1
|
Alahdad N, Hamidpour SK, Yazdanpanah MA, Amiri M, Alizadeh R, Rezayat SM, Tavakol S. Nitric oxide synthases: A delicate dance between bone regeneration and neuronal birth. Biomed Pharmacother 2025; 187:118105. [PMID: 40294491 DOI: 10.1016/j.biopha.2025.118105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
Spinal cord injury (SCI) is a devastating condition resulting from traumatic or nontraumatic injury/chronic disorder. The pathogenesis of SCI necessitates a comprehensive approach, as it involves therapeutic strategies addressing both bone (spine) and neural (spinal cord) damage. This review centers on the pivotal role of nitric oxide (NO) and its synthesizing enzymes, nitric oxide synthases (NOS), in mediating the crosstalk between osteogenesis and neurogenesis. NO's effects are context-dependent, exhibiting a delicate balance between beneficial and detrimental actions. Reduced levels of nitric oxide (NO), primarily derived from endothelial NOS (eNOS), tipically stimulate osteoblast activity and promote neurogenesis by influencing neural stem cell (NSC) migration and differentiation. Conversely, elevated NO levels, predominantly from inducible NOS (iNOS), tipically triggered by inflammation, inhibit both processes through pro-apoptotic mechanisms. Nevertheless, these phenomena are not merely simplistic; they can be influenced by a variety of other factors. We explore the intricate interplay of NO/NOS with key signaling pathways crucial in neurogenesis and osteogenesis, including mechanical stimuli, Wnt, interleukins, BMPs, NF-κB, etc., revealing their influence on neuroinflammation, neurogenesis, and osteoblast differentiation. The temporal and spatial dynamics of NO/NOS activity and the implications for therapeutic intervention have been discussed. Precise modulation of NO levels and NOS isoforms, potentially through targeted therapies manipulating these interacting signaling pathways, emerges as a promising strategy for promoting bone and neural regeneration. This review highlights the critical need for a balanced approach in therapeutic strategies to harness the beneficial effects of NO/NOS while mitigating its detrimental consequences.
Collapse
Affiliation(s)
- Niloofar Alahdad
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mohammad Ali Yazdanpanah
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
2
|
Wang R, Wang T, Chen Z, Jiang J, Du Y, Yuan H, Pan Y, Wang Y. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1025-1041. [PMID: 39825206 DOI: 10.1007/s11427-024-2745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 01/20/2025]
Abstract
Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing. BBR-HB-CM contained bioactive materials that promoted the polarization of macrophages from M1 to M2, impeded the formation of ANs and NETs, and modulated M2 macrophage efferocytosis in vivo and in vitro. Mechanistically, BBR-HB-CM promoted bone formation by inhibiting macrophage-myofibroblast transition and reprogrammed macrophage polarization through p85/AKT/mTOR pathway-dependent autophagy. The 3-methyladenine abolished the therapeutic effects of BBR-HB-CM. Further studies revealed that BBR-HB-CM accelerated TES healing in rats with type 2 diabetes mellitus. Overall, our results demonstrated that BBR-HB-CM had high potential to promote rapid TES healing.
Collapse
Affiliation(s)
- Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
- Department of Stomatology, Chongzhou People's Hospital, Chengdu, 611230, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyu Chen
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.
- Medical Basic Research Innovation Centre for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Li BY, Ma GQ, Gui HD, Zhou SJ, Liu YX, Wu AL, He QX, Chen JY, Diao JY, Wu DN, Xu X, Zhang DJ. ZDHHC9-Mediated PKG1 Affects Osteogenesis by Regulating MAMs in T2DM. J Dent Res 2025:220345251321776. [PMID: 40102769 DOI: 10.1177/00220345251321776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Palmitoylation is recognized as a prevalent posttranslational modification of proteins, which is highlighted in recent studies as a key player in regulating protein stability, subcellular localization, membrane transport, and other cellular biological processes. However, its role in peri-implant osteogenesis under type 2 diabetes mellitus (T2DM) remains unclear. During this study, the in vitro high-glucose model based on MC3T3-E1 cells demonstrated that a high-glucose environment in vitro markedly inhibited osteoblasts proliferation and osteogenesis; meanwhile, ZDHHC9 emerged as a significantly upregulated protein. Then, Zdhhc9 knockdown improved the dysfunction of osteoblasts and peri-implant osteogenesis of T2DM mice. In addition, co-immunoprecipitation and fluorescence co-localization analysis revealed an interaction between ZDHHC9 and cyclic guanosine monophosphate (GMP)-dependent protein kinase G 1 (PKG1), and silencing of Prkg1 prevented the improvement in osteoblasts with Zdhhc9 knockdown. Furthermore, we verified that Zdhhc9 knockdown and Prkg1 silencing altered the distance between the endoplasmic reticulum and mitochondria and the expression of mitochondria-associated endoplasmic reticulum membranes (MAMs)-related proteins in osteoblasts. Collectively, our data show that ZDHHC9 could regulate MAMs through palmitoylation of PKG1 to induce osteoblast dysfunction in T2DM. ZDHHC9 might become a novel therapeutic target for peri-implant osteogenesis in diabetes patients.
Collapse
Affiliation(s)
- B Y Li
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - G Q Ma
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - H D Gui
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - S J Zhou
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Y X Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - A L Wu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Q X He
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - J Y Chen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - J Y Diao
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - D N Wu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - X Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - D J Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases. Address: No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| |
Collapse
|
4
|
Luo K, Wu Q, Li Z, Wu Y, Su Z, Zhou F, Li Q, Ren B, Li Y, Li J, Peng X. Cyclic di-AMP alleviates periodontitis by activating PI3K/Akt/Nrf2 pathways. Front Cell Infect Microbiol 2025; 15:1560155. [PMID: 40160469 PMCID: PMC11949975 DOI: 10.3389/fcimb.2025.1560155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Emerging research demonstrates the regulatory effects of c-di-AMP, a bacterial-derived small molecule secondary messenger, on host immune responses and promoting resistance against infection-related diseases. This study aims to elucidate the role of c-di-AMP in the occurrence and development of periodontitis. Using model of ligation-induced periodontitis, we observed that c-di-AMP effectively alleviated alveolar bone resorption. Transcriptomic sequencing in mice gingival tissues demonstrated that treatment with c-di-AMP led to a significant upregulation of the PI3K/Akt signaling pathway and its key components, including Akt3. Concurrently, we observed an upregulation of the cGMP/PKG signaling pathway. To validate our findings, we treated gingival epithelial cells with c-di-AMP and confirmed the activation of the PI3K/Akt pathway by c-di-AMP in gingival epithelial cells. Under LPS-induced inflammation, c-di-AMP significantly suppressed the release of inflammatory factors (such as IL-6 and TNF-α) from gingival epithelial cells. Moreover, key components of the PI3K/Akt pathway, including Akt, and downstream inflammation regulatory gene Nrf2, were upregulated, which were also confirmed at the protein level. Collectively, this study demonstrates that c-di-AMP definitely plays a role in alleviating periodontitis. Our findings highlight the mechanisms by which c-di-AMP modulates periodontitis, including activating the PI3K/Akt pathway and potentially involving the cGMP/PKG pathway, ultimately contributing to improved immune defense and maintenance of bone homeostasis.
Collapse
Affiliation(s)
- Kaihua Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yajie Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qinyang Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Figueiredo IAD, Martins AMDO, Cavalcanti AMT, Fernandes JM, Gomes LEDS, Vieira MM, de Oliveira GNM, Felício IM, de Oliveira LN, Ramalho IGDS, de Sousa NF, Scotti L, Scotti MT, Alves JLDB, Diniz MDFFM, Ximenes DIJ, Vasconcelos LHC, Cavalcante FDA. Repeated-Dose Toxicity of Lauric Acid and Its Preventive Effect Against Tracheal Hyper-Responsiveness in Wistar Rats with Possible In Silico Molecular Targets. Pharmaceuticals (Basel) 2025; 18:221. [PMID: 40006035 PMCID: PMC11859213 DOI: 10.3390/ph18020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lauric acid (LA), a medium-chain fatty acid, is a promising drug for asthma treatment. This study evaluated the toxicity of repeated doses and the effect of LA on pulmonary ventilation and tracheal reactivity in asthmatic Wistar rats and identified possible molecular targets of LA action in silico. METHODS The rats were divided into control (CG) and LA-treated groups at 100 mg/kg (AL100G) for toxicity analysis. Pulmonary ventilation and tracheal reactivity were assessed in the control (CG), asthmatic (AG), asthmatic treated with LA at 25, 50, or 100 mg/kg (AAL25G, AAL50G, and AAL100G), and dexamethasone-treated groups (ADEXAG). RESULTS The results showed that LA at a dose of 100 mg/kg did not cause death or toxicity. A pulmonary ventilation analysis indicated that AG had reduced minute volume, which was prevented in AAL25G. LA at all doses prevented carbachol-induced tracheal hyper-responsiveness and reduced the relaxing effect of aminophylline, as observed in AG. An in silico analysis revealed that LA had a good affinity for nine proteins (β2-adrenergic receptor, CaV, BKCa, KATP, adenylyl cyclase, PKG, eNOS, iNOS, and COX-2). CONCLUSIONS LA at 100 mg/kg has low toxicity, prevents hyper-responsiveness in an asthma model in rats, and acts as a multitarget compound with a good affinity for proteins related to airway hyper-responsiveness.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Alissa Maria de Oliveira Martins
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Alexya Mikelle Teixeira Cavalcanti
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Jayne Muniz Fernandes
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Ludmila Emilly da Silva Gomes
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Mateus Mendes Vieira
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Gabriel Nunes Machado de Oliveira
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
| | - Isabela Motta Felício
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Lucas Nóbrega de Oliveira
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Igor Gabriel da Silva Ramalho
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Natália Ferreira de Sousa
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Luciana Scotti
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
| | - Marcus Tullius Scotti
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil
| | - José Luiz de Brito Alves
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Margareth de Fátima Formiga Melo Diniz
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, PB, Brazil;
| | - Daniele Idalino Janebro Ximenes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, PB, Brazil;
| | - Luiz Henrique César Vasconcelos
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
- Departamento de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| | - Fabiana de Andrade Cavalcante
- Laboratório de Farmacologia Funcional Prof. George Thomas, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (A.M.d.O.M.); (A.M.T.C.); (J.M.F.); (L.E.d.S.G.); (M.M.V.); (G.N.M.d.O.); (I.M.F.); (L.N.d.O.); (I.G.d.S.R.); (N.F.d.S.); (F.d.A.C.)
