1
|
Zhang M, Zhu M, Lang H, Wang W, Li X, Jiang M. Genome-Wide Identification, Characterization, and Expression Analysis of Orphan Genes Within Coriander. PLANTS (BASEL, SWITZERLAND) 2025; 14:778. [PMID: 40094770 PMCID: PMC11901849 DOI: 10.3390/plants14050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Orphan genes (OGs) are genes that have no significant sequence similarity with known genes from other species or lineages. Identifying and characterizing OGs have become more feasible with the increasing availability of plant transcriptomes and genome sequences. OGs play important roles in response to both biotic and abiotic stresses, contributing to biological functions and lineage-specific traits. This study aimed to identify and characterize OGs in Coriandrum sativum (coriander) using the BLAST method. A total of 941 C. sativum OGs (CsOGs), 1298 Apiaceae-specific genes (ASGs), and 38,508 evolutionarily conserved genes (ECGs) were identified through comparative genomics. Genic feature analyses revealed that CsOGs and ASGs, although part of different gene sets, had shorter gene lengths, a lower proportion of multi-exon genes, and higher GC content than ECGs. OGs were distributed across all 11 chromosomes, with the highest proportion of CsOGs and ASGs found on chromosome A11. RNA-Seq analysis revealed 71 CsOGs uniquely expressed in four different tissues, 61 CsOGs specifically expressed across three growth stages, and five CsOGs with specific expression patterns in different tissues and growth stages. Notably, as determined via qRT-PCR analysis, these five CsOGs presented general or specific expression patterns under normal conditions, but their expression significantly increased after exposure to cold stress, suggesting that they may play a critical role in cold stress response. This study comprehensively identified, characterized, and analyzed the expression of OGs within coriander, which provides a foundation for further research on the functions of coriander OGs in influencing species-specific trait formation and stress response.
Collapse
Affiliation(s)
- Meidi Zhang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (H.L.); (W.W.)
| | - Mo Zhu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China;
| | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (H.L.); (W.W.)
| | - Weiming Wang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (H.L.); (W.W.)
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (H.L.); (W.W.)
| |
Collapse
|
2
|
Wang L, O'Conner S, Tanvir R, Zheng W, Cothron S, Towery K, Bi H, Ellison EE, Yang B, Voytas DF, Li L. CRISPR/Cas9-based editing of NF-YC4 promoters yields high-protein rice and soybean. THE NEW PHYTOLOGIST 2025; 245:2103-2116. [PMID: 39307530 PMCID: PMC11798907 DOI: 10.1111/nph.20141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/28/2024] [Indexed: 02/07/2025]
Abstract
Genome editing is a revolution in biotechnology for crop improvement with the final product lacking transgenes. However, most derived traits have been generated through edits that create gene knockouts. Our study pioneers a novel approach, utilizing gene editing to enhance gene expression by eliminating transcriptional repressor binding motifs. Building upon our prior research demonstrating the protein-boosting effects of the transcription factor NF-YC4, we identified conserved motifs targeted by RAV and WRKY repressors in the NF-YC4 promoters from rice (Oryza sativa) and soybean (Glycine max). Leveraging CRISPR/Cas9 technology, we deleted these motifs, resulting in reduced repressor binding and increased NF-YC4 expression. This strategy led to increased protein content and reduced carbohydrate levels in the edited rice and soybean plants, with rice exhibiting up to a 68% increase in leaf protein and a 17% increase in seed protein, and soybean showing up to a 25% increase in leaf protein and an 11% increase in seed protein. Our findings provide a blueprint for enhancing gene expression through precise genomic deletions in noncoding sequences, promising improved agricultural productivity and nutritional quality.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
- College of Life SciencesShihezi UniversityShiheziXinjiang832003China
| | - Seth O'Conner
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Rezwan Tanvir
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Samuel Cothron
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Katherine Towery
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Honghao Bi
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Evan E. Ellison
- Department of Genetics, Cell Biology and Development, Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55108USA
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences CenterUniversity of MissouriColumbiaMO65211USA
- Donald Danforth Plant Science CenterSt LouisMO63132USA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55108USA
| | - Ling Li
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| |
Collapse
|
3
|
Jiang M, Zhan Z, Li X, Piao Z. Construction and evaluation of Brassica rapa orphan genes overexpression library. FRONTIERS IN PLANT SCIENCE 2025; 16:1532449. [PMID: 39912098 PMCID: PMC11794797 DOI: 10.3389/fpls.2025.1532449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
Orphan genes (OGs) are crucial for species-specific characteristics and stress responses and are restricted to a specific taxon. However, their functions within particular species are poorly understood. Previous research identified OGs in Brassica rapa (BrOGs). In this study, the BrOGs overexpression (BrOGsOE) library in Arabidopsis thaliana was constructed. Approximately 128 unknown functional BrOGs were selected from Chinese cabbage and were overexpressed. The analysis focused on the phenotypes of leaf morphology and flowering time against phenotypic differences between Chinese cabbage and Arabidopsis. Interestingly, 72.66% of the transgenic lines showed distinctive phenotypic changes. Chinese cabbage-specific features, including curved, hairy, upward or downward-curving leaves, serrated margins, and multiple leaves, were observed in the BrOGsOE lines. The BrOGs overexpression library was associated with numerous variations in flowering time, particularly delayed flowering. This suggested that the delayed flowering time caused by BrOGs may be associated with resistance to bolting seem in Chinese cabbage. Furthermore, the results of stress treatment of 24 BrOGsOE lines with no apparent significant phenotypes suggested that a number of BrOGs have both general and specific functions against environmental and pathogenic stress. The findings of this study provide a comprehensive overview of the roles of BrOGs, emphasizing their significance as a resource for identifying positive genes associated with species-specific characteristics and stress responses and offering a solid foundation for the functional analysis of BrOGs.
Collapse
Affiliation(s)
- Mingliang Jiang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Zhang Y, Jiang M, Sun S, Zhan Z, Li X, Piao Z. Chinese cabbage orphan gene BR3 confers bolting resistance to Arabidopsis through the gibberellin pathway. FRONTIERS IN PLANT SCIENCE 2025; 15:1518962. [PMID: 39902211 PMCID: PMC11788340 DOI: 10.3389/fpls.2024.1518962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
Premature bolting reduces the yield and quality of Chinese cabbage, making bolting resistance gene identification crucial for breeding superior and stable varieties. In this study, we identified an orphan gene BOLTING RESISTANCE 3 (BR3) that positively regulates bolting resistance in Arabidopsis thaliana. The expression of BR3 was developmentally regulated and occurred during the seedling and flowering stages. The BR3 protein was localized to both the plasma membrane and nucleus. Arabidopsis BR3 overexpressing (BR3OE) plants exhibited delayed bolting and flowering times, an increased number of rosette leaves, reduced plant height, and fewer siliques under long-day (LD) conditions. Key flowering genes were significantly downregulated in BR3OE plants. BR3OE plants similarly exhibited delayed bolting and flowering times, and an increased number of rosette leaves under short-day (SD) conditions. BR3OE plants showed no significant phenotypic differences after vernalization treatment. BR3OE and WT plants exhibited early flowering after GA3 treatment, and bolting and flowering time remained delayed in BR3OE plants compared with WT plants. Key DELLA genes BrRGA1 and BrRGL3 exhibited a co-expression pattern consistent with BR3 gene in Chinese cabbage, which suggested that BrRGA1 and BrRGL3 genes may directly or indirectly regulated by BR3 gene. BR3 gene increased bolting resistance perhaps by upregulating the expression of DELLA genes in the GA pathway. This study provides new theoretical insights for addressing premature bolting in Chinese cabbage and offers novel approaches for breeding bolting-resistant varieties.
Collapse
Affiliation(s)
- Yuting Zhang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Shurui Sun
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
5
|
Scherer V, Bellin L, Schwenkert S, Lehmann M, Rinne J, Witte CP, Jahnke K, Richter A, Pruss T, Lau A, Waller L, Stein S, Leister D, Möhlmann T. Uracil phosphoribosyltransferase is required to establish a functional cytochrome b 6f complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1064-1078. [PMID: 39323000 DOI: 10.1111/tpj.17036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Arabidopsis uracil phosphoribosyltransferase (UPP) is an essential enzyme and plants lacking this enzyme are strongly compromised in chloroplast function. Our analysis of UPP amiRNA mutants has confirmed that this vital function is crucial to establish a fully functional photosynthesis as the RIESKE iron sulfur protein (PetC) is almost absent, leading to a block in photosynthetic electron transport. Interestingly, this function appears to be unrelated to nucleotide homeostasis since nucleotide levels were not altered in the studied mutants. Transcriptomics and proteomic analysis showed that protein homeostasis but not gene expression is most likely responsible for this observation and high light provoked an upregulation of protease levels, including thylakoid filamentation temperature-sensitive 1, 5 (FtsH), caseinolytic protease proteolytic subunit 1 (ClpP1), and processing peptidases, as well as components of the chloroplast protein import machinery in UPP amiRNA lines. Strongly reduced PetC amounts were not only detected by immunoblot from mature plants but in addition in a de-etiolation experiment with young seedlings and are causing reduced high light-induced non-photochemical quenching Φ(NPQ) but increased unregulated energy dissipation Φ(NO). This impaired photosynthesis results in an inability to induce flavonoid biosynthesis. In addition, the levels of the osmoprotectants raffinose, proline, and fumarate were found to be reduced. In sum, our work suggests that UPP assists in stabilization PetC during import, processing or targeting to the thylakoid membrane, or protects it against proteolytic degradation.
