1
|
Zhang Y, Ding R, Hu L, Liu E, Qu P. Epigenetics in metabolic dysfunction-associated steatohepatitis. Cell Signal 2025; 130:111684. [PMID: 39999913 DOI: 10.1016/j.cellsig.2025.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a complex disease involving genetics, environment, and lifestyle, with the potential to progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Although the pathogenesis of MASH is not fully clear, increasing evidence has indicated that epigenetics plays an important role in the genesis and progression of MASH, during which, as drastic changes in metabolites, epigenetics undergo drastic changes. Roles of chromatin structure, chromatin accessibility, DNA methylation, histone modification, and non-coding RNAs were considered as bridges of pathogenic factors and MASH. In this review, the research progress on the epigenetics of MASH was summarized, and indepth research and therapeutic strategies based on epigenetics is expected to bring new hope to MASH patients.
Collapse
Affiliation(s)
- Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China.
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China.
| |
Collapse
|
2
|
Qin D, Huang P, Chen J, Wu C, Liang Y. The therapeutic potential of different mesenchymal stem cells and their derived exosomes in metabolic dysfunction-associated steatotic liver disease. Front Endocrinol (Lausanne) 2025; 16:1558194. [PMID: 40248144 PMCID: PMC12003127 DOI: 10.3389/fendo.2025.1558194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease is a metabolic disease with an increasing incidence. Its pathogenesis involves the interaction of multiple factors. There is currently no specific treatment, so early prevention and treatment are crucial. Mesenchymal stem cells are a type of cell with the ability to self-renew and differentiate in multiple directions. They have a wide range of sources, including umbilical cords, bone marrow, and fat, and have various biological functions such as anti-inflammation, immune regulation, anti-oxidation, and inhibition of fibrosis. They have shown significant potential in the treatment of non-alcoholic fatty liver disease. In recent years, mesenchymal stem cells derived exosomes have been shown to be rich in bioactive substances, and to be involved in intercellular communication, regulating metabolism, reducing inflammatory responses, improving lipid metabolism, inhibiting fibrosis, and other processes that contribute to the treatment of metabolic dysfunction-associated steatotic liver disease. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes play an important role in the pathogenesis and treatment of metabolic dysfunction-associated steatotic liver disease and provide new potential and direction for the treatment of Metabolic dysfunction-associated steatotic liver disease. This article reviews the role and effects of mesenchymal stem cells and mesenchymal stem cell-derived exosomes from different sources in Metabolic dysfunction-associated steatotic liver disease and discusses their prospects as potential therapeutic strategies.
Collapse
Affiliation(s)
- Dan Qin
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pingping Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jialing Chen
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Changjun Wu
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuzhen Liang
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Bahramirad Z, Moloudi MR, Moradzad M, Abdollahi A, Vahabzadeh Z. Trimethylamine-N-oxide, a New Risk Factor for Non-alcoholic Fatty Liver Disease Changes the Expression of miRNA-34a, and miRNA-122 in the Fatty Liver Cell Model. Biochem Genet 2025; 63:1298-1309. [PMID: 38536569 DOI: 10.1007/s10528-024-10754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2025]
Abstract
Non-alcoholic fatty liver disease is a multifactorial disorder with complicated pathophysiology ranging from simple steatosis to steatohepatitis and liver fibrosis. Trimethylamine-N-oxide (TMAO) production is believed to be correlated with choline deficiency. This study investigated the expression of miRNA-34a, miRNA-122, and miRNA-192 in the fatty liver cell model treated with different concentrations of TMAO. A fatty liver cell model was developed by exposing HepG2 cells to a mixture of palmitate and oleate in a ratio of 1:2 at a final concentration of 1200 μM for 24 h. The confirmed fatty liver cells were treated with 37.5, 75, 150, and 300 μM of TMAO for 24 h. RT-qPCR was used to quantify the expression of microRNAs in a cellular model. The cellular expression of all microRNAs was significantly higher in treated fatty liver cells compared to normal HepG2 cells (P < 0.05). Only 75 and 150 µM of TMAO significantly increased the expression of miRNA-34a and miRNA-122 compared to both fatty and normal control cells (P < 0.05). Our results provided an experimental documentation for the potential effect of TMAO to change the expression of miR-34a and miR-22 as a mechanism for contributing to the pathogenesis of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhila Bahramirad
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Moradzad
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Alina Abdollahi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
Erceg S, Munjas J, Sopić M, Tomašević R, Mitrović M, Kotur-Stevuljević J, Mamić M, Vujčić S, Klisic A, Ninić A. Expression Analysis of Circulating miR-21, miR-34a and miR-122 and Redox Status Markers in Metabolic Dysfunction-Associated Steatotic Liver Disease Patients with and Without Type 2 Diabetes. Int J Mol Sci 2025; 26:2392. [PMID: 40141039 PMCID: PMC11942408 DOI: 10.3390/ijms26062392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a hepatic form of metabolic syndrome, often co-occurs with type 2 diabetes (T2D) and now affects approximately 30% of the global population. MASLD encompasses conditions from simple steatosis to metabolic dysfunction-associated steatohepatitis, with oxidative stress (OS) driving progression through inflammation. This study analyzes the expression levels of circulating miRNAs and redox status markers in MASLD patients with and without T2D, exploring their potential as disease biomarkers. The expressions of miR-21, miR-34a, and miR-122 were analyzed in the platelet-poor plasma of 147 participants, divided into three groups: MASLD + T2D (48), MASLD (50), and a control group (49). Total oxidant status (TOS), total antioxidant status (TAS), ischemia-modified albumin (IMA), and superoxide anion radical (O2•-) were measured in serum and plasma. Logistic regression showed that miR-21, miR-34a, TOS, TAS, O2•-, and IMA were positive predictors of MASLD, while miR-21 and TAS were negative predictors of T2D in MASLD. Although miR-122 did not show a significant association with either condition, in combination with miR-34a and other markers such as lipid status and liver enzymes, a new significant predictor of MASLD was identified. Circulating miRNAs in combination with redox status markers, lipid status and liver enzymes show potential as MASLD biomarkers.
Collapse
Affiliation(s)
- Sanja Erceg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (S.E.); (J.M.); (M.S.); (J.K.-S.); (S.V.)
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (S.E.); (J.M.); (M.S.); (J.K.-S.); (S.V.)
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (S.E.); (J.M.); (M.S.); (J.K.-S.); (S.V.)
| | - Ratko Tomašević
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Department of Gastroenterology and Hepatology, Clinic for Internal Medicine, Clinical Hospital Center Zemun, 11080 Belgrade, Serbia
| | - Miloš Mitrović
- Clinical Department for Gastroenterology and Hepatology, University Medical Center Zvezdara, 11120 Belgrade, Serbia;
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (S.E.); (J.M.); (M.S.); (J.K.-S.); (S.V.)
| | - Milica Mamić
- Department of Laboratory Diagnostics, Clinical Hospital Center Zemun, 11080 Belgrade, Serbia;
| | - Sanja Vujčić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (S.E.); (J.M.); (M.S.); (J.K.-S.); (S.V.)