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (L.S.); (M.T.S.); (M.d.F.F.M.D.)
- Departamento de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
6
|
Ye L, Hua Z, Ding X, Wang J. Global Highly Cited Publication Trends and Research Hotspots in Osteoporosis and Bone Metabolic Cells: A Bibliometric and Visualization Analysis from 2013 to 2023. Endocr Metab Immune Disord Drug Targets 2025; 25:386-399. [PMID: 39005119 DOI: 10.2174/0118715303300989240702043834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Bone metabolic diseases such as osteoporosis are caused by disruption of the metabolic balance between osteoblasts and osteoclasts. Thousands of papers have been published on osteoporosis and bone metabolizing cells. The purpose of this study is to draw the publication trend of highly cited literature in this field through bibliometrics and to explore the research hotspot analysis. OBJECTIVE This paper provides a comprehensive analysis of the impact of countries/regions, research institutions, authors, keywords, relevant journals, and references in the field of osteoporosis and bone metabolic cells research, with a specific focus on the theme of "Osteoporosis and bone metabolic cells". Furthermore, utilizing bibliometric methods, the study aims to offer valuable insights and references for future research endeavors, as well as clinical prevention and treatment strategies in this domain. METHODS The Web of Science (WOS) Core Collection database was examined in order to identify articles with high citation counts from 2013 to 31 October 2023. The citation counts, authors, year of publication, source, journal, geographical origin, subject, article type, and level of evidence were further analyzed using the R bibliometric package. The VOSviewer software was utilized to visualize word co-occurrence in a total of 251 articles. RESULTS Our search strategy included 251 highly cited articles published between 2013 and 2023 in the field of osteoporosis and bone metabolic cells. The number of publications in this field remains consistently high, indicating ongoing research interest. Notably, the United States has made significant achievements and contributions in this area. Xie Hui, Cao Xu, and Goodman, Stewart are among the main contributors to these advancements. Nature medicine has the highest journal impact factor of 82.9, highlighting its prominence. The journal of bone and mineral research ranks first with 1,322 citations. Keyword research topics in this field include osteoclast differentiation, osteoblast differentiation, and mesenchymal stem cells. Through citation analysis, we found that 195 articles have been cited more than 100 times, demonstrating their significance and impact. CONCLUSION This study analyzed the relationship between osteoporosis and bone metabolic cells using a bibliometric method. The results of these analyses can help researchers gain a more direct and scientific understanding of trends in the field. Additionally, it can provide guidance in identifying hot research directions and offer new ideas for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingshan Ye
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen Hua
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University Of Chinese Medicine, Wuxi, Jiangsu, China
| | - Xinxin Ding
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University Of Chinese Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Deng C, Li M, Wang T, Duan W, Guo A, Ma G, Yang F, Dai F, Li Q. Integrating genomics and transcriptomics to identify candidate genes for high-altitude adaptation and egg production in Nixi chicken. Br Poult Sci 2024; 65:652-664. [PMID: 38922310 DOI: 10.1080/00071668.2024.2367228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was analysed by sliding window analysis. The selected genes were screened by combination with the population differentiation statistic (FST). The sequence diversity statistic (θπ). RNA-seq was performed on the ovarian tissues of NXC (n = 6) and Lohmann laying hens (n = 6) to analyse the differentially expressed genes (DEGs) between the two groups. The functional enrichment analysis of the selected genes and differentially expressed genes was performed.3. There were 742 genes under strong positive selection and 509 differentially expressed genes screened in NXC. Integrated analysis of the genome and transcriptome revealing 26 overlapping genes. The candidate genes for adaptation to a high-altitude environment, as well as for egg production, disease resistance, vision and pigmentation in NXC were preliminarily screened.4. The results provided theoretical guidance for further research on the genetic resource protection and utilisation of NXC.
Collapse
Affiliation(s)
- C Deng
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - M Li
- School of Mathematics and Computer Science, Yunnan Nationalities University, Kunming, China
| | - T Wang
- School of Pharmacy, Chengdu University, Chengdu, China
| | - W Duan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - A Guo
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - G Ma
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Yang
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Q Li
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co. Ltd., Kunming, China
| |
Collapse
|
8
|
Li S, Shao R, Li S, Zhao J, Deng Q, Li P, Wei Z, Xu S, Chen L, Li B, Zou W, Zhang Z. A monoallelic variant in CCN2 causes an autosomal dominant spondyloepimetaphyseal dysplasia with low bone mass. Bone Res 2024; 12:60. [PMID: 39414788 PMCID: PMC11484961 DOI: 10.1038/s41413-024-00364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 10/18/2024] Open
Abstract
Cellular communication network factor 2 (CCN2) is a secreted extracellular matrix-associated protein, and its aberrantly increased expression has been implicated in a diversity of diseases involving pathological processes of fibrosis, chronic inflammation, or tissue injury, which has promoted the evaluation of CCN2 as therapeutic targets for multiple disorders. However, human phenotypes associated with CCN2 deficiency have remained enigmatic; variants in CCN2 have not yet been associated with a human phenotype. Here, we collected families diagnosed with spondyloepimetaphyseal dysplasia (SEMD), and screened candidate pathogenic genes for families without known genetic causes using next-generation sequencing. We identified a monoallelic variant in signal peptide of CCN2 (NM_001901.2: c.65 G > C [p.Arg22Pro]) as the cause of SEMD in 14 subjects presenting with different degree of short stature, premature osteoarthritis, and osteoporosis. Affected subjects showed decreased serum CCN2 levels. Cell lines harboring the variant displayed decreased amount of CCN2 proteins in culture medium and an increased intracellular retention, indicating impaired protein secretion. And the variant weakened the stimulation effect of CCN2 on osteogenesis of bone marrow mesenchymal stem cells. Zebrafish ccn2a knockout model and osteoblast lineage-specific Ccn2-deficient mice (Ccn2fl/fl;Prx1Cre) partially recapitulated the phenotypes including low bone mass observed in affected subjects. Pathological mechanism implicated in the skeletal abnormality in Ccn2fl/fl;Prx1Cre mice involved decreased bone formation, increased bone resorption, and abnormal growth plate formation. Collectively, our study indicate that monoallelic variants in CCN2 lead to a human inherited skeletal dysplasia, and highlight the critical role of CCN2 in osteogenesis in human.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Shao
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiao Zhao
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Deng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanying Wei
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuqin Xu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Baojie Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Weiguo Zou
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China.
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China.
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
9
|
Cheng Y, Huo Y, Yu Y, Duan P, Dong X, Yu Z, Cheng Q, Dai H, Pan Z. A photothermal responsive system accelerating nitric oxide release to enhance bone repair by promoting osteogenesis and angiogenesis. Mater Today Bio 2024; 28:101180. [PMID: 39221216 PMCID: PMC11364911 DOI: 10.1016/j.mtbio.2024.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Managing bone defects remains a formidable clinical hurdle, primarily attributed to the inadequate orchestration of vascular reconstruction and osteogenic differentiation in both spatial and temporal dimensions. This challenge persists due to the constrained availability of autogenous grafts and the limited regenerative capacity of allogeneic or synthetic bone substitutes, thus necessitating continual exploration and innovation in the realm of functional and bioactive bone graft materials. While synthetic scaffolds have emerged as promising carriers for bone grafts, their efficacy is curtailed by deficiencies in vascularization and osteoinductive potential. Nitric oxide (NO) plays a key role in revascularization and bone tissue regeneration, yet studies related to the use of NO for the treatment of bone defects remain scarce. Herein, we present a pioneering approach leveraging a photothermal-responsive system to augment NO release. This system comprises macromolecular mPEG-P nanoparticles encapsulating indocyanine green (ICG) (NO-NPs@ICG) and a mPEG-PA-PP injectable thermosensitive hydrogel carrier. By harnessing the synergistic photothermal effects of near-infrared radiation and ICG, the system achieves sustained NO release, thereby activating the soluble guanylate cyclase (SGC)-cyclic guanosine monophosphate (cGMP) signaling pathway both in vitro and in vivo. This orchestrated cascade culminates in the facilitation of angiogenesis and osteogenesis, thus expediting the reparative processes in bone defects. In a nutshell, the NO release-responsive system elucidated in this study presents a pioneering avenue for refining the bone tissue microenvironment and fostering enhanced bone regeneration.
Collapse
Affiliation(s)
- Yannan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuanfang Huo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, 430070, China
| | - Yongle Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, 430070, China
| | - Zirui Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, 430070, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
10
|
Ismail EA, El-Sakka AI. An overview of conventional and investigational phosphodiesterase 5 inhibitors for treating erectile dysfunction and other conditions. Expert Opin Investig Drugs 2024; 33:925-938. [PMID: 39096237 DOI: 10.1080/13543784.2024.2388569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION There is a rising concern about developing innovative, efficacious PDE5I molecules that provide better safety, efficacy, and tolerability with less adverse effects. Innovative PDE5I with dual targets have also been defined in the literature. Additionally, some of PDE5I are able to selectively inhibit other enzymes such as histone deacetylase, acetylcholine esterase, and cyclooxygenase or act as nitric oxide donors. This review presents knowledge concerning the advanced trends and perspectives in using PDE5I in treatment of ED and other conditions. AREAS COVERED Pre-clinical and early clinical trials that investigated the safety, efficacy, and tolerability of novel PDE5I such as Udenafil, Mirodenafil, Lodenafil, Youkenafil, Celecoxib, and TPN729 in treatment of ED and other conditions. EXPERT OPINION Preclinical and limited early clinical studies of the new molecules of PDE5I have demonstrated encouraging results; however, safety, efficacy, and tolerability are still issues that necessitate further long-term multicenter clinical studies to ensure justification of their uses in treatment of ED and other conditions. Progress in molecular delivery techniques and tailored patient-specific management and additional therapeutic technology will dramatically improve care for ED and other conditions. The dream of ED and many other conditions becoming more effectively managed may be feasible in the near future.