Collapse
Affiliation(s)
- Vanessa Scherer
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Leo Bellin
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Serena Schwenkert
- Plant Sciences, Faculty of Biology, Ludwig-Maximilian-University of Munich, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Martin Lehmann
- Plant Sciences, Faculty of Biology, Ludwig-Maximilian-University of Munich, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Jannis Rinne
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Kathrin Jahnke
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, Rostock, 18059, Germany
| | - Andreas Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, Rostock, 18059, Germany
| | - Tobias Pruss
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Anne Lau
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Lisa Waller
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Sebastian Stein
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Dario Leister
- Plant Sciences, Faculty of Biology, Ludwig-Maximilian-University of Munich, Großhaderner Straße 2-4, Planegg-Martinsried, 82152, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| |
Collapse
|
6
|
Zu Y, Jiang M, Zhan Z, Li X, Piao Z. Orphan gene BR2 positively regulates bolting resistance through the vernalization pathway in Chinese cabbage. HORTICULTURE RESEARCH 2024; 11:uhae216. [PMID: 39398948 PMCID: PMC11469923 DOI: 10.1093/hr/uhae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/21/2024] [Indexed: 10/15/2024]
Abstract
Orphan genes (OGs) are unique to the specific species or lineage, and whose homologous sequences cannot be found in other species or lineages. Furthermore, these genes lack recognizable domains or functional motifs, which make their characterization difficult. Here, we identified a Brassica rapa OG named BOLTING RESISTANCE 2 (BR2) that could positively modulate bolting resistance. The expression of BR2 was developmentally regulated and the BR2 protein was localized to the cell membrane. BR2 overexpression not only markedly delayed flowering time in Arabidopsis transgenic plants, but substantially affected the development of leaves and flower organs. Flowering repressor AtFLC gene was significantly up-regulated transcribed in Arabidopsis BR2 overexpression lines, while AtFT and AtSOC1 expression was decreased. In addition, the BR2 expression was enhanced in bolting-resistant type Chinese cabbage and was reduced in non-resistant type. Moreover, chilling stress inhibited the BR2 expression levels. Overexpression of BR2 also delayed flowering time in Chinese cabbage. In vernalized Chinese cabbage BR2 overexpression plants, BrVIN3.b and BrFRI were significantly down-regulated, while BrFLC5 was substantially up-regulated. Key floral factors, including three BrSOC1s, two BrLFYs, and four BrFTs were down-regulated. The expression changes of these key genes were consistent with the delayed flowering phenotype of Chinese cabbage BR2 overexpressing plants. Thus, we predicted that BR2 may predominantly function via the vernalization pathway. Our findings propose that the OG BR2 acts as a novel modulator of flowering time in Chinese cabbage, which provides a new insight on the breeding of varieties that are resistant to bolting.
Collapse
Affiliation(s)
- Ye Zu
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaonan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Luo L, Zheng Y, Li X, Chen Q, Yang D, Gu Z, Yang Y, Yang Y, Kong X, Yang Y. ICE1 interacts with IDD14 to transcriptionally activate QQS to increase pollen germination and viability. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1801-1819. [PMID: 38940322 DOI: 10.1111/jipb.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
In flowering plants, sexual reproductive success depends on the production of viable pollen grains. However, the mechanisms by which QUA QUINE STARCH (QQS) regulates pollen development and how transcriptional activators facilitate the transcription of QQS in this process remain poorly understood. Here, we demonstrate that INDUCER OF CBF EXPRESSION 1 (ICE1), a basic helix-loop-helix (bHLH) transcription factor, acts as a key transcriptional activator and positively regulates QQS expression to increase pollen germination and viability in Arabidopsis thaliana by interacting with INDETERMINATE DOMAIN14 (IDD14). In our genetic and biochemical experiments, overexpression of ICE1 greatly promoted both the activation of QQS and high pollen viability mediated by QQS. IDD14 additively enhanced ICE1 function by promoting the binding of ICE1 to the QQS promoter. In addition, mutation of ICE1 significantly repressed QQS expression; the impaired function of QQS and the abnormal anther dehiscence jointly affected pollen development of the ice1-2 mutant. Our results also showed that the enhancement of pollen activity by ICE1 depends on QQS. Furthermore, QQS interacted with CUT1, the key enzyme for long-chain lipid biosynthesis. This interaction both promoted CUT1 activity and regulated pollen lipid metabolism, ultimately determining pollen hydration and fertility. Our results not only provide new insights into the key function of QQS in promoting pollen development by regulating pollen lipid metabolism, but also elucidate the mechanism that facilitates the transcription of QQS in this vital developmental process.
Collapse
Affiliation(s)
- Landi Luo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Yan Zheng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Xieshengyang Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Qian Chen
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Danni Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhijia Gu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunqiang Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiangxiang Kong
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Xishuangbanna, 666303, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
8
|
Jong C, Yu Z, Zhang Y, Choe K, Uh S, Kim K, Jong C, Cha J, Kim M, Kim Y, Han X, Yang M, Xu C, Hu L, Chen Q, Liu C, Qi Z. Multi-Omics Analysis of a Chromosome Segment Substitution Line Reveals a New Regulation Network for Soybean Seed Storage Profile. Int J Mol Sci 2024; 25:5614. [PMID: 38891802 PMCID: PMC11171932 DOI: 10.3390/ijms25115614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties.
Collapse
Affiliation(s)
- Cholnam Jong
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Zhenhai Yu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
- Heilongjiang Green Food Science Research Institute, Harbin 150000, China
| | - Yu Zhang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Kyongho Choe
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Songrok Uh
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Kibong Kim
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Chol Jong
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Jinmyong Cha
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Myongguk Kim
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Yunchol Kim
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Xue Han
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Chang Xu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Limin Hu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (C.J.); (Z.Y.); (Y.Z.); (K.C.); (S.U.); (K.K.); (C.J.); (J.C.); (M.K.); (Y.K.); (X.H.); (M.Y.); (C.X.); (L.H.); (C.L.)
| |
Collapse
|
9
|
Fakhar AZ, Liu J, Pajerowska-Mukhtar KM, Mukhtar MS. The ORFans' tale: new insights in plant biology. TRENDS IN PLANT SCIENCE 2023; 28:1379-1390. [PMID: 37453923 DOI: 10.1016/j.tplants.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Orphan genes (OGs) are protein-coding genes without a significant sequence similarity in closely related species. Despite their functional importance, very little is known about the underlying molecular mechanisms by which OGs participate in diverse biological processes. Here, we discuss the evolutionary mechanisms of OGs' emergence with relevance to species-specific adaptations. We also provide a mechanistic view of the involvement of OGs in multiple processes, including growth, development, reproduction, and carbon-metabolism-mediated immunity. We highlight the interconnection between OGs and the sucrose nonfermenting 1 (SNF1)-related protein kinases (SnRKs)-target of rapamycin (TOR) signaling axis for phytohormone signaling, nutrient metabolism, and stress responses. Finally, we propose a high-throughput pipeline for OGs' interspecies and intraspecies gene transfer through a transgenic approach for future biotechnological advances.
Collapse
Affiliation(s)
- Ali Zeeshan Fakhar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| | | | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Haltom J, Trovao NS, Guarnieri J, Vincent P, Singh U, Tsoy S, O'Leary CA, Bram Y, Widjaja GA, Cen Z, Meller R, Baylin SB, Moss WN, Nikolau BJ, Enguita FJ, Wallace DC, Beheshti A, Schwartz R, Wurtele ES. SARS-CoV-2 Orphan Gene ORF10 Contributes to More Severe COVID-19 Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298847. [PMID: 38076862 PMCID: PMC10705665 DOI: 10.1101/2023.11.27.23298847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The orphan gene of SARS-CoV-2, ORF10, is the least studied gene in the virus responsible for the COVID-19 pandemic. Recent experimentation indicated ORF10 expression moderates innate immunity in vitro. However, whether ORF10 affects COVID-19 in humans remained unknown. We determine that the ORF10 sequence is identical to the Wuhan-Hu-1 ancestral haplotype in 95% of genomes across five variants of concern (VOC). Four ORF10 variants are associated with less virulent clinical outcomes in the human host: three of these affect ORF10 protein structure, one affects ORF10 RNA structural dynamics. RNA-Seq data from 2070 samples from diverse human cells and tissues reveals ORF10 accumulation is conditionally discordant from that of other SARS-CoV-2 transcripts. Expression of ORF10 in A549 and HEK293 cells perturbs immune-related gene expression networks, alters expression of the majority of mitochondrially-encoded genes of oxidative respiration, and leads to large shifts in levels of 14 newly-identified transcripts. We conclude ORF10 contributes to more severe COVID-19 clinical outcomes in the human host.
Collapse
Affiliation(s)
- Jeffrey Haltom
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Joseph Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Pan Vincent
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zimu Cen
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA , 30310-1495, USA
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Walter N Moss
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98104 USA
| | - Robert Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, and Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| |
Collapse
|
11
|
Lee SW, Choi D, Moon H, Kim S, Kang H, Paik I, Huq E, Kim DH. PHYTOCHROME-INTERACTING FACTORS are involved in starch degradation adjustment via inhibition of the carbon metabolic regulator QUA-QUINE STARCH in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:110-123. [PMID: 36710626 DOI: 10.1111/tpj.16124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique to Arabidopsis thaliana, named QUA-QUINE STARCH (QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME-INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppress QQS during the period at dawn, thus preventing overconsumption of starch reserves. QQS expression is significantly de-repressed in pif4 and pifQ, while repressed by overexpression of PIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators of QQS expression. In addition, we show that the evening complex, including ELF3 is required for active expression of QQS, thus playing a positive role in starch catabolism during night-time. Furthermore, QQS is epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression of QQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.
