and characterize the available literature about CRCI in racial and ethnic minority populations. METHODS We conducted a scoping review in the PubMed, PsycInfo, and Cumulative Index to Nursing and Allied Health Literature databases. Articles were included if they were published in English or Spanish, reported cognitive functioning in adults diagnosed with cancer, and characterized the race or ethnicity of the participants. Literature reviews, commentaries, letters to the editor, and gray literature were excluded. RESULTS Seventy-four articles met the inclusion criteria, but only 33.8% differentiated the CRCI findings by racial or ethnic subgroups. There were associations between cognitive outcomes and the participants' race or ethnicity. Additionally, some studies found that Black and non-white individuals with cancer were more likely to experience CRCI than their white counterparts. Biological, sociocultural, and instrumentation factors were associated with CRCI differences between racial and ethnic groups. CONCLUSIONS Our findings indicate that racial and ethnic minoritized individuals may be disparately affected by CRCI. Future research should use standardized guidelines for measuring and reporting the self-identified racial and ethnic composition of the sample; differentiate CRCI findings by racial and ethnic subgroups; consider the influence of structural racism in health outcomes; and develop strategies to promote the participation of members of racial and ethnic minority groups.
Collapse
Affiliation(s)
- Oscar Y Franco-Rocha
- School of Nursing, University of Texas at Austin, 1710 Red River St, Austin, TX, USA.
| | - Kimberly A Lewis
- School of Nursing, University of Texas at Austin, 1710 Red River St, Austin, TX, USA
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla D Longoria
- School of Nursing, University of Texas at Austin, 1710 Red River St, Austin, TX, USA
| | - Alexa De La Torre Schutz
- Brain Health Neuroscience Lab, School of Nursing, The University of Texas at Austin, 1710 Red River St, Austin, TX, USA
| | - Michelle L Wright
- School of Nursing, University of Texas at Austin, 1710 Red River St, Austin, TX, USA
| | - Shelli R Kesler
- School of Nursing, University of Texas at Austin, 1710 Red River St, Austin, TX, USA
| |
Collapse
|
28
|
Turner C, Baylan S, Bracco M, Cruz G, Hanzal S, Keime M, Kuye I, McNeill D, Ng Z, van der Plas M, Ruzzoli M, Thut G, Trajkovic J, Veniero D, Wale SP, Whear S, Learmonth G. Developmental changes in individual alpha frequency: Recording EEG data during public engagement events. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-14. [PMID: 37719836 PMCID: PMC10503479 DOI: 10.1162/imag_a_00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 09/19/2023]
Abstract
Statistical power in cognitive neuroimaging experiments is often very low. Low sample size can reduce the likelihood of detecting real effects (false negatives) and increase the risk of detecting non-existing effects by chance (false positives). Here, we document our experience of leveraging a relatively unexplored method of collecting a large sample size for simple electroencephalography (EEG) studies: by recording EEG in the community during public engagement and outreach events. We collected data from 346 participants (189 females, age range 6-76 years) over 6 days, totalling 29 hours, at local science festivals. Alpha activity (6-15 Hz) was filtered from 30 seconds of signal, recorded from a single electrode placed between the occipital midline (Oz) and inion (Iz) while the participants rested with their eyes closed. A total of 289 good-quality datasets were obtained. Using this community-based approach, we were able to replicate controlled, lab-based findings: individual alpha frequency (IAF) increased during childhood, reaching a peak frequency of 10.28 Hz at 28.1 years old, and slowed again in middle and older age. Total alpha power decreased linearly, but the aperiodic-adjusted alpha power did not change over the lifespan. Aperiodic slopes and intercepts were highest in the youngest participants. There were no associations between these EEG indexes and self-reported fatigue, measured by the Multidimensional Fatigue Inventory. Finally, we present a set of important considerations for researchers who wish to collect EEG data within public engagement and outreach environments.
Collapse
Affiliation(s)
- Christopher Turner
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Satu Baylan
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Martina Bracco
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Gabriela Cruz
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Simon Hanzal
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Marine Keime
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Isaac Kuye
- School of Molecular Biosciences, University of Glasgow, Glasgow, Scotland
| | - Deborah McNeill
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Zika Ng
- School of Molecular Biosciences, University of Glasgow, Glasgow, Scotland
| | - Mircea van der Plas
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Manuela Ruzzoli
- Basque Center on Cognition Brain and Language (BCBL), Donostia/San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Gregor Thut
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Jelena Trajkovic
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Sarah P. Wale
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Sarah Whear
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
| | - Gemma Learmonth
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, Scotland
- Division of Psychology, University of Stirling, Stirling, Scotland
| |
Collapse
|
29
|
Minto LR, Ellis R, Cherry KE, Wood RH, Barber SJ, Carter S, Dotson VM. Impact of cardiovascular risk factors on the relationships of physical activity with mood and cognitive function in a diverse sample. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2023; 30:654-667. [PMID: 35510295 PMCID: PMC10461536 DOI: 10.1080/13825585.2022.2071414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/22/2022] [Indexed: 05/10/2023]
Abstract
Physical activity has well-known benefits for older adults' mood and cognitive functioning; however, it is not clear whether risk factors for cardiovascular disease (CVD) affect the relationships of physical activity with these health outcomes among diverse older adults. This study investigated the impact of CVD risk burden on the relationships among self-reported physical activity, mood, and cognitive functioning in a diverse sample of 62 adults age 45 and older. We found that higher physical activity was associated with better attention and verbal working memory at lower CVD risk, but with worse attention and verbal working memory at higher CVD risk levels. Thus, higher CVD risk might limit the effectiveness of exercise interventions for mood and cognitive functioning. Future studies are needed to further clarify individual differences that impact the relationships among physical activity, CVD risk, and cognitive outcomes.