Collapse
Affiliation(s)
- Ezzat A Ismail
- Department of Urology, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
11
|
Piknova B, Park JW, Tunau-Spencer KJ, Jenkins A, Hellinga DG, Walter PJ, Cai H, Schechter AN. Skeletal Muscle, Skin, and Bone as Three Major Nitrate Reservoirs in Mammals: Chemiluminescence and 15N-Tracer Studies in Yorkshire Pigs. Nutrients 2024; 16:2674. [PMID: 39203815 PMCID: PMC11357542 DOI: 10.3390/nu16162674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
In mammals, nitric oxide (NO) is generated either by the nitric oxide synthase (NOS) enzymes from arginine or by the reduction of nitrate to nitrite by tissue xanthine oxidoreductase (XOR) and the microbiome and further reducing nitrite to NO by XOR or several heme proteins. Previously, we reported that skeletal muscle acts as a large nitrate reservoir in mammals, and this nitrate reservoir is systemically, as well as locally, used to generate nitrite and NO. Here, we report identifying two additional nitrate storage organs-bone and skin. We used bolus of ingested 15N-labeled nitrate to trace its short-term fluxes and distribution among organs. At baseline conditions, the nitrate concentration in femur bone samples was 96 ± 63 nmol/g, scalp skin 56 ± 22 nmol/g, with gluteus muscle at 57 ± 39 nmol/g. In comparison, plasma and liver contained 34 ± 19 nmol/g and 15 ± 5 nmol/g of nitrate, respectively. Three hours after 15N-nitrate ingestion, its concentration significantly increased in all organs, exceeding the baseline levels in plasma, skin, bone, skeletal muscle, and in liver 5-, 2.4-, 2.4-, 2.1-, and 2-fold, respectively. As expected, nitrate reduction into nitrite was highest in liver but also substantial in skin and skeletal muscle, followed by the distribution of 15N-labeled nitrite. We believe that these results underline the major roles played by skeletal muscle, skin, and bone, the three largest organs in mammals, in maintaining NO homeostasis, especially via the nitrate-nitrite-NO pathway.
Collapse
Affiliation(s)
- Barbora Piknova
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ji Won Park
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Khalid J. Tunau-Spencer
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Audrey Jenkins
- MedStar Health Research Institute, Washington, DC 20010, USA
| | | | - Peter J. Walter
- Clinical Mass Spectrometry Core, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alan N. Schechter
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Li S, Xiong Z, Lan Y, Zheng Q, Zhang L, Xu X. Naringenin modulates the NO‑cGMP‑PKG signaling pathway by binding to AKT to enhance osteogenic differentiation in hPDLSCs. Int J Mol Med 2024; 54:67. [PMID: 38940332 PMCID: PMC11232664 DOI: 10.3892/ijmm.2024.5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Naringenin (NAR) is a prominent flavanone that has been recognized for its capacity to promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The present study aimed to explore how NAR promotes the osteogenic differentiation of hPDLSCs and to assess its efficacy in repairing alveolar bone defects. For this purpose, a protein‑protein interaction network of NAR action was established by mRNA sequencing and network pharmacological analysis. Gene and protein expression levels were evaluated by reverse transcription‑quantitative and western blotting. Alizarin red and alkaline phosphatase staining were also employed to observe the osteogenic capacity of hPDLSCs, and immunofluorescence was used to examine the co‑localization of NAR molecular probes and AKT in cells. The repair of mandibular defects was assessed by micro‑computed tomography (micro‑CT), Masson staining and immunofluorescence. Additionally, computer simulation docking software was utilized to determine the binding affinity of NAR to the target protein, AKT. The results demonstrated that activation of the nitric oxide (NO)‑cyclic guanosine monophosphate (cGMP)‑protein kinase G (PKG) signaling pathway could promote the osteogenic differentiation of hPDLSCs. Inhibition of AKT, endothelial nitric oxide synthase and soluble guanylate cyclase individually attenuated the ability of NAR to promote the osteogenic differentiation of hPDLSCs. Micro‑CT and Masson staining revealed that the NAR gavage group exhibited more new bone formation at the defect site. Immunofluorescence assays confirmed the upregulated expression of Runt‑related transcription factor 2 and osteopontin in the NAR gavage group. In conclusion, the results of the present study suggested that NAR promotes the osteogenic differentiation of hPDLSCs by activating the NO‑cGMP‑PKG signaling pathway through its binding to AKT.
Collapse
Affiliation(s)
- Shenghong Li
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhenqiang Xiong
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuxin Lan
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qian Zheng
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaomei Xu
- Department of Orthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Institute of Stomatology, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
13
|
Yang X, Zhang ZC, Lu YN, Chen HL, Wang HS, Lin T, Chen QQ, Chen JS, He WB. Identification and experimental validation of programmed cell death- and mitochondria-associated biomarkers in osteoporosis and immune microenvironment. Front Genet 2024; 15:1439171. [PMID: 39130750 PMCID: PMC11310001 DOI: 10.3389/fgene.2024.1439171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Prior research has demonstrated that programmed cell death (PCD) and mitochondria assume pivotal roles in controlling cellular metabolism and maintaining bone cell equilibrium. Nonetheless, the comprehensive elucidation of their mode of operation in osteoporosis (OP) warrants further investigation. Therefore, this study aimed at analyzing the role of genes associated with PCD (PCD-RGs) and mitochondria (mortality factor-related genes; MRGs) in OP. Methods: Differentially expressed genes (DEGs) were identified by subjecting the GSE56815 dataset obtained from the Gene Expression Omnibus database to differential expression analysis and comparing OP patients with healthy individuals. The genes of interest were ascertained through the intersection of DEGs, MRGs, and PCD-RGs; these genes were filtered using machine learning methodologies to discover potential biomarkers. The prospective biomarkers displaying uniform patterns and statistically meaningful variances were identified by evaluating their levels in the GSE56815 dataset and conducting quantitative real-time polymerase chain reaction-based assessments. Moreover, the functional mechanisms of these biomarkers were further delineated by constructing a nomogram, which conducted gene set enrichment analysis, explored immune infiltration, generated regulatory networks, predicted drug responses, and performed molecular docking analyses. Results: Eighteen candidate genes were documented contingent upon the intersection between 2,354 DEGs, 1,136 MRGs, and 1,548 PCD-RGs. The biomarkers DAP3, BIK, and ACAA2 were upregulated in OP and were linked to oxidative phosphorylation. Furthermore, the predictive ability of the nomogram designed based on the OP biomarkers exhibited a certain degree of accuracy. Correlation analysis revealed a strong positive correlation between CD56dim natural killer cells and ACAA2 and a significant negative correlation between central memory CD4+ T cells and DAP3. DAP3, BIK, and ACAA2 were regulated by multiple factors; specifically, SETDB1 and ZNF281 modulated ACAA2 and DAP3, whereas TP63 and TFAP2C governed DAP3 and BIK. Additionally, a stable binding force was observed between the drugs (estradiol, valproic acid, and CGP52608) and the biomarkers. Conclusion: This investigation evidenced that the biomarkers DAP3, BIK, and ACAA2 are associated with PCD and mitochondria in OP, potentially facilitate the diagnosis of OP in clinical settings.
Collapse
Affiliation(s)
- Xiu Yang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zheng-Chao Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, China
- Fujian Trauma Medicine Center, Fuzhou, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, China
| | - Yun-Nan Lu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Paediatric Orthopaedics, Fuzhou Second Hospital, The Third Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Han-Lin Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong-Shen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Tao Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qing-Quan Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jin-Shui Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wu-Bing He
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, China
- Fujian Trauma Medicine Center, Fuzhou, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, China
| |
Collapse
|
14
|
Saeed NM, Ramadan LA, El-Sabbagh WA, Said MA, Abdel-Rahman HM, Mekky RH. Exploring the anti-osteoporosis potential of Petroselinum crispum (Mill.) Fuss extract employing experimentally ovariectomized rat model and network pharmacology approach. Fitoterapia 2024; 175:105971. [PMID: 38663562 DOI: 10.1016/j.fitote.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/11/2024] [Accepted: 04/21/2024] [Indexed: 04/30/2024]
Abstract
One of the most prevalent secondary osteoporosis is ovariectomy-induced osteoporosis. Parsley (Petroselinum crispum) has potent estrogenic and antioxidant properties and was used traditionally in the treatment of amenorrhea and dysmenorrhea. The present study aimed to characterize parsley leaf extract (PLE) employing RP-HPLC-MS-MS/MS-based method and possible protective effect in ovariectomized (OVX)-induced osteoporosis in rats was assessed. Rats were randomly assigned into SHAM group, OVX group, PLE + OVX group (150 mg/kg/day, p.o), and estradiol benzoate (E2) + OVX group (30 μg/kg/day, s.c). After eight weeks following ovariectomy, biomarkers of bone strength, bone resorption, oxidative stress and histopathology were carried out. A network pharmacology approach investigated the key targets and potential mechanisms by of PLE metabolites against osteoporosis using databases: PubChem, BindingDB server, DisGeNET, ShinyGO, and KEGG Pathway. Moreover, FunRich 3.1.3, Cytoscape 3.10.0, and MOE 2019.0102 softwares were used for network pharmacology analysis and molecular docking studies. Flavones and hydroxycinnamic acid derivatives were predominant among 38 metabolites in PLE. It significantly restored bone strength and bone resorption biomarkers, osteocalcin (OST), oxidative stress biomarkers and histopathological alterations. The employed network pharmacology approach revealed that 14 primary target genes were associated with decreasing the severity of osteoporosis. Molecular docking revealed that cGMP-PKG signaling pathway has the highest fold enrichment and its downstream PDE5A. Luteolin, diosmetin, and isorhamnetin derivatives affected mostly osteoporosis targets. PLE exhibited protective action against ovariectomy-induced osteoporosis in rats and may be a promising therapy for premenopausal bone loss. cGMP-PKG signaling pathway could be a promising target for PLE in treating osteoporosis.
