1
|
Menzies SK, Patel RN, Ainsworth S. Practical progress towards the development of recombinant antivenoms for snakebite envenoming. Expert Opin Drug Discov 2025; 20:799-819. [PMID: 40302313 DOI: 10.1080/17460441.2025.2495943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Snakebite envenoming is a neglected tropical disease that affects millions globally each year. In recent years, research into the potential production of recombinant antivenoms, formulated using mixtures of highly defined anti-toxin monoclonal antibodies, has rapidly moved from a theoretical concept to demonstrations of practical feasibility. AREAS COVERED This article examines the significant practical advancements in transitioning recombinant antivenoms from concept to potential clinical translation. The authors have based their review on literature obtained from Google Scholar and PubMed between September and November 2024. Coverage includes the development and validation of recombinant antivenom antibody discovery strategies, the characterization of the first broadly neutralizing toxin class antibodies, and recent translational proof-of-concept experiments. EXPERT OPINION The transition of recombinant antivenoms from a 'concept' to the current situation where high-throughput anti-venom mAb discovery is becoming routine, accompanied by increasing evidence of their broad neutralizing capacity in vivo, has been extraordinary. It is now important to build on this momentum by expanding the discovery of broadly neutralizing mAbs to encompass as many toxin classes as possible. It is anticipated that key demonstrations of whether recombinant antivenoms can match or surpass existing conventional polyvalent antivenoms in terms of neutralizing scope and capacity will be achieved in the next few years.
Collapse
Affiliation(s)
- Stefanie K Menzies
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Roman-Ramos H, Ho PL. Current Technologies in Snake Venom Analysis and Applications. Toxins (Basel) 2024; 16:458. [PMID: 39591213 PMCID: PMC11598588 DOI: 10.3390/toxins16110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This comprehensive review explores the cutting-edge advancements in snake venom research, focusing on the integration of proteomics, genomics, transcriptomics, and bioinformatics. Highlighting the transformative impact of these technologies, the review delves into the genetic and ecological factors driving venom evolution, the complex molecular composition of venoms, and the regulatory mechanisms underlying toxin production. The application of synthetic biology and multi-omics approaches, collectively known as venomics, has revolutionized the field, providing deeper insights into venom function and its therapeutic potential. Despite significant progress, challenges such as the functional characterization of toxins and the development of cost-effective antivenoms remain. This review also discusses the future directions of venom research, emphasizing the need for interdisciplinary collaborations and new technologies (mRNAs, cryo-electron microscopy for structural determinations of toxin complexes, synthetic biology, and other technologies) to fully harness the biomedical potential of venoms and toxins from snakes and other animals.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil
| |
Collapse
|
3
|
Edge RJ, Marriott AE, Stars EL, Patel RN, Wilkinson MC, King LDW, Slagboom J, Tan CH, Ratanabanangkoon K, Draper SJ, Ainsworth S. Plug and play virus-like particles for the generation of anti-toxin antibodies. Toxicon X 2024; 23:100204. [PMID: 39280983 PMCID: PMC11401359 DOI: 10.1016/j.toxcx.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Snakebite is a major global health concern, for which antivenom remains the only approved treatment to neutralise the harmful effects of the toxins. However, some medically important toxins are poorly immunogenic, resulting in reduced efficacy of the final product. Boosting the immunogenicity of these toxins in the commercial antivenom immunising mixtures could be an effective strategy to improve the final dose efficacy, and displaying snake antigens on Virus-like particles (VLPs) is one method for this. However, despite some applications in the field of snakebite, VLPs have yet to be explored in methods that could be practical at an antivenom manufacturing scale. Here we describe the utilisation of a "plug and play" VLP system to display immunogenic linear peptide epitopes from three finger toxins (3FTxs) and generate anti-toxin antibodies. Rabbits were immunised with VLPs displaying individual consensus linear epitopes and their antibody responses were characterised by immunoassay. Of the three experimental consensus sequences, two produced antibodies capable of recognising the consensus peptides, whilst only one of these could also recognise native whole toxins. Further characterisation of antibodies raised against this peptide demonstrated a sub-class specific response, and that these were able to elicit partially neutralising antibody responses, resulting in increased survival times in a murine snakebite envenoming model.