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro;
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Ana Ninić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (S.E.); (J.M.); (M.S.); (J.K.-S.); (S.V.)
| |
Collapse
|
5
|
Poudineh M, Darweesh O, Mokhtari M, Zolfaghari O, Khaledi A, Piroozmand A. Expression of microRNAs in the detection and therapeutic roles of viral infections: Mechanisms and applications. J Virus Erad 2025; 11:100586. [PMID: 40296890 PMCID: PMC12034616 DOI: 10.1016/j.jve.2025.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 04/30/2025] Open
Abstract
In recent years, microRNAs (miRNAs) are potential diagnostic and therapeutic agents for viral infections. Here, we aimed to investigate the expression of microRNAs in the identification and treatment of viral infections. MiRNAs are non-coding molecules that control gene expression and participate in numerous biological processes, including host immunity and pathogen duplication. MiRNAs have played a role in the pathogenesis of various viral infections, such as HIV and HCV. Their presence in the tissues and serum of infected patients has been demonstrated to help predict disease progression, identify disease subtypes, and evaluate treatment responses. Research has shown that miRNAs can detect viral infections by identifying specific miRNAs in serum. For example, miRNA expression profiling was recently used to distinguish between hepatitis C and hepatitis B viral infections precisely. Furthermore, miRNAs can be used to detect the presence of multiple viral infections simultaneously by assessing the expression levels of these miRNAs. Also, miRNAs can differentiate between different genetic variants of the same virus, which is useful for identifying emerging viral strains or drug-resistant ones. MiRNAs have been identified as being a factor in treating viral infections. For example, miRNA mimics have decreased gene expression and halted viral replication in HIV, HCV, and EBV. Moreover, microRNA antagonists have been utilized to inhibit pro-inflammatory cytokines, thereby modulating the immune response and the severity of infections.
Collapse
Affiliation(s)
- Mohsen Poudineh
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Omeed Darweesh
- College of Pharmacy, Al-Kitab University, Kirkuk, 36015, Iraq
| | - Mohsen Mokhtari
- Laboratory Department, Paramedical School, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Zolfaghari
- Laboratory Department, Paramedical School, Kashan University of Medical Sciences, Kashan, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Hu C, Wang L. Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2024; 15:474. [PMID: 39696473 DOI: 10.1186/s13287-024-04087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential role in treating liver injury. MSCs can promote liver regeneration by differentiating into hepatocytes, and can also secrete exosomes to participate in the repair of liver injury. Increasing evidence has shown that mesenchymal stem cell-derived exosomes (MSC-EXOs) play an important role in treating liver injury. In this review, the biogenesis and function of exosomes and the characteristics of MSC-EXOs were analyzed based on recent research results. MSC-EXOs are significant in liver injuries such as liver fibrosis, liver failure, hepatocellular carcinoma, oxidative stress, and lipid steatosis, and participate in the process of liver regeneration.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
7
|
Lu X, Wang Y, Piao C, Li P, Cao L, Liu T, Ma Y, Wang H. Exosomes Derived from Adipose Mesenhymal Stem Cells Ameliorate Lipid Metabolism Disturbances Following Liver Ischemia-Reperfusion Injury in Miniature Swine. Int J Mol Sci 2024; 25:13069. [PMID: 39684778 DOI: 10.3390/ijms252313069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The liver plays a crucial role in regulating lipid metabolism. Our study examined the impact of Exosomes derived from adipose mesenchymal stem cells (ADSCs-Exo) on lipid metabolism following liver ischemia-reperfusion injury (IRI) combined with partial hepatectomy. We developed a miniature swine model for a minimally invasive hemi-hepatectomy combined with liver IRI. In this study, we administered PBS, ADSCs-Exo, and adipose-derived stem cells (ADSCs) individually through the portal vein. Before and after surgery, we evaluated various factors including hepatocyte ultrastructure, lipid accumulation in liver tissue, and expression levels of genes and proteins associated with lipid metabolism. In addition, we measured serum and liver tissue levels of high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), and total cholesterol (CHOL). TEM and oil red O stain indicated a significant reduction in liver steatosis following ADSCs-Exo treatment, which also elevated serum levels of HDL, LDL, TG, and CHOL. Additionally, ADSCs-Exo have been shown to significantly decrease serum concentrations of HDL, LDL, TG, and CHOL in the liver (p < 0.05). Finally, ADSCs-Exo significantly downregulated lipid synthesis-related genes and proteins, including SREBP-1, SREBP-2, ACC1, and FASN (p < 0.05), while upregulating lipid catabolism-related genes and proteins, such as PPAR-α and ACOX1 (p < 0.05). ADSCs-Exo as a cell-free therapy highlights its therapeutic potential in hepatic lipid metabolism abnormalities.
Collapse
Affiliation(s)
- Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Yue Wang
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Pujun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Lei Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, China
| |
Collapse
|
8
|
Zhang H, Wang Y, Feng K, Niu Q, Xin Y, Xuan S, Liu S. MiR-146a-5p-enriched exosomes inhibit M1 macrophage activation and inflammatory response by targeting CD80. Mol Biol Rep 2024; 51:1133. [PMID: 39514136 DOI: 10.1007/s11033-024-10088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Previous studies have demonstrated that miR-146a-5p negatively regulated the intrinsic immune and inflammatory responses, whether the miR-146a-5p-enriched exosomes possess the anti-inflammation effect remains unclear. This study aimed to investigate the effect of miR-146a-5p-enriched exosomes on M1 macrophage activation and inflammatory response and the potential molecular mechanism. METHODS GEO database was used to analyze the expression of miR-146a-5p in serum exosomes of MASH patients. MiR-146a-5p levels in primary hepatocytes, macrophages, and serum exosomes of MASH mice were measured. MiR-146a-5p-enriched exosomes were constructed and the effects on M1 macrophages activation and inflammatory factors release were investigated. The target gene of miR-146a-5p was predicted and verified. RESULTS Serum exosomal miR-146a-5p level was decreased in MASH patients analyzed by GEO database. The miR-146a-5p levels in primary cultured hepatocytes and macrophages of MASH mice were decreased. Serum exosomal miR-146a-5p level was decreased and negatively correlated with the concentrations of IL-6 in MASH mice. Furthermore, miR-146a-5p-enriched exosomes inhibited the M1 macrophages activation and the expression of pro-inflammatory factors MCP-1, IL-6, and TNF-α. CD80 was predicted as the potential target gene of miR-146a-5p, and the expression of CD80 was regulated by miR-146a-5p. In addition, the inhibitory effect of miR-146a-5p on M1 macrophages activation and inflammatory factors release was restored when CD80 was over-expressed. CONCLUSIONS This study demonstrated that miR-146a-5p-enriched exosomes can inhibit the M1 macrophages activation and reduce the release of pro-inflammatory factors by targeting CD80.
Collapse
Affiliation(s)
- Han Zhang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, 5 Donghaizhong Road, Qingdao, Shandong Province, 266071, China
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yifen Wang
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, 5 Donghaizhong Road, Qingdao, Shandong Province, 266071, China
- Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, 030009, China
| | - Keqing Feng
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qinghui Niu
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yongning Xin
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, 5 Donghaizhong Road, Qingdao, Shandong Province, 266071, China
| | - Shiying Xuan
- Department of Infectious Diseases, Qingdao Municipal Hospital, Qingdao University, 5 Donghaizhong Road, Qingdao, Shandong Province, 266071, China.