Collapse
Affiliation(s)
- Noha M Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, 11829 Cairo, Egypt.
| | - Laila A Ramadan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, 11829 Cairo, Egypt
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 11787 Cairo, Egypt
| | - Mohamed A Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Hanaa M Abdel-Rahman
- Department of Pharmacy Practice, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; Department of Forensic Medicine and Toxicology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, 11829, Cairo, Egypt..
| |
Collapse
|
15
|
Li J, Du B, Wang Y, Qiu J, Shi M, Wei M, Li L. Environmental perchlorate, thiocyanate, and nitrate exposures and bone mineral density: a national cross-sectional study in the US adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34459-34472. [PMID: 38703319 DOI: 10.1007/s11356-024-33563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Associations of perchlorate, thiocyanate, and nitrate exposures with bone mineral density (BMD) in adults have not previously been studied. This study aimed to estimate the associations of individual and concurrent exposure of the three chemicals with adult BMD. Based on National Health and Nutrition Examination Survey (NHANES, 2011-2018), 1618 non-pregnant adults (age ≥ 20 years and 47.0% female) were included in this study. Survey-weighted linear regression models were used to estimate individual urinary perchlorate, thiocyanate, and nitrate concentrations with lumbar spine BMD and total BMD in adults. Then, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models were conducted to evaluate associations of co-occurrence of the three chemicals with adult BMD. In all participants, nitrate exposure was inversely associated with lumbar spine BMD (β = - 0.054, 95%CI: - 0.097, - 0.010). In stratification analyses, significant inverse associations were observed in female and participants older than 40 years old. In WQS regressions, significant negative associations of the weighted sum of the three chemicals with total and lumbar spine BMD (β = - 0.014, 95%CI: - 0.021, - 0.007; β = - 0.011, 95%CI: - 0.019, - 0.004, respectively) were found, and the dominant contributor was nitrate. In the BKMR models, non-linear dose-response associations of nitrate exposure with lumbar spine and total BMD were observed. These findings suggested that environmental perchlorate, thiocyanate, and nitrate exposure may reduce adult BMD and nitrate is the main contributor.
Collapse
Affiliation(s)
- Juxiao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China
| | - Muhong Wei
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, People's Republic of China.
| |
Collapse
|
16
|
Sasahara M, Kanda M, Tanaka C, Shimizu D, Umeda S, Takami H, Inokawa Y, Hattori N, Hayashi M, Nakayama G, Kodera Y. Therapeutic antibody targeting natriuretic peptide receptor 1 inhibits gastric cancer growth via BCL-2-mediated intrinsic apoptosis. Int J Cancer 2024; 154:1272-1284. [PMID: 38151776 DOI: 10.1002/ijc.34831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Despite recent advances in the development of therapeutic antibodies, the prognosis of unresectable or metastatic gastric cancer (GC) remains poor. Here, we searched for genes involved in the malignant phenotype of GC and investigated the potential of one candidate gene to serve as a novel therapeutic target. Analysis of transcriptome datasets of GC identified natriuretic peptide receptor 1 (NPR1), a plasma membrane protein, as a potential target. We employed a panel of human GC cell lines and gene-specific small interfering RNA-mediated NPR1 silencing to investigate the roles of NPR1 in malignancy-associated functions and intracellular signaling pathways. We generated an anti-NPR1 polyclonal antibody and examined its efficacy in a mouse xenograft model of GC peritoneal dissemination. Associations between NPR1 expression in GC tissue and clinicopathological factors were also evaluated. NPR1 mRNA was significantly upregulated in several GC cell lines compared with normal epithelial cells. NPR1 silencing attenuated GC cell proliferation, invasion, and migration, and additionally induced the intrinsic apoptosis pathway associated with mitochondrial dysfunction and caspase activation via downregulation of BCL-2. Administration of anti-NPR1 antibody significantly reduced the number and volume of GC peritoneal tumors in xenografted mice. High expression of NPR1 mRNA in clinical GC specimens was associated with a significantly higher rate of postoperative recurrence and poorer prognosis. NPR1 regulates the intrinsic apoptosis pathway and plays an important role in promoting the GC malignant phenotype. Inhibition of NPR1 with antibodies may have potential as a novel therapeutic modality for unresectable or metastatic GC.
Collapse
Affiliation(s)
- Masahiro Sasahara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Wittrien T, Ziegler A, Rühle A, Stomberg S, Meyer R, Bonneau D, Rodien P, Prunier-Mirebeau D, Coutant R, Behrends S. Heterozygous gain of function variant in GUCY1A2 may cause autonomous ovarian hyperfunction. Eur J Endocrinol 2024; 190:266-274. [PMID: 38578777 DOI: 10.1093/ejendo/lvae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE The purpose of this study was to characterize the phenotype associated with a de novo gain-of-function variant in the GUCY1A2 gene. METHODS An individual carrying the de novo heterozygous variant c.1458G>T p.(E486D) in GUCY1A2 was identified by exome sequencing. The effect of the corresponding enzyme variant α2E486D/β1 was evaluated using concentration-response measurements with wild-type enzyme and the variant in cytosolic fractions of HEK293 cells, UV-vis absorbance spectra of the corresponding purified enzymes, and examination of overexpressed fluorescent protein-tagged constructs by confocal laser scanning microscopy. RESULTS The patient presented with precocious peripheral puberty resembling the autonomous ovarian puberty seen in McCune-Albright syndrome. Additionally, the patient displayed severe intellectual disability. In vitro activity assays revealed an increased nitric oxide affinity for the mutant enzyme. The response to carbon monoxide was unchanged, while thermostability was decreased compared to wild type. Heme content, susceptibility to oxidation, and subcellular localization upon overexpression were unchanged. CONCLUSION Our data define a syndromic autonomous ovarian puberty likely due to the activating allele p.(E486D) in GUCY1A2 leading to an increase in cGMP. The overlap with the ovarian symptoms of McCune-Albright syndrome suggests an impact of this cGMP increase on the cAMP pathway in the ovary. Additional cases will be needed to ensure a causal link.
Collapse
Affiliation(s)
- Theresa Wittrien
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
| | - Alban Ziegler
- Department of Genetics, University Hospital of Angers, 49933 Angers, France
- Department of Genetics, CRMR AnDDI-Rares, University Hospital of Reims, 51092 Reims, France
| | - Anne Rühle
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
| | - Svenja Stomberg
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
| | - Ruben Meyer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
| | - Dominique Bonneau
- Department of Genetics, University Hospital of Angers, 49933 Angers, France
| | - Patrice Rodien
- Department of Endocrinology, Reference Center for Rare Thyroid and Hormone Receptor Diseases, University Hospital of Angers, 49933 Angers, France
| | - Delphine Prunier-Mirebeau
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, 49933 Angers, France
| | - Régis Coutant
- Department of Pediatric Endocrinology, University Hospital, 49933 Angers, France
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, 38106 Braunschweig, Germany
- Semmelweiss University Budapest, Asklepios Campus, 20099 Hamburg, Germany
| |
Collapse
|
18
|
Park MJ, Lee J, Bagon BB, Matienzo ME, Lim S, Kim K, Lee CM, Wu J, Kim DI. N G ,N G -Dimethylarginine Dimethylaminohydrolase 1 Expression Is Dispensable for Cold- or Diet-Induced Thermogenesis. Adv Biol (Weinh) 2024; 8:e2300192. [PMID: 38164809 DOI: 10.1002/adbi.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The strategy to activate thermogenic adipocytes has therapeutic potential to overcome obesity as they dissipate surplus energy as heat through various mechanisms. NG,NG-dimethylarginine dimethylaminohydrolases (DDAHs) are enzymes involved in the nitric oxide-protein kinase G signaling axis which increases thermogenic gene expression. However, the role of DDAHs in thermogenic adipocytes has not been elucidated. The adipocyte-specific Ddah1 knockout mice are generated by crossing Ddah1fl/fl mice with adiponectin Cre recombinase mice. Adipocyte-specific DDAH1 overexpressing mice are generated using adeno-associated virus-double-floxed inverse open reading frame (AAV-DIO) system. These mice are analyzed under basal, cold exposure, or high-fat diet (HFD) conditions. Primary inguinal white adipose tissue cells from adipocyte-specific Ddah1 knockout mice expressed comparable amounts of Ucp1 mRNA. Adipocyte-specific DDAH1 overexpressing mice do not exhibit enhanced activation of thermogenic adipocytes. In addition, when these mice are exposed to cold environment or fed an HFD, their body temperature/weight and thermogenesis-related gene and protein expressions are unchanged. These findings indicate that DDAH1 does not play a role in either cold- or diet-induced thermogenesis. Therefore, adipocyte targeting DDAH1 gene therapy for the treatment of obesity is unlikely to be effective.
Collapse
Affiliation(s)
- Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Bernadette B Bagon
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Merc Emil Matienzo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Sangyi Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Keon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
19
|
Zhou Z, Liu Y, Li W, Zhao Z, Xia X, Liu J, Deng Y, Wu Y, Pan X, He F, Yang H, Lu W, Xu Y, Zhu X. A Self-Adaptive Biomimetic Periosteum Employing Nitric Oxide Release for Augmenting Angiogenesis in Bone Defect Regeneration. Adv Healthc Mater 2024; 13:e2302153. [PMID: 37922941 DOI: 10.1002/adhm.202302153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/12/2023] [Indexed: 11/07/2023]
Abstract
The periosteum plays a vital role in the regeneration of critical-size bone defects and highly comminuted fractures, promoting the differentiation of osteoblasts, accelerating the reconstruction of the vascular network, and guiding bone tissue regeneration. However, the materials loaded with exogenous growth factors are limited by the release and activity of the elements. Therefore, the material structure must be carefully designed for the periosteal function. Here, a self-adaptive biomimetic periosteum strategy is proposed, which is a novel interpenetrating double network hydrogel consisting of diselenide-containing gelatin and calcium alginate (modified natural collagen and polysaccharide) to enhance the stability, anti-swelling, and delayed degradation of the hydrogel. The diselenide bond continuously releases nitric oxide (NO) by metabolizing endogenous nitrosated thiols (RSNO), activates the nitric oxide-cycle guanosine monophosphate (NO-cGMP) signal pathway, coordinates the coupling effect of angiogenesis and osteogenesis, and accelerates the repair of bone defects. This self-adaptive biomimetic periosteum with the interpenetrating double network structure formed by the diselenide-containing gelatin and calcium alginate has been proven to be safe and effective in repairing critical-size bone defects and is expected to provide a promising strategy for solving clinical problems.
Collapse
Affiliation(s)
- Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Wenjing Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Junlin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yaoge Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yubin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Weihong Lu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| |
Collapse
|
20
|
Liu D, Ma L, Zheng J, Zhang Z, Zhang N, Han Z, Wang X, Zhao J, Lv S, Cui H. Isopsoralen Improves Glucocorticoid-induced Osteoporosis by Regulating Purine Metabolism and Promoting cGMP/PKG Pathway-mediated Osteoblast Differentiation. Curr Drug Metab 2024; 25:288-297. [PMID: 39005121 DOI: 10.2174/0113892002308141240628071541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid- Induced Osteoporosis (GIOP) by regulating metabolism remains unclear. METHODS This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation. RESULTS Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-- targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity. CONCLUSION In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.