Collapse
Affiliation(s)
- Rebecca J Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Amy E Marriott
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Emma L Stars
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Rohit N Patel
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark C Wilkinson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam, 1081HV, the Netherlands
| | - Choo Hock Tan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| |
Collapse
|
4
|
Merwaiss F, Lozano‐Sanchez E, Zulaica J, Rusu L, Vazquez‐Vilar M, Orzáez D, Rodrigo G, Geller R, Daròs J. Plant virus-derived nanoparticles decorated with genetically encoded SARS-CoV-2 nanobodies display enhanced neutralizing activity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:876-891. [PMID: 37966715 PMCID: PMC10955499 DOI: 10.1111/pbi.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Viral nanoparticles (VNPs) are a new class of virus-based formulations that can be used as building blocks to implement a variety of functions of potential interest in biotechnology and nanomedicine. Viral coat proteins (CP) that exhibit self-assembly properties are particularly appropriate for displaying antigens and antibodies, by generating multivalent VNPs with therapeutic and diagnostic potential. Here, we developed genetically encoded multivalent VNPs derived from two filamentous plant viruses, potato virus X (PVX) and tobacco etch virus (TEV), which were efficiently and inexpensively produced in the biofactory Nicotiana benthamiana plant. PVX and TEV-derived VNPs were decorated with two different nanobodies recognizing two different regions of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The addition of different picornavirus 2A ribosomal skipping peptides between the nanobody and the CP allowed for modulating the degree of VNP decoration. Nanobody-decorated VNPs purified from N. benthamiana tissues successfully recognized the RBD antigen in enzyme-linked immunosorbent assays and showed efficient neutralization activity against pseudoviruses carrying the Spike protein. Interestingly, multivalent PVX and TEV-derived VNPs exhibited a neutralizing activity approximately one order of magnitude higher than the corresponding nanobody in a dimeric format. These properties, combined with the ability to produce VNP cocktails in the same N. benthamiana plant based on synergistic infection of the parent PVX and TEV, make these green nanomaterials an attractive alternative to standard antibodies for multiple applications in diagnosis and therapeutics.
Collapse
Affiliation(s)
- Fernando Merwaiss
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - Enrique Lozano‐Sanchez
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - João Zulaica
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - Luciana Rusu
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - Marta Vazquez‐Vilar
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - Diego Orzáez
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - Guillermo Rodrigo
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - Ron Geller
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
5
|
Uko SO, Malami I, Ibrahim KG, Lawal N, Bello MB, Abubakar MB, Imam MU. Revolutionizing snakebite care with novel antivenoms: Breakthroughs and barriers. Heliyon 2024; 10:e25531. [PMID: 38333815 PMCID: PMC10850593 DOI: 10.1016/j.heliyon.2024.e25531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Snakebite envenoming (SBE) is a global public health concern, primarily due to the lack of effective antivenom for treating snakebites inflicted by medically significant venomous snakes prevalent across various geographic locations. The rising demand for safe, cost-effective, and potent snakebite treatments highlights the urgent need to develop alternative therapeutics targeting relevant toxins. This development could provide promising discoveries to create novel recombinant solutions, leveraging human monoclonal antibodies, synthetic peptides and nanobodies. Such technologies as recombinant DNA, peptide and epitope mapping phage display etc) have the potential to exceed the traditional use of equine polyclonal antibodies, which have long been used in antivenom production. Recombinant antivenom can be engineered to target certain toxins that play a critical role in snakebite pathology. This approach has the potential to produce antivenom with improved efficacy and safety profiles. However, there are limitations and challenges associated with these emerging technologies. Therefore, identifying the limitations is critical for overcoming the associated challenges and optimizing the development of recombinant antivenoms. This review is aimed at presenting a thorough overview of diverse technologies used in the development of recombinant antivenom, emphasizing their limitations and offering insights into prospects for advancing recombinant antivenoms.
Collapse
Affiliation(s)
- Samuel Odo Uko
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciecnes, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P. O. Box 2000, Zarqa, 13110, Jordan
| | - Nafiu Lawal
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Physiology, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, Nigeria
- Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria
| |
Collapse
|
6
|
Moore CM, Ljungars A, Paul MJ, Dahl CH, Ahmadi S, Adams AC, Grav LM, Schoffelen S, Voldborg BG, Laustsen AH, Ma JKC. Characterisation of two snake toxin-targeting human monoclonal immunoglobulin G antibodies expressed in tobacco plants. Toxicon 2023:107225. [PMID: 37442299 DOI: 10.1016/j.toxicon.2023.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Current snakebite antivenoms are based on polyclonal animal-derived antibodies, which can neutralize snake venom toxins in envenomed victims, but which are also associated with adverse reactions. Therefore, several efforts within antivenom research aim to explore the utility of recombinant monoclonal antibodies, such as human immunoglobulin G (IgG) antibodies, which are routinely used in the clinic for other indications. In this study, the feasibility of using tobacco plants as bioreactors for expressing full-length human monoclonal IgG antibodies against snake toxins was investigated. We show that the plant-produced antibodies perform similarly to their mammalian cell-expressed equivalents in terms of in vitro binding. Complete neutralization was achieved by both the plant and mammalian cell-produced anti-α-cobratoxin antibody. The feasibility of using plant-based expression systems may potentially make it easier for laboratories in resource-poor settings to work with human monoclonal IgG antibodies.
