1
|
Gracia-Rodriguez C, Martínez-Medina AE, Torres-Cosio L, Lopez-Ortiz C, Nimmakayala P, Luévanos-Escareño MP, Hernández-Almanza AY, Castro-Alonso MJ, Sosa-Martínez JD, Reddy UK, Balagurusamy N. Can the molecular and transgenic breeding of crops be an alternative and sustainable technology to meet food demand? Funct Integr Genomics 2025; 25:83. [PMID: 40205022 DOI: 10.1007/s10142-025-01594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The gradual increase in the worldwide population represents various challenges, and one of the most alarming being the food demand. Historically technological advances led to the development of crops that meets the requirements and demands. Currently, molecular breeding unlocks the genetic potential of crops for their improvement, positioning it as a key technology for the development of new crops. The implementation of OMICs sciences, such spatial and single cell transcriptomics is providing a large and precise information, which can be exploited for crop improvement related to increasing yield, improving the nutritional value; designing new strategies for diseases resistance and management and for conserving biodiversity. Furthermore, the use of new technologies such CRISPR/CAS9 brought us the ability to modify the selected regions of the genome to select the superior's genotypes at a short time and the use of artificial intelligence aid in the analysis of big data generated by OMICS sciences. On the other hand, the application of molecular improvement technologies open up discussion on global regulatory measures, the socio-economic and socio-ethics, as the frameworks on its global regulation and its impact on the society create the public perception on its acceptance. In this review, the use and impact of OMICs sciences and genetic engineering in crops development, the regulatory measures, the socio-economic impact and as well as the mediatic information on genetically modified crops worldwide is discussed along with comprehensive insights on the potential of molecular plant breeding as an alternative and sustainable technology to meet global food demand.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Angela Elena Martínez-Medina
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Liliana Torres-Cosio
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Miriam Paulina Luévanos-Escareño
- Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Ayerim Yedid Hernández-Almanza
- Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - María José Castro-Alonso
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Jazel Doménica Sosa-Martínez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico.
| |
Collapse
|
2
|
Li F, Xue M, Guo D, Zhu L, Li Y, Xie L. A Truncated Endogenous U6 Promoter Enables High-Efficiency CRISPR Editing in Flax ( Linum usitatissimum L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:1142. [PMID: 40219210 PMCID: PMC11991013 DOI: 10.3390/plants14071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Functional U6 promoters are widely utilized in CRISPR gene editing systems for crops. The identification of endogenous U6 promoter activity and the establishment of CRISPR/Cas9 gene editing systems in various crops can enhance the efficiency and accuracy of gene editing in molecular breeding. In this study, four U6 snRNAs were identified in the genome of the oil flax (Linum usitatissimum L.) cultivar Longya 10, which exhibit high homology with the promoter regions of Arabidopsis thaliana U6 snRNA. We cloned and constructed fusion expression vectors with U6 promoter-driven dual-luciferase reporter genes. Transient transformation of flax and Nicotiana benthamiana was performed to measure the relative activity of dual luciferase. The U6-4 on chromosome 14 showed the highest transcriptional activity. Truncations of varying lengths from the 5' end of this promoter were tested, revealing that a 342 bp U6 promoter fragment possesses high transcriptional activity and an optimal length. Subsequently, we constructed a CRISPR/Cas9 gene editing vector with LuU6-5P/AtU6-P driving LusPDS sgRNA. Agrobacterium-mediated infection of flax hypocotyls yielded transgenic albino flax shoots. DNA from these shoots was used as a template to amplify LusPDS fragments, which were then sequenced. Sequencing analysis revealed that CRISPR/Cas9 vectors using Lu14U6-4-5P achieved higher editing frequencies at LusPDS compared to AtU6-P-driven systems.
Collapse
Affiliation(s)
- Feifei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (F.L.); (M.X.); (D.G.); (L.Z.); (Y.L.)
| | - Min Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (F.L.); (M.X.); (D.G.); (L.Z.); (Y.L.)
| | - Dongliang Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (F.L.); (M.X.); (D.G.); (L.Z.); (Y.L.)
| | - Leilei Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (F.L.); (M.X.); (D.G.); (L.Z.); (Y.L.)
| | - Yuandong Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (F.L.); (M.X.); (D.G.); (L.Z.); (Y.L.)
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (F.L.); (M.X.); (D.G.); (L.Z.); (Y.L.)
- College of Smart Agriculture, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
3
|
Bilal M, Geng J, Chen L, García-Caparros P, Hu T. Genome editing for grass improvement and future agriculture. HORTICULTURE RESEARCH 2025; 12:uhae293. [PMID: 39906167 PMCID: PMC11789526 DOI: 10.1093/hr/uhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Grasses, including turf and forage, cover most of the earth's surface; predominantly important for land, water, livestock feed, soil, and water conservation, as well as carbon sequestration. Improved production and quality of grasses by modern molecular breeding is gaining more research attention. Recent advances in genome-editing technologies are helping to revolutionize plant breeding and also offering smart and efficient acceleration on grass improvement. Here, we reviewed all recent researches using (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing tools to enhance the growth and quality of forage and turf grasses. Furthermore, we highlighted emerging approaches aimed at advancing grass breeding program. We assessed the CRISPR-Cas effectiveness, discussed the challenges associated with its application, and explored future perspectives primarily focusing on turf and forage grasses. Despite the promising potential of genome editing in grasses, its current efficiency remains limited due to several bottlenecks, such as the absence of comprehensive reference genomes, the lack of efficient gene delivery tools, unavailability of suitable vector and delivery for grass species, high polyploidization, and multiple homoeoalleles, etc. Despite these challenges, the CRISPR-Cas system holds great potential to fully harness its benefits in grass breeding and genetics, aiming to improve and sustain the quantity and quality of turf and forage grasses.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jie Geng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lin Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pedro García-Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almeria, Spain
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
4
|
Jiang C, Li Y, Wang R, Sun X, Zhang Y, Zhang Q. Development and optimization of base editors and its application in crops. Biochem Biophys Res Commun 2024; 739:150942. [PMID: 39547118 DOI: 10.1016/j.bbrc.2024.150942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Genome editing technologies hold significant potential for targeted mutagenesis in crop development, aligning with evolving agricultural needs. Point mutations, or single nucleotide polymorphisms (SNPs), define key agronomic traits in various crop species and play a pivotal role. The implementation of single nucleotide variations through genome editing-based base editing offers substantial promise in expediting crop improvement by inducing advantageous trait variations. Among many genome editing techniques, base editing stands out as an advanced next-generation technology, evolved from the CRISPR/Cas9 system.Base editing, a recent advancement in genome editing, enables precise DNA modification without the risks associated with double-strand breaks. Base editors, designed as precise genome editing tools, enable the direct and irreversible conversion of specific target bases. Base editors consist of catalytically active CRISPR-Cas9 domains, including Cas9 variants, fused with domains like cytidine deaminase, adenine deaminase, or reverse transcriptase. These fusion proteins enable the introduction of specific point mutations in target genomic regions. Currently developed are cytidine base editors (CBEs), mutating C to T; adenine base editors (ABEs), changing A to G; and prime editors (PEs), enabling arbitrary base conversions, precise insertions, and deletions. In this review, the research, development, and progress of various base editing systems, along with their potential applications in crop improvement, were intended to be summarized. The limitations of this technology will also be discussed. Finally, an outlook on the future of base editors will be provided.