Collapse
Affiliation(s)
- Defeng Liu
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Lingyun Ma
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Jihui Zheng
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Zhenqun Zhang
- Department of Endocrinology, Hebei University of Chinese Medicine,Cangzhou, China
| | - Nana Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Zhongqian Han
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Xuejie Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Jianyong Zhao
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Shuquan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine,Cangzhou, China
| | - Huantian Cui
- Faculty of Life Sciences, Yunnan University of Chinese Medicine,Kunming, China
| |
Collapse
|
21
|
Meyfarth SRS, Antunes LAA, da Silva Tavares J, Guimarães LDS, da Silva EAB, Baratto-Filho F, Küchler EC, Silva-Sousa AC, Sousa-Neto MD, Antunes LS. Single nucleotide polymorphisms in inducible nitric oxide synthase gene are not associated with persistent apical periodontitis. AUST ENDOD J 2023; 49:648-656. [PMID: 37724624 DOI: 10.1111/aej.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
The aim of this study was to investigate whether there is an association between inducible in single nucleotide polymorphisms in nitric oxide synthase (rs2297518 and rs2779249) and persistent apical periodontitis. A total of 291 Brazilian subjects were included: 125 with signs/symptoms of persistent apical periodontitis and 166 with root canal-treated teeth exhibiting healthy perirradicular tissues. Endodontically treated patients were followed up after 1 year. The two single nucleotide polymorphisms in nitric oxide synthase were analysed using real-time polymerase chain reaction. Chi-square test and odds ratio with 95% confidence intervals were performed to compare genotype distributions between 'healed' and 'persistent apical periodontitis' groups (p < 0.05). Logistic regression analysis was used to evaluate SNP-SNP interactions. The allele and genotype distributions for the polymorphisms between the persistent apical periodontitis and healed groups were not statistically significant (p > 0.05). In the logistic regression analysis, the polymorphisms were not associated with persistent apical periodontitis and SNP-SNP interactions.
Collapse
Affiliation(s)
| | - Lívia Azeredo Alves Antunes
- Postgraduate Program, School of Dentistry, Fluminense Federal University, Niterói, Brazil
- Clinical Research Unit, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program, School of Dentistry, Fluminense Federal University, Nova Friburgo, Brazil
- Specific Formation Department, School of Dentistry of Nova Friburgo, Fluminense Federal University, Nova Friburgo, Brazil
| | | | | | | | | | | | - Alice Corrêa Silva-Sousa
- Restorative Dentistry Department, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Manoel Damião Sousa-Neto
- Restorative Dentistry Department, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Leonardo Santos Antunes
- Postgraduate Program, School of Dentistry, Fluminense Federal University, Niterói, Brazil
- Clinical Research Unit, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program, School of Dentistry, Fluminense Federal University, Nova Friburgo, Brazil
- Specific Formation Department, School of Dentistry of Nova Friburgo, Fluminense Federal University, Nova Friburgo, Brazil
| |
Collapse
|
22
|
Liu X, Jin S, Liu J, Xu X. MiR-223-3p overexpressed adipose mesenchymal stem cell-derived exosomes promote wound healing via targeting MAPK10. Acta Histochem 2023; 125:152102. [PMID: 37837832 DOI: 10.1016/j.acthis.2023.152102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Adipose mesenchymal stem cell (AMSC)-derived exosomes are promising novel factors for wound repair and regeneration. This study aimed to explore the potential roles and underlying mechanisms of specific miRNA in wound healing using AMSC-derived exosomes as carriers. METHODS The expression profiles of GSE197840 were downloaded to screen for differentially expressed miRNAs (DEmiRNAs), and the corresponding genes of the identified miRNAs were predicted. Next, miRNA-mRNA co-expression networks were constructed and the genes in these networks were subjected to functional analysis. miR-223-3p overexpressed AMSCs were then established to isolate exosomes, and the effects of AMSC-derived exosomes carrying miR-223-3p on wound healing and the related potential mechanisms were further investigated in vivo. RESULTS 35 DEmiRNAs were identified and a co-expression network containing 22 miRNAs and 91 target genes was constructed. Based on the network, miR-223-3p was the hub node and the genes were significantly enriched in 15 GO terms of biological processes and 14 KEGG pathways, including cAMP, PI3K-Akt, cGMP-PKG, neurotrophin signaling pathway, and dopaminergic synapse. Then, miR-223-3p overexpressed AMSCs-derived exosomes were successfully extracted, and miR-223-3p was found to directly bind with MAPK10. In vivo experiments validated that AMSCs-derived exosomal miR-223-3p could promote wound healing, and up-regulated α-SMA, CD31, COL1A1, COL2A1, COL3A1, and down-regulated MAPK10, TNF-α, IL-β, and IL-6. CONCLUSIONS AMSC-derived exosomal miR-223-3p may accelerate wound healing by targeting MAPK10.
Collapse
Affiliation(s)
- Xiaojiao Liu
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Shunqiao Jin
- Department of Dermatology, Taizhou Hospital of Zhejiang Province, Taizhou 317000, China
| | - Jiao Liu
- Department of Beauty Clinic, Dalian Wenn Baiyan Medical Beauty Clinic Co., LTD, Dalian 116000, China
| | - Xuezhu Xu
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
23
|
Kwon J, Aoki Y, Takahashi H, Nakata R, Kawarasaki S, Ni Z, Yu R, Inoue H, Inoue K, Kawada T, Goto T. Inflammation-induced nitric oxide suppresses PPARα expression and function via downregulation of Sp1 transcriptional activity in adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194987. [PMID: 37739218 DOI: 10.1016/j.bbagrm.2023.194987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The activation of peroxisome proliferator-activated receptor alpha (PPARα), a ligand-dependent transcription factor that regulates lipid oxidation-related genes, has been employed to treat hyperlipidemia. Emerging evidence indicates that Ppara gene expression decreases in adipose tissue under obese conditions; however, the underlying molecular mechanisms remain elusive. Here, we demonstrate that nitric oxide (NO) suppresses Ppara expression by regulating its promoter activity via suppression of specificity protein 1 (Sp1) transcriptional activity in adipocytes. NO derived from lipopolysaccharide (LPS) -activated macrophages or a NO donor (NOR5) treatment, suppressed Ppara mRNA expression in 10T1/2 adipocytes. In addition, Ppara transcript levels were reduced in the white adipose tissue (WAT) in both acute and chronic inflammation mouse models; however, such suppressive effects were attenuated via a nitric oxide synthase 2 (NOS2) inhibitor. Endoplasmic reticulum (ER) stress inhibitors attenuated the NO-induced repressive effects on Ppara gene expression in 10T1/2 adipocytes. Promoter mutagenesis and chromatin immunoprecipitation assays revealed that NO decreased the Sp1 occupancy in the proximal promoter regions of the Ppara gene, which might partially result from the reduced Sp1 expression levels by NO. This study delineated the molecular mechanism that modulates Ppara gene transcription upon NO stimulation in white adipocytes, suggesting a possible mechanism for the transcriptional downregulation of Ppara in WAT under obese conditions.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Yumeko Aoki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Zheng Ni
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hiroyasu Inoue
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
24
|
Chen M, Ren M, Shi Y, Liu X, Wei H. State-of-the-art polyetheretherketone three-dimensional printing and multifunctional modification for dental implants. Front Bioeng Biotechnol 2023; 11:1271629. [PMID: 37929192 PMCID: PMC10621213 DOI: 10.3389/fbioe.2023.1271629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer with an elastic modulus close to that of the jawbone. PEEK has the potential to become a new dental implant material for special patients due to its radiolucency, chemical stability, color similarity to teeth, and low allergy rate. However, the aromatic main chain and lack of surface charge and chemical functional groups make PEEK hydrophobic and biologically inert, which hinders subsequent protein adsorption and osteoblast adhesion and differentiation. This will be detrimental to the deposition and mineralization of apatite on the surface of PEEK and limit its clinical application. Researchers have explored different modification methods to effectively improve the biomechanical, antibacterial, immunomodulatory, angiogenic, antioxidative, osteogenic and anti-osteoclastogenic, and soft tissue adhesion properties. This review comprehensively summarizes the latest research progress in material property advantages, three-dimensional printing synthesis, and functional modification of PEEK in the fields of implant dentistry and provides solutions for existing difficulties. We confirm the broad prospects of PEEK as a dental implant material to promote the clinical conversion of PEEK-based dental implants.
Collapse
Affiliation(s)
- Meiqing Chen
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mei Ren
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingqi Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiuyu Liu
- Hospital of Stomatogy, Jilin University, Changchun, China
| | - Hongtao Wei
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Özmen E, İzol Özmen H, Atasoy S, Dursun M, Bilgiç B, Salduz A. The effects of prophylactic tadalafil use on VEGF expression in the rabbit model of steroid-induced femoral head avascular necrosis. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2023; 57:237-242. [PMID: 37850239 PMCID: PMC10724799 DOI: 10.5152/j.aott.2023.22188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVE The purpose of this study was to examine the effect of prophylactic tadalafil use on a steroid-induced femoral head avascular necrosis model in terms of microscopic, imaging, and molecular biological changes. METHODS Twenty-four New Zealand rabbits were divided into 3 equal groups. Eight rabbits were designated as the control group and did not receive treatment. Rabbits in group 1 (G1) received 0.1 mg/kg Escherichia coli lipopolysaccharide (LPS) intravenously and 40 mg/ kg methylprednisolone sodium succinate (MP) was administered intramuscularly for 3 days consecutively. Rabbits in group 2 (G2) were given 5 mg/kg tadalafil orally for 10 consecutive days. Starting on the eighth day, 0.1 mg/kg LPS was given, and following this 40 mg/kg MP injections were administered for 3 days. All animals were sacrificed 3 weeks after the final MP injection. Magnetic resonance imaging was performed, and bilateral femora were harvested. Half of the femoral head was stored for Vascular Endothelial Growth Factor (VEGF) examination with Western blot analysis. The other half was examined microscopically for the presence of osteonecrosis. RESULTS In G1, 15 out of 16 hips (93%) of the 8 rabbits had osteonecrosis compared to 8 out of 12 hips (67%) of 6 rabbits in G2 (P > .05). The VEGF expression in G2 was significantly higher than in the control group and G1 (P < .05 and P < .001, respectively). There was no significant difference in VEGF expression between the control group and G1 (P > .05). CONCLUSION This study has shown us that femoral head osteonecrosis can be reliably induced with LPS and corticosteroid, as described in the literature. Prophylactic tadalafil use did not decrease the occurrence of osteonecrosis significantly. However, it significantly increased VEGF expression in the femoral head independent of the effects of steroids and LPS.