Collapse
Affiliation(s)
- Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sujeong Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hajeong Kang
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Inyup Paik
- Department of Molecular Biosciences, the University of Texas at Austin, Texas, 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences, the University of Texas at Austin, Texas, 78712, USA
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
12
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
13
|
Wang L, Tonsager AJ, Zheng W, Wang Y, Stessman D, Fang W, Stenback KE, Campbell A, Tanvir R, Zhang J, Cothron S, Wan D, Meng Y, Spalding MH, Nikolau BJ, Li L. Single-cell genetic models to evaluate orphan gene function: The case of QQS regulating carbon and nitrogen allocation. FRONTIERS IN PLANT SCIENCE 2023; 14:1126139. [PMID: 37051080 PMCID: PMC10084940 DOI: 10.3389/fpls.2023.1126139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
We demonstrate two synthetic single-cell systems that can be used to better understand how the acquisition of an orphan gene can affect complex phenotypes. The Arabidopsis orphan gene, Qua-Quine Starch (QQS) has been identified as a regulator of carbon (C) and nitrogen (N) partitioning across multiple plant species. QQS modulates this important biotechnological trait by replacing NF-YB (Nuclear Factor Y, subunit B) in its interaction with NF-YC. In this study, we expand on these prior findings by developing Chlamydomonas reinhardtii and Saccharomyces cerevisiae strains, to refactor the functional interactions between QQS and NF-Y subunits to affect modulations in C and N allocation. Expression of QQS in C. reinhardtii modulates C (i.e., starch) and N (i.e., protein) allocation by affecting interactions between NF-YC and NF-YB subunits. Studies in S. cerevisiae revealed similar functional interactions between QQS and the NF-YC homolog (HAP5), modulating C (i.e., glycogen) and N (i.e., protein) allocation. However, in S. cerevisiae both the NF-YA (HAP2) and NF-YB (HAP3) homologs appear to have redundant functions to enable QQS and HAP5 to affect C and N allocation. The genetically tractable systems that developed herein exhibit the plasticity to modulate highly complex phenotypes.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Andrew J. Tonsager
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Wenguang Zheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Yingjun Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Dan Stessman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Wei Fang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kenna E. Stenback
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Alexis Campbell
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Jinjiang Zhang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
- Mississippi School for Mathematics and Science, Columbus, MS, United States
| | - Samuel Cothron
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Dongli Wan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yan Meng
- Department of Agriculture, Alcorn State University, Lorman, MS, United States
| | - Martin H. Spalding
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
14
|
Jiang M, Zhang Y, Yang X, Li X, Lang H. Brassica rapa orphan gene BR1 delays flowering time in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1135684. [PMID: 36909380 PMCID: PMC9998908 DOI: 10.3389/fpls.2023.1135684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Orphan genes are essential to the emergence of species-specific traits and the process of evolution, lacking sequence similarity to any other identified genes. As they lack recognizable domains or functional motifs, however, efforts to characterize these orphan genes are often difficult. Flowering is a key trait in Brassica rapa, as premature bolting can have a pronounced adverse impact on plant quality and yield. Bolting resistance-related orphan genes, however, have yet to be characterized. In this study, an orphan gene designated BOLTING RESISTANCE 1 (BR1) was identified and found through gene structural variation analyses to be more highly conserved in Chinese cabbage than in other available accessions. The expression of BR1 was increased in bolting resistant Chinese cabbage and decreased in bolting non-resistant type, and the expression of some mark genes were consist with bolting resistance phenotype. BR1 is primarily expressed in leaves at the vegetative growth stage, and the highest BR1 expression levels during the flowering stage were observed in the flower buds and silique as compared to other tissue types. The overexpression of BR1 in Arabidopsis was associated with enhanced bolting resistance under long day (LD) conditions, with these transgenic plants exhibiting significant decreases in stem height, rosette radius, and chlorophyll content. Transcriptomic sequencing of WT and BR1OE plants showed the association of BR1 with other bolting resistance genes. Transcriptomic sequencing and qPCR revealed that six flowering integrator genes and one chlorophyll biosynthesis-related gene were downregulated following BR1 overexpression. Six key genes in photoperiodic flowering pathway exhibited downward expression trends in BR1OE plants, while the expression of floral repressor AtFLC gene was upregulated. The transcripts of these key genes were consistent with observed phenotypes in BR1OE plants, and the results indicated that BR1 may function through vernalization and photoperiodic pathway. Instead, the protein encoded by BR1 gene was subsequently found to localize to the nucleus. Taken together, we first propose that orphan gene BR1 functions as a novel regulator of flowering time, and these results suggested that BR1 may represent a promising candidate gene to support the selective breeding of Chinese cabbage cultivars with enhanced bolting resistance.
Collapse
Affiliation(s)
- Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| | - Yuting Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
15
|
Tanvir R, Wang L, Zhang A, Li L. Orphan Genes in Crop Improvement: Enhancing Potato Tuber Protein without Impacting Yield. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223076. [PMID: 36432805 PMCID: PMC9696052 DOI: 10.3390/plants11223076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Qua-Quine Starch (QQS), an Arabidopsis thaliana orphan gene, and its interactor, Arabidopsis Nuclear Factor Y subunit C4 (AtNF-YC4), can increase the total leaf and seed protein in different plants. Despite their potential in developing protein-rich crop varieties, their influence on the protein content of the stem, modified stem, and tuber was never investigated. Potato (Solanum tuberosum) is one of the most valuable food crops worldwide. This staple food is rich in starch, vitamins (B6, C), phenolics, flavonoids, polyamines, carotenoids, and various minerals but lacks adequate proteins necessary for a healthy human diet. Here we expressed A. thaliana QQS (AtQQS) and overexpressed S. tuberosum NF-YC4 (StNF-YC4) in potatoes to determine their influence on the composition and morphological characteristics of potato tubers. Our data demonstrated higher protein and reduced starch content in potato tubers without significantly compromising the tuber yield, shape, and numbers, when QQS was expressed or StNF-YC4 was overexpressed. Publicly available expression data, promoter region, and protein−protein interaction analyses of StNF-YC4 suggest its potential functionality in potato storage protein, metabolism, stress resistance, and defense against pests and pathogens. The overall outcomes of this study support QQS and NF-YC4’s potential utilization as tools to enhance tuber protein content in plants.
Collapse
Affiliation(s)
- Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Lei Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Amy Zhang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
- Mississippi School for Mathematics and Science, Columbus, MS 39701, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
- Correspondence: ; Tel.: +1-662-325-7570
| |
Collapse
|
16
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
17
|
Jiang M, Li X, Dong X, Zu Y, Zhan Z, Piao Z, Lang H. Research Advances and Prospects of Orphan Genes in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:947129. [PMID: 35874010 PMCID: PMC9305701 DOI: 10.3389/fpls.2022.947129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Orphan genes (OGs) are defined as genes having no sequence similarity with genes present in other lineages. OGs have been regarded to play a key role in the development of lineage-specific adaptations and can also serve as a constant source of evolutionary novelty. These genes have often been found related to various stress responses, species-specific traits, special expression regulation, and also participate in primary substance metabolism. The advancement in sequencing tools and genome analysis methods has made the identification and characterization of OGs comparatively easier. In the study of OG functions in plants, significant progress has been made. We review recent advances in the fast evolving characteristics, expression modulation, and functional analysis of OGs with a focus on their role in plant biology. We also emphasize current challenges, adoptable strategies and discuss possible future directions of functional study of OGs.
Collapse
Affiliation(s)
- Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming, China
| | - Ye Zu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
18
|
Cardoso-Silva CB, Aono AH, Mancini MC, Sforça DA, da Silva CC, Pinto LR, Adams KL, de Souza AP. Taxonomically Restricted Genes Are Associated With Responses to Biotic and Abiotic Stresses in Sugarcane ( Saccharum spp.). FRONTIERS IN PLANT SCIENCE 2022; 13:923069. [PMID: 35845637 PMCID: PMC9280035 DOI: 10.3389/fpls.2022.923069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Orphan genes (OGs) are protein-coding genes that are restricted to particular clades or species and lack homology with genes from other organisms, making their biological functions difficult to predict. OGs can rapidly originate and become functional; consequently, they may support rapid adaptation to environmental changes. Extensive spread of mobile elements and whole-genome duplication occurred in the Saccharum group, which may have contributed to the origin and diversification of OGs in the sugarcane genome. Here, we identified and characterized OGs in sugarcane, examined their expression profiles across tissues and genotypes, and investigated their regulation under varying conditions. We identified 319 OGs in the Saccharum spontaneum genome without detected homology to protein-coding genes in green plants, except those belonging to Saccharinae. Transcriptomic analysis revealed 288 sugarcane OGs with detectable expression levels in at least one tissue or genotype. We observed similar expression patterns of OGs in sugarcane genotypes originating from the closest geographical locations. We also observed tissue-specific expression of some OGs, possibly indicating a complex regulatory process for maintaining diverse functional activity of these genes across sugarcane tissues and genotypes. Sixty-six OGs were differentially expressed under stress conditions, especially cold and osmotic stresses. Gene co-expression network and functional enrichment analyses suggested that sugarcane OGs are involved in several biological mechanisms, including stimulus response and defence mechanisms. These findings provide a valuable genomic resource for sugarcane researchers, especially those interested in selecting stress-responsive genes.