Collapse
Affiliation(s)
- Lex R. Minto
- Department of Psychology, Georgia State University
| | - Rebecca Ellis
- Department of Kinesiology & Health, Georgia State University
| | | | | | - Sarah J. Barber
- Department of Psychology, Georgia State University
- Gerontology Institute, Georgia State University
| | | | - Vonetta M. Dotson
- Department of Psychology, Georgia State University
- Gerontology Institute, Georgia State University
| |
Collapse
|
30
|
Manfredi M, Comfort WE, Marques LM, Rego GG, Egito JH, Romero RL, Boggio PS. Understanding racial bias through electroencephalography. BMC Psychol 2023; 11:81. [PMID: 36973706 PMCID: PMC10045171 DOI: 10.1186/s40359-023-01125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Research on racial bias in social and cognitive psychology has focused on automatic cognitive processes such as categorisation or stereotyping. Neuroimaging has revealed differences in the neural circuit when processing social information about one's own or another's ethnicity. This review investigates the influence of racial bias on human behaviour by reviewing studies that examined changes in neural circuitry (i.e. ERP responses) during automatic and controlled processes elicited by specific tasks. This systematic analysis of specific ERP components across different studies provides a greater understanding of how social contexts are perceived and become associated with specific stereotypes and behavioural predictions. Therefore, investigating these related cognitive and neurobiological functions can further our understanding of how racial bias affects our cognition more generally and guide more effective programs and policies aimed at its mitigation.
Collapse
Affiliation(s)
- Mirella Manfredi
- Department of Psychology, University of Zurich, Zurich, Switzerland.
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland.
| | - William E Comfort
- Social and Cognitive Neuroscience Laboratory, Developmental Disorders Program, Centerfor Health and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| | - Lucas M Marques
- Institute of Physical Medicine and Rehabilitation, Clinical Hospital, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Gabriel G Rego
- Social and Cognitive Neuroscience Laboratory, Developmental Disorders Program, Centerfor Health and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| | - Julia H Egito
- Social and Cognitive Neuroscience Laboratory, Developmental Disorders Program, Centerfor Health and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| | - Ruth L Romero
- Social and Cognitive Neuroscience Laboratory, Developmental Disorders Program, Centerfor Health and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| | - Paulo S Boggio
- Social and Cognitive Neuroscience Laboratory, Developmental Disorders Program, Centerfor Health and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| |
Collapse
|
31
|
Richter A, Soch J, Kizilirmak JM, Fischer L, Schütze H, Assmann A, Behnisch G, Feldhoff H, Knopf L, Raschick M, Schult A, Seidenbecher CI, Yakupov R, Düzel E, Schott BH. Single‐value scores of memory‐related brain activity reflect dissociable neuropsychological and anatomical signatures of neurocognitive aging. Hum Brain Mapp 2023; 44:3283-3301. [PMID: 36972323 PMCID: PMC10171506 DOI: 10.1002/hbm.26281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Memory-related functional magnetic resonance imaging (fMRI) activations show age-related differences across multiple brain regions that can be captured in summary statistics like single-value scores. Recently, we described two single-value scores reflecting deviations from prototypical whole-brain fMRI activity of young adults during novelty processing and successful encoding. Here, we investigate the brain-behavior associations of these scores with age-related neurocognitive changes in 153 healthy middle-aged and older adults. All scores were associated with episodic recall performance. The memory network scores, but not the novelty network scores, additionally correlated with medial temporal gray matter and other neuropsychological measures including flexibility. Our results thus suggest that novelty-network-based fMRI scores show high brain-behavior associations with episodic memory and that encoding-network-based fMRI scores additionally capture individual differences in other aging-related functions. More generally, our results suggest that single-value scores of memory-related fMRI provide a comprehensive measure of individual differences in network dysfunction that may contribute to age-related cognitive decline.
Collapse
|
32
|
Jones LM, Sullivan S, Cuffee Y, Monroe K, Rafferty J, Giordani B. MindingMe: A Feasibility Study on Conducting Neuroimaging Research Among Diverse Groups. Nurs Res 2023; 72:158-163. [PMID: 36729826 PMCID: PMC9991962 DOI: 10.1097/nnr.0000000000000637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Neuroimaging tools, such as functional magnetic resonance imaging, are useful in understanding differences in brain activity that predict behavior change. Designing interventions based on brain activity and response may enhance current self-management regimens. Yet, diverse groups, such as Black women with chronic illness, have historically been left out of neuroimaging research. OBJECTIVES The aims of this study were to assess (a) the feasibility of conducting neuroimaging research among Black women with hypertension and (b) the predictors of willingness to participate in future studies. METHODS A survey designed to assess interest in participating in neuroimaging research was distributed through a Facebook campaign targeting Metro-Detroit Blacks with hypertension. A 10-minute, 44-item survey queried the women regarding their perspectives related to participation in neuroimaging studies. Logistic regression analyses were conducted to predict willingness to participate in a future study; they included a range of predictors: demographic indicators, history of blood pressure diagnosis, systolic and diastolic blood pressure, and availability of a support person who could accompany the participant to a future study session. RESULTS Two hundred fifty-seven Black women completed the survey. On average, the women were 59 years old, had been diagnosed with hypertension for 14 years, and had a systolic blood pressure of 141 mmHg. Participants were willing to travel 40 miles to participate, and many preferred to drive a personal vehicle. Some women were claustrophobic (20%) or had metal in their bodies (13%) and, therefore, would likely be ineligible to participate in neuroimaging studies. Some were nervous about the "small space" of a scanner, but others stated they would "enjoy participating" and wanted to "help future people…get well." Women who had a support person to attend their appointment with them were almost 4 times more likely to state they would participate in future studies. Those who had been diagnosed with hypertension for more than 11 years (the median) were almost 3 times more likely to report interest in participating in a future study than those participants who had been diagnosed with hypertension for 11 years or less. DISCUSSION Black women with hypertension were interested and eligible to participate in neuroimaging research. Despite some of the facilitators and barriers we identified, the women in our sample were interested in participating in future studies. The presence of a support person and length of time with a hypertension diagnosis are important predictors of willingness to participate in a future study.