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, 5 Donghaizhong Road, Qingdao, Shandong Province, 266011, China.
| |
Collapse
|
9
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
10
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F, Yuan LQ. Adipose exosomal noncoding RNAs: Roles and mechanisms in metabolic diseases. Obes Rev 2024; 25:e13740. [PMID: 38571458 DOI: 10.1111/obr.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Exosomes are extracellular vesicles, measuring 40-160 nm in diameter, that are released by many cell types and tissues, including adipose tissue. Exosomes are critical mediators of intercellular communication and their contents are complex and diverse. In recent years, accumulating evidence has proved that multiple adipose tissue-derived exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in the pathogenesis of diverse metabolic diseases, such as obesity. In this narrative review, we focus on the adipose tissue-derived exosomal ncRNAs, especially exosomal miRNAs, and their dysregulation in multiple types of metabolic diseases. A deeper understanding of the role of adipose tissue-derived exosomal ncRNAs may help provide new diagnostic and treatment methods for metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Jun Lin
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Frías M, Corona-Mata D, Moyano JM, Camacho-Espejo A, López-López P, Caballero-Gómez J, Ruiz-Cáceres I, Casares-Jiménez M, Pérez-Valero I, Rivero-Juárez A, Rivero A. Lack of associations of microRNAs with severe NAFLD in people living with HIV: discovery case-control study. Front Endocrinol (Lausanne) 2023; 14:1230046. [PMID: 37810880 PMCID: PMC10556652 DOI: 10.3389/fendo.2023.1230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background & objective Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in people living with HIV (PLWH) and the expression of some microRNAs could be useful as biomarkers for the diagnosis of NAFLD. The aim of this study was to identify patterns of differential expression of microRNAs in PLWH and assess their diagnostic value for NALFD. Methods A discovery case-control study with PLWH was carried out. The expression of miRNAs was determined using HTG EdgeSeq technology. Cases were defined as patients with severe NAFLD and controls as patients without NAFLD, characterized using the controlled attenuation parameter (CAP). Cases and controls were matched 1:1 for age, sex, BMI, CD4+ lymphocyte count, active HCV infection, and ART regimen. Results Serum 2,083 simultaneous microRNA transcripts were analyzed using HTG technology and compared between cases and controls. Forty-five patients, 23 cases, and 22 controls were included in the study. In the analysis of the expression pattern of the 2,083 microRNAs, no differential expression patterns were found between both groups of patients included in the study. Conclusion Analysis of the microRNA transcriptome profile of nonobese PLWH with severe NAFLD did not appear to differ from that of patients without NAFLD. Thus, microRNA might not serve as a proper biomarker for predicting severe NALFD in this population.
Collapse
Affiliation(s)
- Mario Frías
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), University of Córdoba, Córdoba, Spain
| | - Diana Corona-Mata
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
| | - Jose M. Moyano
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Angela Camacho-Espejo
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Pedro López-López
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Javier Caballero-Gómez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), University of Córdoba, Córdoba, Spain
| | - Inmaculada Ruiz-Cáceres
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
| | - María Casares-Jiménez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
| | - Ignacio Pérez-Valero
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Antonio Rivero-Juárez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Antonio Rivero
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
12
|
Wang YD, Wu LL, Qi XY, Wang YY, Liao ZZ, Liu JH, Xiao XH. New insight of obesity-associated NAFLD: Dysregulated "crosstalk" between multi-organ and the liver? Genes Dis 2023; 10:799-812. [PMID: 37396503 PMCID: PMC10308072 DOI: 10.1016/j.gendis.2021.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Obesity plays a crucial role in the development of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism for the pathogenesis of obesity-associated NAFLD remains largely obscure. Although the "multiple hit" theory provides a more accurate explanation of NAFLD pathogenesis, it still cannot fully explain precisely how obesity causes NAFLD. The liver is the key integrator of the body's energy needs, receiving input from multiple metabolically active organs. Thus, recent studies have advocated the "multiple crosstalk" hypothesis, highlighting that obesity-related hepatic steatosis may be the result of dysregulated "crosstalk" among multiple extra-hepatic organs and the liver in obesity. A wide variety of circulating endocrine hormones work together to orchestrate this "crosstalk". Of note, with deepening understanding of the endocrine system, the perception of hormones has gradually risen from the narrow sense (i.e. traditional hormones) to the broad sense of hormones as organokines and exosomes. In this review, we focus on the perspective of organic endocrine hormones (organokines) and molecular endocrine hormones (exosomes), summarizing systematically how the two types of new hormones mediate the dialogue between extra-hepatic organs and liver in the pathogenesis of obesity-related NAFLD.
Collapse
Affiliation(s)
- Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang-Liang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Yan Qi
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
13
|
Zeng Q, Liu CH, Wu D, Jiang W, Zhang N, Tang H. LncRNA and circRNA in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Biomolecules 2023; 13:biom13030560. [PMID: 36979495 PMCID: PMC10046118 DOI: 10.3390/biom13030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide. Early identification and prompt treatment are critical to optimize patient management and improve long-term prognosis. Long non-coding RNA (lncRNA) and circular RNA (circRNA) are recently emerging non-coding RNAs, and are highly stable and easily detected in the circulation, representing a promising non-invasive approach for predicting NAFLD. A literature search of the Pubmed, Embase, Web of Science, and Cochrane Library databases was performed and 36 eligible studies were retrieved, including 18 on NAFLD, 13 on nonalcoholic steatohepatitis (NASH), and 11 on fibrosis and/or cirrhosis. Dynamic changes in lncRNA expression were associated with the occurrence and progression of NAFLD, among which lncRNA NEAT1, MEG3, and MALAT1 exhibited great potential as biomarkers for NAFLD. Moreover, mitochondria-located circRNA SCAR can drive metaflammation and its inhibition might be a promising therapeutic target for NASH. In this systematic review, we highlight the great potential of lncRNA/circRNA for early diagnosis and progression assessment of NAFLD. To further verify their clinical value, large-cohort studies incorporating lncRNA and circRNA expression both in liver tissue and blood should be conducted. Additionally, detailed studies on the functional mechanisms of NEAT1, MEG3, and MALAT1 will be essential for elucidating their roles in diagnosing and treating NAFLD, NASH, and fibrosis.
Collapse
Affiliation(s)
- Qingmin Zeng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Elkhawaga SY, Ismail A, Elsakka EGE, Doghish AS, Elkady MA, El-Mahdy HA. miRNAs as cornerstones in adipogenesis and obesity. Life Sci 2023; 315:121382. [PMID: 36639051 DOI: 10.1016/j.lfs.2023.121382] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, obesity has extensively emerged to the level of pandemics. It's significantly associated with serious co-morbidities that could decrease life quality and even life expectancy. Obesity has several determinants, such as age, sex, endocrine, and genetic factors. The miRNAs have emerged as genetic factors affecting obesity. The miRNAs are small noncoding nucleic acids that can modify gene expression and hence, control biological processes. The miRNAs can greatly affect many biological processes in obesity, such as adipogenesis, lipid metabolism, and homeostasis. As a result, the entry of miRNAs in obesity therapeutic approaches has been strongly advised as miRNAs mimics, inhibitors, and stimulators. Hence, this review aims to point out a summarized and updated overview of miRNAs and their roles in obesity and its included processes, such as adipogenesis and lipid metabolism. Besides, we also review recent applications of miRNAs as a treatment approach for obesity.
Collapse
Affiliation(s)
- Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
15
|
CircRNA-PI4KB Induces Hepatic Lipid Deposition in Non-Alcoholic Fatty Liver Disease by Transporting miRNA-122 to Extra-Hepatocytes. Int J Mol Sci 2023; 24:ijms24021297. [PMID: 36674813 PMCID: PMC9863671 DOI: 10.3390/ijms24021297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Ectopic fat deposition in the liver, known as non-alcoholic fatty liver disease (NAFLD), affects up to 30% of the worldwide population. miRNA-122, the most abundant liver-specific miRNA, protects hepatic steatosis and inhibits cholesterol and fatty acid synthesis in NAFLD. Previously, we have shown that compared with its expression in healthy controls, miRNA-122 decreased in the liver tissue but gradually increased in the serum of patients with non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, suggesting that miRNA-122 could have been transported to the serum. Here, we aimed to confirm and unravel the mechanism of transportation of miRNA-122 to extra-hepatocytes. Our findings showed a decrease in the intra-hepatocyte miRNA-122 and an increase in the extra-hepatocyte (medium level) miRNA-122, suggesting the miRNA-122 "escaped" from the intra-hepatocyte due to an increased extra-hepatocyte excretion. Using bioinformatics tools, we showed that miRNA-122 binds to circPI4KB, which was further validated by an RNA pull-down and luciferase reporter assay. The levels of circPI4KB in intra- and extra-hepatocytes corresponded to that of miRNA-122, and the overexpression of circPI4KB increased the miRNA-122 in extra-hepatocytes, consequently accomplishing a decreased protective role of miRNA-122 in inhibiting the lipid deposition. The present study provides a new explanation for the pathogenesis of the hepatic lipid deposition in NAFLD.