Collapse
Affiliation(s)
- Cláudio Benício Cardoso-Silva
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Alexandre Hild Aono
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Melina Cristina Mancini
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Danilo Augusto Sforça
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla Cristina da Silva
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Agronomy Department, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Luciana Rossini Pinto
- Sugarcane Research Advanced Centre, Agronomic Institute of Campinas (IAC/APTA), Ribeirão Preto, Brazil
| | - Keith L. Adams
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Anete Pereira de Souza
- Center of Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
19
|
Tanvir R, Ping W, Sun J, Cain M, Li X, Li L. AtQQS orphan gene and NtNF-YC4 boost protein accumulation and pest resistance in tobacco (Nicotiana tabacum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111198. [PMID: 35193747 DOI: 10.1016/j.plantsci.2022.111198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 05/19/2023]
Abstract
Qua-Quine Starch (QQS), an orphan gene exclusively found in Arabidopsis thaliana, interacts with Nuclear Factor Y subunit C4 (NF-YC4) and regulates carbon and nitrogen allocation in different plant species. Several studies uncovered its potential in increasing total protein and resistance against pathogens/pests in Arabidopsis and soybean. However, it is still unclear if these attributes QQS offers are universal in all flowering plants. Here we studied AtQQS and Nicotiana tabacum NF-YC4's (NtNF-YC4) influence on starch/protein content and pest resistance in tobacco. Our results showed both AtQQS and NtNF-YC4 had a positive impact on the plant's total protein accumulation. Simultaneously, we have also observed reduced starch biosynthesis and increased resistance against common pests like whiteflies (Bemisia tabaci) and aphids (Myzus persicae) in tobacco plants expressing AtQQS or overexpressing NtNF-YC4. Real-time PCR also revealed increased NF-YC4 expression after aphid infestation in tobacco varieties with higher pest resistance but decreased/unchanged NF-YC4 expression in varieties susceptible to pests. Further analysis revealed that QQS expression and overexpression of NtNF-YC4 strongly repressed expression of genes such as sugar transporter SWEET10 and Flowering Locus T (FT), suggesting involvement of SWEET10 and FT in the QQS and NF-YC4 mediated carbon and nitrogen allocation in tobacco. Our data suggested that the activity of species-specific orphan genes may not be limited to the original species or its close relatives. Sequence alignment revealed the conserved sequence of the NF-YC4s in different plant species that may be responsible for the resulting shift in metabolism, pest resistance. Cis-acting DNA element analysis of NtNF-YC4 promoter region may outline potential mechanisms for these phenotypic changes.
Collapse
Affiliation(s)
- Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Wenli Ping
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Jiping Sun
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Morgan Cain
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xuejun Li
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
20
|
Moon H, Jeong AR, Kwon OK, Park CJ. Oryza-Specific Orphan Protein Triggers Enhanced Resistance to Xanthomonas oryzae pv. oryzae in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:859375. [PMID: 35360326 PMCID: PMC8961030 DOI: 10.3389/fpls.2022.859375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
All genomes carry lineage-specific orphan genes lacking homology in their closely related species. Identification and functional study of the orphan genes is fundamentally important for understanding lineage-specific adaptations including acquirement of resistance to pathogens. However, most orphan genes are of unknown function due to the difficulties in studying them using helpful comparative genomics. Here, we present a defense-related Oryza-specific orphan gene, Xio1, specifically induced by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) in an immune receptor XA21-dependent manner. Salicylic acid (SA) and ethephon (ET) also induced its expression, but methyl jasmonic acid (MeJA) reduced its basal expression. C-terminal green fluorescent protein (GFP) tagged Xio1 (Xio1-GFP) was visualized in the nucleus and the cytosol after polyethylene glycol (PEG)-mediated transformation in rice protoplasts and Agrobacterium-mediated infiltration in tobacco leaves. Transgenic rice plants overexpressing Xio1-GFP showed significantly enhanced resistance to Xoo with reduced lesion lengths and bacterial growth, in company with constitutive expression of defense-related genes. However, all of the transgenic plants displayed severe growth retardation and premature death. Reactive oxygen species (ROS) was significantly produced in rice protoplasts constitutively expressing Xio1-GFP. Overexpression of Xio1-GFP in non-Oryza plant species, Arabidopsis thaliana, failed to induce growth retardation and enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. Our results suggest that the defense-related orphan gene Xio1 plays an important role in distinctive mechanisms evolved within the Oryza and provides a new source of Oryza-specific genes for crop-breeding programs.
Collapse
Affiliation(s)
- Hyeran Moon
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - A-Ram Jeong
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Oh-Kyu Kwon
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Chang-Jin Park
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| |
Collapse
|
21
|
Li J, Singh U, Bhandary P, Campbell J, Arendsee Z, Seetharam AS, Wurtele ES. Foster thy young: enhanced prediction of orphan genes in assembled genomes. Nucleic Acids Res 2021; 50:e37. [PMID: 34928390 PMCID: PMC9023268 DOI: 10.1093/nar/gkab1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins encoded by newly-emerged genes ('orphan genes') share no sequence similarity with proteins in any other species. They provide organisms with a reservoir of genetic elements to quickly respond to changing selection pressures. Here, we systematically assess the ability of five gene prediction pipelines to accurately predict genes in genomes according to phylostratal origin. BRAKER and MAKER are existing, popular ab initio tools that infer gene structures by machine learning. Direct Inference is an evidence-based pipeline we developed to predict gene structures from alignments of RNA-Seq data. The BIND pipeline integrates ab initio predictions of BRAKER and Direct inference; MIND combines Direct Inference and MAKER predictions. We use highly-curated Arabidopsis and yeast annotations as gold-standard benchmarks, and cross-validate in rice. Each pipeline under-predicts orphan genes (as few as 11 percent, under one prediction scenario). Increasing RNA-Seq diversity greatly improves prediction efficacy. The combined methods (BIND and MIND) yield best predictions overall, BIND identifying 68% of annotated orphan genes, 99% of ancient genes, and give the highest sensitivity score regardless dataset in Arabidopsis. We provide a light weight, flexible, reproducible, and well-documented solution to improve gene prediction.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50014, USA
| | - Urminder Singh
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Priyanka Bhandary
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Jacqueline Campbell
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture Agriculture Research Service, Ames, IA 50014, USA
| | - Zebulun Arendsee
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Iowa State University, Ames, IA 50014, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA.,Center for Metabolic Biology, Iowa State University, Ames, IA 50014, USA.,Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50014, USA.,Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
22
|
Abstract
Tradeoffs among plant traits help maintain relative fitness under unpredictable conditions and maximize reproductive success. However, modifying tradeoffs is a breeding challenge since many genes of minor effect are involved. The intensive crosstalk and fine-tuning between growth and defense responsive phytohormones via transcription factors optimizes growth, reproduction, and stress tolerance. There are regulating genes in grain crops that deploy diverse functions to overcome tradeoffs, e.g., miR-156-IPA1 regulates crosstalk between growth and defense to achieve high disease resistance and yield, while OsALDH2B1 loss of function causes imbalance among defense, growth, and reproduction in rice. GNI-A1 regulates seed number and weight in wheat by suppressing distal florets and altering assimilate distribution of proximal seeds in spikelets. Knocking out ABA-induced transcription repressors (AITRs) enhances abiotic stress adaptation without fitness cost in Arabidopsis. Deploying AITRs homologs in grain crops may facilitate breeding. This knowledge suggests overcoming tradeoffs through breeding may expose new ones.
Collapse
Affiliation(s)
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| |
Collapse
|
23
|
Zhao Y, Cao P, Cui Y, Liu D, Li J, Zhao Y, Yang S, Zhang B, Zhou R, Sun M, Guo X, Yang M, Xin D, Zhang Z, Li X, Lv C, Liu C, Qi Z, Xu J, Wu X, Chen Q. Enhanced production of seed oil with improved fatty acid composition by overexpressing NAD + -dependent glycerol-3-phosphate dehydrogenase in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1036-1053. [PMID: 33768659 DOI: 10.1111/jipb.13094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
There is growing interest in expanding the production of soybean oils (mainly triacylglycerol, or TAG) to meet rising feed demand and address global energy concerns. We report that a plastid-localized glycerol-3-phosphate dehydrogenase (GPDH), encoded by GmGPDHp1 gene, catalyzes the formation of glycerol-3-phosphate (G3P), an obligate substrate required for TAG biosynthesis. Overexpression of GmGPDHp1 increases soybean seed oil content with high levels of unsaturated fatty acids (FAs), especially oleic acid (C18:1), without detectably affecting growth or seed protein content or seed weight. Based on the lipidomic analyses, we found that the increase in G3P content led to an elevated diacylglycerol (DAG) pool, in which the Kennedy pathway-derived DAG was mostly increased, followed by PC-derived DAG, thereby promoting the synthesis of TAG containing relatively high proportion of C18:1. The increased G3P levels induced several transcriptional alterations of genes involved in the glycerolipid pathways. In particular, genes encoding the enzymes responsible for de novo glycerolipid synthesis were largely upregulated in the transgenic lines, in-line with the identified biochemical phenotype. These results reveal a key role for GmGPDHp1-mediated G3P metabolism in enhancing TAG synthesis and demonstrate a strategy to modify the FA compositions of soybean oils for improved nutrition and biofuel.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Pan Cao
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Yifan Cui
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Dongxu Liu
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Jiapeng Li
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Yabin Zhao
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Siqi Yang
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Bo Zhang
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Runnan Zhou
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Minghao Sun
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Xuetian Guo
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Mingliang Yang
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Dawei Xin
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Zhanguo Zhang
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Xin Li
- Key Lab of Maize Genetics and Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, 150000, China
- Department of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chen Lv
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Chunyan Liu
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Zhaoming Qi
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Jingyu Xu
- Department of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoxia Wu
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| | - Qingshan Chen
- Department of Agriculture, Northeast Agricultural University, Harbin, 150000, China
| |
Collapse
|
24
|
O’Conner S, Zheng W, Qi M, Kandel Y, Fuller R, Whitham SA, Li L. GmNF-YC4-2 Increases Protein, Exhibits Broad Disease Resistance and Expedites Maturity in Soybean. Int J Mol Sci 2021; 22:3586. [PMID: 33808355 PMCID: PMC8036377 DOI: 10.3390/ijms22073586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
The NF-Y gene family is a highly conserved set of transcription factors. The functional transcription factor complex is made up of a trimer between NF-YA, NF-YB, and NF-YC proteins. While mammals typically have one gene for each subunit, plants often have multigene families for each subunit which contributes to a wide variety of combinations and functions. Soybean plants with an overexpression of a particular NF-YC isoform GmNF-YC4-2 (Glyma.04g196200) in soybean cultivar Williams 82, had a lower amount of starch in its leaves, a higher amount of protein in its seeds, and increased broad disease resistance for bacterial, viral, and fungal infections in the field, similar to the effects of overexpression of its isoform GmNF-YC4-1 (Glyma.06g169600). Interestingly, GmNF-YC4-2-OE (overexpression) plants also filled pods and senesced earlier, a novel trait not found in GmNF-YC4-1-OE plants. No yield difference was observed in GmNF-YC4-2-OE compared with the wild-type control. Sequence alignment of GmNF-YC4-2, GmNF-YC4-1 and AtNF-YC1 indicated that faster maturation may be a result of minor sequence differences in the terminal ends of the protein compared to the closely related isoforms.