Collapse
Affiliation(s)
- Lenette M. Jones
- University of Michigan School of Nursing, Department of Health Behavior and Biological Sciences, Ann Arbor, MI
| | - Stephen Sullivan
- Center for Sexuality and Health Disparities, University of Michigan School of Nursing, Ann Arbor, MI
| | - Yendelela Cuffee
- Program in Epidemiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Korrey Monroe
- University of Michigan School of Nursing, Ann Arbor, MI
| | - Jane Rafferty
- University of Michigan School of Social Work, Ann Arbor, MI
| | - Bruno Giordani
- University of Michigan Psychiatry, Neurology, and Psychology, and School of Nursing, Ann Arbor, MI
| |
Collapse
|
33
|
Dueker N, Wang L, Gardener H, Gomez L, Kaur S, Beecham A, Blanton SH, Dong C, Gutierrez J, Cheung YK, Moon YP, Levin B, Wright CB, Elkind MSV, Sacco RL, Rundek T. Genome-wide association study of executive function in a multi-ethnic cohort implicates LINC01362: Results from the northern Manhattan study. Neurobiol Aging 2023; 123:216-221. [PMID: 36658081 PMCID: PMC10064578 DOI: 10.1016/j.neurobiolaging.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Executive function is a cognitive domain with sizable heritability representing higher-order cognitive abilities. Genome-wide association studies (GWAS) of executive function are sparse, particularly in populations underrepresented in medical research. We performed a GWAS on a composite measure of executive function that included measures of mental flexibility and reasoning using data from the Northern Manhattan Study, a racially and ethnically diverse cohort (N = 1077, 69% Hispanic, 17% non-Hispanic Black and 14% non-Hispanic White). Four SNPs located in the long intergenic non-protein coding RNA 1362 gene, LINC01362, on chromosome 1p31.1, were significantly associated with the composite measure of executive function in this cohort (top SNP rs2788328, ß = 0.22, p = 3.1 × 10-10). The associated SNPs have been shown to influence expression of the tubulin tyrosine ligase like 7 gene, TTLL7 and the protein kinase CAMP-activated catalytic subunit beta gene, PRKACB, in several regions of the brain involved in executive function. Together, these findings present new insight into the genetic underpinnings of executive function in an understudied population.
Collapse
Affiliation(s)
- Nicole Dueker
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA.
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL USA
| | - Hannah Gardener
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Sonya Kaur
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA; Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami, Miami FL USA
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald, Department of Human Genetics, University of Miami, Miami, FL USA
| | - Chuanhui Dong
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Jose Gutierrez
- Department of Neurology and the Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY USA
| | - Ying Kuen Cheung
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yeseon P Moon
- Department of Neurology and the Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY USA
| | - Bonnie Levin
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA; Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami, Miami FL USA
| | - Clinton B Wright
- National Institute of Neurological Disorders and Stroke, Bethesda, MD USA
| | - Mitchell S V Elkind
- Department of Neurology and the Gertrude H Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY USA
| | - Ralph L Sacco
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA; Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami, Miami FL USA; Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL USA; Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami, Miami FL USA; Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL USA
| |
Collapse
|
34
|
Doherty EJ, Spencer CA, Burnison J, Čeko M, Chin J, Eloy L, Haring K, Kim P, Pittman D, Powers S, Pugh SL, Roumis D, Stephens JA, Yeh T, Hirshfield L. Interdisciplinary views of fNIRS: Current advancements, equity challenges, and an agenda for future needs of a diverse fNIRS research community. Front Integr Neurosci 2023; 17:1059679. [PMID: 36922983 PMCID: PMC10010439 DOI: 10.3389/fnint.2023.1059679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Functional Near-Infrared Spectroscopy (fNIRS) is an innovative and promising neuroimaging modality for studying brain activity in real-world environments. While fNIRS has seen rapid advancements in hardware, software, and research applications since its emergence nearly 30 years ago, limitations still exist regarding all three areas, where existing practices contribute to greater bias within the neuroscience research community. We spotlight fNIRS through the lens of different end-application users, including the unique perspective of a fNIRS manufacturer, and report the challenges of using this technology across several research disciplines and populations. Through the review of different research domains where fNIRS is utilized, we identify and address the presence of bias, specifically due to the restraints of current fNIRS technology, limited diversity among sample populations, and the societal prejudice that infiltrates today's research. Finally, we provide resources for minimizing bias in neuroscience research and an application agenda for the future use of fNIRS that is equitable, diverse, and inclusive.