Collapse
Affiliation(s)
- Chuandong Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Ran Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiao Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
5
|
Kim MW, Jeong KS, Kim J, Lee SG, Kim CY, Chung HM. Generation of an Isogenic Hereditary Hemorrhagic Telangiectasia Model via Prime Editing in Human Induced Pluripotent Stem Cells. Int J Stem Cells 2024; 17:397-406. [PMID: 39238188 PMCID: PMC11612218 DOI: 10.15283/ijsc24084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Prime editing (PE) is a recently developed genome-editing technique that enables versatile editing. Despite its flexibility and potential, applying PE in human induced pluripotent stem cells (hiPSCs) has not been extensively addressed. Genetic disease models using patient-derived hiPSCs have been used to study mechanisms and drug efficacy. However, genetic differences between patient and control cells have been attributed to the inaccuracy of the disease model, highlighting the significance of isogenic hiPSC models. Hereditary hemorrhagic telangiectasia 1 (HHT1) is a genetic disorder caused by an autosomal dominant mutation in endoglin (ENG). Although previous HHT models using mice and HUVEC have been used, these models did not sufficiently elucidate the relationship between the genotype and disease phenotype in HHT, demanding more clinically relevant models that reflect human genetics. Therefore, in this study, we used PE to propose a method for establishing an isogenic hiPSC line. Clinically reported target mutation in ENG was selected, and a strategy for PE was designed. After cloning the engineered PE guide RNA, hiPSCs were nucleofected along with PEmax and hMLH1dn plasmids. As a result, hiPSC clones with the intended mutation were obtained, which showed no changes in pluripotency or genetic integrity. Furthermore, introducing the ENG mutation increased the expression of proangiogenic markers during endothelial organoid differentiation. Consequently, our results suggest the potential of PE as a toolkit for establishing isogenic lines, enabling disease modeling based on hiPSC-derived disease-related cells or organoids. This approach is expected to stimulate mechanistic and therapeutic studies on genetic diseases.
Collapse
Affiliation(s)
- Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Kyu Sik Jeong
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jin Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Seul-Gi Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
- Mirae Cell Bio Co. Ltd., Seoul, Korea
| |
Collapse
|
6
|
Hillary VE, Ceasar SA. CRISPR/Cas system-mediated base editing in crops: recent developments and future prospects. PLANT CELL REPORTS 2024; 43:271. [PMID: 39453560 DOI: 10.1007/s00299-024-03346-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR/Cas9) genome-editing system has altered plant research by allowing for targeted genome alteration, and they are emerging as powerful tools for evaluating plant gene function and improving crop yield. Even though CRISPR/Cas9 cleavage and subsequent repair are effective ways to precisely replace genes and change base pairs in plants, the dominance of the non-homologous end-joining pathway (NHEJ) and homology-directed repair's (HDR) poor effectiveness in plant cells have restricted their use. Base editing is gaining popularity as a potential alternative to HDR or NHEJ-mediated replacement, allowing for precise changes in the plant genome via programmed conversion of a single base to another without the need for a donor repair template or double-stranded breaks. In this review, we primarily present the mechanisms of base-editing system, including their distinct types such as DNA base editors (cytidine base editor and adenine base editor) and RNA base editors discovered so far. Next, we outline the current potential applications of the base-editing system for crop improvements. Finally, we discuss the limitations and potential future directions of the base-editing system in terms of improving crop quality. We hope that this review will enable the researcher to gain knowledge about base-editing tools and their potential applications in crop improvement.
Collapse
Affiliation(s)
- V Edwin Hillary
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India
| | - S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India.
| |
Collapse
|
7
|
Manzoor S, Nabi SU, Rather TR, Gani G, Mir ZA, Wani AW, Ali S, Tyagi A, Manzar N. Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production. Front Genome Ed 2024; 6:1399051. [PMID: 38988891 PMCID: PMC11234172 DOI: 10.3389/fgeed.2024.1399051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024] Open
Abstract
Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.
Collapse
Affiliation(s)
- Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, India
| | | | - Gousia Gani
- Division of Basic Science and Humanities, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB, Canada
| | - Ab Waheed Wani
- Department of Horticulture, LPU, Jalander, Punjab, India
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| |
Collapse
|
8
|
Vale M, Prochazka J, Sedlacek R. Towards a Cure for Diamond-Blackfan Anemia: Views on Gene Therapy. Cells 2024; 13:920. [PMID: 38891052 PMCID: PMC11172175 DOI: 10.3390/cells13110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.
Collapse
Affiliation(s)
- Matilde Vale
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic; (M.V.); (J.P.)
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic; (M.V.); (J.P.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic; (M.V.); (J.P.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic
| |
Collapse
|
9
|
Zaman QU, Raza A, Lozano-Juste J, Chao L, Jones MGK, Wang HF, Varshney RK. Engineering plants using diverse CRISPR-associated proteins and deregulation of genome-edited crops. Trends Biotechnol 2024; 42:560-574. [PMID: 37993299 DOI: 10.1016/j.tibtech.2023.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
The CRISPR/Cas system comprises RNA-guided nucleases, the target specificity of which is directed by Watson-Crick base pairing of target loci with single guide (sg)RNA to induce the desired edits. CRISPR-associated proteins and other engineered nucleases are opening new avenues of research in crops to induce heritable mutations. Here, we review the diversity of CRISPR-associated proteins and strategies to deregulate genome-edited (GEd) crops by considering them to be close to natural processes. This technology ensures yield without penalties, advances plant breeding, and guarantees manipulation of the genome for desirable traits. DNA-free and off-target-free GEd crops with defined characteristics can help to achieve sustainable global food security under a changing climate, but need alignment of international regulations to operate in existing supply chains.
Collapse
Affiliation(s)
- Qamar U Zaman
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou-Bay Seed Laboratory, Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou 570228, China; Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan 430062, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia 46022, Spain
| | - Li Chao
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan 430062, China
| | - Michael G K Jones
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, WA 6150, Australia
| | - Hua-Feng Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou-Bay Seed Laboratory, Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, WA 6150, Australia.
| |
Collapse
|
10
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
11
|
Larriba E, Yaroshko O, Pérez-Pérez JM. Recent Advances in Tomato Gene Editing. Int J Mol Sci 2024; 25:2606. [PMID: 38473859 PMCID: PMC10932025 DOI: 10.3390/ijms25052606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | | | | |
Collapse
|
12
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Kandasamy G, Manisekaran R, Arthikala MK. Chitosan nanoplatforms in agriculture for multi-potential applications - Adsorption/removal, sustained release, sensing of pollutants & delivering their alternatives - A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 240:117447. [PMID: 37863167 DOI: 10.1016/j.envres.2023.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
An increase in the global population has led to an increment in the food consumption, which has demanded high food production. To meet the production demands, different techniques and technologies are adopted in agriculture the past 70 years, where utilization of the industry-manufactured/synthetic pesticides (SPTCs - e.g., herbicides, insecticides, fungicides, bactericides, nematicides, acaricides, avicides, and so on) is one of them. However, it has been later revealed that the usage of SPTCs has negatively impacted the environment - especially water and soil, and also agricultural products - mainly foods. Though preventive measures are taken by government agencies, still the utilization rate of SPTCs is high, and consequently, their maximum residual limit (MRL) levels in food are above tolerance, which further results in serious health concerns in humans. So, there is an immediate need for decreasing the utilization of the SPTCs by delivering them effectively at reduced levels in agriculture but with the required efficacy. Apart from that, it is mandatory to detect/sense and also to remove them to lessen the environmental pollution, while developing effective alternative techniques/technologies. Among many suitable materials that are developed/idenified, chitosan, a bio-polymer has gained great attention and is comprehensively implemented in all the above-mentioned applications - sensing, delivery and removal, due to their excellent and required properties. Though many works are available, in this work, a special attention is given to chitosan and its derivatives (i.e., chitosan nanoparticles (CNPs))based removal, controlled release and sensing of the SPTCs - specifically herbicides and insecticides. Moreover, the chitosan/CNPs-based protective effects on the in vivo models during/after their exposure to the SPTCs, and the current technologies like clustered regularly interspaced short palindromic repeats (CRISPR) as alternatives for SPTCs are also reviewed.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, Tamil Nadu, India.