Collapse
Affiliation(s)
- Seth O’Conner
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (S.O.); (R.F.)
| | - Wenguang Zheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA; (M.Q.); (Y.K.); (S.A.W.)
| | - Yuba Kandel
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA; (M.Q.); (Y.K.); (S.A.W.)
| | - Robert Fuller
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (S.O.); (R.F.)
| | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA; (M.Q.); (Y.K.); (S.A.W.)
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (S.O.); (R.F.)
| |
Collapse
|
25
|
O’Conner S, Li L. Mitochondrial Fostering: The Mitochondrial Genome May Play a Role in Plant Orphan Gene Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:600117. [PMID: 33424897 PMCID: PMC7793901 DOI: 10.3389/fpls.2020.600117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 05/12/2023]
Abstract
Plant mitochondrial genomes exhibit unique evolutionary patterns. They have a high rearrangement but low mutation rate, and a large size. Based on massive mitochondrial DNA transfers to the nucleus as well as the mitochondrial unique evolutionary traits, we propose a "Mitochondrial Fostering" theory where the organelle genome plays an integral role in the arrival and development of orphan genes (genes with no homologs in other lineages). Two approaches were used to test this theory: (1) bioinformatic analysis of nuclear mitochondrial DNA (Numts: mitochondrial originating DNA that migrated to the nucleus) at the genome level, and (2) bioinformatic analysis of particular orphan sequences present in both the mitochondrial genome and the nuclear genome of Arabidopsis thaliana. One study example is given about one orphan sequence that codes for two unique orphan genes: one in the mitochondrial genome and another one in the nuclear genome. DNA alignments show regions of this A. thaliana orphan sequence exist scattered throughout other land plant mitochondrial genomes. This is consistent with the high recombination rates of mitochondrial genomes in land plants. This may also enable the creation of novel coding sequences within the orphan loci, which can then be transferred to the nuclear genome and become exposed to new evolutionary pressures. Our study also reveals a high correlation between the amount of mitochondrial DNA transferred to the nuclear genome and the number of orphan genes in land plants. All the data suggests the mitochondrial genome may play a role in nuclear orphan gene evolution in land plants.
Collapse
Affiliation(s)
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
26
|
Jiang M, Zhan Z, Li H, Dong X, Cheng F, Piao Z. Brassica rapa orphan genes largely affect soluble sugar metabolism. HORTICULTURE RESEARCH 2020; 7:181. [PMID: 33328469 PMCID: PMC7603504 DOI: 10.1038/s41438-020-00403-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 05/04/2023]
Abstract
Orphan genes (OGs), which are genes unique to a specific taxon, play a vital role in primary metabolism. However, little is known about the functional significance of Brassica rapa OGs (BrOGs) that were identified in our previous study. To study their biological functions, we developed a BrOG overexpression (BrOGOE) mutant library of 43 genes in Arabidopsis thaliana and assessed the phenotypic variation of the plants. We found that 19 of the 43 BrOGOE mutants displayed a mutant phenotype and 42 showed a variable soluble sugar content. One mutant, BrOG1OE, with significantly elevated fructose, glucose, and total sugar contents but a reduced sucrose content, was selected for in-depth analysis. BrOG1OE showed reduced expression and activity of the Arabidopsis sucrose synthase gene (AtSUS); however, the activity of invertase was unchanged. In contrast, silencing of two copies of BrOG1 in B. rapa, BraA08002322 (BrOG1A) and BraSca000221 (BrOG1B), by the use of an efficient CRISPR/Cas9 system of Chinese cabbage (B. rapa ssp. campestris) resulted in decreased fructose, glucose, and total soluble sugar contents because of the upregulation of BrSUS1b, BrSUS3, and, specifically, the BrSUS5 gene in the edited BrOG1 transgenic line. In addition, we observed increased sucrose content and SUS activity in the BrOG1 mutants, with the activity of invertase remaining unchanged. Thus, BrOG1 probably affected soluble sugar metabolism in a SUS-dependent manner. This is the first report investigating the function of BrOGs with respect to soluble sugar metabolism and reinforced the idea that OGs are a valuable resource for nutrient metabolism.
Collapse
Affiliation(s)
- Mingliang Jiang
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyan Li
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming, 650504, China
| | - Feng Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
27
|
Jia Y, Kong X, Hu K, Cao M, Liu J, Ma C, Guo S, Yuan X, Zhao S, Robert HS, Li C, Tian H, Ding Z. PIFs coordinate shade avoidance by inhibiting auxin repressor ARF18 and metabolic regulator QQS. THE NEW PHYTOLOGIST 2020; 228:609-621. [PMID: 32521046 DOI: 10.1111/nph.16732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/20/2020] [Indexed: 05/29/2023]
Abstract
Shade avoidance syndrome (SAS) arises in densely growing plants that compete for light. In Arabidopsis thaliana, phytochrome interacting factor (PIF) proteins link the perception of shade to stem elongation via auxin production. Here, we report that PIFs inhibit the shade-induced expression of AUXIN RESPONSE FACTOR 18 (ARF18), and ARF18 represses auxin signaling. Therefore, PIF-mediated inhibition of ARF18 enhances auxin-dependent hypocotyl elongation in simulated shade. Furthermore, we show that both PIFs and ARF18 directly repress qua-quine starch (QQS), which controls the allocation of carbon and nitrogen. Shade-repressed QQS attenuates the conversion of starch to protein and thus reduced leaf area. Our results suggest that PIF-dependent gene regulation coordinates multiple SAS responses, including altered stem growth via ARF18, as well as altered leaf growth and metabolism via QQS.
Collapse
Affiliation(s)
- Yuebin Jia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Kongqin Hu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Mengqiang Cao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Siyi Guo
- The key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, 004205, Czech Republic
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
28
|
de Oliveira BHN, Wairich A, Turchetto-Zolet AC, Fett JP, Ricachenevsky FK. The Mitochondrial Iron-Regulated (MIR) gene is Oryza genus specific and evolved before speciation within the Oryza sativa complex. PLANTA 2020; 251:94. [PMID: 32253515 DOI: 10.1007/s00425-020-03386-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/28/2020] [Indexed: 05/07/2023]
Abstract
The MIR gene is not an Oryza sativa orphan gene, but an Oryza genus-specific gene that evolved before AA lineage speciation by a complex origination process. Rice (Oryza sativa L.) is a model species and an economically relevant crop. The Oryza genus comprises 25 species, with genomic data available for several Oryza species, making it a model for genetics and evolution. The Mitochondrial Iron-Regulated (MIR) gene was previously implicated in the O. sativa Fe deficiency response, and was considered an orphan gene present only in rice. Here we show that MIR is also found in other Oryza species that belong to the Oryza sativa complex, which have AA genome type and constitute the primary gene pool for O. sativa breeding. Our data suggest that MIR originated in a stepwise process, in which sequences derived from an exon fragment of the raffinose synthase gene were pseudogenized into non-coding, which in turn originated the MIR gene de novo. All species with a putative functional MIR gene conserve their regulation by Fe deficiency, with the exception of Oryza barthii. In O. barthii, the MIR coding sequence was translocated to a different chromosomal position and separated from its regulatory region, leading to a lack of Fe deficiency responsiveness. Moreover, the MIR co-expression subnetwork cluster in O. sativa is responsive to Fe deficiency, evidencing the importance of the newly originated gene in Fe uptake. This work establishes that MIR is not an orphan gene as previously proposed, but a de novo originated gene within the genus Oryza. We also showed that MIR is undergoing genomic changes in one species (O. barthii), with an impact on Fe deficiency response.
Collapse
Affiliation(s)
- Ben Hur Neves de Oliveira
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Building 43.421 CEP, Porto Alegre, Rio Grande do Sul, 91509-900, Brazil
| | - Andriele Wairich
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Building 43.421 CEP, Porto Alegre, Rio Grande do Sul, 91509-900, Brazil
| | - Andreia Carina Turchetto-Zolet
- Departamento de Genética e Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Building 43.323, CEP, Porto Alegre, Rio Grande do Sul, 91509-900, Brazil
| | - Janette Palma Fett
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Building 43.421 CEP, Porto Alegre, Rio Grande do Sul, 91509-900, Brazil
- Departamento de Botânica, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Building 43.423, CEP, Porto Alegre, Rio Grande do Sul, 91509-900, Brazil
| | - Felipe Klein Ricachenevsky
- Centro de Biotecnologia e Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Building 43.421 CEP, Porto Alegre, Rio Grande do Sul, 91509-900, Brazil.
- Departamento de Botânica, Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Building 43.423, CEP, Porto Alegre, Rio Grande do Sul, 91509-900, Brazil.