Collapse
Affiliation(s)
- Emily J. Doherty
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Cara A. Spencer
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | | | - Marta Čeko
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Jenna Chin
- College of Arts, Humanities, and Social Sciences, Psychology, University of Denver, Denver, CO, United States
| | - Lucca Eloy
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Kerstin Haring
- Department of Computer Science, University of Denver, Denver, CO, United States
| | - Pilyoung Kim
- College of Arts, Humanities, and Social Sciences, Psychology, University of Denver, Denver, CO, United States
| | - Daniel Pittman
- Department of Computer Science, University of Denver, Denver, CO, United States
| | - Shannon Powers
- College of Arts, Humanities, and Social Sciences, Psychology, University of Denver, Denver, CO, United States
| | - Samuel L. Pugh
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | | | - Jaclyn A. Stephens
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, United States
| | - Tom Yeh
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
| | - Leanne Hirshfield
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
35
|
Gard AM, Hyde LW, Heeringa SG, West BT, Mitchell C. Why weight? Analytic approaches for large-scale population neuroscience data. Dev Cogn Neurosci 2023; 59:101196. [PMID: 36630774 PMCID: PMC9843279 DOI: 10.1016/j.dcn.2023.101196] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Population-based neuroimaging studies that feature complex sampling designs enable researchers to generalize their results more widely. However, several theoretical and analytical questions pose challenges to researchers interested in these data. The following is a resource for researchers interested in using population-based neuroimaging data. We provide an overview of sampling designs and describe the differences between traditional model-based analyses and survey-oriented design-based analyses. To elucidate key concepts, we leverage data from the Adolescent Brain Cognitive Development℠ Study (ABCD Study®), a population-based sample of 11,878 9-10-year-olds in the United States. Analyses revealed modest sociodemographic discrepancies between the target population of 9-10-year-olds in the U.S. and both the recruited ABCD sample and the analytic sample with usable structural and functional imaging data. In evaluating the associations between socioeconomic resources (i.e., constructs that are tightly linked to recruitment biases) and several metrics of brain development, we show that model-based approaches over-estimated the associations of household income and under-estimated the associations of caregiver education with total cortical volume and surface area. Comparable results were found in models predicting neural function during two fMRI task paradigms. We conclude with recommendations for ABCD Study® users and users of population-based neuroimaging cohorts more broadly.
Collapse
Affiliation(s)
- Arianna M Gard
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Department of Psychology, Neuroscience and Cognitive Neuroscience Program, University of Maryland, College Park, MD, USA.
| | - Luke W Hyde
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Steven G Heeringa
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Brady T West
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Ricard JA, Parker TC, Dhamala E, Kwasa J, Allsop A, Holmes AJ. Confronting racially exclusionary practices in the acquisition and analyses of neuroimaging data. Nat Neurosci 2023; 26:4-11. [PMID: 36564545 DOI: 10.1038/s41593-022-01218-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Across the brain sciences, institutions and individuals have begun to actively acknowledge and address the presence of racism, bias, and associated barriers to inclusivity within our community. However, even with these recent calls to action, limited attention has been directed to inequities in the research methods and analytic approaches we use. The very process of science, including how we recruit, the methodologies we utilize and the analyses we conduct, can have marked downstream effects on the equity and generalizability of scientific discoveries across the global population. Despite our best intentions, the use of field-standard approaches can inadvertently exclude participants from engaging in research and yield biased brain-behavior relationships. To address these pressing issues, we discuss actionable ways and important questions to move the fields of neuroscience and psychology forward in designing better studies to address the history of exclusionary practices in human brain mapping.
Collapse
Affiliation(s)
- J A Ricard
- Department of Psychology, Yale University, New Haven, CT, USA.
| | - T C Parker
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | - E Dhamala
- Department of Psychology, Yale University, New Haven, CT, USA
| | - J Kwasa
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - A Allsop
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - A J Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
37
|
Consideration of culture in cognition: How we can enrich methodology and theory. Psychon Bull Rev 2022:10.3758/s13423-022-02227-5. [PMID: 36510095 DOI: 10.3758/s13423-022-02227-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
In this paper, we argue that adopting an inclusive approach where diverse cultures are represented in research is of prime importance for cognitive psychology. The overrepresentation of participant samples and researchers from WEIRD (Western, Educated, Industrialized, Rich, and Democratic) cultures limits the generalizability of findings and fails to capture potential sources of variability, impeding understanding of human cognition. In an analysis of articles in representative cognitive psychology journals over the five-year period of 2016-2020, we find that only approximately 7% of articles consider culture, broadly defined. Of these articles, a majority (83%) focus on language or bilingualism, with small numbers of articles considering other aspects of culture. We argue that methodology and theory developed in the last century of cognitive research not only can be leveraged, but will be enriched by greater diversity in both populations and researchers. Such advances pave the way to uncover cognitive processes that may be universal or systematically differ as a function of cultural variations, and the individual differences in relation to cultural variations. To make a case for broadening this scope, we characterize relevant cross-cultural research, sample classic cognitive research that is congruent with such an approach, and discuss compatibility between a cross-cultural perspective and the classic tenets of cognitive psychology. We make recommendations for large and small steps for the field to incorporate greater cultural representation in the study of cognition, while recognizing the challenges associated with these efforts and acknowledging that not every research question calls for a cross-cultural perspective.