Collapse
Affiliation(s)
- Catherine M Moore
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, W1W 6UW, United Kingdom.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matthew J Paul
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Camilla Holst Dahl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Christina Adams
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George's University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| |
Collapse
|
7
|
Dias da Silva W, De Andrade SA, Megale ÂAA, De Souza DA, Sant’Anna OA, Magnoli FC, Guidolin FR, Godoi KS, Saladini LY, Spencer PJ, Portaro FCV. Antibodies as Snakebite Antivenoms: Past and Future. Toxins (Basel) 2022; 14:606. [PMID: 36136544 PMCID: PMC9503307 DOI: 10.3390/toxins14090606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Snakebite envenomation is considered a neglected tropical disease, affecting tens of thousands of people each year. The recommended treatment is the use of antivenom, which is composed of immunoglobulins or immunoglobulin fragments obtained from the plasma of animals hyperimmunized with one (monospecific) or several (polyspecific) venoms. In this review, the efforts made in the improvement of the already available antivenoms and the development of new antivenoms, focusing on snakes of medical importance from sub-Saharan Africa and Latin America, are described. Some antivenoms currently used are composed of whole IgGs, whereas others use F(ab')2 fragments. The classic methods of attaining snake antivenoms are presented, in addition to new strategies to improve their effectiveness. Punctual changes in immunization protocols, in addition to the use of cross-reactivity between venoms from different snakes for the manufacture of more potent and widely used antivenoms, are presented. It is known that venoms are a complex mixture of components; however, advances in the field of antivenoms have shown that there are key toxins that, if effectively blocked, are capable of reversing the condition of in vivo envenomation. These studies provide an opportunity for the use of monoclonal antibodies in the development of new-generation antivenoms. Thus, monoclonal antibodies and their fragments are described as a possible alternative for the production of antivenoms, regardless of the venom. This review also highlights the challenges associated with their development.
Collapse
Affiliation(s)
| | - Sonia A. De Andrade
- Biopharmaceuticals Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
| | | | | | | | | | | | | | - Lucas Yuri Saladini
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, Brazil
| | | | | |
Collapse
|
8
|
Martí M, Merwaiss F, Butković A, Daròs JA. Production of Potyvirus-Derived Nanoparticles Decorated with a Nanobody in Biofactory Plants. Front Bioeng Biotechnol 2022; 10:877363. [PMID: 35433643 PMCID: PMC9008781 DOI: 10.3389/fbioe.2022.877363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
Viral nanoparticles (VNPs) have recently attracted attention for their use as building blocks for novel materials to support a range of functions of potential interest in nanotechnology and medicine. Viral capsids are ideal for presenting small epitopes by inserting them at an appropriate site on the selected coat protein (CP). VNPs presenting antibodies on their surfaces are considered highly promising tools for therapeutic and diagnostic purposes. Due to their size, nanobodies are an interesting alternative to classic antibodies for surface presentation. Nanobodies are the variable domains of heavy-chain (VHH) antibodies from animals belonging to the family Camelidae, which have several properties that make them attractive therapeutic molecules, such as their small size, simple structure, and high affinity and specificity. In this work, we have produced genetically encoded VNPs derived from two different potyviruses—the largest group of RNA viruses that infect plants—decorated with nanobodies. We have created a VNP derived from zucchini yellow mosaic virus (ZYMV) decorated with a nanobody against the green fluorescent protein (GFP) in zucchini (Cucurbita pepo) plants. As reported for other viruses, the expression of ZYMV-derived VNPs decorated with this nanobody was only made possible by including a picornavirus 2A splicing peptide between the fused proteins, which resulted in a mixed population of unmodified and decorated CPs. We have also produced tobacco etch virus (TEV)-derived VNPs in Nicotiana benthamiana plants decorated with the same nanobody against GFP. Strikingly, in this case, VNPs could be assembled by direct fusion of the nanobody to the viral CP with no 2A splicing involved, likely resulting in fully decorated VNPs. For both expression systems, correct assembly and purification of the recombinant VNPs was confirmed by transmission electron microscope; the functionality of the CP-fused nanobody was assessed by western blot and binding assays. In sum, here we report the production of genetically encoded plant-derived VNPs decorated with a nanobody. This system may be an attractive alternative for the sustainable production in plants of nanobody-containing nanomaterials for diagnostic and therapeutic purposes.
Collapse
|
9
|
Malaquias ADM, Marques LEC, Pereira SS, de Freitas Fernandes C, Maranhão AQ, Stabeli RG, Florean EOPT, Guedes MIF, Fernandes CFC. A review of plant-based expression systems as a platform for single-domain recombinant antibody production. Int J Biol Macromol 2021; 193:1130-1137. [PMID: 34699899 DOI: 10.1016/j.ijbiomac.2021.10.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies have contributed to improving the treatment of several diseases. However, limitations related to pharmacokinetic parameters and production costs have instigated the search for alternative products. Camelids produce functional immunoglobulins G devoid of light chains and CH1 domains, in which the antigenic recognition site is formed by a single domain called VHH or nanobody. VHHs' small size and similarity to the human VH domain contribute to high tissue penetration and low immunogenicity. In addition, VHHs provide superior antigen recognition compared to human antibodies, better solubility and stability. Due to these characteristics and the possibility of obtaining gene-encoding VHHs, applications of this biological tool, whether as a monomer or in related recombinant constructs, have been reported. To ensure antibody efficacy and cost-effectiveness, strategies for their expression, either using prokaryotic or eukaryotic systems, have been utilized. Plant-based expression systems are useful for VHH related constructs that require post-translational modifications. This system has exhibited versatility, low-cost upstream production, and safety. This article presents the main advances associated to the heterologous expression of VHHs in plant systems. Besides, we show insights related to the use of VHHs as a strategy for plant pathogen control and a tool for genomic manipulation in plant systems.