- Departamento de Biologia, Universidade Federal de Santa Maria, Av. Roraima 1000, Building 16, Room 3254, CEP, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
| |
Collapse
|
29
|
Li L. From Arabidopsis to crops: a molecular tool to increase protein content and broad disease resistance. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.08743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Li
- Mississippi State University
| |
Collapse
|
30
|
Kambhampati S, Aznar-Moreno JA, Hostetler C, Caso T, Bailey SR, Hubbard AH, Durrett TP, Allen DK. On the Inverse Correlation of Protein and Oil: Examining the Effects of Altered Central Carbon Metabolism on Seed Composition Using Soybean Fast Neutron Mutants. Metabolites 2019; 10:E18. [PMID: 31905618 PMCID: PMC7022410 DOI: 10.3390/metabo10010018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Protein and oil levels measured at maturity are inversely correlated across soybean lines; however, carbon is in limited supply during maturation resulting in tradeoffs for the production of other reserves including oligosaccharides. During the late stages of seed development, the allocation of carbon for storage reserves changes. Lipid and protein levels decline while concentrations of indigestible raffinose family oligosaccharides (RFOs) increase, leading to a decreased crop value. Since the maternal source of carbon is diminished during seed maturation stages of development, carbon supplied to RFO synthesis likely comes from an internal, turned-over source and may contribute to the reduction in protein and lipid content in mature seeds. In this study, fast neutron (FN) mutagenized soybean populations with deletions in central carbon metabolic genes were examined for trends in oil, protein, sugar, and RFO accumulation leading to an altered final composition. Two lines with concurrent increases in oil and protein, by combined 10%, were identified. A delayed switch in carbon allocation towards RFO biosynthesis resulted in extended lipid accumulation and without compromising protein. Strategies for future soybean improvement using FN resources are described.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
| | - Jose A. Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
| | - Cooper Hostetler
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
| | - Tara Caso
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
| | - Sally R. Bailey
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO 63132, USA;
| | - Allen H. Hubbard
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
| | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (S.K.); (C.H.); (T.C.); (A.H.H.)
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO 63132, USA;
| |
Collapse
|
31
|
Islam N, Stupar RM, Qijian S, Luthria DL, Garrett W, Stec AO, Roessler J, Natarajan SS. Genomic changes and biochemical alterations of seed protein and oil content in a subset of fast neutron induced soybean mutants. BMC PLANT BIOLOGY 2019; 19:420. [PMID: 31604426 PMCID: PMC6790046 DOI: 10.1186/s12870-019-1981-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Soybean is subjected to genetic manipulation by breeding, mutation, and transgenic approaches to produce value-added quality traits. Among those genetic approaches, mutagenesis through fast neutrons radiation is intriguing because it yields a variety of mutations, including single/multiple gene deletions and/or duplications. Characterizing the seed composition of the fast neutron mutants and its relationship with gene mutation is useful towards understanding oil and protein traits in soybean. RESULTS From a large population of fast neutron mutagenized plants, we selected ten mutants based on a screening of total oil and protein content using near infra-red spectroscopy. These ten mutants were regrown, and the seeds were analyzed for oil by GC-MS, protein profiling by SDS-PAGE and gene mapping by comparative genomic hybridization. The mutant 2R29C14Cladecr233cMN15 (nicknamed in this study as L10) showed higher protein and lower oil content compared to the wild type, followed by three other lines (nicknamed in this study as L03, L05, and L06). We characterized the fatty acid methyl esters profile of the trans-esterified oil and found the presence of five major fatty acids (palmitic, stearic, oleic, linoleic, and linolenic acids) at varying proportions among the mutants. Protein profile using SDS-PAGE of the ten mutants did exhibit discernable variation between storage (glycinin and β-conglycinin) and anti-nutritional factor (trypsin inhibitor) proteins. In addition, we physically mapped the position of the gene deletions or duplications in each mutant using comparative genomic hybridization. CONCLUSION Characterization of oil and protein profile in soybean fast neutron mutants will assist scientist and breeders to develop new value-added soybeans with improved protein and oil quality traits.
Collapse
Affiliation(s)
- Nazrul Islam
- Soybean Genomics and Improvement Laboratory, USDA-ARS, NEA, 10300, Baltimore Avenue, Beltsville, MD, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Song Qijian
- Soybean Genomics and Improvement Laboratory, USDA-ARS, NEA, 10300, Baltimore Avenue, Beltsville, MD, USA
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, USDA-ARS, NEA, Beltsville, MD, USA
| | - Wesley Garrett
- Animal Biosciences & Biotechnology Laboratory, USDA-ARS, NEA, Beltsville, MD, USA
| | - Adrian O Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Jeff Roessler
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Savithiry S Natarajan
- Soybean Genomics and Improvement Laboratory, USDA-ARS, NEA, 10300, Baltimore Avenue, Beltsville, MD, USA.
| |
Collapse
|
32
|
Arendsee Z, Li J, Singh U, Bhandary P, Seetharam A, Wurtele ES. fagin: synteny-based phylostratigraphy and finer classification of young genes. BMC Bioinformatics 2019; 20:440. [PMID: 31455236 PMCID: PMC6712868 DOI: 10.1186/s12859-019-3023-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND With every new genome that is sequenced, thousands of species-specific genes (orphans) are found, some originating from ultra-rapid mutations of existing genes, many others originating de novo from non-genic regions of the genome. If some of these genes survive across speciations, then extant organisms will contain a patchwork of genes whose ancestors first appeared at different times. Standard phylostratigraphy, the technique of partitioning genes by their age, is based solely on protein similarity algorithms. However, this approach relies on negative evidence ─ a failure to detect a homolog of a query gene. An alternative approach is to limit the search for homologs to syntenic regions. Then, genes can be positively identified as de novo orphans by tracing them to non-coding sequences in related species. RESULTS We have developed a synteny-based pipeline in the R framework. Fagin determines the genomic context of each query gene in a focal species compared to homologous sequence in target species. We tested the fagin pipeline on two focal species, Arabidopsis thaliana (plus four target species in Brassicaseae) and Saccharomyces cerevisiae (plus six target species in Saccharomyces). Using microsynteny maps, fagin classified the homology relationship of each query gene against each target genome into three main classes, and further subclasses: AAic (has a coding syntenic homolog), NTic (has a non-coding syntenic homolog), and Unknown (has no detected syntenic homolog). fagin inferred over half the "Unknown" A. thaliana query genes, and about 20% for S. cerevisiae, as lacking a syntenic homolog because of local indels or scrambled synteny. CONCLUSIONS fagin augments standard phylostratigraphy, and extends synteny-based phylostratigraphy with an automated, customizable, and detailed contextual analysis. By comparing synteny-based phylostrata to standard phylostrata, fagin systematically identifies those orphans and lineage-specific genes that are well-supported to have originated de novo. Analyzing within-species genomes should distinguish orphan genes that may have originated through rapid divergence from de novo orphans. Fagin also delineates whether a gene has no syntenic homolog because of technical or biological reasons. These analyses indicate that some orphans may be associated with regions of high genomic perturbation.
Collapse
Affiliation(s)
- Zebulun Arendsee
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA, 50010, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Jing Li
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA, 50010, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
| | - Urminder Singh
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA, 50010, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Priyanka Bhandary
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA, 50010, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Arun Seetharam
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50011, USA
| | - Eve Syrkin Wurtele
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA, 50010, USA.
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA.
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
33
|
Identification, characterization and expression analysis of lineage-specific genes within Triticeae. Genomics 2019; 112:1343-1350. [PMID: 31401233 DOI: 10.1016/j.ygeno.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
Lineage-specific genes (LSGs) are a set of genes in a given taxon without significant sequence similarity to genes and intergenic sequences of other taxa and are functional. The tribe Triticeae mainly includes species of different ploidy levels, such as staple food crops wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). This study is aimed at mining and characterizing the Triticeae-specific genes (TSGs) using expressed sequence data of wheat. A total of 3812 TSGs was identified and they were generally characterized by smaller size, fewer exons, shorter open reading frames and lower expression levels. Most TSGs were expressed with tissue preference and many of them were predominantly expressed in reproduction related tissues, especially in young stamen. Nearly one third of the TSGs were stress-responsive and inducible under abiotic and/or biotic stresses. A co-expression-based annotation supported the relevance of some TSGs with reproduction and stress responses, indicating their potential economic importance.
Collapse
|
34
|
Li G, Wu X, Hu Y, Muñoz-Amatriaín M, Luo J, Zhou W, Wang B, Wang Y, Wu X, Huang L, Lu Z, Xu P. Orphan genes are involved in drought adaptations and ecoclimatic-oriented selections in domesticated cowpea. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3101-3110. [PMID: 30949664 DOI: 10.1093/jxb/erz145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/20/2019] [Indexed: 05/19/2023]
Abstract
Orphan genes (OGs) are genes that are restricted to a single species or a particular taxonomic group. To date, little is known about the functions of OGs in domesticated crops. Here, we report our findings on the relationships between OGs and environmental adaptation in cowpea (Vigna unguiculata). We identified 578 expressed OGs, of which 73.2% were predicted to be non-coding. Transcriptomic analyses revealed a high rate of OGs that were drought inducible in roots when compared with conserved genes. Co-expression analysis further revealed the possible involvement of OGs in stress response pathways. Overexpression of UP12_8740, a drought-inducible OG, conferred enhanced tolerance to osmotic stresses and soil drought. By combining Capture-Seq and fluorescence-based Kompetitive allele-specific PCR (KASP), we efficiently genotyped single nucleotide polymorphisms (SNPs) on OGs across a 223 accession cowpea germplasm collection. Population genomic parameters, including polymorphism information content (PIC), expected heterozygosity (He), nucleotide diversity (π), and Tajima's D statistics, that were calculated based on these SNPs, showed distinct signatures between the grain- and vegetable-type subpopulations of cowpea. This study reinforces the idea that OGs are a valuable resource for identifying new genes related to species-specific environmental adaptations and fosters new insights that artificial selection on OGs might have contributed to balancing the adaptive and agronomic traits in domesticated crops in various ecoclimatic conditions.