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures & Biomaterials, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| | - Manoj-Kumar Arthikala
- Interdisciplinary Research Laboratory (LII), Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| |
Collapse
|
14
|
Budzko L, Hoffa-Sobiech K, Jackowiak P, Figlerowicz M. Engineered deaminases as a key component of DNA and RNA editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102062. [PMID: 38028200 PMCID: PMC10661471 DOI: 10.1016/j.omtn.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Over recent years, zinc-dependent deaminases have attracted increasing interest as key components of nucleic acid editing tools that can generate point mutations at specific sites in either DNA or RNA by combining a targeting module (such as a catalytically impaired CRISPR-Cas component) and an effector module (most often a deaminase). Deaminase-based molecular tools are already being utilized in a wide spectrum of therapeutic and research applications; however, their medical and biotechnological potential seems to be much greater. Recent reports indicate that the further development of nucleic acid editing systems depends largely on our ability to engineer the substrate specificity and catalytic activity of the editors themselves. In this review, we summarize the current trends and achievements in deaminase engineering. The presented data indicate that the potential of these enzymes has not yet been fully revealed or understood. Several examples show that even relatively minor changes in the structure of deaminases can give them completely new and unique properties.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karolina Hoffa-Sobiech
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
15
|
Jolliffe JB, Pilati S, Moser C, Lashbrooke JG. Beyond skin-deep: targeting the plant surface for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6468-6486. [PMID: 37589495 PMCID: PMC10662250 DOI: 10.1093/jxb/erad321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The above-ground plant surface is a well-adapted tissue layer that acts as an interface between the plant and its surrounding environment. As such, its primary role is to protect against desiccation and maintain the gaseous exchange required for photosynthesis. Further, this surface layer provides a barrier against pathogens and herbivory, while attracting pollinators and agents of seed dispersal. In the context of agriculture, the plant surface is strongly linked to post-harvest crop quality and yield. The epidermal layer contains several unique cell types adapted for these functions, while the non-lignified above-ground plant organs are covered by a hydrophobic cuticular membrane. This review aims to provide an overview of the latest understanding of the molecular mechanisms underlying crop cuticle and epidermal cell formation, with focus placed on genetic elements contributing towards quality, yield, drought tolerance, herbivory defence, pathogen resistance, pollinator attraction, and sterility, while highlighting the inter-relatedness of plant surface development and traits. Potential crop improvement strategies utilizing this knowledge are outlined in the context of the recent development of new breeding techniques.
Collapse
Affiliation(s)
- Jenna Bryanne Jolliffe
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Stefania Pilati
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Claudio Moser
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Justin Graham Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
16
|
Zhou Z, Tang W, Sun Z, Li J, Yang B, Liu Y, Wang B, Xu D, Yang J, Zhang Y. OsCIPK9 Interacts with OsSOS3 and Affects Salt-Related Transport to Improve Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3723. [PMID: 37960079 PMCID: PMC10647249 DOI: 10.3390/plants12213723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Salt is harmful to crop production. Therefore, it is important to understand the mechanism of salt tolerance in rice. CIPK genes have various functions, including regulating salt tolerance and other types of stress and nitrogen use efficiency. In rice, OsCIPK24 is known to regulate salt tolerance, but other OsCIPKs could also function in salt tolerance. In this study, we identified another OsCIPK-OsCIPK9-that can regulate salt tolerance. Knockout of OsCIPK9 in rice could improve salt tolerance. Through expression analyses, OsCIPK9 was found to be mainly expressed in the roots and less expressed in mature leaves. Meanwhile, OsCIPK9 had the highest expression 6 h after salt treatment. In addition, we proved the interaction between OsCIPK9 and OsSOS3. The RNA-seq data showed that OsCIPK9 strongly responded to salt treatment, and the transporters related to salt tolerance may be downstream genes of OsCIPK9. Finally, haplotype analyses revealed that Hap6 and Hap8 mainly exist in indica, potentially providing a higher salt tolerance. Overall, a negative regulator of salt tolerance, OsCIPK9, which interacted with OsSOS3 similarly to OsCIPK24 and influenced salt-related transporters, was identified, and editing OsCIPK9 potentially could be helpful for breeding salt-tolerant rice.
Collapse
Affiliation(s)
- Zhenling Zhou
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China;
| | - Weijie Tang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Jingfang Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Bo Yang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Yan Liu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Dayong Xu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.Z.); (Z.S.); (J.L.); (B.Y.); (Y.L.); (D.X.)
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China;
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Rabaan AA, Al Fares MA, Almaghaslah M, Alpakistany T, Al Kaabi NA, Alshamrani SA, Alshehri AA, Almazni IA, Saif A, Hakami AR, Khamis F, Alfaresi M, Alsalem Z, Alsoliabi ZA, Al Amri KAS, Hassoueh AK, Mohapatra RK, Arteaga-Livias K, Alissa M. Application of CRISPR-Cas System to Mitigate Superbug Infections. Microorganisms 2023; 11:2404. [PMID: 37894063 PMCID: PMC10609045 DOI: 10.3390/microorganisms11102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Manar Almaghaslah
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Tariq Alpakistany
- Bacteriology Department, Public Health Laboratory, Taif 26521, Saudi Arabia
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Abdulrahim R. Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62223, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Zainab Alsalem
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | | | - Amal K. Hassoueh
- Pharmacy Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
18
|
Banerjee S, Mukherjee A, Kundu A. The current scenario and future perspectives of transgenic oilseed mustard by CRISPR-Cas9. Mol Biol Rep 2023; 50:7705-7728. [PMID: 37432544 DOI: 10.1007/s11033-023-08660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Production of a designer crop having added attributes is the primary goal of all plant biotechnologists. Specifically, development of a crop with a simple biotechnological approach and at a rapid pace is most desirable. Genetic engineering enables us to displace genes among species. The newly incorporated foreign gene(s) in the host genome can create a new trait(s) by regulating the genotypes and/or phenotypes. The advent of the CRISPR-Cas9 tools has enabled the modification of a plant genome easily by introducing mutation or replacing genomic fragment. Oilseed mustard varieties (e.g., Brassica juncea, Brassica nigra, Brassica napus, and Brassica carinata) are one such plants, which have been transformed with different genes isolated from the wide range of species. Current reports proved that the yield and value of oilseed mustard has been tremendously improved by the introduction of stably inherited new traits such as insect and herbicide resistance. However, the genetic transformation of oilseed mustard remains incompetent due to lack of potential plant transformation systems. To solve numerous complications involved in genetically modified oilseed mustard crop varieties regeneration procedures, scientific research is being conducted to rectify the unwanted complications. Thus, this study provides a broader overview of the present status of new traits introduced in each mentioned varieties of oilseed mustard plant by different genetical engineering tools, especially CRISPR-Cas9, which will be useful to improve the transformation system of oilseed mustard crop plants. METHODS This review presents recent improvements made in oilseed mustard genetic engineering methodologies by using CRISPR-Cas9 tools, present status of new traits introduced in oilseed mustard plant varieties. RESULTS The review highlighted that the transgenic oilseed mustard production is a challenging process and the transgenic varieties of oilseed mustard provide a powerful tool for enhanced mustard yield. Over expression studies and silencing of desired genes provide functional importance of genes involved in mustard growth and development under different biotic and abiotic stress conditions. Thus, it can be expected that in near future CRISPR can contribute enormously in improving the mustard plant's architecture and develop stress resilient oilseed mustard plant species.