Collapse
Affiliation(s)
- Emre Özmen
- Department of Orthopedics and Traumatology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Hazal İzol Özmen
- Department of Pathology, Basakşehir Çam ve Sakura City Hospital, Istanbul, Turkey
| | - Sezen Atasoy
- Department of Biochemistry, Bezmialem Vakif University, Faculty of Pharmacy, Istanbul, Turkey
| | - Menduh Dursun
- Department of Radiology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Bilge Bilgiç
- Department of Pathology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Ahmet Salduz
- Department of Orthopedics and Traumatology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| |
Collapse
|
26
|
Friebe A, Kraehling JR, Russwurm M, Sandner P, Schmidtko A. The 10th International Conference on cGMP 2022: recent trends in cGMP research and development-meeting report. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1669-1686. [PMID: 37079081 PMCID: PMC10338386 DOI: 10.1007/s00210-023-02484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
Increasing cGMP is a unique therapeutic principle, and drugs inhibiting cGMP-degrading enzymes or stimulating cGMP production are approved for the treatment of various diseases such as erectile dysfunction, coronary artery disease, pulmonary hypertension, chronic heart failure, irritable bowel syndrome, or achondroplasia. In addition, cGMP-increasing therapies are preclinically profiled or in clinical development for quite a broad set of additional indications, e.g., neurodegenerative diseases or different forms of dementias, bone formation disorders, underlining the pivotal role of cGMP signaling pathways. The fundamental understanding of the signaling mediated by nitric oxide-sensitive (soluble) guanylyl cyclase and membrane-associated receptor (particulate) guanylyl cyclase at the molecular and cellular levels, as well as in vivo, especially in disease models, is a key prerequisite to fully exploit treatment opportunities and potential risks that could be associated with an excessive increase in cGMP. Furthermore, human genetic data and the clinical effects of cGMP-increasing drugs allow back-translation into basic research to further learn about signaling and treatment opportunities. The biannual international cGMP conference, launched nearly 20 years ago, brings all these aspects together as an established and important forum for all topics from basic science to clinical research and pivotal clinical trials. This review summarizes the contributions to the "10th cGMP Conference on cGMP Generators, Effectors and Therapeutic Implications," which was held in Augsburg in 2022 but will also provide an overview of recent key achievements and activities in the field of cGMP research.
Collapse
Affiliation(s)
- Andreas Friebe
- Institute of Physiology, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany
| | - Jan R. Kraehling
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | - Michael Russwurm
- Institute of Pharmacology, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Peter Sandner
- Pharmaceuticals, Research and Early Development, Pharma Research Center, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Max-Von-Laue-Str. 9, D-60438 Frankfurt Am Main, Germany
| |
Collapse
|
27
|
Yan Z, Xu J, Wu G, Zhen Y, Liao X, Zou F. Identification of key genes and pathways associated with gender difference in osteonecrosis of the femoral head based on bioinformatics analysis. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:122-130. [PMID: 36856107 PMCID: PMC9976184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To identify different key genes and pathways between males and females by studying differentially expressed genes (DEGs). METHODS The gene expression data of GSE123568 were downloaded from GEO database, including osteonecrosis of the femoral head (ONFH) samples from 3 females and 7 males, and DEGs between different gender were identified with R software. Protein-protein interaction (PPI) network was constructed to further analyze the interactions between overlapping DEGs, and finally, GO, KEGG and gene set enrichment analysis (GSEA) were conducted for enrichment analysis. RESULTS 131 DEGs were identified between ONFH females and ONFH males, including 76 up-regulated genes and 55 down-regulated genes. And 10 hub genes were identified in PPI network, including SLC4A1, GYPA, CXCL8, IFIT1, GBP5, IFI44, IFI44L, IFIT3, KEL and AHSP. Functional enrichment analysis revealed that these genes were mainly enriched in cGMP-PKG signaling pathway, Fatty acid degradation, Non-alcoholic fatty liver disease, Systemic lupus erythematosus, Hematopoietic cell lineage and NO-cGMP-PKG signaling. CONCLUSIONS NO-cGMP-PKG signaling may play an important role in the occurrence and development of ONFH. SLC4A1, GYPA, CXCL8, GBP5 and AHSP may be key genes associated with gender difference in the progression of ONFH, which may be ideal targets or prognostic markers for the treatment of ONFH.
Collapse
Affiliation(s)
- Zijian Yan
- Department of Orthopeadics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, China
| | - Junchang Xu
- Department of Orthopeadics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, China
| | - Guihua Wu
- Department of General Surgery, Affiliated Hospital of Xiangyang Vocational and Technical College, China
| | - Yongling Zhen
- Department of Orthopeadics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, China
| | - Xiaolong Liao
- Department of Orthopeadics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, China
| | - Feng Zou
- Department of Orthopeadics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, China
| |
Collapse
|
28
|
Pan W, Gu J, Xu S, Zhang C, Wang J, Wang S, Xu J. Dietary nitrate improves jaw bone remodelling in zoledronate-treated mice. Cell Prolif 2023:e13395. [PMID: 36810909 DOI: 10.1111/cpr.13395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 02/24/2023] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious complication that occurs in patients with osteoporosis or metastatic bone cancer treated with bisphosphonate. There is still no effective treatment and prevention strategy for BRONJ. Inorganic nitrate, which is abundant in green vegetables, has been reported to be protective in multiple diseases. To investigate the effects of dietary nitrate on BRONJ-like lesions in mice, we utilized a well-established mouse BRONJ model, in which tooth extraction was performed. Specifically, 4 mM sodium nitrate was administered in advance through drinking water to assess the short- and long-term effects on BRONJ. Zoledronate injection could induce severe healing inhibition of the tooth extraction socket, while addition of pretreating dietary nitrate could alleviate the inhibition by reducing monocyte necrosis and inflammatory cytokines production. Mechanistically, nitrate intake increased plasma nitric oxide levels, which attenuated necroptosis of monocytes by downregulating lipid and lipid-like molecule metabolism via a RIPK3 dependent pathway. Our findings revealed that dietary nitrate could inhibit monocyte necroptosis in BRONJ, regulate the bone immune microenvironment and promote bone remodelling after injury. This study contributes to the understanding of the immunopathogenesis of zoledronate and supports the feasibility of dietary nitrate for the clinical prevention of BRONJ.
Collapse
Affiliation(s)
- Wen Pan
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jianyu Gu
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shihan Xu
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinsong Wang
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Junji Xu
- Salivary Gland Disease Centre and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.,Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.,Department of Periodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Beijing, China.,Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Liu T, Yu H, Wang S, Li H, Du X, He X. Chondroitin sulfate alleviates osteoporosis caused by calcium deficiency by regulating lipid metabolism. Nutr Metab (Lond) 2023; 20:6. [PMID: 36747190 PMCID: PMC9901125 DOI: 10.1186/s12986-023-00726-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
The use of non-drug intervention for calcium deficiency has attracted attention in recent years. Although calcium carbonate is the preferred raw material for calcium supplementation, there are few reports on the mechanism of the combined action of chondroitin sulfate and calcium to alleviate osteoporosis from the perspective of gut microbiota and metabolomics. In this study, a rat model of osteoporosis was established by feeding a low-calcium diet. The intestinal microbiota abundance, fecal and plasma metabolite expression levels of rats fed a basal diet, a low-calcium diet, a low-calcium diet plus calcium carbonate, and a low-calcium diet plus chondroitin sulfate were compared. The results showed that compared with the low calcium group, the calcium content and bone mineral density of femur were significantly increased in the calcium carbonate and chondroitin sulfate groups. 16 S rRNA sequencing and metabolomics analysis showed that chondroitin sulfate intervention could reduce short-chain fatty acid synthesis of intestinal flora, slow down inflammatory response, inhibit osteoclast differentiation, promote calcium absorption and antioxidant mechanism, and alleviate osteoporosis in low-calcium feeding rats. Correlation analysis showed that the selected intestinal flora was significantly correlated with metabolites enriched in feces and plasma. This study provides scientific evidence of the potential impact of chondroitin sulfate as a dietary supplement for patients with osteoporosis.
Collapse
Affiliation(s)
- Tianshu Liu
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Hai Yu
- grid.272242.30000 0001 2168 5385Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104-0045 Japan ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Shuai Wang
- grid.27255.370000 0004 1761 1174Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jining, 250012 Shandong China
| | - Huimin Li
- grid.27255.370000 0004 1761 1174Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.506261.60000 0001 0706 7839National Human Genetic Resources Center; National Research Institute for Health and Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Xinyiran Du
- grid.449428.70000 0004 1797 7280College of Stomatology, Jining Medical University, Jining, 272067 Shandong China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012, Shandong, China.
| |
Collapse
|
30
|
Shen YW, Cheng YA, Li Y, Li Z, Yang BY, Li X. Sambucus williamsii Hance maintains bone homeostasis in hyperglycemia-induced osteopenia by reversing oxidative stress via cGMP/PKG signal transduction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154607. [PMID: 36610352 DOI: 10.1016/j.phymed.2022.154607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sambucus williamsii Hance (SWH) has effectively been adopted to treat joint and bone disorders. Diabetes-induced osteopenia (DOP) is caused primarily by impaired bone formation as a result of hyperglycemia. We had previously demonstrated that SWH extract accelerated fracture healing and promoted osteoblastic MC3T3-E1 cell proliferation and osteogenic differentiation. This study assessed the impacts of SWH extract on diabetes-induced bone loss and explored the mechanisms underlying its osteoprotective effects. METHODS This work employed MC3T3-E1 cell line for evaluating how SWH extract affected osteogenesis, oxidative stress (OS), and the underlying mechanism in vitro. Streptozotocin-induced osteopenia mouse model was applied with the purpose of assessing SWH extract's osteoprotection on bone homeostasis in vivo. RESULTS The increased OS of MC3T3-E1 cells exposed to high glucose (HG) was largely because of the upregulation of pro-oxidant genes and the downregulation of antioxidant genes, whereas SWH extract reduced the OS by modulating NADPH oxidase-4 and thioredoxin-related genes by activating cyclic guanosine monophosphate (cGMP) production and increasing the level of cGMP-mediated protein kinase G type-2 (PKG2). The oral administration of SWH extract maintained bone homeostasis in type 1 diabetes mellitus (T1DM) mice by enhancing osteogenesis while decreasing OS. In bones from hyperglycemia-induced osteopenia mice and HG-treated MC3T3-E1 cells, the SWH extract achieved the osteoprotective effects through activating the cGMP/PKG2 signaling pathway, upregulating the level of antioxidant genes, as well as downregulating the level of pro-oxidant genes. CONCLUSION SWH extract exerts osteoprotective effects on hyperglycemia-induced osteopenia by reversing OS via cGMP/PKG signal transduction and is a potential therapy for DOP.