Collapse
Affiliation(s)
- Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Lab Breeding Base for Sustainable Control of Plant Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaowen Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Maria Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| | - Jie Luo
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Zhou
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lijuan Huang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Lab Breeding Base for Sustainable Control of Plant Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
35
|
Qi M, Zheng W, Zhao X, Hohenstein JD, Kandel Y, O'Conner S, Wang Y, Du C, Nettleton D, MacIntosh GC, Tylka GL, Wurtele ES, Whitham SA, Li L. QQS orphan gene and its interactor NF-YC4 reduce susceptibility to pathogens and pests. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:252-263. [PMID: 29878511 PMCID: PMC6330549 DOI: 10.1111/pbi.12961] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Enhancing the nutritional quality and disease resistance of crops without sacrificing productivity is a key issue for developing varieties that are valuable to farmers and for simultaneously improving food security and sustainability. Expression of the Arabidopsis thaliana species-specific AtQQS (Qua-Quine Starch) orphan gene or its interactor, NF-YC4 (Nuclear Factor Y, subunit C4), has been shown to increase levels of leaf/seed protein without affecting the growth and yield of agronomic species. Here, we demonstrate that overexpression of AtQQS and NF-YC4 in Arabidopsis and soybean enhances resistance/reduces susceptibility to viruses, bacteria, fungi, aphids and soybean cyst nematodes. A series of Arabidopsis mutants in starch metabolism were used to explore the relationships between QQS expression, carbon and nitrogen partitioning, and defense. The enhanced basal defenses mediated by QQS were independent of changes in protein/carbohydrate composition of the plants. We demonstrate that either AtQQS or NF-YC4 overexpression in Arabidopsis and in soybean reduces susceptibility of these plants to pathogens/pests. Transgenic soybean lines overexpressing NF-YC4 produce seeds with increased protein while maintaining healthy growth. Pull-down studies reveal that QQS interacts with human NF-YC, as well as with Arabidopsis NF-YC4, and indicate two QQS binding sites near the NF-YC-histone-binding domain. A new model for QQS interaction with NF-YC is speculated. Our findings illustrate the potential of QQS and NF-YC4 to increase protein and improve defensive traits in crops, overcoming the normal growth-defense trade-offs.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological StatisticsIowa State UniversityAmesIAUSA
| | - Jessica D. Hohenstein
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Yuba Kandel
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Seth O'Conner
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
| | - Yifan Wang
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Chuanlong Du
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Dan Nettleton
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Gregory L. Tylka
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Eve S. Wurtele
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Ling Li
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
36
|
Jiang M, Dong X, Lang H, Pang W, Zhan Z, Li X, Piao Z. Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa. Int J Mol Sci 2018; 19:ijms19072064. [PMID: 30012965 PMCID: PMC6073354 DOI: 10.3390/ijms19072064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022] Open
Abstract
Orphan genes, also called lineage-specific genes (LSGs), are important for responses to biotic and abiotic stresses, and are associated with lineage-specific structures and biological functions. To date, there have been no studies investigating gene number, gene features, or gene expression patterns of orphan genes in Brassica rapa. In this study, 1540 Brassica-specific genes (BSGs) and 1824 Cruciferae-specific genes (CSGs) were identified based on the genome of Brassica rapa. The genic features analysis indicated that BSGs and CSGs possessed a lower percentage of multi-exon genes, higher GC content, and shorter gene length than evolutionary-conserved genes (ECGs). In addition, five types of BSGs were obtained and 145 out of 529 real A subgenome-specific BSGs were verified by PCR in 51 species. In silico and semi-qPCR, gene expression analysis of BSGs suggested that BSGs are expressed in various tissue and can be induced by Plasmodiophora brassicae. Moreover, an A/C subgenome-specific BSG, BSGs1, was specifically expressed during the heading stage, indicating that the gene might be associated with leafy head formation. Our results provide valuable biological information for studying the molecular function of BSGs for Brassica-specific phenotypes and biotic stress in B. rapa.
Collapse
Affiliation(s)
- Mingliang Jiang
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| | - Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming 650504, China.
| | - Hong Lang
- Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| | - Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, #120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
37
|
Bhandary P, Seetharam AS, Arendsee ZW, Hur M, Wurtele ES. Raising orphans from a metadata morass: A researcher's guide to re-use of public 'omics data. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 267:32-47. [PMID: 29362097 DOI: 10.1016/j.plantsci.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/07/2017] [Accepted: 10/15/2017] [Indexed: 05/19/2023]
Abstract
More than 15 petabases of raw RNAseq data is now accessible through public repositories. Acquisition of other 'omics data types is expanding, though most lack a centralized archival repository. Data-reuse provides tremendous opportunity to extract new knowledge from existing experiments, and offers a unique opportunity for robust, multi-'omics analyses by merging metadata (information about experimental design, biological samples, protocols) and data from multiple experiments. We illustrate how predictive research can be accelerated by meta-analysis with a study of orphan (species-specific) genes. Computational predictions are critical to infer orphan function because their coding sequences provide very few clues. The metadata in public databases is often confusing; a test case with Zea mays mRNA seq data reveals a high proportion of missing, misleading or incomplete metadata. This metadata morass significantly diminishes the insight that can be extracted from these data. We provide tips for data submitters and users, including specific recommendations to improve metadata quality by more use of controlled vocabulary and by metadata reviews. Finally, we advocate for a unified, straightforward metadata submission and retrieval system.
Collapse
Affiliation(s)
- Priyanka Bhandary
- Dept. of Genetics Development and Cell Biology, Iowa State University, Ames IA 50010, USA; Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA 50011, USA
| | - Zebulun W Arendsee
- Dept. of Genetics Development and Cell Biology, Iowa State University, Ames IA 50010, USA; Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Manhoi Hur
- Dept. of Genetics Development and Cell Biology, Iowa State University, Ames IA 50010, USA; Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Dept. of Genetics Development and Cell Biology, Iowa State University, Ames IA 50010, USA; Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
38
|
Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol 2017; 8:2483. [PMID: 29312192 PMCID: PMC5744636 DOI: 10.3389/fmicb.2017.02483] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs) and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
39
|
Chen L, Liao H. Engineering crop nutrient efficiency for sustainable agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:710-735. [PMID: 28600834 DOI: 10.1111/jipb.12559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency.
Collapse
Affiliation(s)
- Liyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
40
|
Molesini B, Zanzoni S, Mennella G, Francese G, Losa A, L Rotino G, Pandolfini T. The Arabidopsis N-Acetylornithine Deacetylase Controls Ornithine Biosynthesis via a Linear Pathway with Downstream Effects on Polyamine Levels. PLANT & CELL PHYSIOLOGY 2017; 58:130-144. [PMID: 28064246 DOI: 10.1093/pcp/pcw167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Arabidopsis thaliana At4g17830 codes for a protein showing sequence similarity with the Escherichia coli N-acetylornithine deacetylase (EcArgE), an enzyme implicated in the linear ornithine (Orn) biosynthetic pathway. In plants, N-acetylornithine deacetylase (NAOD) activity has yet to be demonstrated; however, At4g17830-silenced and mutant (atnaod) plants display an impaired reproductive phenotype and altered foliar levels of Orn and polyamines (PAs). Here, we showed the direct connection between At4g17830 function and Orn biosynthesis, demonstrating biochemically that At4g17830 codes for a NAOD. These results are the first experimental proof that Orn can be produced in Arabidopsis via a linear pathway. In this study, to identify the role of AtNAOD in reproductive organs, we carried out a transcriptomic analysis on atnaod mutant and wild-type flowers. In the atnaod mutant, the most relevant effects were the reduced expression of cysteine-rich peptide-coding genes, known to regulate male-female cross-talk during reproduction, and variation in the expression of genes involved in nitrogen:carbon (N:C) status. The atnaod mutant also exhibited increased levels of sucrose and altered sensitivity to glucose. We hypothesize that AtNAOD participates in Orn and PA homeostasis, contributing to maintain an optimal N:C balance during reproductive development.
Collapse
Affiliation(s)
- Barbara Molesini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giuseppe Mennella
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per l'Orticoltura, Pontecagnano-Faiano (Salerno), Italy
| | - Gianluca Francese
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per l'Orticoltura, Pontecagnano-Faiano (Salerno), Italy
| | - Alessia Losa
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di ricerca per l'Orticoltura (ORL), Montanaso Lombardo (Lodi), Italy
| | - Giuseppe L Rotino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Unità di ricerca per l'Orticoltura (ORL), Montanaso Lombardo (Lodi), Italy
| | | |
Collapse
|
41
|
Swain S, Myers ZA, Siriwardana CL, Holt BF. The multifaceted roles of NUCLEAR FACTOR-Y in Arabidopsis thaliana development and stress responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:636-644. [PMID: 27989935 DOI: 10.1016/j.bbagrm.2016.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023]
Abstract
NUCLEAR FACTOR-Y (NF-Y) is a heterotrimeric transcription factor (TF) consisting of evolutionarily distinct NF-YA, NF-YB and NF-YC subunits. The functional NF-Y heterotrimer binds to CCAAT elements in eukaryotic gene promoters and influences their expression. The genome of the model organism Arabidopsis thaliana encodes 10 distinct NF-YA, NF-YB, and NF-YC proteins, allowing for enormous combinatorial and functional diversity. Two decades of research have elucidated the importance of NF-Ys in plant growth, development and stress responses; however, the molecular mechanisms of action remain largely unexplored. Intriguingly, recent evidence suggests that NF-Ys are frequently associated with other groups of TFs, expanding the potential NF-Y combinatorial complexity. Further, information regarding the regulation of individual NF-Y subunits at the transcriptional and post-transcriptional level is beginning to emerge. In this review, we will identify developing trends within the NF-Y field and discuss recent progress towards a better understanding of NF-Y function, molecular action, and regulation in the context of Arabidopsis. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Swadhin Swain
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Zachary A Myers
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Chamindika L Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States.
| |
Collapse
|
42
|
Klasberg S, Bitard-Feildel T, Mallet L. Computational Identification of Novel Genes: Current and Future Perspectives. Bioinform Biol Insights 2016; 10:121-31. [PMID: 27493475 PMCID: PMC4970615 DOI: 10.4137/bbi.s39950] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 12/31/2022] Open
Abstract
While it has long been thought that all genomic novelties are derived from the existing material, many genes lacking homology to known genes were found in recent genome projects. Some of these novel genes were proposed to have evolved de novo, ie, out of noncoding sequences, whereas some have been shown to follow a duplication and divergence process. Their discovery called for an extension of the historical hypotheses about gene origination. Besides the theoretical breakthrough, increasing evidence accumulated that novel genes play important roles in evolutionary processes, including adaptation and speciation events. Different techniques are available to identify genes and classify them as novel. Their classification as novel is usually based on their similarity to known genes, or lack thereof, detected by comparative genomics or against databases. Computational approaches are further prime methods that can be based on existing models or leveraging biological evidences from experiments. Identification of novel genes remains however a challenging task. With the constant software and technologies updates, no gold standard, and no available benchmark, evaluation and characterization of genomic novelty is a vibrant field. In this review, the classical and state-of-the-art tools for gene prediction are introduced. The current methods for novel gene detection are presented; the methodological strategies and their limits are discussed along with perspective approaches for further studies.