Collapse
Affiliation(s)
| | | | - Soraya S Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Puzari U, Fernandes PA, Mukherjee AK. Advances in the Therapeutic Application of Small-Molecule Inhibitors and Repurposed Drugs against Snakebite. J Med Chem 2021; 64:13938-13979. [PMID: 34565143 DOI: 10.1021/acs.jmedchem.1c00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization has declared snakebite as a neglected tropical disease. Antivenom administration is the sole therapy against venomous snakebite; however, several limitations of this therapy reinforce the dire need for an alternative and/or additional treatment against envenomation. Inhibitors against snake venoms have been explored from natural resources and are synthesized in the laboratory; however, repurposing of small-molecule therapeutics (SMTs) against the principal toxins of snake venoms to inhibit their lethality and/or obnoxious effect of envenomation has been garnering greater attention owing to their established pharmacokinetic properties, low-risk attributes, cost-effectiveness, ease of administration, and storage stability. Nevertheless, SMTs are yet to be approved and commercialized for snakebite treatment. Therefore, we have systematically reviewed and critically analyzed the scenario of small synthetic inhibitors and repurposed drugs against snake envenomation from 2005 to date and proposed novel approaches and commercialization strategies for the development of efficacious therapies against snake envenomation.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India.,Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
11
|
Mukherjee AK, Mackessy SP. Prevention and improvement of clinical management of snakebite in Southern Asian countries: A proposed road map. Toxicon 2021; 200:140-152. [PMID: 34280412 DOI: 10.1016/j.toxicon.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
In the Southern Asian countries, snakebite takes a substantial toll in terms of human life, inflicts acute morbidity and long term disability both physical and psychological, and therefore represents a neglected socio-economic problem and severe health issue that requires immediate medical attention. The 'Big Four' venomous snakes, viz. Daboia russelii, Naja naja, Bungarus caeruleus and Echis carinatus, are prominent, medically important species and are the most dangerous snakes of this region; therefore, the commercial polyvalent antivenom (PAV) contains antibodies against the venoms of these snakes. However, envenomations by species other than the 'Big Four' snakes are grossly neglected, and PAV is only partially effective in neutralizing the venom of these snakes. Many issues confounding effective treatment of snakebite are discussed in this review, and these hurdles preventing successful treatment of snakebite must be addressed. However, in South Asian countries, the pre-hospital treatment and appropriate first aid are equally important to mitigate the problem of snakebite and therefore, these issues are also highlighted here. Further, this review suggests a roadmap and guidelines for the prevention of snakebite and improvement of hospital management of snakebite in these Southern Asian countries.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India; Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 78028, Assam, India; School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, USA.
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, USA
| |
Collapse
|
12
|
Hamza M, Knudsen C, Gnanathasan CA, Monteiro W, Lewin MR, Laustsen AH, Habib AG. Clinical management of snakebite envenoming: Future perspectives. Toxicon X 2021; 11:100079. [PMID: 34430847 PMCID: PMC8374517 DOI: 10.1016/j.toxcx.2021.100079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Snakebite envenoming is a major cause of morbidity and mortality in rural communities throughout the tropics. Generally, the main clinical features of snakebites are local swelling, tissue necrosis, shock, spontaneous systemic hemorrhage, incoagulable blood, paralysis, rhabdomyolysis, and acute kidney injury. These clinical manifestations result from complex biochemical venom constituents comprising of cytotoxins, hemotoxins, neurotoxins, myotoxins, and other substances. Timely diagnosis of envenoming and identification of the responsible snake species is clinically challenging in many parts of the world and necessitates prompt and thorough clinical assessment, which could be supported by the development of reliable, affordable, widely-accessible, point-of-care tests. Conventional antivenoms based on polyclonal antibodies derived from animals remain the mainstay of therapy along with supportive medical and surgical care. However, while antivenoms save countless lives, they are associated with adverse reactions, limited potency, and are relatively inefficacious against presynaptic neurotoxicity and in preventing necrosis. Nevertheless, major scientific and technological advances are facilitating the development of new molecular and immunologic diagnostic tests, as well as a new generation of antivenoms comprising human monoclonal antibodies with broader and more potent neutralization capacity and less immunogenicity. Repurposed pharmaceuticals based on small molecule inhibitors (e.g., marimastat and varespladib) used alone and in combination against enzymatic toxins, such as metalloproteases and phospholipase A2s, have shown promise in animal studies. These orally bioavailable molecules could serve as early interventions in the out-of-hospital setting if confirmed to be safe and efficacious in clinical studies. Antivenom access can be improved by the usage of drones and ensuring constant antivenom supply in remote endemic rural areas. Overall, the improvement of clinical management of snakebite envenoming requires sustained, coordinated, and multifaceted efforts involving basic and applied sciences, new technology, product development, effective clinical training, implementation of existing guidelines and therapeutic approaches, supported by improved supply of existing antivenoms.