Collapse
Affiliation(s)
- Yi-Wei Shen
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China; Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yang-Ang Cheng
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China; Key Laboratory of Northern Medicine Base and Application under Ministry of d Education, Harbin, Heilongjiang 150040, China
| | - Yi Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zuo Li
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Bing-You Yang
- College of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xue Li
- Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medicine University), Ningbo, Zhejiang, 315010, China; The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
31
|
Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, Gumerova AA, Frolinger T, Moldavski O, Barak O, Pallapati A, Rojekar S, Caminis J, Ginzburg Y, Ryu V, Davies TF, Lizneva D, Rosen CJ, Yuen T. Bone circuitry and interorgan skeletal crosstalk. eLife 2023; 12:83142. [PMID: 36656634 PMCID: PMC9851618 DOI: 10.7554/elife.83142] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mehr Mathew
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Pallapati
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Satish Rojekar
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Caminis
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
32
|
Yang K, Li J, Tao L. Purine metabolism in the development of osteoporosis. Biomed Pharmacother 2022; 155:113784. [DOI: 10.1016/j.biopha.2022.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
|
33
|
Xu K, Chu Y, Liu Q, Fan W, He H, Huang F. NEDD4 E3 Ligases: Functions and Mechanisms in Bone and Tooth. Int J Mol Sci 2022; 23:ijms23179937. [PMID: 36077334 PMCID: PMC9455957 DOI: 10.3390/ijms23179937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Protein ubiquitination is a precisely controlled enzymatic cascade reaction belonging to the post-translational modification of proteins. In this process, E3 ligases catalyze the binding of ubiquitin (Ub) to protein substrates and define specificity. The neuronally expressed developmentally down-regulated 4 (NEDD4) subfamily, belonging to the homology to E6APC terminus (HECT) class of E3 ligases, has recently emerged as an essential determinant of multiple cellular processes in different tissues, including bone and tooth. Here, we place special emphasis on the regulatory role of the NEDD4 subfamily in the molecular and cell biology of osteogenesis. We elucidate in detail the specific roles, downstream substrates, and upstream regulatory mechanisms of the NEDD4 subfamily. Further, we provide an overview of the involvement of E3 ligases and deubiquitinases in the development, repair, and regeneration of another mineralized tissue—tooth.
Collapse
Affiliation(s)
- Ke Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Qin Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| |
Collapse
|
34
|
Grande EM, Raka F, Hoffman S, Adeli K. GLP-2 Regulation of Dietary Fat Absorption and Intestinal Chylomicron Production via Neuronal Nitric Oxide Synthase (nNOS) Signaling. Diabetes 2022; 71:1388-1399. [PMID: 35476805 DOI: 10.2337/db21-1053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/17/2022] [Indexed: 11/13/2022]
Abstract
Postprandial dyslipidemia is a metabolic condition commonly associated with insulin-resistant states, such as obesity and type 2 diabetes. It is characterized by the overproduction of intestinal chylomicron particles and excess atherogenic chylomicron remnants in circulation. We have previously shown that glucagon-like peptide 2 (GLP-2) augments dietary fat uptake and chylomicron production in insulin-resistant states; however, the underlying mechanisms remain unclear. Previous studies have implicated nitric oxide (NO) in the absorptive actions of GLP-2. In this study, we report a novel role for neuronal NO synthase (nNOS)-mediated NO generation in lipid uptake and chylomicron formation based on studies in C57BL/6J mice, nNOS-/- mice, and Syrian golden hamsters after intraduodenal and oral fat administration. GLP-2 treatment in wild-type (WT) mice significantly increased postprandial lipid accumulation and circulating apolipoprotein B48 protein levels, while these effects were abolished in nNOS-/- mice. nNOS inhibition in Syrian golden hamsters and protein kinase G (PKG) inhibition in WT mice also abrogated the effect of GLP-2 on postprandial lipid accumulation. These studies demonstrate a novel mechanism in which nNOS-generated NO is crucial for GLP-2-mediated lipid absorption and chylomicron production in both mouse and hamster models. Overall, our data implicate an nNOS-PKG-mediated pathway in GLP-2-mediated stimulation of dietary fat absorption and intestinal chylomicron production.
Collapse
Affiliation(s)
- Elisabeth M Grande
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Fitore Raka
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Liu J, Yao Y, Huang J, Sun H, Pu Y, Tian M, Zheng M, He H, Li Z. Comprehensive analysis of lncRNA-miRNA-mRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Genomics 2022; 23:425. [PMID: 35672672 PMCID: PMC9172120 DOI: 10.1186/s12864-022-08646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays crucial role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), involving in regulation of competing endogenous RNA (ceRNA) mechanisms and conduction of signaling pathways. However, its mechanisms are poorly understood. This study aimed to investigate lncRNAs, miRNAs and mRNAs expression profiles in rat BMMSCs (rBMMSCs) osteogenic differentiation, screen the potential key lncRNA-miRNA-mRNA networks, explore the putative functions and identify the key molecules, as the basis of studying potential mechanism of rBMMSCs osteogenic differentiation driven by lncRNA, providing molecular targets for the management of bone defect. Methods High-throughput RNA sequencing (RNA-seq) was used to determine lncRNAs, miRNAs, and mRNAs expression profiles at 14-day rBMMSCs osteogenesis. The pivotal lncRNA-miRNA and miRNA-mRNA networks were predicted from sequencing data and bioinformatic analysis, and the results were exported by Cytoscape 3.9.0 software. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for functional exploration. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate lncRNAs, miRNAs and mRNAs. Results rBMMSCs were identified, and the osteogenic and adipogenic differentiation ability were detected. A total of 8634 lncRNAs were detected by RNA-seq, and 1524 differential expressed lncRNAs, of which 812 up-regulated and 712 down-regulated in osteo-inductive groups compared with control groups. 30 up-regulated and 61 down-regulated miRNAs, 91 miRNAs were differentially expressed in total. 2453 differentially expressed mRNAs including 1272 up-expressed and 1181 down-expressed were detected. 10 up-regulated lncRNAs were chosen to predict 21 down-regulated miRNAs and 650 up-regulated mRNAs. 49 lncRNA-miRNA and 1515 miRNA–mRNA interactive networks were constructed. GO analysis showed the most important enrichment in cell component and molecular function were “cytoplasm” and “protein binding”, respectively. Biological process related to osteogenic differentiation such as “cell proliferation”, “wound healing”, “cell migration”, “osteoblast differentiation”, “extracellular matrix organization” and “response to hypoxia” were enriched. KEGG analysis showed differentially expressed genes were mainly enriched in “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells”, “cGMP-PKG signaling pathway”, “Axon guidance” and “Calcium signaling pathway”. qRT-PCR verified that lncRNA Tug1, lncRNA AABR07011996.1, rno-miR-93-5p, rno-miR-322-5p, Sgk1 and Fzd4 were consistent with the sequencing results, and 4 lncRNA-miRNA-mRNA networks based on validations were constructed, and enrichment pathways were closely related to “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells” and “Wnt signaling pathway”. Conclusions lncRNAs, miRNAs and mRNAs expression profiles provide clues for future studies on their roles for BMMSCs osteogenic differentiation. Furthermore, lncRNA–miRNA–mRNA networks give more information on potential new mechanisms and targets for management on bone defect. Supplementary information The online version contains supplementary material available at 10.1186/s12864-022-08646-x.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yuan Yao
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Jinyong Huang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Hao Sun
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yixuan Pu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Mengting Tian
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Meijie Zheng
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Huiyu He
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| | - Zheng Li
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| |
Collapse
|
36
|
He WF, Qin R, Gao YH, Zhou J, Wei JJ, Liu J, Hou XF, Ma HP, Xian CJ, Li XY, Chen KM. The interdependent relationship between the nitric oxide signaling pathway and primary cilia in pulse electromagnetic field-stimulated osteoblastic differentiation. FASEB J 2022; 36:e22376. [PMID: 35616355 DOI: 10.1096/fj.202101577rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Pulsed electromagnetic fields (PEMFs) have long been recognized being safe and effective in treating bone fracture nonunion and osteoporosis. However, the mechanism of osteogenic action of PEMFs is still unclear. While primary cilia are reported to be a sensory organelle for PEMFs, and nitric oxide (NO) plays an indispensable role in osteogenic effect of PEMFs, the relationship between NO and primary cilia is unknown. In this study, effects of treatment with 50 Hz 0.6 mT PEMFs on osteogenic differentiation and mineralization, NO secretion, and ciliary location of specific proteins were examined in rat calvarial osteoblasts (ROBs) with normal or abrogated primary cilia. It was found that PEMFs stimulated the osteogenic differentiation by activating the NOS/NO/sGC/cGMP/PKG signaling pathway, which need the existence of primary cilia. All components of the signaling pathway including iNOS, eNOS, sGC, PKG-1, and PKG-2 were localized to primary cilia, and eNOS was phosphorylated inside the primary cilia. Besides, primary cilia were elongated significantly by PEMF treatment and changed dynamically with the activation NO/cGMP pathway. When the pathway was blocked by L-NAME, PEMFs could no longer elongate the primary cilia and stimulate the osteoblastic differentiation. Thus, this study for the first time observed activation of the NO/cGMP signaling pathway in ciliary compartment of osteoblasts, and PEMFs could not stimulate the osteoblastic differentiation if the NO signaling pathway was blocked or the ciliogenesis was inhibited. Our findings indicate the interdependent relationship between NO and primary cilia in the PEMF-promoted osteogenesis.