Collapse
|
16
|
Petito G, Giacco A, Cioffi F, Mazzoli A, Magnacca N, Iossa S, Goglia F, Senese R, Lanni A. Short-term fructose feeding alters tissue metabolic pathways by modulating microRNAs expression both in young and adult rats. Front Cell Dev Biol 2023; 11:1101844. [PMID: 36875756 PMCID: PMC9977821 DOI: 10.3389/fcell.2023.1101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Dietary high fructose (HFrD) is known as a metabolic disruptor contributing to the development of obesity, diabetes, and dyslipidemia. Children are more sensitive to sugar than adults due to the distinct metabolic profile, therefore it is especially relevant to study the metabolic alterations induced by HFrD and the mechanisms underlying such changes in animal models of different ages. Emerging research suggests the fundamental role of epigenetic factors such as microRNAs (miRNAs) in metabolic tissue injury. In this perspective, the aim of the present study was to investigate the involvement of miR-122-5p, miR-34a-5p, and miR-125b-5p examining the effects induced by fructose overconsumption and to evaluate whether a differential miRNA regulation exists between young and adult animals. We used young rats (30 days) and adult rats (90 days) fed on HFrD for a short period (2 weeks) as animal models. The results indicate that both young and adult rats fed on HFrD exhibit an increase in systemic oxidative stress, the establishment of an inflammatory state, and metabolic perturbations involving the relevant miRNAs and their axes. In the skeletal muscle of adult rats, HFrD impair insulin sensitivity and triglyceride accumulation affecting the miR-122-5p/PTP1B/P-IRS-1(Tyr612) axis. In liver and skeletal muscle, HFrD acts on miR-34a-5p/SIRT-1: AMPK pathway resulting in a decrease of fat oxidation and an increase in fat synthesis. In addition, liver and skeletal muscle of young and adult rats exhibit an imbalance in antioxidant enzyme. Finally, HFrD modulates miR-125b-5p expression levels in liver and white adipose tissue determining modifications in de novo lipogenesis. Therefore, miRNA modulation displays a specific tissue trend indicative of a regulatory network that contributes in targeting genes of various pathways, subsequently yielding extensive effects on cell metabolism.
Collapse
Affiliation(s)
- Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Giacco
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nunzia Magnacca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fernando Goglia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
17
|
Chen K, Lin T, Yao W, Chen X, Xiong X, Huang Z. Adipocytes-derived exosomal miR-122 promotes non-alcoholic fat liver disease progression via targeting Sirt1. GASTROENTEROLOGIA Y HEPATOLOGIA 2022:S0210-5705(22)00312-0. [PMID: 36584755 DOI: 10.1016/j.gastrohep.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
AIMS Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease that affects adipose function. This study aimed to explore the function of adipocytes-derived exosomal (ADEs) miR-122 in NAFLD. METHODS A high-fat and high-fructose diet-induced rat model and a palmitic acid (PA)-induced in vitro model were established. The RNA level of miR-122 and Sirt1 was measured using qRT-PCR. The protein levels of exosome biomarkers, and lipogenesis, inflammation and fibrosis biomarkers were determined by western blotting. Cell viability and apoptosis were assessed using cell counting kit-8 and flow cytometry, respectively. Serum alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglyceride levels were measured. Liver tissue damage was assessed using haematoxylin and eosin staining. The interaction between miR-122 and Sirt1 3'UTR was assessed using a luciferase reporter gene assay. RESULTS ADEs exhibited abundant level of miR-122 and promoted lipogenesis, impaired hepatocyte survival, enhanced liver damage and increased serum lipid levels in vivo and in vitro. Inhibition of miR-122 in ADEs alleviated NAFLD progression, lipid and glucose metabolism, liver inflammation and fibrosis both in vivo and in vitro. miR-122 binds directly to the 3'UTR of Sirt1 to suppress its expression. Moreover, Sirt1 overexpression reversed the increase in cell apoptosis, glucose and lipid metabolism, liver inflammation and fibrosis induced by ADEs in vivo and in vitro. CONCLUSIONS The ADEs miR-122 promotes the progression of NAFLD via modulating Sirt1 signalling in vivo and in vitro. The ADEs miR-122 may be a promising diagnostic biomarker and therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Kai Chen
- Digestive Department, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Tingting Lin
- Department of Endocrinology, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Weirong Yao
- Inspection Department, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Xinqiao Chen
- Neurology Department, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Xiaoming Xiong
- Department of Endocrinology, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China
| | - Zhufeng Huang
- Department of Endocrinology, Longhai First Hospital Affiliated to Xiamen Medical College, Zhangzhou, Fujian, PR China.
| |
Collapse
|
18
|
Niu Q, Wang T, Wang Z, Wang F, Huang D, Sun H, Liu H. Adipose-derived mesenchymal stem cell-secreted extracellular vesicles alleviate non-alcoholic fatty liver disease via delivering miR-223-3p. Adipocyte 2022; 11:572-587. [PMID: 36093813 PMCID: PMC9481107 DOI: 10.1080/21623945.2022.2098583] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Increasing studies have identified the potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in non-alcoholic fatty liver disease (NAFLD) treatment. Hence, we further focused on the potential of adipose-derived MSC (ADSC)-EVs in NAFLD by delivering miR-223-3p. The uptake of isolated ADSC-EVs by hepatocytes was assessed, and the expression of miR-223-3p in ADSC-EVs and hepatocytes was characterized. It was established that miR-223-3p, enriched in ADSC-EVs, could be delivered by ADSC-EVs into hepatocytes. Using co-culture system and gain-of-function approach, we evaluated the effect of ADSC-EVs carrying miR-223-3p on lipid accumulation and liver fibrosis in pyrrolizidine alkaloids (PA)-induced hepatocytes and a high-fat diet-induced NAFLD mouse model. Bioinformatics websites and dual-luciferase reporter gene assay were performed to determine the interactions between miR-223-3p and E2F1, which was further validated by rescue experiments. ADSC-EVs containing miR-223-3p displayed suppressive effects on lipid accumulation and liver fibrosis through E2F1 inhibition, since E2F1 was demonstrated as a target gene of miR-223-3p. The protective role of ADSC-EVs by delivering miR-223-3p was then confirmed in the mouse model. Collectively, this study elucidated that ADSC-EVs delayed the progression NAFLD through the delivery of anti-fibrotic miR-223-3p and subsequent E2F1 suppression, which may suggest miR-223-3p-loaded ADSC-EVs to be a potential therapeutic approach for NAFLD.