Collapse
|
38
|
Garcini LM, Arredondo MM, Berry O, Church JA, Fryberg S, Thomason ME, McLaughlin KA. Increasing diversity in developmental cognitive neuroscience: A roadmap for increasing representation in pediatric neuroimaging research. Dev Cogn Neurosci 2022; 58:101167. [PMID: 36335807 PMCID: PMC9638728 DOI: 10.1016/j.dcn.2022.101167] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 01/13/2023] Open
Abstract
Understanding of human brain development has advanced rapidly as the field of developmental cognitive neuroscience (DCN) has matured into an established scientific discipline. Despite substantial progress, DCN lags behind other related disciplines in terms of diverse representation, standardized reporting requirements for socio-demographic characteristics of participants in pediatric neuroimaging studies, and use of intentional sampling strategies to more accurately represent the socio-demographic, ethnic, and racial composition of the populations from which participants are sampled. Additional efforts are needed to shift DCN towards a more inclusive field that facilitates the study of individual differences across a variety of cultural and contextual experiences. In this commentary, we outline and discuss barriers within our current scientific practice (e.g., research methods) and beliefs (i.e., what constitutes good science, good scientists, and good research questions) that contribute to under-representation and limited diversity within pediatric neuroimaging studies and propose strategies to overcome those barriers. We discuss strategies to address barriers at intrapersonal, interpersonal, community, systemic, and structural levels. Highlighting strength-based models of inclusion and recognition of the value of diversity in DCN research, along with acknowledgement of the support needed to diversify the field is critical for advancing understanding of neurodevelopment and reducing health inequities.
Collapse
Affiliation(s)
- Luz M Garcini
- Department of Psychological Sciences, Rice University, United States
| | - Maria M Arredondo
- Department of Human Development and Family Sciences, The University of Texas at Austin, United States.
| | - Obianuju Berry
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, United States
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, United States
| | | | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, United States
| | | |
Collapse
|
39
|
Schroeter ML, Kynast J, Schlögl H, Baron-Cohen S, Villringer A. Sex and age interact in reading the mind in the eyes. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 12:100162. [PMID: 36411783 PMCID: PMC9674865 DOI: 10.1016/j.cpnec.2022.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Social cognition includes understanding the mental states (thoughts, feelings, intentions, desires, and beliefs) of others - so-called 'theory of mind' or 'mindreading'. Recent studies have shown an impact of age and sex. Here, we applied the 'Reading the Mind in the Eyes' Test (RMET) that measures the ability to identify mental states from the eye region of the face. RMET accuracy was measured and analyzed in a large population-based sample (N = 1603) across the whole adult age-range from 19 to 79 years with effect size analyses (Hedges' g). Overall test performance was lower in older than younger women and men, whereas differences between women and men were almost negligible across the whole cohort. In a further analysis focusing on age-specific sex differences, RMET accuracy was higher for women below 45 years compared to men. This sex effect nearly vanished in older people above 45 years of age. Results were verified in a sub-cohort after excluding participants with neurological and psychiatric conditions, and with another cut-off, i.e. 50 years of age. In conclusion, results suggest that mindreading declines with age. Overall sex effects were small and results suggest that age-related hormonal and social factors may impact mental state perception. Future mega-analyses and longitudinal studies including hormonal and social measures are needed to validate the interaction between RMET performance, aging and sex.
Collapse
Affiliation(s)
- Matthias L. Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
- University Hospital Leipzig, Clinic for Cognitive Neurology, Leipzig, Germany
- University of Leipzig, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, Germany
| | - Jana Kynast
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
- University of Leipzig, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, Germany
| | - Haiko Schlögl
- Division of Endocrinology, Department of Endocrinology, Nephrology, Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Simon Baron-Cohen
- University of Cambridge, Department of Psychiatry, Autism Research Centre, Cambridge, UK
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
- University Hospital Leipzig, Clinic for Cognitive Neurology, Leipzig, Germany
- University of Leipzig, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, Germany
| |
Collapse
|
40
|
Han SD, Fleischman DA, Yu L, Poole V, Lamar M, Kim N, Leurgans SE, Bennett DA, Arfanakis K, Barnes LL. Cognitive decline and hippocampal functional connectivity within older Black adults. Hum Brain Mapp 2022; 43:5044-5052. [PMID: 36066181 PMCID: PMC9582363 DOI: 10.1002/hbm.26070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/26/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
While there has been a proliferation of neuroimaging studies on cognitive decline in older non-Hispanic White adults, there is a dearth of knowledge regarding neuroimaging correlates of cognitive decline in Black adults. Resting-state functional neuroimaging approaches may be particularly sensitive to early cognitive decline, but there are no studies that we know of that apply this approach to examining associations of brain function to cognition in older Black adults. We investigated the association of cognitive decline with whole-brain voxel-wise functional connectivity to the hippocampus, a key brain region functionally implicated in early Alzheimer's dementia, in 132 older Black adults without dementia participating in the Minority Aging Research Study and Rush Memory and Aging Project, two longitudinal studies of aging that include harmonized annual cognitive assessments and magnetic resonance imaging brain imaging. In models adjusted for demographic factors (age, education, sex), global cognitive decline was associated with functional connectivity of the hippocampus to three clusters in the right and left frontal regions of the dorsolateral prefrontal cortex. In domain-specific analyses, decline in semantic memory was associated with functional connectivity of the hippocampus to bilateral clusters in the precentral gyrus, and decline in perceptual speed was inversely associated with connectivity of the hippocampus to the bilateral intracalcarine cortex and the right fusiform gyrus. These findings elucidate neurobiological mechanisms underlying cognitive decline in older Black adults and may point to specific targets of intervention for Alzheimer's disease.