Collapse
Affiliation(s)
- Muhammad Hamza
- Infectious and Tropical Diseases Unit, Bayero University Kano, Nigeria
| | - Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Wuelton Monteiro
- Department of Research, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Matthew R. Lewin
- Center for Exploration and Travel Health, California Academy of Sciences, San Francisco, USA
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
13
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
14
|
Fernandes CFC, Pereira SS, Luiz MB, Silva NKRL, Silva MCS, Marinho ACM, Fonseca MHG, Furtado GP, Trevizani R, Nicolete R, Soares AM, Zuliani JP, Stabeli RG. Engineering of single-domain antibodies for next-generation snakebite antivenoms. Int J Biol Macromol 2021; 185:240-250. [PMID: 34118288 DOI: 10.1016/j.ijbiomac.2021.06.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Given the magnitude of the global snakebite crisis, strategies to ensure the quality of antivenom, as well as the availability and sustainability of its supply are under development by several research groups. Recombinant DNA technology has allowed the engineering of monoclonal antibodies and recombinant fragments as alternatives to conventional antivenoms. Besides having higher therapeutic efficacy, with broad neutralization capacity against local and systemic toxicity, novel antivenoms need to be safe and cost-effective. Due to the biological and physical chemical properties of camelid single-domain antibodies, with high volume of distribution to distal tissue, their modular format, and their versatility, their biotechnological application has grown considerably in recent decades. This article presents the most up-to-date developments concerning camelid single-domain-based antibodies against major toxins from snake venoms, the main venomous animals responsible for reported envenoming cases and related human deaths. A brief discussion on the composition, challenges, and perspectives of antivenoms is presented, as well as the road ahead for next-generation antivenoms based on single-domain antibodies.
Collapse
Affiliation(s)
| | - Soraya S Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Nauanny K R L Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcela Cristina S Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | | | | | | | | | | | - Andreimar M Soares
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil; Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | - Rodrigo G Stabeli
- Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
15
|
Laustsen AH, Greiff V, Karatt-Vellatt A, Muyldermans S, Jenkins TP. Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. Trends Biotechnol 2021; 39:1263-1273. [PMID: 33775449 DOI: 10.1016/j.tibtech.2021.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
For years, a discussion has persevered on the benefits and drawbacks of antibody discovery using animal immunization versus in vitro selection from non-animal-derived recombinant repertoires using display technologies. While it has been argued that using recombinant display libraries can reduce animal consumption, we hold that the number of animals used in immunization campaigns is dwarfed by the number sacrificed during preclinical studies. Thus, improving quality control of antibodies before entering in vivo studies will have a larger impact on animal consumption. Both animal immunization and recombinant repertoires present unique advantages for discovering antibodies that are fit for purpose. Furthermore, we anticipate that machine learning will play a significant role within discovery workflows, refining current antibody discovery practices.
Collapse
Affiliation(s)
- Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | | | - Serge Muyldermans
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Yin H, Zhang X, Wei J, Lu S, Bardelang D, Wang R. Recent advances in supramolecular antidotes. Theranostics 2021; 11:1513-1526. [PMID: 33391548 PMCID: PMC7738896 DOI: 10.7150/thno.53459] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Poisons always have fascinated humankind. Initially considered as deleterious or hazardous substances, the modern era has witnessed the controlled utilization of dangerous poisons in medicine and cosmetics. Simultaneously, antidotes have become crucial as reversal agents to counteract the effects of a poison, and they are also used today to positively cancel the benefits of a poison after use. Currently, the majority of poisons are composed of small molecules. This review focuses on recent developments to reverse or prevent toxic effects of poisons by encapsulation in host molecules. Cyclodextrins, cucurbiturils, acyclic cucurbituril derivatives, calixarenes, and pillararenes, have been reported to largely impact the effects of toxic compounds, thus extending the current paradigm of small molecule antidotes by adding a new family of macrocyclic compounds to the current arsenal of antidotes. Along this line of research, endogenous "harmful" species are also sequestered by one or more of these supramolecular host molecules, expanding the potential of supramolecular antidotes to diverse therapeutic areas.