Collapse
Affiliation(s)
- Qinghui Niu
- Department of Liver Center, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Ting Wang
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Zhiqiang Wang
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Feng Wang
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Deyu Huang
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Huali Sun
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China
| | - Hanyun Liu
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, QingdaoP.R. China,CONTACT Hanyun Liu Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao266003, Shandong Province, P.R. China
| |
Collapse
|
19
|
Noncoding RNAs Associated with PPARs in Etiology of MAFLD as a Novel Approach for Therapeutics Targets. PPAR Res 2022; 2022:6161694. [PMID: 36164476 PMCID: PMC9509273 DOI: 10.1155/2022/6161694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Metabolic associated fatty liver disease (MAFLD) is a complex disease that results from the accumulation of fat in the liver. MAFLD is directly associated with obesity, insulin resistance, diabetes, and metabolic syndrome. PPARγ ligands, including pioglitazone, are also used in the management of this disease. Noncoding RNAs play a critical role in various diseases such as diabetes, obesity, and liver diseases including MAFLD. However, there is no adequate knowledge about the translation of using these ncRNAs to the clinics, particularly in MAFLD conditions. The aim of this study was to identify ncRNAs in the etiology of MAFLD as a novel approach to the therapeutic targets. Methods. We collected human and mouse MAFLD gene expression datasets available in GEO. We performed pathway enrichment analysis of total mRNAs based on KEGG repository data to screen the most potential pathways in the liver of MAFLD human subjects and mice model, and analyzed pathway interconnections via ClueGO. Finally, we screened disease causality of the MAFLD ncRNAs, which were associated with PPARs, and then discussed the role of revealed ncRNAs in PPAR signaling and MAFLD. Results. We found 127 ncRNAs in MAFLD which 25 out of them were strongly validated before for regulation of PPARs. With a polypharmacology approach, we screened 51 ncRNAs which were causal to a subset of diseases related to MAFLD. Conclusion. This study revealed a subset of ncRNAs that could help in more clear and guided designation of preclinical and clinical studies to verify the therapeutic application of the revealed ncRNAs by manipulating the PPARs molecular mechanism in MAFLD.
Collapse
|
20
|
MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol Metab 2022; 65:101581. [PMID: 36028120 PMCID: PMC9464960 DOI: 10.1016/j.molmet.2022.101581] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved diagnostic- and prognostic tools and for effective pharmacotherapies to treat NASH. The molecular mechanisms of NAFLD development and progression remain incompletely understood, though ample evidence supports a role of microRNAs (miRNAs) - small non-coding RNAs regulating gene expression - in the progression of metabolic liver disease. SCOPE OF REVIEW In this review, we summarise the currently available liver miRNA profiling studies in people with various stages of NAFLD. We further describe the mechanistic role of three of the most extensively studied miRNA species, miR-34a, miR-122 and miR-21, and highlight selected findings on novel NAFLD-linked miRNAs. We also examine the literature on exosomal microRNAs (exomiRs) as inter-hepatocellular or -organ messengers in NAFLD. Furthermore, we address the status for utilizing circulating NAFLD-associated miRNAs as minimally invasive tools for disease diagnosis, staging and prognosis as well as their potential use as NASH pharmacotherapeutic targets. Finally, we reflect on future directions for research in the miRNA field. MAJOR CONCLUSIONS NAFLD is associated with changes in hepatic miRNA expression patterns at early, intermediate and late stages, and specific miRNA species appear to be involved in steatosis development and NAFL progression to NASH and cirrhosis. These miRNAs act either within or between hepatocytes and other liver cell types such as hepatic stellate cells and Kupffer cells or as circulating inter-organ messengers carrying signals between the liver and extra-hepatic metabolic tissues, including the adipose tissues and the cardiovascular system. Among circulating miRNAs linked to NAFLD, miR-34a, miR-122 and miR-192 are the best candidates as biomarkers for NAFLD diagnosis and staging. To date, no miRNA-targeting pharmacotherapy has been approved for the treatment of NASH, and no such therapy is currently under clinical development. Further research should be conducted to translate the contribution of miRNAs in NAFLD into innovative therapeutic strategies.
Collapse
|
21
|
Adipose-Derived Circulating Exosomes Promote Protection of the Pulmonary Endothelial Barrier by Inhibiting EndMT and Oxidative Stress through Down-Regulation of the TGF-β Pathway: A Potential Explanation for the Obesity Paradox in ARDS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5475832. [PMID: 35571250 PMCID: PMC9098334 DOI: 10.1155/2022/5475832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
The “obesity paradox in acute respiratory distress syndrome” (ARDS) refers to the phenomenon in which obesity is associated with higher morbidity but lower mortality in patients with ARDS. Endothelial-to-mesenchymal transition (EndMT) represents a key link in the interaction between endothelial disruption and mesenchymal fibrosis under inflammatory and oxidative conditions, which represent the intersectional pathophysiology of ARDS. Adipose tissue is considered to constitute the major source of circulating exosomal microRNAs (miRNAs), which act as genetic forms of adipokines for cell–cell crosstalk. We aimed to demonstrate the regulation and mechanism of adipose-derived exosomes in the obesity paradox in ARDS. High-fat-induced obese mice and lean control mice were subjected to ARDS insult to investigate the effects of obesity on ARDS and microarray analysis was performed to screen for differences in circulating miRNAs. In addition, mice and pulmonary endothelial cells were administered with adipose-derived exosomal miR-122-5p to investigate the underlying molecular mechanisms. We found high-fat diet-induced obesity protected against ARDS in mice by reinforcing endothelial barrier and attenuating fibroproliferation. Circulating exosomes produced in the obese state mediated these protective effects by inhibiting EndMT and oxidative stress. Mechanistically, adipose-derived exosomal miR-122-5p promoted the integrity and function of pulmonary endothelial barrier and alleviated fibrogenesis by suppressing EndMT and oxidative stress through down-regulation of the transforming growth factor β1 (TGF-β1)/TGF-β receptor 1 (TGF-βR1)/Smad2 pathway in vivo and in vitro. In conclusion, adipose-derived circulating exosomal miR-122-5p protects against ARDS by reinforcing pulmonary endothelial barrier through inhibition of EndMT and oxidative stress via down-regulation of the TGF-β pathway, which propose a potential explanation for the obesity paradox in ARDS and indicate promising prospects for adipose-derived exosomes in cell-free therapies for ARDS.
Collapse
|
22
|
Rodríguez-Sanabria JS, Escutia-Gutiérrez R, Rosas-Campos R, Armendáriz-Borunda JS, Sandoval-Rodríguez A. An Update in Epigenetics in Metabolic-Associated Fatty Liver Disease. Front Med (Lausanne) 2022; 8:770504. [PMID: 35087844 PMCID: PMC8787199 DOI: 10.3389/fmed.2021.770504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis accompanied by one of three features: overweight or obesity, T2DM, or lean or normal weight with evidence of metabolic dysregulation. It is distinguished by excessive fat accumulation in hepatocytes, and a decrease in the liver's ability to oxidize fats, the accumulation of ectopic fat, and the activation of proinflammatory pathways. Chronic damage will keep this pathophysiologic cycle active causing progression from hepatic steatosis to cirrhosis and eventually, hepatocarcinoma. Epigenetics affecting gene expression without altering DNA sequence allows us to study MAFLD pathophysiology from a different perspective, in which DNA methylation processes, histone modifications, and miRNAs expression have been closely associated with MAFLD progression. However, these considerations also faced us with the circumstance that modifying those epigenetics patterns might lead to MAFLD regression. Currently, epigenetics is an area of great interest because it could provide new insights in therapeutic targets and non-invasive biomarkers. This review comprises an update on the role of epigenetic patterns, as well as innovative therapeutic targets and biomarkers in MAFLD.