Collapse
Affiliation(s)
- S. Duke Han
- Department of Family MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Debra A. Fleischman
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Lei Yu
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Victoria Poole
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Melissa Lamar
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Namhee Kim
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Sue E. Leurgans
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Department of Diagnostic Radiology and Nuclear MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Lisa L. Barnes
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
41
|
Sanders AFP, Baum GL, Harms MP, Kandala S, Bookheimer SY, Dapretto M, Somerville LH, Thomas KM, Van Essen DC, Yacoub E, Barch DM. Developmental trajectories of cortical thickness by functional brain network: The roles of pubertal timing and socioeconomic status. Dev Cogn Neurosci 2022; 57:101145. [PMID: 35944340 PMCID: PMC9386024 DOI: 10.1016/j.dcn.2022.101145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human cerebral cortex undergoes considerable changes during development, with cortical maturation patterns reflecting regional heterogeneity that generally progresses in a posterior-to-anterior fashion. However, the organizing principles that govern cortical development remain unclear. In the current study, we characterized age-related differences in cortical thickness (CT) as a function of sex, pubertal timing, and two dissociable indices of socioeconomic status (i.e., income-to-needs and maternal education) in the context of functional brain network organization, using a cross-sectional sample (n = 789) diverse in race, ethnicity, and socioeconomic status from the Lifespan Human Connectome Project in Development (HCP-D). We found that CT generally followed a linear decline from 5 to 21 years of age, except for three functional networks that displayed nonlinear trajectories. We found no main effect of sex or age by sex interaction for any network. Earlier pubertal timing was associated with reduced mean CT and CT in seven networks. We also found a significant age by maternal education interaction for mean CT across cortex and CT in the dorsal attention network, where higher levels of maternal education were associated with steeper age-related decreases in CT. Taken together, our results suggest that these biological and environmental variations may impact the emerging functional connectome.
Collapse
Affiliation(s)
- Ashley F P Sanders
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Graham L Baum
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA
| | - Leah H Somerville
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Kathleen M Thomas
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
42
|
Demographic reporting across a decade of neuroimaging: a systematic review. Brain Imaging Behav 2022; 16:2785-2796. [DOI: 10.1007/s11682-022-00724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Diversity of participants in biomedical research with respect to race, ethnicity, and biological sex is crucial, particularly given differences in disease prevalence, recovery, and survival rates between demographic groups. The objective of this systematic review was to report on the demographics of neuroimaging studies using magnetic resonance imaging (MRI). The Web of Science database was used and data collection was performed between June 2021 to November 2021; all articles were reviewed independently by at least two researchers. Articles utilizing MR data acquired in the United States, with n ≥ 10 human subjects, and published between 2010–2020 were included. Non-primary research articles and those published in journals that did not meet a quality control check were excluded. Of the 408 studies meeting inclusion criteria, approximately 77% report sex, 10% report race, and 4% report ethnicity. Demographic reporting also varied as function of disease studied, participant age range, funding, and publisher. We anticipate quantitative data on the extent, or lack, of reporting will be necessary to ensure inclusion of diverse populations in biomedical research.
Collapse
|
43
|
Green KH, Van De Groep IH, Te Brinke LW, van der Cruijsen R, van Rossenberg F, El Marroun H. A perspective on enhancing representative samples in developmental human neuroscience: Connecting science to society. Front Integr Neurosci 2022; 16:981657. [PMID: 36118120 PMCID: PMC9480848 DOI: 10.3389/fnint.2022.981657] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Marginalized groups are often underrepresented in human developmental neuroscientific studies. This is problematic for the generalizability of findings about brain-behavior mechanisms, as well as for the validity, reliability, and reproducibility of results. In the present paper we discuss selection bias in cohort studies, which is known to contribute to the underrepresentation of marginalized groups. First, we address the issue of exclusion bias, as marginalized groups are sometimes excluded from studies because they do not fit the inclusion criteria. Second, we highlight examples of sampling bias. Recruitment strategies are not always designed to reach and attract a diverse group of youth. Third, we explain how diversity can be lost due to attrition of marginalized groups in longitudinal cohort studies. We provide experience- and evidence-based recommendations to stimulate neuroscientists to enhance study population representativeness via science communication and citizen science with youth. By connecting science to society, researchers have the opportunity to establish sustainable and equal researcher-community relationships, which can positively contribute to tackling selection biases.
Collapse
Affiliation(s)
- Kayla H. Green
- Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
- *Correspondence: Kayla H. Green,
| | - Ilse H. Van De Groep
- Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam University Medical Centre, Amsterdam, Netherlands
- Department of Developmental and Educational Psychology, Leiden University, Leiden, Netherlands
| | - Lysanne W. Te Brinke
- Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Renske van der Cruijsen
- Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
- Department of Developmental and Educational Psychology, Leiden University, Leiden, Netherlands
| | - Fabienne van Rossenberg
- Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Hanan El Marroun
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
44
|
Lim SB, Peters S, Yang CL, Boyd LA, Liu-Ambrose T, Eng JJ. Frontal, Sensorimotor, and Posterior Parietal Regions Are Involved in Dual-Task Walking After Stroke. Front Neurol 2022; 13:904145. [PMID: 35812105 PMCID: PMC9256933 DOI: 10.3389/fneur.2022.904145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background Walking within the community requires the ability to walk while simultaneously completing other tasks. After a stroke, completing an additional task while walking is significantly impaired, and it is unclear how the functional activity of the brain may impact this. Methods Twenty individual in the chronic stage post-stroke participated in this study. Functional near-infrared spectroscopy (fNIRS) was used to measure prefrontal, pre-motor, sensorimotor, and posterior parietal cortices during walking and walking while completing secondary verbal tasks of varying difficulty. Changes in brain activity during these tasks were measured and relationships were accessed between brain activation changes and cognitive or motor abilities. Results Significantly larger activations were found for prefrontal, pre-motor, and posterior parietal cortices during dual-task walking. Increasing dual-task walking challenge did not result in an increase in brain activation in these regions. Higher general cognition related to lower increases in activation during the easier dual-task. With the harder dual-task, a trend was also found for higher activation and less motor impairment. Conclusions This is the first study to show that executive function, motor preparation/planning, and sensorimotor integration areas are all important for dual-task walking post-stroke. A lack of further brain activation increase with increasing challenge suggests a point at which a trade-off between brain activation and performance occurs. Further research is needed to determine if training would result in further increases in brain activity or improved performance.