Collapse
Affiliation(s)
- Hang Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiangjun Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
17
|
Liu CC, Chou YS, Chen CY, Liu KL, Huang GJ, Yu JS, Wu CJ, Liaw GW, Hsieh CH, Chen CK. Pathogenesis of local necrosis induced by Naja atra venom: Assessment of the neutralization ability of Taiwanese freeze-dried neurotoxic antivenom in animal models. PLoS Negl Trop Dis 2020; 14:e0008054. [PMID: 32032357 PMCID: PMC7032728 DOI: 10.1371/journal.pntd.0008054] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/20/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Naja atra envenomation is one of the most significant clinical snakebite concerns in Taiwan. Taiwanese freeze-dried neurotoxic antivenom (FNAV) is currently used clinically for the treatment of cobra snakebite, and has been shown to limit the mortality of cobra envenomation to less than 1%. However, more than half of victims (60%) require surgery because of local tissue necrosis, a major problem in patients with cobra envenomation. Although the importance of evaluating the neutralizing effect of FNAV on this pathology is recognized, whether FNAV is able to prevent the local necrosis extension induced by N. atra venom has not been investigated in detail. Cytotoxins (CTXs) are considered as the major components of N. atra venom that cause necrosis. In the current study, we isolated CTXs from whole cobra venom and used both whole venom and purified CTXs to develop animal models for assessing the neutralization potential of FNAV against venom necrotizing activity. Local necrotic lesions were successfully produced in mice using CTXs in place of whole N. atra venom. FNAV was able to rescue mice from a subcutaneously injected lethal dose of cobra venom; however, it was unable to prevent CTX-induced dermo-necrosis. Furthermore, using the minimal necrosis dose (MND) of CTXs and venom proteome data, we found a dose of whole N. atra venom suitable for FNAV and developed a workable protocol for inducing local necrosis in rodent models that successfully imitated the clinical circumstance of cobra envenoming. This information provides a more comprehensive understanding of the pathophysiology of N. atra envenomation, and serves as a guide for improving current antivenom strategies and advancing clinical snakebite management in Taiwan. Naja atra envenomation is an important public health issue in Taiwan. Although the mortality rate of cobra snakebite is controlled using antivenom, more than half of victims develop symptoms of local necrosis and require surgical intervention. Whether the Taiwanese freeze-dried neurotoxic antivenom (FNAV) currently in clinical use is able to prevent the local necrosis extension induced by N. atra venom is still unclear. In this study, we developed a dermo-necrosis animal model using purified cytotoxins (CTXs), the major necrosis-related proteins from N. atra venom. We found that FNAV was able to neutralize the lethality of whole cobra venom, but was unable to neutralize the necrosis induced by CTXs in vivo. This finding introduced an example that supplementary quality control assays may be necessary to determine the effectiveness of antivenoms in neutralizing specific pathology induced by the venom; only evaluating the rodent lethality prevention is insufficient. Our results provide insights that should help improve current antivenoms and advance cobra snakebite management in Taiwan.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shao Chou
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Kuei-Lin Liu
- Faculty of Biotechnology and Laboratory Science in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Cho-Ju Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Geng-Wang Liaw
- Department of Emergency Medicine, Yeezen General Hospital, Taoyuan, Taiwan
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (CHH); (CKC)
| | - Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- * E-mail: (CHH); (CKC)
| |
Collapse
|
18
|
Diego-Martin B, González B, Vazquez-Vilar M, Selma S, Mateos-Fernández R, Gianoglio S, Fernández-del-Carmen A, Orzáez D. Pilot Production of SARS-CoV-2 Related Proteins in Plants: A Proof of Concept for Rapid Repurposing of Indoor Farms Into Biomanufacturing Facilities. FRONTIERS IN PLANT SCIENCE 2020; 11:612781. [PMID: 33424908 PMCID: PMC7785703 DOI: 10.3389/fpls.2020.612781] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 05/21/2023]
Abstract
The current CoVid-19 crisis is revealing the strengths and the weaknesses of the world's capacity to respond to a global health crisis. A critical weakness has resulted from the excessive centralization of the current biomanufacturing capacities, a matter of great concern, if not a source of nationalistic tensions. On the positive side, scientific data and information have been shared at an unprecedented speed fuelled by the preprint phenomena, and this has considerably strengthened our ability to develop new technology-based solutions. In this work, we explore how, in a context of rapid exchange of scientific information, plant biofactories can serve as a rapid and easily adaptable solution for local manufacturing of bioreagents, more specifically recombinant antibodies. For this purpose, we tested our ability to produce, in the framework of an academic lab and in a matter of weeks, milligram amounts of six different recombinant monoclonal antibodies against SARS-CoV-2 in Nicotiana benthamiana. For the design of the antibodies, we took advantage, among other data sources, of the DNA sequence information made rapidly available by other groups in preprint publications. mAbs were engineered as single-chain fragments fused to a human gamma Fc and transiently expressed using a viral vector. In parallel, we also produced the recombinant SARS-CoV-2 N protein and the receptor binding domain (RBD) of the Spike protein in planta and used them to test the binding specificity of the recombinant mAbs. Finally, for two of the antibodies, we assayed a simple scale-up production protocol based on the extraction of apoplastic fluid. Our results indicate that gram amounts of anti-SARS-CoV-2 antibodies could be easily produced in little more than 6 weeks in repurposed greenhouses with little infrastructure requirements using N. benthamiana as production platform. Similar procedures could be easily deployed to produce diagnostic reagents and, eventually, could be adapted for rapid therapeutic responses.