Collapse
Affiliation(s)
- J Samael Rodríguez-Sanabria
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Rosas-Campos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Juan S Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Campus Guadalajara, Zapopan, Mexico
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
23
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Nasser MI, Masood M, Adlat S, Gang D, Zhu S, Li G, Li N, Chen J, Zhu P. Mesenchymal stem cell-derived exosome microRNA as therapy for cardiac ischemic injury. Biomed Pharmacother 2021; 143:112118. [PMID: 34481378 DOI: 10.1016/j.biopha.2021.112118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVD) are a significant cause of human health harm. In the past, stem cell therapy was reported to have functional defects, such as immune rejection, tumorigenicity, and infusion toxicity. Exosomes are extracellular vesicles with lipid bilayer membrane structure, containing proteins, lipids, mRNA, miRNA, DNA, and other molecules, which can mediate various biological functions such as immune response, inflammatory response, cell migration, and differentiation intercellular communication. Exosomal miRNAs have outstanding advantages in disease diagnosis and curative effect prediction. Likewise, paracrine factors could also mediate the main therapeutic effect of mesenchymal stem cells. Research has shown that mesenchymal stem cell-derived micro-exosomes, which may come from stem cells, accumulate in the ischemic tissue and regulate cell proliferation, apoptosis, inflammation, and angiogenesis sites of myocardial injury after being transplanted. This review reviewed the molecular mechanisms of exosomes and internal microRNAs derived from mesenchymal stem cells in cardiac ischemic injury repair.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Muqaddas Masood
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Salah Adlat
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Deng Gang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Ge Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Nanbo Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Jimei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
25
|
Fang Z, Dou G, Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Biol Sci 2021; 17:1851-1863. [PMID: 33994867 PMCID: PMC8120467 DOI: 10.7150/ijbs.59588] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), or, more accurately, metabolic associated fatty liver disease, accounts for a large proportion of chronic liver disorders worldwide and is closely associated with other conditions such as cardiovascular disease, obesity, and type 2 diabetes mellitus. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) and can progress to cirrhosis and, eventually, also hepatocellular carcinoma. The morbidity and mortality associated with NAFLD are increasing rapidly year on year. Consequently, there is an urgent need to understand the etiology and pathogenesis of NAFLD and identify effective therapeutic targets. MicroRNAs (miRNAs), important epigenetic factors, have recently been proposed to participate in NAFLD pathogenesis. Here, we review the roles of miRNAs in lipid metabolism, inflammation, apoptosis, fibrosis, hepatic stellate cell activation, insulin resistance, and oxidative stress, key factors that contribute to the occurrence and progression of NAFLD. Additionally, we summarize the role of miRNA-enriched extracellular vesicles in NAFLD. These miRNAs may comprise suitable therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guorui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
26
|
Ravanidis S, Grundler F, de Toledo FW, Dimitriou E, Tekos F, Skaperda Z, Kouretas D, Doxakis E. Fasting-mediated metabolic and toxicity reprogramming impacts circulating microRNA levels in humans. Food Chem Toxicol 2021; 152:112187. [PMID: 33839215 DOI: 10.1016/j.fct.2021.112187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
It is well-established that long-term fasting improves metabolic health, enhances the total antioxidant capacity and increases well-being. MicroRNAs oversee energy homeostasis and metabolic processes and are widely used as circulating biomarkers to identify the metabolic state. This study investigated whether the expression levels of twenty-four metabolism-associated microRNAs are significantly altered following long-term fasting and if these changes correlate with biochemical and redox parameters in the plasma. Thirty-two participants with an average BMI of 28 kg/m2 underwent a 10-day fasting period with a daily intake of 250 kcal under medical supervision. RT-qPCR on plasma small-RNA extracts revealed that the levels of seven microRNAs (miR-19b-3p, miR-22-3p, miR-122-5p, miR-126-3p, miR-142-3p, miR-143-3p, and miR-145-5p) were significantly altered following fasting. Importantly, the expression levels of these microRNAs have been consistently shown to change in the exact opposite direction in pathological states including obesity, diabetes, nonalcoholic steatohepatitis, and cardiovascular disease. Linear regression analyses revealed that among the microRNAs analyzed, anti-inflammatory miR-146-5p expression displayed most correlations with the levels of different biochemical and redox parameters. In silico analysis of fasting-associated microRNAs demonstrated that they target pathways that are highly enriched for intracellular signaling such mTOR, FoxO and autophagy, as well as extracellular matrix (ECM) interactions and cell-senescence. Overall, these data are consistent with a model in which long-term fasting engages homeostatic mechanisms associated with specific microRNAs to improve metabolic signaling regardless of health status.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Franziska Grundler
- Buchinger Wilhelmi Clinic, 88662, Überlingen, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
| | | | - Evangelos Dimitriou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larisa, 41500, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.
| |
Collapse
|
27
|
Le Lay S, Rome S, Loyer X, Nieto L. Adipocyte-derived extracellular vesicles in health and diseases: Nano-packages with vast biological properties. FASEB Bioadv 2021; 3:407-419. [PMID: 34124596 PMCID: PMC8171308 DOI: 10.1096/fba.2020-00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
As the largest human energy reservoir, adipocytes drive an intense dialog with other cells/organs throughout the body to regulate the size of adipose tissue and to communicate with other metabolic tissues and the brain to regulate energy supply. Adipokines have long been described as mediators of this crosstalk, participating in obesity‐associated complications. Recently, adipocyte‐derived extracellular vesicles (Ad‐EVs) have emerged as new key actors in this communication due to their powerful capacity to convey complex messages between cells. Ad‐EVs convey specific subpopulations of RNA, proteins, and lipids from their parental cells, and can transfer these cargoes into various recipient cells, modulating their metabolism and cell cycle. In healthy individuals, Ad‐EVs actively participate in adipose tissue remodeling to compensate energy supply variations by exchanging information between adipocytes or stroma‐vascular cells, including immune cells. Besides this, recent evidence points out that Ad‐EV secretion and composition from dysfunctional adipocytes are strongly impacted within adipose tissue where they modulate local intercellular communication, contributing to inflammation, fibrosis, abnormal angiogenesis, and at distance with other cells/tissues intrinsically linked to fat (muscle, hepatocytes and even cancer cells). Additionally, some data even suggests that Ad‐EVs might have a systemic action. In this review, we will describe the particular properties of Ad‐EVs and their involvement in health and diseases, with a particular focus on metabolic and cardiovascular diseases as well as cancer.
Collapse
Affiliation(s)
- Soazig Le Lay
- Université de Nantes CNRS INSERM, l'institut du thorax Nantes France.,Université Angers SFR ICAT Angers France
| | - Sophie Rome
- CarMeN Laboratory U1060/INSERM INRA/1397 Lyon-Sud Hospital Pierre Benite France.,Institute of Functional Genomic of Lyon (IGFL) ENS CNRS UMR 5242 University of Lyon Lyon France
| | | | - Laurence Nieto
- Institut de Pharmacologie et de Biologie Structurale (IPBS) Université de Toulouse CNRS UPS Toulouse France
| |
Collapse
|
28
|
Cansanção K, Citelli M, Carvalho Leite N, López de las Hazas MC, Dávalos A, Tavares do Carmo MDG, Peres WAF. Impact of Long-Term Supplementation with Fish Oil in Individuals with Non-Alcoholic Fatty Liver Disease: A Double Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020; 12:nu12113372. [PMID: 33147705 PMCID: PMC7693661 DOI: 10.3390/nu12113372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic disease affecting up to 25% of the population worldwide. n-3 long-chain polyunsaturated fatty acids (n-3 PUFA) have been associated with improved clinical parameters of NAFLD. Our purpose was to conduct a pilot study to evaluate the effects of n-3 PUFA supplementation in a randomized, double-blind, placebo-controlled clinical study performed on NAFLD individuals diagnosed by ultrasound. Patients received n-3 PUFA (n = 13) or placebo (n = 11) supplementation for six months. Circulating miR-122 expression (determined by quantitative real time-polymerase chain reaction (qRT-PCR), liver fibrosis (FibroScan®), red blood cells (RBC) fatty acids (gas chromatography), and biochemical tests were performed at baseline and after intervention. After the intervention, in the n-3 PUFA group, docosahexaenoic acid (DHA) and omega index increased significantly in RBC (p = 0.022 and p = 0.012, respectively), in addition to a significant reduction in alkaline phosphatase (ALP) (p = 0.002) and liver fibrosis (p = 0.039). However, there was no change in the expression of circulating miR-122 in both groups. Our results showed that omega-3 PUFA were incorporated in erythrocytes after six months of fish oil supplementary intake, and that n-3 PUFA were effective in reducing ALP and liver fibrosis without altering the expression of circulating miR-122 in individuals with NAFLD.