Collapse
Affiliation(s)
- Shannon B. Lim
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| | - Sue Peters
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
- School of Physical Therapy, Western University, London, ON, Canada
| | - Chieh-ling Yang
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Lara A. Boyd
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- The David Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- The David Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Janice J. Eng
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- *Correspondence: Janice J. Eng
| |
Collapse
|
45
|
Marini A. The beauty of diversity in cognitive neuroscience: The case of sex-related effects in language production networks. J Neurosci Res 2022; 101:633-642. [PMID: 35692091 DOI: 10.1002/jnr.25096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Over the past few decades, several studies have focused on potential sex-related differences in the trajectories of language development and functioning. From a behavioral point of view, the available literature shows controversial results: differences between males and females in language production tasks may not always be detectable and, even when they are, are potentially biased by sociological and educational confounding factors. The problem regarding potential sex-related differences in language production has also been investigated at the neural level, again with controversial results. The current minireview focuses on studies assessing sex-related differences in the neural networks of language production. After providing a theoretical framework of language production, it is shown that the few available investigations have provided mixed results. The major reasons for discrepant findings are discussed with theoretical and methodological implications for future studies.
Collapse
Affiliation(s)
- Andrea Marini
- Department of Language and Literatures, Communication, Education and Society, University of Udine, Udine, Italy.,Claudiana - Landesfachhochschule für Gesundheitsberufe, Bolzano, Italy
| |
Collapse
|
46
|
Lee K, Mirjalili S, Quadri A, Corbett B, Duarte A. Neural Reinstatement of Overlapping Memories in Young and Older Adults. J Cogn Neurosci 2022; 34:1376-1396. [PMID: 35604351 DOI: 10.1162/jocn_a_01871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
When we update our episodic memories with new information, mnemonic competition between old and new memories may result because of the presence of shared features. Behavioral studies suggest that this competition can lead to proactive interference, resulting in unsuccessful memory updating, particularly for older adults. It is difficult with behavioral data alone to measure the reactivation of old, overlapping memories during retrieval and its impact on memory for new memories. Here, we applied encoding-retrieval representational similarity (ERS) analysis to EEG data to estimate event-specific encoding-related neural reinstatement of old associations during the retrieval of new ones and its impact on memory for new associations in young and older adults. Our results showed that older adults' new associative memory performance was more negatively impacted by proactive interference from old memories than that of young adults. In both age groups, ERS for old associative memories was greater for trials for which new associative memories were forgotten than remembered. In contrast, ERS for new associative memories was greater when they were remembered than forgotten. In addition, older adults showed relatively attenuated target (i.e., new associates) and lure (i.e., old associates) ERS effects compared to younger adults. Collectively, these results suggest that the neural reinstatement of interfering memories during retrieval contributes to proactive interference across age, whereas overall attenuated ERS effect in older adults might reflect their reduced memory fidelity.
Collapse
|
47
|
Graves LV, Edmonds EC, Thomas KR, Weigand AJ, Cooper S, Stickel AM, Zlatar ZZ, Clark AL, Bondi MW. Diagnostic accuracy and differential associations between ratings of functioning and neuropsychological performance in non-Hispanic Black and White older adults. Clin Neuropsychol 2022; 36:287-310. [PMID: 34499580 PMCID: PMC8849565 DOI: 10.1080/13854046.2021.1971766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ObjectiveWe recently demonstrated that relative to consensus-based methods, actuarial methods may improve diagnostic accuracy across the continuum of cognitively normal (CN), mild cognitive impairment (MCI), and dementia in the overall National Alzheimer's Coordinating Center (NACC) cohort. However, the generalizability and comparative utility of current methods of diagnosing MCI and dementia due to Alzheimer's disease and related disorders (ADRD) are significantly understudied in non-Hispanic Black (NHB) older adults. Thus, we extended our previous investigation to more specifically explore the utility of consensus-based and actuarial diagnostic methods in NHB older adults.Method: We compared baseline consensus and actuarial diagnostic rates, and associations of ratings of functioning with neuropsychological performance and diagnostic outcomes, in NHB (n = 963) and non-Hispanic White (NHW; n = 4577) older adults in the NACC cohort.Results: 60.0% of the NHB subsample, versus 29.2% of the NHW subsample, included participants who met actuarial criteria for MCI despite being classified as CN or impaired-not-MCI per consensus. Additionally, associations between ratings of functioning and neuropsychological performance were less consistent in NHB participants than in NHW participants.Conclusions: Our results provide evidence of differential degrees of association between reported functioning and neuropsychological performance in NHB and NHW older adults, which may contribute to racial group differences in diagnostic rates, and prompt consideration of the strengths and weaknesses of consensus-based and actuarial diagnostic approaches in assessing neurocognitive functioning in NHB older adults.