Collapse
Affiliation(s)
- Wen-Fang He
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China.,Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, P. R. China
| | - Rong Qin
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Yu-Hai Gao
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Jian Zhou
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Juan-Juan Wei
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Jing Liu
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Xue-Feng Hou
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Hui-Ping Ma
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China
| | - Cory J Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Xue-Yan Li
- Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, P. R. China
| | - Ke-Ming Chen
- Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China, Lanzhou, P. R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, P. R. China
| |
Collapse
|
37
|
Liu X, Ouyang L, Chen L, Qiao Y, Ma X, Xu G, Liu X. Hydroxyapatite composited PEEK with 3D porous surface enhances osteoblast differentiation through mediating NO by macrophage. Regen Biomater 2021; 9:rbab076. [PMID: 35480864 PMCID: PMC9039504 DOI: 10.1093/rb/rbab076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
The adverse immune response mediated by macrophages is one of the main factors that are prone to lead poor osseointegration of polyetheretherketone (PEEK) implants in clinic. Hence, endowing PEEK with immunomodulatory ability to avoid the adverse immune response becomes a promising strategy to promote bone repair. In this work, sulfonation and hydrothermal treatment were used to fabricate a 3D porous surface on PEEK and hydroxyapatite (HA) composited PEEK. The HA composited PEEK with 3D porous surface inhibited macrophages polarizing to M1 phenotype and downregulated inducible nitric oxide synthase protein expression, which led to a nitric oxide concentration reduction in culture medium of mouse bone marrow mesenchymal stem cells (mBMSCs) under co-culture condition. The decrease of nitric oxide concentration could help to increase bone formation-related OSX and ALP genes expressions and decrease bone resorption-related MMP-9 and MMP-13 genes expressions via cAMP-PKA-RUNX2 pathway in mBMSCs. In summary, the HA composited PEEK with 3D porous surface has the potential to promote osteogenesis of PEEK through immunomodulation, which provides a promising strategy to improve the bone repair ability of PEEK.
Collapse
Affiliation(s)
- Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Liping Ouyang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Lan Chen
- School of Materials Science, and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Science Avenue 100, Zhengzhou 450001, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Xiaohan Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Wenwei Road 345, Ningbo 315300, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Wenwei Road 345, Ningbo 315300, China
| |
Collapse
|
38
|
Network Pharmacology-Based Strategy and Molecular Docking to Explore the Potential Mechanism of Jintiange Capsule for Treating Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5338182. [PMID: 34899951 PMCID: PMC8664513 DOI: 10.1155/2021/5338182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022]
Abstract
Background With the advent of ageing population, osteoporosis (OP) has already become a global challenge. Jintiange capsule is extensively applied to treat OP in China. Although recent studies demonstrate that it generates significant effects on strengthening bone, the exact mechanism of the jintiange capsule for treating OP remains unknown. Purpose To understand the main ingredients of the jintiange capsule, predict the possible targets and the relevant signal transduction pathways, and explore the mechanism of the jintiange capsule for the treatment of OP. Methods Main ingredients of the jintiange capsule, drug targets, and potential disease targets for OP were obtained from public databases. Molecular biological processes and signaling pathways were determined via bioinformatic analysis, containing protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the disease-drug-ingredient-targets-pathways networks were constructed using Cytoscape. According to CytoNCA, core targets were acquired. Finally, the present study conducted molecular docking for better testing the abovementioned results. Results In the current work, we found that 4 main ingredients of the jintiange capsule, 33 drug targets, 4745 potential disease targets for OP, and 12 overlapping targets were identified. PPI network containing 12 nodes and 25 edges proved that there existed a complex relationship. As revealed by GO functional annotation, the intersected targets were mostly associated with BP, CC, and MF. The targets were enriched to 368 items in BP, 27 items in CC, and 42 items in MF. They mainly included calcium ion homeostasis, calcium channel complex, and calcium channel regulator activity. According to KEGG pathway analysis, the intersected targets were mostly associated with Rap 1, cGMP-PKG, Ras, cAMP, calcium pathways, and so on. Based on the analysis with CytoNCA, we acquired 4 core targets, respectively—CALR, SPARC, CALM1, and CALM2. Besides, 2 core targets, CALR and CALM1, were selected for molecular docking experiments. Molecular docking revealed that the main ingredient, calcium phosphate, had good binding with the CALR protein and CALM1 protein. Conclusion To conclude, the main ingredient of the jintiange capsule, particularly calcium phosphate, may interact with 2 targets, CALR and CALM1, and regulate multiple signaling pathways to treat OP. Additionally, this also benefits us in further understanding the mechanism of the jintiange capsule for treating OP.
Collapse
|
39
|
Cao S, Li X, Feng T, Li Y, Ding H, Xie L, Yang Q. Hirudin promotes proliferation and osteogenic differentiation of HBMSCs via activation of cyclic guanosine monophosphate (cGMP)/protein kinase-G (PKG) signaling pathway. Bioengineered 2021; 13:6061-6069. [PMID: 34898364 PMCID: PMC8973852 DOI: 10.1080/21655979.2021.2008697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteoporosis is a public health problem resulting in higher susceptibility to bone fracture. Hirudin is known as a direct thrombin inhibitor, which is isolated from the salivary gland of the medicinal leech. This present study aimed to evaluate the effect of Hirudin on the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSCs). In our study, the effect of Hirudin on the proliferation of HBMSCs was evaluated with the CCK-8 and MTT assays. The capacity of osteogenic differentiation and mineralization of HBMSCs were evaluated with ALP and alizarin red staining, respectively. cGMP content was determined by ELISA. Western blotting and qRT-PCR were used to investigate the effect of Hirudin on the expression of osteoblast-specific markers, including Runx2, osterix (OSX), osteocalcin (OCN), collagen1 (Col1). In our study, Hirudin treatment promoted cell viability. Moreover, Hirudin treatment increased ALP activity of HBMSCs and red coloration of alizarin. Interestingly, cGMP inhibitor partly reversed the effect of Hirudin on the proliferation, differentiation and mineralization of HBMSCs. In conclusion, Hirudin promoted the proliferation, differentiation and mineralization of HBMSCs via activation of cGMP signaling pathway. Hence, Hirudin contributed to bone remodeling and might represent as an effective agent for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shun Cao
- Department of Orthopaedics, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City (210017), Jiangsu Province, PR China
| | - Xianghui Li
- Department of Orthopaedics, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City (210017), Jiangsu Province, PR China
| | - Ting Feng
- Department of General Studies, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang City (712046), Shanxi Province, PR China
| | - Yaqing Li
- Academic Affairs Office, Jiangsu Health Vocational College, Nanjing City (211899), Jiangsu Province, PR China
| | - Hongwei Ding
- Department of Orthopaedics, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City (210017), Jiangsu Province, PR China
| | - Lin Xie
- Department of Orthopedics, Jiangsu province integrated traditional Chinese and Western medicine hospital, Nanjing city (210028), Jiangsu Province, PR China
| | - Quanhong Yang
- Department of Orthopaedics, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City (210017), Jiangsu Province, PR China
| |
Collapse
|
40
|
Batteux B, Bennis Y, Bodeau S, Masmoudi K, Hurtel-Lemaire AS, Kamel S, Gras-Champel V, Liabeuf S. Associations between osteoporosis and drug exposure: A post-marketing study of the World Health Organization pharmacovigilance database (VigiBase®). Bone 2021; 153:116137. [PMID: 34343739 DOI: 10.1016/j.bone.2021.116137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Bone remodeling is a complex process, and many conditions (including drug exposure) lead to osteoporosis. Here, we sought to detect new disproportionality signals for drugs associated with osteoporosis. METHODS We performed a disproportionality analysis of the World Health Organization's VigiBase® pharmacovigilance database through April 12, 2020. The frequency of reports on osteoporosis for all identified drug classes was compared with that for all other drugs and quoted as the reporting odds ratio (ROR) [95% confidence interval (CI)]. RESULTS Of the 7,594,968 cases spontaneously recorded to VigiBase®, 4758 concerned osteoporosis. New disproportionality signals with a pharmacologically plausible mechanism were found for drugs used in neurology (levodopa (ROR [95%CI]: 10.18 [4.33-25.10]), selective serotonin agonists (4.22 [2.34-7.00]) and memantine (4.10 [1.56-8.93])), hematology (romiplostim (4.93 [1.15-21.10])), pulmonology (macitentan (3.02 [1.84-4.90])), ophthalmology (ranibizumab (3.31 [1.00-10.51])) and rheumatology (tofacitinib (3.65 [3.00-4.40])). The robustness of these new results is supported by the significant RORs for the vast majority of drugs already known to induce osteoporosis and/or increase the fracture risk, namely glucocorticoids, gonadotropin-releasing hormone analogs, anti-aromatases, androgen receptor blockers, thyroid hormones, proton pump inhibitors, thiazolidinediones, vitamin K antagonists, loop diuretics, protease inhibitors, nucleoside and nucleotide reverse transcriptase inhibitors, and enzyme-inducing antiepileptics including barbiturates and derivatives, hydantoin derivatives, carboxamide derivatives and fatty acid derivatives. CONCLUSION We established up a comprehensive list of drugs potentially associated with osteoporosis and highlighted those with pharmacologically plausible mechanisms leading to bone fragility. Our results might pave the way for additional exploration of these mechanisms.
Collapse
Affiliation(s)
- Benjamin Batteux
- Department of Pharmacology, Amiens University Medical Center, F-80054 Amiens, France; Department of Rheumatology, Saint-Quentin Medical Center, F-02321 Saint-Quentin, France; MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80054 Amiens, France; RECIF, Amiens-Picardie University Medical Center, F-80054 Amiens, France.
| | - Youssef Bennis
- Department of Pharmacology, Amiens University Medical Center, F-80054 Amiens, France; MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80054 Amiens, France
| | - Sandra Bodeau
- Department of Pharmacology, Amiens University Medical Center, F-80054 Amiens, France; MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80054 Amiens, France
| | - Kamel Masmoudi
- Department of Pharmacology, Amiens University Medical Center, F-80054 Amiens, France
| | | | - Said Kamel
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80054 Amiens, France; Biochemistry Laboratory, Amiens University Medical Center, F-80000 Amiens, France
| | - Valérie Gras-Champel
- Department of Pharmacology, Amiens University Medical Center, F-80054 Amiens, France; MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80054 Amiens, France
| | - Sophie Liabeuf
- Department of Pharmacology, Amiens University Medical Center, F-80054 Amiens, France; MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80054 Amiens, France
| |
Collapse
|