Collapse
|
19
|
Knudsen C, Ledsgaard L, Dehli RI, Ahmadi S, Sørensen CV, Laustsen AH. Engineering and design considerations for next-generation snakebite antivenoms. Toxicon 2019; 167:67-75. [DOI: 10.1016/j.toxicon.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
|
20
|
Laustsen AH. How can monoclonal antibodies be harnessed against neglected tropical diseases and other infectious diseases? Expert Opin Drug Discov 2019; 14:1103-1112. [PMID: 31364421 DOI: 10.1080/17460441.2019.1646723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Monoclonal antibody-based therapies now represent the single-largest class of molecules undergoing clinical investigation. Although a handful of different monoclonal antibodies have been clinically approved for bacterial and viral indications, including rabies, therapies based on monoclonal antibodies are yet to fully enter the fields of neglected tropical diseases and other infectious diseases. Areas covered: This review presents the current state-of-the-art in the development and use of monoclonal antibodies against neglected tropical diseases and other infectious diseases, including viral, bacterial, and parasitic infections, as well as envenomings by animal bites and stings. Additionally, a short section on mushroom poisonings is included. Key challenges for developing antibody-based therapeutics are discussed for each of these fields. Expert opinion: Neglected tropical diseases and other infectious diseases represent a golden opportunity for academics and technology developers for advancing our scientific capabilities within the understanding and design of antibody cross-reactivity, use of oligoclonal antibody mixtures for multi-target neutralization, novel immunization methodologies, targeting of evasive pathogens, and development of fundamentally novel therapeutic mechanisms of action. Furthermore, a huge humanitarian and societal impact is to gain by exploiting antibody technologies for the development of biotherapies against diseases, for which current treatment options are suboptimal or non-existent.
Collapse
Affiliation(s)
- Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Kongens Lyngby , Denmark
| |
Collapse
|
21
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
22
|
Gomes M, Alvarez MA, Quellis LR, Becher ML, Castro JMDA, Gameiro J, Caporrino MC, Moura-da-Silva AM, de Oliveira Santos M. Expression of an scFv antibody fragment in Nicotiana benthamiana and in vitro assessment of its neutralizing potential against the snake venom metalloproteinase BaP1 from Bothrops asper. Toxicon 2019; 160:38-46. [PMID: 30802471 DOI: 10.1016/j.toxicon.2019.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/24/2019] [Accepted: 02/13/2019] [Indexed: 11/29/2022]
Abstract
Human accidents with venomous snakes represent an overwhelming public health problem, mainly in rural populations of underdeveloped countries. Their high incidence and the severity of the accidents result in 81,000 to 138,000 deaths per year. The treatment is based on the administration of purified antibodies, produced by hyper immunization of animals to generate immunoglobulins (Igs), and then obtained by fractionating hyper immune plasma. The use of recombinant antibodies is an alternative to conventional treatment of snakebite envenoming, particularly the Fv fragment, named the single-chain variable fragment (scFv). We have produced recombinant single chain variable fragment scFv against the venom of the pit viper Bothrops asper at high levels expressed transiently and stably in transgenic plants and in vitro cultures that is reactive to BaP1 (a metalloproteinase from B. asper venom). The yield from stably transformed plants was significantly (p > 0.05) higher than the results in from transient expression. In addition, scFvBaP1 yields from systems derived from stable transformation were: transgenic callus 62 μg/g (±2); biomass from cell suspension cultures 83 μg/g (±0.2); culture medium from suspensions 71.75 mg/L (±6.18). The activity of scFvBaP1 was confirmed by binding and neutralization of the fibrin degradation induced by BnP1 toxins from B. neuwiedi and by Atroxlysin Ia from B. atrox venoms. In the present work, we demonstrated the potential use of plant cells to produce scFvBaP1 to be used in the future as a biotechnological alternative to horse immunization protocols to produce anti-venoms to be used in human therapy against snakebites.
Collapse
Affiliation(s)
- Marinna Gomes
- Laboratorio de Genética, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | | | - Leonardo Ramos Quellis
- Laboratorio de Genética, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Melina Laguia Becher
- CONICET-Universidade Maimónides (CEBBAD), Hidalgo 775, Lab 603, Buenos Aires, Argentina
| | - Juciane Maria de Andrade Castro
- Laboratorio de Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Jacy Gameiro
- Laboratorio de Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Maria Cristina Caporrino
- Laboratorio de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil
| | - Ana Maria Moura-da-Silva
- Laboratorio de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil
| | - Marcelo de Oliveira Santos
- Laboratorio de Genética, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, MG, 36036-330, Brazil.
| |
Collapse
|
23
|
Streamlined generation of plant virus infectious clones using the pLX mini binary vectors. J Virol Methods 2018; 262:48-55. [DOI: 10.1016/j.jviromet.2018.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 12/30/2022]
|
24
|
Nanobodies as novel therapeutic agents in envenomation. Biochim Biophys Acta Gen Subj 2018; 1862:2955-2965. [PMID: 30309831 DOI: 10.1016/j.bbagen.2018.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND An effective therapy against envenoming should be a priority in view of the high number scorpion stings and snakebites. Serum therapy is still widely applied to treat the envenomation victims; however this approach suffers from several shortcomings. The employment of monoclonal antibodies might be an outcome as these molecules are at the core of a variety of applications from protein structure determination to cancer treatment. The progress of activities in the twilight zone between genetic and antibody engineering have led to the development of a unique class of antibody fragments. These molecules possess several benefits and lack many possible disadvantages over classical antibodies. Within recombinant antibody formats, nanobodies or single domain antigen binding fragments derived from heavy chain only antibodies in camelids occupy a privileged position. SCOPE OF REVIEW In this paper we will briefly review the common methods of envenomation treatment and focus on details of various in vivo research activities that investigate the performance of recombinant, monoclonal nanobodies in venom neutralization. MAJOR CONCLUSIONS Nanobodies bind to their cognate target with high specificity and affinity, they can be produced in large quantities from microbial expression systems and are very robust even when challenged with harsh environmental conditions. Upon administering, they rapidly distribute throughout the body and seem to be well tolerated in humans posing low immunogenicity. GENERAL SIGNIFICANCE Scorpion and snake envenomation is a major issue in developing countries and nanobodies as a venom-neutralizing agent can be considered as a valuable and promising candidate in envenomation therapy.