Collapse
Affiliation(s)
- Sangeeta Banerjee
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Ananya Mukherjee
- Division of Plant Biology, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
19
|
Westberg I, Carlsen FM, Johansen IE, Petersen BL. Cytosine base editors optimized for genome editing in potato protoplasts. Front Genome Ed 2023; 5:1247702. [PMID: 37719877 PMCID: PMC10502308 DOI: 10.3389/fgeed.2023.1247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023] Open
Abstract
In this study, we generated and compared three cytidine base editors (CBEs) tailor-made for potato (Solanum tuberosum), which conferred up to 43% C-to-T conversion of all alleles in the protoplast pool. Earlier, gene-edited potato plants were successfully generated by polyethylene glycol-mediated CRISPR/Cas9 transformation of protoplasts followed by explant regeneration. In one study, a 3-4-fold increase in editing efficiency was obtained by replacing the standard Arabidopsis thaliana AtU6-1 promotor with endogenous potato StU6 promotors driving the expression of the gRNA. Here, we used this optimized construct (SpCas9/StU6-1::gRNA1, target gRNA sequence GGTC4C5TTGGAGC12AAAAC17TGG) for the generation of CBEs tailor-made for potato and tested for C-to-T base editing in the granule-bound starch synthase 1 gene in the cultivar Desiree. First, the Streptococcus pyogenes Cas9 was converted into a (D10A) nickase (nCas9). Next, one of three cytosine deaminases from human hAPOBEC3A (A3A), rat (evo_rAPOBEC1) (rA1), or sea lamprey (evo_PmCDA1) (CDA1) was C-terminally fused to nCas9 and a uracil-DNA glycosylase inhibitor, with each module interspaced with flexible linkers. The CBEs were overall highly efficient, with A3A having the best overall base editing activity, with an average 34.5%, 34.5%, and 27% C-to-T conversion at C4, C5, and C12, respectively, whereas CDA1 showed an average base editing activity of 34.5%, 34%, and 14.25% C-to-T conversion at C4, C5, and C12, respectively. rA1 exhibited an average base editing activity of 18.75% and 19% at C4 and C5 and was the only base editor to show no C-to-T conversion at C12.
Collapse
Affiliation(s)
| | | | | | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, The University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
20
|
Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S, Klinger K, Rudrabhatla S, Potlakayala SD. Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 2023; 5:1171969. [PMID: 37484652 PMCID: PMC10361821 DOI: 10.3389/fgeed.2023.1171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Agriculture has supported human life from the beginning of civilization, despite a plethora of biotic (pests, pathogens) and abiotic (drought, cold) stressors being exerted on the global food demand. In the past 50 years, the enhanced understanding of cellular and molecular mechanisms in plants has led to novel innovations in biotechnology, resulting in the introduction of desired genes/traits through plant genetic engineering. Targeted genome editing technologies such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) have emerged as powerful tools for crop improvement. This new CRISPR technology is proving to be an efficient and straightforward process with low cost. It possesses applicability across most plant species, targets multiple genes, and is being used to engineer plant metabolic pathways to create resistance to pathogens and abiotic stressors. These novel genome editing (GE) technologies are poised to meet the UN's sustainable development goals of "zero hunger" and "good human health and wellbeing." These technologies could be more efficient in developing transgenic crops and aid in speeding up the regulatory approvals and risk assessments conducted by the US Departments of Agriculture (USDA), Food and Drug Administration (FDA), and Environmental Protection Agency (EPA).
Collapse
Affiliation(s)
- Aayushi Patel
- Penn State Harrisburg, Middletown, PA, United States
| | - Andrew Miles
- Penn State University Park, State College, University Park, PA, United States
| | | | - Logan Cook
- Penn State Harrisburg, Middletown, PA, United States
| | - Sining Leng
- Shanghai United Cell Biotechnology Co Ltd, Shanghai, China
| | - Shrina Patel
- Penn State Harrisburg, Middletown, PA, United States
| | | | | | | |
Collapse
|
21
|
Anwar Z, Ijaz A, Ditta A, Wang B, Liu F, Khan SMUD, Haidar S, Hassan HM, Khan MKR. Genomic Dynamics and Functional Insights under Salt Stress in Gossypium hirsutum L. Genes (Basel) 2023; 14:1103. [PMID: 37239463 PMCID: PMC10218025 DOI: 10.3390/genes14051103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The changing climate is intensifying salt stress globally. Salt stress is a menace to cotton crop quality and yield. The seedling, germination, and emergence phases are more prone to the effects of salt stress than other stages. Higher levels of salt can lead to delayed flowering, a reduced number of fruiting positions, shedding of fruits, decreased boll weight, and yellowing of fiber, all of which have an adverse effect on the yield and quality of the seed cotton. However, sensitivity toward salt stress is dependent on the salt type, cotton growth phase, and genotype. As the threat of salt stress continues to grow, it is crucial to gain a comprehensive understanding of the mechanisms underlying salt tolerance in plants and to identify potential avenues for enhancing the salt tolerance of cotton. The emergence of marker-assisted selection, in conjunction with next-generation sequencing technologies, has streamlined cotton breeding efforts. This review begins by providing an overview of the causes of salt stress in cotton, as well as the underlying theory of salt tolerance. Subsequently, it summarizes the breeding methods that utilize marker-assisted selection, genomic selection, and techniques for identifying elite salt-tolerant markers in wild species or mutated materials. Finally, novel cotton breeding possibilities based on the approaches stated above are presented and debated.
Collapse
Affiliation(s)
- Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong 226000, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China;
| | - Sana Muhy-Ud-Din Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Hafiz Mumtaz Hassan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| |
Collapse
|
22
|
Singh C, Kumar R, Sehgal H, Bhati S, Singhal T, Gayacharan, Nimmy MS, Yadav R, Gupta SK, Abdallah NA, Hamwieh A, Kumar R. Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Front Genet 2023; 14:1085024. [PMID: 37144131 PMCID: PMC10153629 DOI: 10.3389/fgene.2023.1085024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 09/09/2023] Open
Abstract
Genomics and genome editing promise enormous opportunities for crop improvement and elementary research. Precise modification in the specific targeted location of a genome has profited over the unplanned insertional events which are generally accomplished employing unadventurous means of genetic modifications. The advent of new genome editing procedures viz; zinc finger nucleases (ZFNs), homing endonucleases, transcription activator like effector nucleases (TALENs), Base Editors (BEs), and Primer Editors (PEs) enable molecular scientists to modulate gene expressions or create novel genes with high precision and efficiency. However, all these techniques are exorbitant and tedious since their prerequisites are difficult processes that necessitate protein engineering. Contrary to first generation genome modifying methods, CRISPR/Cas9 is simple to construct, and clones can hypothetically target several locations in the genome with different guide RNAs. Following the model of the application in crop with the help of the CRISPR/Cas9 module, various customized Cas9 cassettes have been cast off to advance mark discrimination and diminish random cuts. The present study discusses the progression in genome editing apparatuses, and their applications in chickpea crop development, scientific limitations, and future perspectives for biofortifying cytokinin dehydrogenase, nitrate reductase, superoxide dismutase to induce drought resistance, heat tolerance and higher yield in chickpea to encounter global climate change, hunger and nutritional threats.
Collapse
Affiliation(s)
- Charul Singh
- USBT, Guru Govind Singh Indraprastha University, Delhi, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad Prayagraj, Prayagraj, India
| | - Hansa Sehgal
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India
| | - Sharmista Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Tripti Singhal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gayacharan
- Division of Germplasm Evaluation, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| | - M. S. Nimmy
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | | | | | - Aladdin Hamwieh
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Cairo, Egypt
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
23
|
Jeong BR, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. BIORESOURCE TECHNOLOGY 2023; 373:128701. [PMID: 36746216 DOI: 10.1016/j.biortech.2023.128701] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available. Their genomic information was used for a "safe harbor" site for stable transgene expression in microalgae. This review proposes further genome engineering schemes including the construction of sgRNA libraries, pan-genomic and epigenomic resources, and mini-genomes, which can together be developed into synthetic biology for carbon-based engineering in microalgae. Acetyl-CoA is at the center of carbon metabolic pathways and is further reviewed for the production of molecules including terpenoids in microalgae.