Collapse
Affiliation(s)
- Kátia Cansanção
- Institute of Nutrition Josué de Castro of Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21.941-902, Brazil; (K.C.); (M.d.G.T.d.C.)
| | - Marta Citelli
- Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20559-900, Brazil;
| | - Nathalie Carvalho Leite
- Department of Internal Medicine, University Hospital Clementino Fraga Filho, School of Medicine of UFRJ, Rio de Janeiro 21.941-902, Brazil;
| | - María-Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain; (M-C.L.d.l.H.); (A.D.)
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, 28049 Madrid, Spain; (M-C.L.d.l.H.); (A.D.)
| | - Maria das Graças Tavares do Carmo
- Institute of Nutrition Josué de Castro of Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21.941-902, Brazil; (K.C.); (M.d.G.T.d.C.)
| | - Wilza Arantes Ferreira Peres
- Institute of Nutrition Josué de Castro of Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21.941-902, Brazil; (K.C.); (M.d.G.T.d.C.)
- Correspondence: ; Tel.: +55-21-393864-32
| |
Collapse
|
29
|
Quan M, Kuang S. Exosomal Secretion of Adipose Tissue during Various Physiological States. Pharm Res 2020; 37:221. [PMID: 33063193 PMCID: PMC7953939 DOI: 10.1007/s11095-020-02941-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are secreted extracellular vesicles containing a wide array of biologically active components. Recent studies have demonstrated that exosomes serve as an important vehicle for extracellular communication and exert systemic effects on the physiology of organisms. Adipose tissues (ATs) play a key role in balancing systemic energy homeostasis as a central hub for fatty acid metabolism. At the same time, proper endocrine function of ATs has also been shown to be crucial for regulating physiological and metabolic health. The endocrine function of ATs is partially mediated by AT-derived exosomes that regulate metabolic homeostasis, such as insulin signaling, lipolysis, and inflammation. During the pathogenesis of obesity, metabolic syndrome, and cancer, exosomes shed by the resident cells in ATs may also have a role in regulating the progression of these diseases along with associated pathologies. In this review, we summarize the contents of AT-derived exosomes and their effects on various cell populations along with possible underlying molecular mechanisms. We further discuss the potential applications of exosomes as a drug delivery tool and therapeutic target.
Collapse
Affiliation(s)
- Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
30
|
Nersisyan S, Engibaryan N, Gorbonos A, Kirdey K, Makhonin A, Tonevitsky A. Potential role of cellular miRNAs in coronavirus-host interplay. PeerJ 2020; 8:e9994. [PMID: 32983652 PMCID: PMC7497610 DOI: 10.7717/peerj.9994] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Host miRNAs are known as important regulators of virus replication and pathogenesis. They can interact with various viruses through several possible mechanisms including direct binding of viral RNA. Identification of human miRNAs involved in coronavirus-host interplay becomes important due to the ongoing COVID-19 pandemic. In this article we performed computational prediction of high-confidence direct interactions between miRNAs and seven human coronavirus RNAs. As a result, we identified six miRNAs (miR-21-3p, miR-195-5p, miR-16-5p, miR-3065-5p, miR-424-5p and miR-421) with high binding probability across all analyzed viruses. Further bioinformatic analysis of binding sites revealed high conservativity of miRNA binding regions within RNAs of human coronaviruses and their strains. In order to discover the entire miRNA-virus interplay we further analyzed lungs miRNome of SARS-CoV infected mice using publicly available miRNA sequencing data. We found that miRNA miR-21-3p has the largest probability of binding the human coronavirus RNAs and being dramatically up-regulated in mouse lungs during infection induced by SARS-CoV.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Narek Engibaryan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | | - Ksenia Kirdey
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexey Makhonin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | |
Collapse
|
31
|
Fornes D, Heinecke F, Roberti SL, White V, Capobianco E, Jawerbaum A. Proinflammation in maternal and fetal livers and circulating miR-122 dysregulation in a GDM rat model induced by intrauterine programming. Mol Cell Endocrinol 2020; 510:110824. [PMID: 32315718 DOI: 10.1016/j.mce.2020.110824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/05/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
Abstract
In gestational diabetes mellitus (GDM) pregnancies, a compromised fetal liver may impact offspring's metabolic health. Here, we aimed to address prooxidant, proinflammatory and profibrotic markers in the livers from GDM rats and their fetuses, and to analyze the expression of miR-122 (a relevant microRNA in liver pathophysiology) in fetal and maternal plasma of GDM rats, as well as in the fetal livers of neonatal streptozotocin-induced (nSTZ) diabetic rats, the rats that generate GDM through intrauterine programming. GDM and nSTZ rats were evaluated on day 21 of pregnancy. We found increased nitric oxide production and lipoperoxidation in the livers from GDM rats and their fetuses compared to controls. Livers from GDM fetuses also showed increased levels of connective tissue growth factor and matrix metalloproteinase-2. The expression of miRNA-122 was downregulated in the plasma from GDM rats and their male fetuses, as well as in the livers from male fetuses of nSTZ diabetic rats. miR-122 levels were regulated both in vitro through PPARγ activation and in vivo through a maternal diet enriched in PPAR ligands. Our findings revealed a prooxidant/proinflammatory environment in the livers from GDM rats and their fetuses and a dysregulation of miR-122, likely relevant in the programming of offspring's diseases.
Collapse
Affiliation(s)
- Daiana Fornes
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Florencia Heinecke
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Sabrina Lorena Roberti
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Verónica White
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Abstract
Obesity is a complex condition that is characterized by excessive fat accumulation, which can lead to the development of metabolic disorders, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease and cardiovascular diseases. Evidence is accumulating that circulating microRNAs (miRNAs) act as a new class of endocrine factor. These miRNAs are released by many types of tissue, including adipose tissues. miRNAs might serve as endocrine and paracrine messengers that facilitate communication between donor cells and tissues with receptor cells or target tissues, thereby potentially having important roles in metabolic organ crosstalk. Moreover, many miRNAs are closely associated with the differentiation of adipocytes and are dysregulated in obesity. As such, circulating miRNAs are attractive potential biomarkers and hold promise for the development of miRNA-based therapeutics (such as miRNA mimetics, anti-miRNA oligonucleotides and exosomes loaded with miRNA) for obesity and related disorders. Here we review the latest research progress on the roles of circulating miRNAs in metabolic organ crosstalk. In addition, we discuss the clinical potential of circulating miRNAs as feasible biomarkers for the assessment of future risk of metabolic disorders and as therapeutic targets in obesity and related diseases.