Collapse
|
25
|
Kassaw TK, Donayre-Torres AJ, Antunes MS, Morey KJ, Medford JI. Engineering synthetic regulatory circuits in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:13-22. [PMID: 29907304 DOI: 10.1016/j.plantsci.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 05/21/2023]
Abstract
Plant synthetic biology is a rapidly emerging field that aims to engineer genetic circuits to function in plants with the same reliability and precision as electronic circuits. These circuits can be used to program predictable plant behavior, producing novel traits to improve crop plant productivity, enable biosensors, and serve as platforms to synthesize chemicals and complex biomolecules. Herein we introduce the importance of developing orthogonal plant parts and the need for quantitative part characterization for mathematical modeling of complex circuits. In particular, transfer functions are important when designing electronic-like genetic controls such as toggle switches, positive/negative feedback loops, and Boolean logic gates. We then discuss potential constraints and challenges in synthetic regulatory circuit design and integration when using plants. Finally, we highlight current and potential plant synthetic regulatory circuit applications.
Collapse
Affiliation(s)
- Tessema K Kassaw
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Alberto J Donayre-Torres
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Mauricio S Antunes
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Kevin J Morey
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - June I Medford
- Department of Biology, 1878 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1878, USA.
| |
Collapse
|
26
|
Laustsen AH, Dorrestijn N. Integrating Engineering, Manufacturing, and Regulatory Considerations in the Development of Novel Antivenoms. Toxins (Basel) 2018; 10:E309. [PMID: 30065185 PMCID: PMC6115708 DOI: 10.3390/toxins10080309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that requires immediate attention. Conventional plasma-derived snakebite antivenoms have existed for more than 120 years and have been instrumental in saving thousands of lives. However, both a need and an opportunity exist for harnessing biotechnology and modern drug development approaches to develop novel snakebite antivenoms with better efficacy, safety, and affordability. For this to be realized, though, development approaches, clinical testing, and manufacturing must be feasible for any novel treatment modality to be brought to the clinic. Here, we present engineering, manufacturing, and regulatory considerations that need to be taken into account for any development process for a novel antivenom product, with a particular emphasis on novel antivenoms based on mixtures of monoclonal antibodies. We highlight key drug development challenges that must be addressed, and we attempt to outline some of the important shifts that may have to occur in the ways snakebite antivenoms are designed and evaluated.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Netty Dorrestijn
- Utrecht Center for Affordable Biotherapeutics, Department of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
27
|
Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Basics of Antibody Phage Display Technology. Toxins (Basel) 2018; 10:E236. [PMID: 29890762 PMCID: PMC6024766 DOI: 10.3390/toxins10060236] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023] Open
Abstract
Antibody discovery has become increasingly important in almost all areas of modern medicine. Different antibody discovery approaches exist, but one that has gained increasing interest in the field of toxinology and antivenom research is phage display technology. In this review, the lifecycle of the M13 phage and the basics of phage display technology are presented together with important factors influencing the success rates of phage display experiments. Moreover, the pros and cons of different antigen display methods and the use of naïve versus immunized phage display antibody libraries is discussed, and selected examples from the field of antivenom research are highlighted. This review thus provides in-depth knowledge on the principles and use of phage display technology with a special focus on discovery of antibodies that target animal toxins.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | | | | | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
28
|
Knudsen C, Laustsen AH. Recent Advances in Next Generation Snakebite Antivenoms. Trop Med Infect Dis 2018; 3:tropicalmed3020042. [PMID: 30274438 PMCID: PMC6073149 DOI: 10.3390/tropicalmed3020042] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
With the inclusion of snakebite envenoming on the World Health Organization’s list of Neglected Tropical Diseases, an incentive has been established to promote research and development effort in novel snakebite antivenom therapies. Various technological approaches are being pursued by different research groups, including the use of small molecule inhibitors against enzymatic toxins as well as peptide- and oligonucleotide-based aptamers and antibody-based biotherapeutics against both enzymatic and non-enzymatic toxins. In this article, the most recent advances in these fields are presented, and the advantages, disadvantages, and feasibility of using different toxin-neutralizing molecules are reviewed. Particular focus within small molecules is directed towards the inhibitors varespladib, batimastat, and marimastat, while in the field of antibody-based therapies, novel recombinant polyclonal plantivenom technology is discussed.
Collapse
Affiliation(s)
- Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
| |
Collapse
|