Collapse
Affiliation(s)
- Byeong-Ryool Jeong
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
24
|
Zhou J, Luan X, Liu Y, Wang L, Wang J, Yang S, Liu S, Zhang J, Liu H, Yao D. Strategies and Methods for Improving the Efficiency of CRISPR/Cas9 Gene Editing in Plant Molecular Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:1478. [PMID: 37050104 PMCID: PMC10097296 DOI: 10.3390/plants12071478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Following recent developments and refinement, CRISPR-Cas9 gene-editing technology has become increasingly mature and is being widely used for crop improvement. The application of CRISPR/Cas9 enables the generation of transgene-free genome-edited plants in a short period and has the advantages of simplicity, high efficiency, high specificity, and low production costs, which greatly facilitate the study of gene functions. In plant molecular breeding, the gene-editing efficiency of the CRISPR-Cas9 system has proven to be a key step in influencing the effectiveness of molecular breeding, with improvements in gene-editing efficiency recently becoming a focus of reported scientific research. This review details strategies and methods for improving the efficiency of CRISPR/Cas9 gene editing in plant molecular breeding, including Cas9 variant enzyme engineering, the effect of multiple promoter driven Cas9, and gRNA efficient optimization and expression strategies. It also briefly introduces the optimization strategies of the CRISPR/Cas12a system and the application of BE and PE precision editing. These strategies are beneficial for the further development and optimization of gene editing systems in the field of plant molecular breeding.
Collapse
Affiliation(s)
- Junming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Xinchao Luan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Yixuan Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Lixue Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Jiaxin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Songnan Yang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (S.Y.); (J.Z.)
| | - Shuying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Jun Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (S.Y.); (J.Z.)
| | - Huijing Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| |
Collapse
|
25
|
Hernandes-Lopes J, Yassitepe JEDCT, Koltun A, Pauwels L, da Silva VCH, Dante RA, Gerhardt IR, Arruda P. Genome editing in maize: Toward improving complex traits in a global crop. Genet Mol Biol 2023; 46:e20220217. [PMID: 36880696 PMCID: PMC9990078 DOI: 10.1590/1678-4685-gmb-2022-0217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/23/2022] [Indexed: 03/08/2023] Open
Abstract
Recent advances in genome editing have enormously enhanced the effort to develop biotechnology crops for more sustainable food production. CRISPR/Cas, the most versatile genome-editing tool, has shown the potential to create genome modifications that range from gene knockout and gene expression pattern modulations to allele-specific changes in order to design superior genotypes harboring multiple improved agronomic traits. However, a frequent bottleneck is the delivery of CRISPR/Cas to crops that are less amenable to transformation and regeneration. Several technologies have recently been proposed to overcome transformation recalcitrance, including HI-Edit/IMGE and ectopic/transient expression of genes encoding morphogenic regulators. These technologies allow the eroding of the barriers that make crops inaccessible for genome editing. In this review, we discuss the advances in genome editing in crops with a particular focus on the use of technologies to improve complex traits such as water use efficiency, drought stress, and yield in maize.
Collapse
Affiliation(s)
- José Hernandes-Lopes
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
| | - Juliana Erika de Carvalho Teixeira Yassitepe
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
- Embrapa Agricultura Digital, Campinas, SP, Brazil
| | - Alessandra Koltun
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB, Center for Plant Systems Biology, Ghent, Belgium
| | - Viviane Cristina Heinzen da Silva
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
| | - Ricardo Augusto Dante
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
- Embrapa Agricultura Digital, Campinas, SP, Brazil
| | - Isabel Rodrigues Gerhardt
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
- Embrapa Agricultura Digital, Campinas, SP, Brazil
| | - Paulo Arruda
- Universidade Estadual de Campinas, Genomics for Climate Change Research Center (GCCRC), Campinas, SP, Brazil
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Campinas, SP, Brazil
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia e Evolução, Campinas, SP, Brazil
| |
Collapse
|
26
|
Thingnam SS, Lourembam DS, Tongbram PS, Lokya V, Tiwari S, Khan MK, Pandey A, Hamurcu M, Thangjam R. A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India. Genes (Basel) 2023; 14:genes14020370. [PMID: 36833297 PMCID: PMC9957078 DOI: 10.3390/genes14020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The enormous perennial monocotyledonous herb banana (Musa spp.), which includes dessert and cooking varieties, is found in more than 120 countries and is a member of the order Zingiberales and family Musaceae. The production of bananas requires a certain amount of precipitation throughout the year, and its scarcity reduces productivity in rain-fed banana-growing areas due to drought stress. To increase the tolerance of banana crops to drought stress, it is necessary to explore crop wild relatives (CWRs) of banana. Although molecular genetic pathways involved in drought stress tolerance of cultivated banana have been uncovered and understood with the introduction of high-throughput DNA sequencing technology, next-generation sequencing (NGS) techniques, and numerous "omics" tools, unfortunately, such approaches have not been thoroughly implemented to utilize the huge potential of wild genetic resources of banana. In India, the northeastern region has been reported to have the highest diversity and distribution of Musaceae, with more than 30 taxa, 19 of which are unique to the area, accounting for around 81% of all wild species. As a result, the area is regarded as one of the main locations of origin for the Musaceae family. The understanding of the response of the banana genotypes of northeastern India belonging to different genome groups to water deficit stress at the molecular level will be useful for developing and improving drought tolerance in commercial banana cultivars not only in India but also worldwide. Hence, in the present review, we discuss the studies conducted to observe the effect of drought stress on different banana species. Moreover, the article highlights the tools and techniques that have been used or that can be used for exploring and understanding the molecular basis of differentially regulated genes and their networks in different drought stress-tolerant banana genotypes of northeast India, especially wild types, for unraveling their potential novel traits and genes.
Collapse
Affiliation(s)
| | | | - Punshi Singh Tongbram
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
| | - Vadthya Lokya
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Robert Thangjam
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
- Department of Life Sciences, School of Life Sciences, Manipur University, Imphal 795003, India
- Correspondence:
| |
Collapse
|
27
|
Abstract
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) genome editing, coupled with advances in computing and imaging capabilities, has initiated a new era in which genetic diseases and individual disease susceptibilities are both predictable and actionable. Likewise, genes responsible for plant traits can be identified and altered quickly, transforming the pace of agricultural research and plant breeding. In this Review, we discuss the current state of CRISPR-mediated genetic manipulation in human cells, animals, and plants along with relevant successes and challenges and present a roadmap for the future of this technology.
Collapse
Affiliation(s)
- Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| |
Collapse
|
28
|
Basu U, Riaz Ahmed S, Bhat BA, Anwar Z, Ali A, Ijaz A, Gulzar A, Bibi A, Tyagi A, Nebapure SM, Goud CA, Ahanger SA, Ali S, Mushtaq M. A CRISPR way for accelerating cereal crop improvement: Progress and challenges. Front Genet 2023; 13:866976. [PMID: 36685816 PMCID: PMC9852743 DOI: 10.3389/fgene.2022.866976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Humans rely heavily on cereal grains as a key source of nutrients, hence regular improvement of cereal crops is essential for ensuring food security. The current food crisis at the global level is due to the rising population and harsh climatic conditions which prompts scientists to develop smart resilient cereal crops to attain food security. Cereal crop improvement in the past generally depended on imprecise methods like random mutagenesis and conventional genetic recombination which results in high off targeting risks. In this context, we have witnessed the application of targeted mutagenesis using versatile CRISPR-Cas systems for cereal crop improvement in sustainable agriculture. Accelerated crop improvement using molecular breeding methods based on CRISPR-Cas genome editing (GE) is an unprecedented tool for plant biotechnology and agriculture. The last decade has shown the fidelity, accuracy, low levels of off-target effects, and the high efficacy of CRISPR technology to induce targeted mutagenesis for the improvement of cereal crops such as wheat, rice, maize, barley, and millets. Since the genomic databases of these cereal crops are available, several modifications using GE technologies have been performed to attain desirable results. This review provides a brief overview of GE technologies and includes an elaborate account of the mechanisms and applications of CRISPR-Cas editing systems to induce targeted mutagenesis in cereal crops for improving the desired traits. Further, we describe recent developments in CRISPR-Cas-based targeted mutagenesis through base editing and prime editing to develop resilient cereal crop plants, possibly providing new dimensions in the field of cereal crop genome editing.