Collapse
Affiliation(s)
- Chenbo Ji
- Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
| | - Xirong Guo
- Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Li C, Xu X. Biological functions and clinical applications of exosomal non-coding RNAs in hepatocellular carcinoma. Cell Mol Life Sci 2019; 76:4203-4219. [PMID: 31300868 PMCID: PMC11105530 DOI: 10.1007/s00018-019-03215-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/09/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, with a high mortality rate. Its dismal prognosis is attributed to late diagnosis, high risk of recurrence and drug resistance. To improve the survival of patients with HCC, new approaches are required for early diagnosis, real-time monitoring and effective treatment. Exosomes are small membranous vesicles released by most cells that contain biological molecules and play a great role in intercellular communication under physiological or pathological conditions. In cancer, exosomes from tumor cells or non-tumor cells can be taken up by neighboring or distant target cells, and the cargoes in exosomes are functional to modulate the behaviors of tumors or reshape tumor microenvironment (TME). As essential components, non-coding RNAs (ncRNAs) are selectively enriched in exosomes, and exosomal ncRNAs participate in regulating specific aspects of tumor development, including tumorigenesis, tumor metastasis, angiogenesis, immunomodulation and drug resistance. Besides, dysregulated exosomal ncRNAs have emerged as potential biomarkers, and exosomes can serve as natural vehicles to deliver tumor-suppressed ncRNAs for treatment. In this review, we briefly summarize the biology of exosomes, the functions of exosomal ncRNAs in HCC development and their potential clinical applications, including as biomarkers and therapeutic tools.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/physiology
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Drug Delivery Systems
- Exosomes/genetics
- Exosomes/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Therapy/methods
- Humans
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Molecular Targeted Therapy/methods
- RNA, Neoplasm/metabolism
- RNA, Neoplasm/physiology
- RNA, Untranslated/metabolism
- RNA, Untranslated/physiology
Collapse
Affiliation(s)
- Changbiao Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, Hangzhou, 310003, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, Hangzhou, 310003, China.
| |
Collapse
|
34
|
Kim JY, Jun JH, Park SY, Yang SW, Bae SH, Kim GJ. Dynamic Regulation of miRNA Expression by Functionally Enhanced Placental Mesenchymal Stem Cells PromotesHepatic Regeneration in a Rat Model with Bile Duct Ligation. Int J Mol Sci 2019; 20:ijms20215299. [PMID: 31653075 PMCID: PMC6862171 DOI: 10.3390/ijms20215299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Placenta-derived mesenchymal stem cells (PD-MSCs) were highlighted as therapeutic sources in several degenerative diseases. Recently, microRNAs (miRNAs)were found to mediate one of the therapeutic mechanisms of PD-MSCs in regenerative medicine. To enhance the therapeutic effects of PD-MSCs, we established functionally enhanced PD-MSCs with phosphatase of regenerating liver-1 overexpression (PRL-1(+)). However, the profile and functions of miRNAs induced by PRL-1(+) PD-MSCs in a rat model with hepatic failure prepared by bile duct ligation (BDL) remained unclear. Hence, the objectives of the present study were to analyze the expression of miRNAs and investigate their therapeutic mechanisms for hepatic regeneration via PRL-1(+) in a rat model with BDL. We selected candidate miRNAs based on microarray analysis. Under hypoxic conditions, compared with migrated naïve PD-MSCs, migrated PRL-1(+) PD-MSCs showed improved integrin-dependent migration abilitythrough Ras homolog (RHO) family-targeted miRNA expression (e.g., hsa-miR-30a-5p, 340-5p, and 146a-3p). Moreover, rno-miR-30a-5p and 340-5p regulated engraftment into injured rat liver by transplantedPRL-1(+) PD-MSCs through the integrin family. Additionally, an increase inplatelet-derived growth factor receptor A (PDGFRA) by suppressing rno-miR-27a-3p improved vascular structure in rat liver tissues after PRL-1(+) PD-MSC transplantation. Furthermore, decreased rno-miR-122-5p was significantly correlated with increased proliferation of hepatocytes in liver tissues by PRL-1(+) PD-MSCs byactivating the interleukin-6 (IL-6) signaling pathway through the repression of rno-miR-21-5p. Taken together, these findings improve the understandingof therapeutic mechanisms based on miRNA-mediated stem-cell therapy in liver diseases.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea.
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea.
| | - Soo Young Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea.
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120749, Korea.
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Korea.
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea.
| |
Collapse
|
35
|
Scioli MG, Storti G, D'Amico F, Gentile P, Kim BS, Cervelli V, Orlandi A. Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities. Int J Mol Sci 2019; 20:3296. [PMID: 31277510 PMCID: PMC6651808 DOI: 10.3390/ijms20133296] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Growing importance has been attributed to interactions between tumors, the stromal microenvironment and adult mesenchymal stem cells. Adipose-derived stem cells (ASCs) are routinely employed in regenerative medicine and in autologous fat transfer procedures. To date, clinical trials have failed to demonstrate the potential pro-oncogenic role of ASC enrichment. Nevertheless, some pre-clinical studies from in vitro and in vivo models have suggested that ASCs act as a potential tumor promoter for different cancer cell types, and support tumor progression and invasiveness through the activation of several intracellular signals. Interaction with the tumor microenvironment and extracellular matrix remodeling, the exosomal release of pro-oncogenic factors as well as the induction of epithelial-mesenchymal transitions are the most investigated mechanisms. Moreover, ASCs have also demonstrated an elective tumor homing capacity and this tumor-targeting capacity makes them a suitable carrier for anti-cancer drug delivery. New genetic and applied nanotechnologies may help to design promising anti-cancer cell-based approaches through the release of loaded intracellular nanoparticles. These new anti-cancer therapies can more effectively target tumor cells, reaching higher local concentrations even in pharmacological sanctuaries, and thus minimizing systemic adverse drug effects. The potential interplay between ASCs and tumors and potential ASCs-based therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Federico D'Amico
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| |
Collapse
|
36
|
Gentile P, Garcovich S. Concise Review: Adipose-Derived Stem Cells (ASCs) and Adipocyte-Secreted Exosomal microRNA (A-SE-miR) Modulate Cancer Growth and proMote Wound Repair. J Clin Med 2019; 8:855. [PMID: 31208047 PMCID: PMC6616456 DOI: 10.3390/jcm8060855] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been routinely used from several years in regenerative surgery without any definitive statement about their potential pro-oncogenic or anti-oncogenic role. ASCs has proven to favor tumor progression in several experimental cancer models, playing a central role in regulating tumor invasiveness and metastatic potential through several mechanisms, such as the paracrine release of exosomes containing pro-oncogenic molecules and the induction of epithelial-mesenchymal transition. However, the high secretory activity and the preferential tumor-targeting make also ASCs a potentially suitable vehicle for delivery of new anti-cancer molecules in tumor microenvironment. Nanotechnologies, viral vectors, drug-loaded exosomes, and micro-RNAs (MiR) represent additional new tools that can be applied for cell-mediated drug delivery in a tumor microenvironment. Recent studies revealed that the MiR play important roles in paracrine actions on adipose-resident macrophages, and their dysregulation has been implicated in the pathogenesis of obesity, diabetes, and diabetic complications as wounds. Numerous MiR are present in adipose tissues, actively participating in the regulation of adipogenesis, adipokine secretion, inflammation, and inter-cellular communications in the local tissues. These results provide important insights into Adipocyte-secreted exosomal microRNA (A-SE-MiR) function and they suggest evaluating the potential role of A-SE-MiR in tumor progression, the mechanisms underlying ASCs-cancer cell interplay and clinical safety of ASCs-based therapies.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery Unit, University of "Tor Vergata", 00133 Rome, Italy.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|