Collapse
Affiliation(s)
- Steffen Klasberg
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Huefferstrasse 1, Muenster, Germany
| | - Tristan Bitard-Feildel
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Huefferstrasse 1, Muenster, Germany
| | - Ludovic Mallet
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Huefferstrasse 1, Muenster, Germany
| |
Collapse
|
43
|
Jones DC, Zheng W, Huang S, Du C, Zhao X, Yennamalli RM, Sen TZ, Nettleton D, Wurtele ES, Li L. A Clade-Specific Arabidopsis Gene Connects Primary Metabolism and Senescence. FRONTIERS IN PLANT SCIENCE 2016; 7:983. [PMID: 27462324 PMCID: PMC4940393 DOI: 10.3389/fpls.2016.00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/21/2016] [Indexed: 05/05/2023]
Abstract
Nearly immobile, plants have evolved new components to be able to respond to changing environments. One example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific orphan gene that integrates primary metabolism with adaptation to environment changes. SAQR (Senescence-Associated and QQS-Related, AT1G64360), is unique to a clade within the family Brassicaceae; as such, the gene may have arisen about 20 million years ago. SAQR is up-regulated in QQS RNAi mutant and in the apx1 mutant under light-induced oxidative stress. SAQR plays a role in carbon allocation: overexpression lines of SAQR have significantly decreased starch content; conversely, in a saqr T-DNA knockout (KO) line, starch accumulation is increased. Meta-analysis of public microarray data indicates that SAQR expression is correlated with expression of a subset of genes involved in senescence, defense, and stress responses. SAQR promoter::GUS expression analysis reveals that SAQR expression increases after leaf expansion and photosynthetic capacity have peaked, just prior to visible natural senescence. SAQR is expressed predominantly within leaf and cotyledon vasculature, increasing in intensity as natural senescence continues, and then decreasing prior to death. In contrast, under experimentally induced senescence, SAQR expression increases in vasculature of cotyledons but not in true leaves. In SAQR KO line, the transcript level of the dirigent-like disease resistance gene (AT1G22900) is increased, while that of the Early Light Induced Protein 1 gene (ELIP1, AT3G22840) is decreased. Taken together, these data indicate that SAQR may function in the QQS network, playing a role in integration of primary metabolism with adaptation to internal and environmental changes, specifically those that affect the process of senescence.
Collapse
Affiliation(s)
- Dallas C. Jones
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
| | - Sheng Huang
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
| | - Chuanlong Du
- Department of Statistics, Iowa State University, AmesIA, USA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, AmesIA, USA
| | - Ragothaman M. Yennamalli
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture-Agriculture Research Service, AmesIA, USA
| | - Taner Z. Sen
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture-Agriculture Research Service, AmesIA, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, AmesIA, USA
| | - Eve S. Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Center for Metabolic Biology, Iowa State University, AmesIA, USA
| | - Ling Li
- Department of Genetics, Development and Cell Biology, Iowa State University, AmesIA, USA
- Center for Metabolic Biology, Iowa State University, AmesIA, USA
- *Correspondence: Ling Li,
| |
Collapse
|
44
|
Ruiz-Orera J, Hernandez-Rodriguez J, Chiva C, Sabidó E, Kondova I, Bontrop R, Marqués-Bonet T, Albà M. Origins of De Novo Genes in Human and Chimpanzee. PLoS Genet 2015; 11:e1005721. [PMID: 26720152 PMCID: PMC4697840 DOI: 10.1371/journal.pgen.1005721] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
The birth of new genes is an important motor of evolutionary innovation. Whereas many new genes arise by gene duplication, others originate at genomic regions that did not contain any genes or gene copies. Some of these newly expressed genes may acquire coding or non-coding functions and be preserved by natural selection. However, it is yet unclear which is the prevalence and underlying mechanisms of de novo gene emergence. In order to obtain a comprehensive view of this process, we have performed in-depth sequencing of the transcriptomes of four mammalian species--human, chimpanzee, macaque, and mouse--and subsequently compared the assembled transcripts and the corresponding syntenic genomic regions. This has resulted in the identification of over five thousand new multiexonic transcriptional events in human and/or chimpanzee that are not observed in the rest of species. Using comparative genomics, we show that the expression of these transcripts is associated with the gain of regulatory motifs upstream of the transcription start site (TSS) and of U1 snRNP sites downstream of the TSS. In general, these transcripts show little evidence of purifying selection, suggesting that many of them are not functional. However, we find signatures of selection in a subset of de novo genes which have evidence of protein translation. Taken together, the data support a model in which frequently-occurring new transcriptional events in the genome provide the raw material for the evolution of new proteins.
Collapse
Affiliation(s)
- Jorge Ruiz-Orera
- Evolutionary Genomics Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Cristina Chiva
- Proteomics Unit, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain
| | - Ivanela Kondova
- Biomedical Primate Research Center (BPRC), Rijswijk, The Netherlands
| | - Ronald Bontrop
- Biomedical Primate Research Center (BPRC), Rijswijk, The Netherlands
| | - Tomàs Marqués-Bonet
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M.Mar Albà
- Evolutionary Genomics Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
45
|
Li L, Zheng W, Zhu Y, Ye H, Tang B, Arendsee ZW, Jones D, Li R, Ortiz D, Zhao X, Du C, Nettleton D, Scott MP, Salas-Fernandez MG, Yin Y, Wurtele ES. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions. Proc Natl Acad Sci U S A 2015; 112:14734-9. [PMID: 26554020 PMCID: PMC4664325 DOI: 10.1073/pnas.1514670112] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.
Collapse
Affiliation(s)
- Ling Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011; Center for Metabolic Biology, Iowa State University, Ames, IA 50011;
| | - Wenguang Zheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011; Center for Metabolic Biology, Iowa State University, Ames, IA 50011
| | - Yanbing Zhu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Buyun Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Zebulun W Arendsee
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Dallas Jones
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Ruoran Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Diego Ortiz
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Xuefeng Zhao
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Chuanlong Du
- Department of Statistics, Iowa State University, Ames, IA 50011
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50011
| | - M Paul Scott
- Department of Agronomy, Iowa State University, Ames, IA 50011; Corn Insects and Crop Genetics Research Unit, Agricultural Research Service, US Department of Agriculture, Ames, IA 50011
| | | | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011; Center for Metabolic Biology, Iowa State University, Ames, IA 50011;
| |
Collapse
|
46
|
Zhou K, Huang B, Zou M, Lu D, He S, Wang G. Genome-wide identification of lineage-specific genes within Caenorhabditis elegans. Genomics 2015; 106:242-8. [PMID: 26188256 DOI: 10.1016/j.ygeno.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022]
Abstract
With the rapid growth of sequencing technology, a number of genomes and transcriptomes of various species have been sequenced, contributing to the study of lineage-specific genes (LSGs). We identified two sets of LSGs using BLAST: one included Caenorhabditis elegans species-specific genes (1423, SSGs), and the other consisted of Caenorhabditis genus-specific genes (4539, GSGs). The subsequent characterization and analysis of the SSGs and GSGs showed that they have significant differences in evolution and that most LSGs were generated by gene duplication and integration of transposable elements (TEs). We then performed temporal expression profiling and protein function prediction and observed that many SSGs and GSGs are expressed and that genes involved with sex determination, specific stress, immune response, and morphogenesis are over-represented, suggesting that these specific genes may be related to the Caenorhabditis nematodes' special ability to survive in severe and extreme environments.
Collapse
Affiliation(s)
- Kun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| | - Beibei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| | - Ming Zou
- Huazhong Agriculture University, Wuhan 430070, China.
| | - Dandan Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
47
|
Arendsee ZW, Li L, Wurtele ES. Coming of age: orphan genes in plants. TRENDS IN PLANT SCIENCE 2014; 19:698-708. [PMID: 25151064 DOI: 10.1016/j.tplants.2014.07.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/27/2014] [Accepted: 07/17/2014] [Indexed: 05/19/2023]
Abstract
Sizable minorities of protein-coding genes from every sequenced eukaryotic and prokaryotic genome are unique to the species. These so-called ‘orphan genes’ may evolve de novo from non-coding sequence or be derived from older coding material. They are often associated with environmental stress responses and species-specific traits or regulatory patterns. However, difficulties in studying genes where comparative analysis is impossible, and a bias towards broadly conserved genes, have resulted in underappreciation of their importance. We review here the identification, possible origins, evolutionary trends, and functions of orphans with an emphasis on their role in plant biology. We exemplify several evolutionary trends with an analysis of Arabidopsis thaliana and present QQS as a model orphan gene.
Collapse
|