Collapse
Affiliation(s)
- Umer Basu
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | | | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Addafar Gulzar
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Wadura Sopore, India
| | - Amir Bibi
- Department of Plant Breeding and Genetics, Faculty of Agriculture Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Suresh M. Nebapure
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chengeshpur Anjali Goud
- Institute of Biotechnology, Professor Jayashanker Telangana State Agriculture University, Hyderabad, India
| | - Shafat Ahmad Ahanger
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Wadura Sopore, India,*Correspondence: Shafat Ahmad Ahanger, ; Sajad Ali, ; Muntazir Mushtaq,
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Shafat Ahmad Ahanger, ; Sajad Ali, ; Muntazir Mushtaq,
| | - Muntazir Mushtaq
- ICAR-National Bureau of Plant Genetic Resources, Division of Germplasm Evaluation, Pusa Campus, New Delhi, India,*Correspondence: Shafat Ahmad Ahanger, ; Sajad Ali, ; Muntazir Mushtaq,
| |
Collapse
|
29
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
30
|
Morianou I, Crisanti A, Nolan T, Hammond AM. CRISPR-Mediated Cassette Exchange (CriMCE): A Method to Introduce and Isolate Precise Marker-Less Edits. CRISPR J 2022; 5:868-876. [PMID: 36378258 DOI: 10.1089/crispr.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The introduction of small unmarked edits to the genome of insects is essential to study the molecular underpinnings of important biological traits, such as resistance to insecticides and genetic control strategies. Advances in CRISPR genome engineering have made this possible, but prohibitively laborious for most laboratories due to low rates of editing and the lack of a selectable marker. To facilitate the generation and isolation of precise marker-less edits we have developed a two-step method based on CRISPR-mediated cassette exchange (CriMCE) of a marked placeholder for a variant of interest. This strategy can be used to introduce a wider range of potential edits compared with previous approaches while consolidating the workflow. We present proof-of-principle that CriMCE is a powerful tool by engineering three single nucleotide polymorphism variants into the genome of Anopheles gambiae, with 5-41 × higher rates of editing than homology-directed repair or prime editing.
Collapse
Affiliation(s)
- Ioanna Morianou
- Department of Life Sciences, Imperial College London, London, United Kingdom; S.r.l., Terni, Italy
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom; S.r.l., Terni, Italy.,Department of Molecular Medicine, University of Padova, Padua, Italy; S.r.l., Terni, Italy
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; S.r.l., Terni, Italy
| | - Andrew M Hammond
- Department of Life Sciences, Imperial College London, London, United Kingdom; S.r.l., Terni, Italy.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; and S.r.l., Terni, Italy.,Biocentis, S.r.l., Terni, Italy
| |
Collapse
|
31
|
Fierlej Y, Jacquier NMA, Guille L, Just J, Montes E, Richard C, Loue-Manifel J, Depège-Fargeix N, Gaillard A, Widiez T, Rogowsky PM. Evaluation of genome and base editing tools in maize protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1010030. [PMID: 36518521 PMCID: PMC9744195 DOI: 10.3389/fpls.2022.1010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Despite its rapid worldwide adoption as an efficient mutagenesis tool, plant genome editing remains a labor-intensive process requiring often several months of in vitro culture to obtain mutant plantlets. To avoid a waste in time and money and to test, in only a few days, the efficiency of molecular constructs or novel Cas9 variants (clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9) prior to stable transformation, rapid analysis tools are helpful. METHODS To this end, a streamlined maize protoplast system for transient expression of CRISPR/Cas9 tools coupled to NGS (next generation sequencing) analysis and a novel bioinformatics pipeline was established. RESULTS AND DISCUSSION Mutation types found with high frequency in maize leaf protoplasts had a trend to be the ones observed after stable transformation of immature maize embryos. The protoplast system also allowed to conclude that modifications of the sgRNA (single guide RNA) scaffold leave little room for improvement, that relaxed PAM (protospacer adjacent motif) sites increase the choice of target sites for genome editing, albeit with decreased frequency, and that efficient base editing in maize could be achieved for certain but not all target sites. Phenotypic analysis of base edited mutant maize plants demonstrated that the introduction of a stop codon but not the mutation of a serine predicted to be phosphorylated in the bHLH (basic helix loop helix) transcription factor ZmICEa (INDUCER OF CBF EXPRESSIONa) caused abnormal stomata, pale leaves and eventual plant death two months after sowing.
Collapse
Affiliation(s)
- Yannick Fierlej
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
- Department Research and Development, MAS Seeds, Haut-Mauco, France
| | - Nathanaël M. A. Jacquier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Loïc Guille
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Jérémy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Emilie Montes
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Christelle Richard
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Jeanne Loue-Manifel
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Nathalie Depège-Fargeix
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Antoine Gaillard
- Department Research and Development, MAS Seeds, Haut-Mauco, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Peter M. Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| |
Collapse
|
32
|
Two New Antibacterial Isoindolin-1-Ones from the Leaves of Cigar Tobacco. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Kushalappa AC, Hegde NG, Yogendra KN. Metabolic pathway genes for editing to enhance multiple disease resistance in plants. JOURNAL OF PLANT RESEARCH 2022; 135:705-722. [PMID: 36036859 DOI: 10.1007/s10265-022-01409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Diseases are one of the major constraints in commercial crop production. Genetic diversity in varieties is the best option to manage diseases. Molecular marker-assisted breeding has produced hundreds of varieties with good yields, but the resistance level is not satisfactory. With the advent of whole genome sequencing, genome editing is emerging as an excellent option to improve the inadequate traits in these varieties. Plants produce thousands of antimicrobial secondary metabolites, which as polymers and conjugates are deposited to reinforce the secondary cell walls to contain the pathogen to an initial infection area. The resistance metabolites or the structures produced from them by plants are either constitutive (CR) or induced (IR), following pathogen invasion. The production of each resistance metabolite is controlled by a network of biosynthetic R genes, which are regulated by a hierarchy of R genes. A commercial variety also has most of these R genes, as in resistant, but a few may be mutated (SNPs/InDels). A few mutated genes, in one or more metabolic pathways, depending on the host-pathogen interaction, can be edited, and stacked to increase resistance metabolites or structures produced by them, to achieve required levels of multiple pathogen resistance under field conditions.