Collapse
Affiliation(s)
- Lisa V. Graves
- VA San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Emily C. Edmonds
- VA San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Kelsey R. Thomas
- VA San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Shanna Cooper
- VA San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Ariana M. Stickel
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Zvinka Z. Zlatar
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexandra L. Clark
- VA San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mark W. Bondi
- VA San Diego Healthcare System, San Diego, CA, USA,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
48
|
Pugh E, Robinson A, De Vito AN, Bernstein JPK, Calamia M. Representation of U.S. Black Americans in neuropsychology research: How well do our reporting practices show that Black lives matter? Clin Neuropsychol 2022; 36:214-226. [PMID: 34348590 DOI: 10.1080/13854046.2021.1958923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/29/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Black American individuals comprise about 13% of the population in the United States (U.S.). It is estimated by 2045, approximately 50% of U.S. residents will belong to an ethnic minority group underscoring the importance of the provision of culturally competent services. The present study provides a critical/systematic review of the literature to examine the representation of Black Americans in recent neuropsychological research in U.S. neuropsychology journals. We examined the representation of U.S. Black American individuals across journals, year of study, and by study sample. METHOD We evaluated 1,151 journal articles published in 4 neuropsychology journals published in 2011, 2014, 2017 and 2019. Articles were coded for reporting of age, sex/gender, years of education, ethnicity/race, and if race was a focus of the study. We also recorded sample size and type of sample. RESULTS Out of the 397 articles meeting inclusion criteria, 37.5% did not report ethnic or racial demographic information. Additionally, 96% of the articles were not racially/ethnically focused. Black participants comprised 10.7% of participants in articles that reported race/ethnicity. The proportion of Black participants increased by 3.7% between 2011 and 2019. CONCLUSION Our results demonstrate the underrepresentation of U.S. Black Americans in neuropsychological research over the targeted years. This highlights our shortcomings as a field in demonstrating the importance of including Black Americans in research.
Collapse
Affiliation(s)
- Erika Pugh
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Anthony Robinson
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Alyssa N De Vito
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | | | - Matthew Calamia
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
49
|
Fine JS, Ambrose AF, Didehbani N, Fleming TK, Glashan L, Longo M, Merlino A, Ng R, Nora G, Rolin S, Silver JK, Terzic CM, Verduzco Gutierrez M, Sampsel S. Multi-Disciplinary Collaborative Consensus Guidance Statement on the Assessment and Treatment of Cognitive Symptoms in Patients with Post-Acute Sequelae of SARS-CoV-2 infection (PASC). PM R 2021; 14:96-111. [PMID: 34902226 DOI: 10.1002/pmrj.12745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Talya K Fleming
- JFK Johnson Rehabilitation Institute at Hackensack Meridian Health
| | | | | | | | - Rowena Ng
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine
| | | | - Summer Rolin
- University of Texas Health Science Center at San Antonio- Rehabilitation Medicine
| | - Julie K Silver
- Harvard Medical School, Spaulding Rehabilitation Hospital
| | - Carmen M Terzic
- Rehabilitation Medicine Research Center, Mayo Clinic Rochester
| | | | | |
Collapse
|
50
|
Mikulan E, Russo S, Zauli FM, d'Orio P, Parmigiani S, Favaro J, Knight W, Squarza S, Perri P, Cardinale F, Avanzini P, Pigorini A. A comparative study between state-of-the-art MRI deidentification and AnonyMI, a new method combining re-identification risk reduction and geometrical preservation. Hum Brain Mapp 2021; 42:5523-5534. [PMID: 34520074 PMCID: PMC8559469 DOI: 10.1002/hbm.25639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/03/2023] Open
Abstract
Deidentifying MRIs constitutes an imperative challenge, as it aims at precluding the possibility of re-identification of a research subject or patient, but at the same time it should preserve as much geometrical information as possible, in order to maximize data reusability and to facilitate interoperability. Although several deidentification methods exist, no comprehensive and comparative evaluation of deidentification performance has been carried out across them. Moreover, the possible ways these methods can compromise subsequent analysis has not been exhaustively tested. To tackle these issues, we developed AnonyMI, a novel MRI deidentification method, implemented as a user-friendly 3D Slicer plugin-in, which aims at providing a balance between identity protection and geometrical preservation. To test these features, we performed two series of analyses on which we compared AnonyMI to other two state-of-the-art methods, to evaluate, at the same time, how efficient they are at deidentifying MRIs and how much they affect subsequent analyses, with particular emphasis on source localization procedures. Our results show that all three methods significantly reduce the re-identification risk but AnonyMI provides the best geometrical conservation. Notably, it also offers several technical advantages such as a user-friendly interface, multiple input-output capabilities, the possibility of being tailored to specific needs, batch processing and efficient visualization for quality assurance.
Collapse
Affiliation(s)
- Ezequiel Mikulan
- Dipartimento di Scienze Biomediche e Cliniche "L.Sacco", Università degli Studi di Milano, Milano, Italy
| | - Simone Russo
- Dipartimento di Scienze Biomediche e Cliniche "L.Sacco", Università degli Studi di Milano, Milano, Italy
| | - Flavia Maria Zauli
- Dipartimento di Scienze Biomediche e Cliniche "L.Sacco", Università degli Studi di Milano, Milano, Italy
| | - Piergiorgio d'Orio
- "Claudio Munari" Epilepsy and Parkinson Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Sara Parmigiani
- Dipartimento di Scienze Biomediche e Cliniche "L.Sacco", Università degli Studi di Milano, Milano, Italy
| | - Jacopo Favaro
- Department of Women's and Children's Health, Pediatric Neurology and Neurophysiology Unit, University of Padua, Padua, Italy
| | - William Knight
- Centre for Computing and Social Responsibility, De Montfort University, Leicester, UK
| | - Silvia Squarza
- Department of Neuroradiology, "Claudio Munari" Epilepsy and Parkinson Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Pierluigi Perri
- Dipartimento di Scienze Giuridiche Cesare Beccaria, Università degli Studi di Milano, Milano, Italy
| | - Francesco Cardinale
- "Claudio Munari" Epilepsy and Parkinson Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Andrea Pigorini
- Dipartimento di Scienze Biomediche e Cliniche "L.Sacco", Università degli Studi di Milano, Milano, Italy
| |
Collapse
|