Collapse
Affiliation(s)
- Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Niranjan G Hegde
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Kalenahalli N Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| |
Collapse
|
34
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
35
|
Lal MK, Tiwari RK, Kumar A, Dey A, Kumar R, Kumar D, Jaiswal A, Changan SS, Raigond P, Dutt S, Luthra SK, Mandal S, Singh MP, Paul V, Singh B. Mechanistic Concept of Physiological, Biochemical, and Molecular Responses of the Potato Crop to Heat and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212857. [PMID: 36365310 PMCID: PMC9654185 DOI: 10.3390/plants11212857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 05/14/2023]
Abstract
Most cultivated potatoes are tetraploid, and the tuber is the main economic part that is consumed due to its calorific and nutritional values. Recent trends in climate change led to the frequent occurrence of heat and drought stress in major potato-growing regions worldwide. The optimum temperature for tuber production is 15-20 °C. High-temperature and water-deficient conditions during the growing season result in several morphological, physiological, biochemical, and molecular alterations. The morphological changes under stress conditions may affect the process of stolon formation, tuberization, and bulking, ultimately affecting the tuber yield. This condition also affects the physiological responses, including an imbalance in the allocation of photoassimilates, respiration, water use efficiency, transpiration, carbon partitioning, and the source-sink relationship. The biochemical responses under stress conditions involve maintaining ionic homeostasis, synthesizing heat shock proteins, achieving osmolyte balance, and generating reactive oxygen species, ultimately affecting various biochemical pathways. Different networks that include both gene regulation and transcription factors are involved at the molecular level due to the combination of hot and water-deficient conditions. This article attempts to present an integrative content of physio-biochemical and molecular responses under the combined effects of heat and drought, prominent factors in climate change. Taking into account all of these aspects and responses, there is an immediate need for comprehensive screening of germplasm and the application of appropriate approaches and tactics to produce potato cultivars that perform well under drought and in heat-affected areas.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, India
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (M.K.L.); (R.K.T.); Tel.: +91-9718815448 (M.K.L.)
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla 171001, India
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (M.K.L.); (R.K.T.); Tel.: +91-9718815448 (M.K.L.)
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | | | - Arvind Jaiswal
- ICAR-Central Potato Research Institute Campus, Jalandhar 144026, India
| | | | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | | | - Sayanti Mandal
- Department of Biotechnology, D. Y. Patil Arts, Commerce and Science College, Sant Tukaram Nagar, Pimpri, Pune 411018, India
| | - Madan Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vijay Paul
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla 171001, India
| |
Collapse
|
36
|
Sharma KK, Palakolanu SR, Bhattacharya J, Shankhapal AR, Bhatnagar-Mathur P. CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects. Front Genet 2022; 13:999207. [PMID: 36276961 PMCID: PMC9582247 DOI: 10.3389/fgene.2022.999207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022] Open
Abstract
Technologies and innovations are critical for addressing the future food system needs where genetic resources are an essential component of the change process. Advanced breeding tools like "genome editing" are vital for modernizing crop breeding to provide game-changing solutions to some of the "must needed" traits in agriculture. CRISPR/Cas-based tools have been rapidly repurposed for editing applications based on their improved efficiency, specificity and reduced off-target effects. Additionally, precise gene-editing tools such as base editing, prime editing, and multiplexing provide precision in stacking of multiple traits in an elite variety, and facilitating specific and targeted crop improvement. This has helped in advancing research and delivery of products in a short time span, thereby enhancing the rate of genetic gains. A special focus has been on food security in the drylands through crops including millets, teff, fonio, quinoa, Bambara groundnut, pigeonpea and cassava. While these crops contribute significantly to the agricultural economy and resilience of the dryland, improvement of several traits including increased stress tolerance, nutritional value, and yields are urgently required. Although CRISPR has potential to deliver disruptive innovations, prioritization of traits should consider breeding product profiles and market segments for designing and accelerating delivery of locally adapted and preferred crop varieties for the drylands. In this context, the scope of regulatory environment has been stated, implying the dire impacts of unreasonable scrutiny of genome-edited plants on the evolution and progress of much-needed technological advances.
Collapse
Affiliation(s)
- Kiran K. Sharma
- Sustainable Agriculture Programme, The Energy and Resources Institute (TERI), India Habitat Center, New Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R. Shankhapal
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- International Maize and Wheat Improvement Center (CIMMYT), México, United Kingdom
| |
Collapse
|
37
|
Suh S, Choi EH, Raguram A, Liu DR, Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci U S A 2022; 119:e2210104119. [PMID: 36122230 PMCID: PMC9522375 DOI: 10.1073/pnas.2210104119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CRISPR-Cas-based genome editing technologies could, in principle, be used to treat a wide variety of inherited diseases, including genetic disorders of vision. Programmable CRISPR-Cas nucleases are effective tools for gene disruption, but they are poorly suited for precisely correcting pathogenic mutations in most therapeutic settings. Recently developed precision genome editing agents, including base editors and prime editors, have enabled precise gene correction and disease rescue in multiple preclinical models of genetic disorders. Additionally, new delivery technologies that transiently deliver precision genome editing agents in vivo offer minimized off-target editing and improved safety profiles. These improvements to precision genome editing and delivery technologies are expected to revolutionize the treatment of genetic disorders of vision and other diseases. In this Perspective, we describe current preclinical and clinical genome editing approaches for treating inherited retinal degenerative diseases, and we discuss important considerations that should be addressed as these approaches are translated into clinical practice.
Collapse
Affiliation(s)
- Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Elliot H. Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
38
|
Deng F, Zeng F, Shen Q, Abbas A, Cheng J, Jiang W, Chen G, Shah AN, Holford P, Tanveer M, Zhang D, Chen ZH. Molecular evolution and functional modification of plant miRNAs with CRISPR. TRENDS IN PLANT SCIENCE 2022; 27:890-907. [PMID: 35165036 DOI: 10.1016/j.tplants.2022.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) has revolutionized biotechnology and provides genetic tools for medicine and life sciences. However, the application of this technology to miRNAs, with the function as negative gene regulators, has not been extensively reviewed in plants. Here, we summarize the evolution, biogenesis, and structure of miRNAs, as well as their interactions with mRNAs and computational models for predicting target genes. In addition, we review current advances in CRISPR/Cas for functional analysis and for modulating miRNA genes in plants. Extending our knowledge of miRNAs and their manipulation with CRISPR will provide fundamental understanding of the functions of plant miRNAs and facilitate more sustainable and publicly acceptable genetic engineering of crops.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7004, Australia.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
39
|
Biswas S, Bridgeland A, Irum S, Thomson MJ, Septiningsih EM. Optimization of Prime Editing in Rice, Peanut, Chickpea, and Cowpea Protoplasts by Restoration of GFP Activity. Int J Mol Sci 2022; 23:9809. [PMID: 36077206 PMCID: PMC9456013 DOI: 10.3390/ijms23179809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 01/23/2023] Open
Abstract
Precise editing of the plant genome has long been desired for functional genomic research and crop breeding. Prime editing is a newly developed precise editing technology based on CRISPR-Cas9, which uses an engineered reverse transcriptase (RT), a catalytically impaired Cas9 endonuclease (nCas9), and a prime editing guide RNA (pegRNA). In addition, prime editing has a wider range of editing types than base editing and can produce nearly all types of edits. Although prime editing was first established in human cells, it has recently been applied to plants. As a relatively new technique, optimization will be needed to increase the editing efficiency in different crops. In this study, we successfully edited a mutant GFP in rice, peanut, chickpea, and cowpea protoplasts. In rice, up to 16 times higher editing efficiency was achieved with a dual pegRNA than the single pegRNA containing vectors. Edited-mutant GFP protoplasts have also been obtained in peanut, chickpea, and cowpea after transformation with the dual pegRNA vectors, albeit with much lower editing efficiency than in rice, ranging from 0.2% to 0.5%. These initial results promise to expedite the application of prime editing in legume breeding programs to accelerate crop improvement.
Collapse
Affiliation(s)
- Sudip Biswas
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Aya Bridgeland
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Samra Irum
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
40
|
Applications of CRISPR/Cas13-Based RNA Editing in Plants. Cells 2022; 11:cells11172665. [PMID: 36078073 PMCID: PMC9454418 DOI: 10.3390/cells11172665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is widely used as a genome-editing tool in various organisms, including plants, to elucidate the fundamental understanding of gene function, disease diagnostics, and crop improvement. Among the CRISPR/Cas systems, Cas9 is one of the widely used nucleases for DNA modifications, but manipulation of RNA at the post-transcriptional level is limited. The recently identified type VI CRISPR/Cas systems provide a platform for precise RNA manipulation without permanent changes to the genome. Several studies reported efficient application of Cas13 in RNA studies, such as viral interference, RNA knockdown, and RNA detection in various organisms. Cas13 was also used to produce virus resistance in plants, as most plant viruses are RNA viruses. However, the application of CRISPR/Cas13 to studies of plant RNA biology is still in its infancy. This review discusses the current and prospective applications of CRISPR/Cas13-based RNA editing technologies in plants.
Collapse
|
41
|
Yang GY, Dai JM, Li ZJ, Wang J, Yang FX, Liu X, Li J, Gao Q, Li XM, Li YK, Wang WG, Zhou M, Hu QF. Isoindolin-1-ones from the stems of Nicotiana tabacum and their antiviral activities. Arch Pharm Res 2022; 45:572-583. [DOI: 10.1007/s12272-022-01399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
|
42
|
Nam H, Gupta A, Nam H, Lee S, Cho HS, Park C, Park S, Park SJ, Hwang I. JULGI-mediated increment in phloem transport capacity relates to fruit yield in tomato. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1533-1545. [PMID: 35478430 PMCID: PMC9342617 DOI: 10.1111/pbi.13831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The continuous growth of the global population and the increase in the amount of arid land has severely constrained agricultural crop production. To solve this problem, many researchers have attempted to increase productivity through the efficient distribution of energy; however, the direct relationship between the plant vasculature, specifically phloem development, and crop yield is not well established. Here, we demonstrate that an optimum increase in phloem-transportation capacity by reducing SIJUL expression leads to improved sink strength in tomato (Solanum lycopersicum L.). SIJUL, a negative regulator of phloem development, suppresses the translation of a positive regulator of phloem development, SlSMXL5. The suppression of SlJUL increases the number of phloem cells and sucrose transport, but only an optimal reduction of SlJUL function greatly enhances sink strength in tomato, improving fruit setting, and yield contents by 37% and 60%, respectively. We show that the increment in phloem cell number confers spare transport capacity. Our results suggest that the control of phloem-transport capacity within the threshold could enhance the commitment of photosynthates to instigate yield improvement.
Collapse
Affiliation(s)
- Hoyoung Nam
- Department of Life SciencesPOSTECH Biotech CenterPohang University of Science and TechnologyPohangKorea
| | - Aarti Gupta
- Department of Life SciencesPOSTECH Biotech CenterPohang University of Science and TechnologyPohangKorea
| | - Heejae Nam
- Department of Life SciencesPOSTECH Biotech CenterPohang University of Science and TechnologyPohangKorea
| | - Seungchul Lee
- Department of Life SciencesPOSTECH Biotech CenterPohang University of Science and TechnologyPohangKorea
| | - Hyun Seob Cho
- Department of Life SciencesPOSTECH Biotech CenterPohang University of Science and TechnologyPohangKorea
| | - Chanyoung Park
- Department of Life SciencesPOSTECH Biotech CenterPohang University of Science and TechnologyPohangKorea
| | - Soyoung Park
- Department of Life SciencesPOSTECH Biotech CenterPohang University of Science and TechnologyPohangKorea
| | - Soon Ju Park
- Division of Biological Sciences and Research Institute for Basic ScienceWonkwang UniversityIksanKorea
| | - Ildoo Hwang
- Department of Life SciencesPOSTECH Biotech CenterPohang University of Science and TechnologyPohangKorea
| |
Collapse
|
43
|
Tiwari JK, A J, Tuteja N, Khurana SMP. Genome editing (CRISPR-Cas)-mediated virus resistance in potato (Solanum tuberosum L.). Mol Biol Rep 2022; 49:12109-12119. [PMID: 35764748 DOI: 10.1007/s11033-022-07704-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Plant viruses are the major pathogens that cause heavy yield loss in potato. The important viruses are potato virus X, potato virus Y and potato leaf roll virus around the world. Besides these three viruses, a novel tomato leaf curl New Delhi virus is serious in India. Conventional cum molecular breeding and transgenics approaches have been applied to develop virus resistant potato genotypes. But progress is slow in developing resistant varieties due to lack of host genes and long breeding process, and biosafety concern with transgenics. Hence, CRISPR-Cas mediated genome editing has emerged as a powerful technology to address these issues. CRISPR-Cas technology has been deployed in potato for several important traits. We highlight here CRISPR-Cas approaches of virus resistance through targeting viral genome (DNA or RNA), host factor gene and multiplexing of target genes simultaneously. Further, advancement in CRISPR-Cas research is presented in the area of DNA-free genome editing, virus-induced genome editing, and base editing. CRISPR-Cas delivery, transformation methods, and challenges in tetraploid potato and possible methods are also discussed.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Jeevalatha A
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | | |
Collapse
|
44
|
Hamdan MF, Mohd Noor SN, Abd-Aziz N, Pua TL, Tan BC. Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. PLANTS (BASEL, SWITZERLAND) 2022; 11:1297. [PMID: 35631721 PMCID: PMC9146367 DOI: 10.3390/plants11101297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Technological applications in agriculture have evolved substantially to increase crop yields and quality to meet global food demand. Conventional techniques, such as seed saving, selective breeding, and mutation breeding (variation breeding), have dramatically increased crop production, especially during the 'Green Revolution' in the 1990s. However, newer issues, such as limited arable lands, climate change, and ever-increasing food demand, pose challenges to agricultural production and threaten food security. In the following 'Gene Revolution' era, rapid innovations in the biotechnology field provide alternative strategies to further improve crop yield, quality, and resilience towards biotic and abiotic stresses. These innovations include the introduction of DNA recombinant technology and applications of genome editing techniques, such as transcription activator-like effector (TALEN), zinc-finger nucleases (ZFN), and clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR/Cas) systems. However, the acceptance and future of these modern tools rely on the regulatory frameworks governing their development and production in various countries. Herein, we examine the evolution of technological applications in agriculture, focusing on the motivations for their introduction, technical challenges, possible benefits and concerns, and regulatory frameworks governing genetically engineered product development and production.
Collapse
Affiliation(s)
- Mohd Fadhli Hamdan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Siti Nurfadhlina Mohd Noor
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Nazrin Abd-Aziz
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Teen-Lee Pua
- Topplant Laboratories Sdn. Bhd., Jalan Ulu Beranang, Negeri Sembilan 71750, Malaysia;
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
45
|
Sturme MHJ, van der Berg JP, Bouwman LMS, De Schrijver A, de Maagd RA, Kleter GA, Battaglia-de Wilde E. Occurrence and Nature of Off-Target Modifications by CRISPR-Cas Genome Editing in Plants. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2022; 2:192-201. [PMID: 35548699 PMCID: PMC9075866 DOI: 10.1021/acsagscitech.1c00270] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/26/2022]
Abstract
![]()
CRISPR-Cas-based
genome editing allows for precise and targeted
genetic modification of plants. Nevertheless, unintended off-target
edits can arise that might confer risks when present in gene-edited
food crops. Through an extensive literature review we gathered information
on CRISPR-Cas off-target edits in plants. Most observed off-target
changes were small insertions or deletions (1–22 bp) or nucleotide
substitutions, and large deletions (>100 bp) were rare. One study
detected the insertion of vector-derived DNA sequences, which is important
considering the risk assessment of gene-edited plants. Off-target
sites had few mismatches (1–3 nt) with the target sequence
and were mainly located in protein-coding regions, often in target
gene homologues. Off-targets edits were predominantly detected via
biased analysis of predicted off-target sites instead of unbiased
genome-wide analysis. CRISPR-Cas-edited plants showed lower off-target
mutation frequencies than conventionally bred plants. This Review
can aid discussions on the relevance of evaluating off-target modifications
for risk assessment of CRISPR-Cas-edited plants.
Collapse
Affiliation(s)
- Mark H J Sturme
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Jan Pieter van der Berg
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Lianne M S Bouwman
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | | | - Ruud A de Maagd
- Wageningen Plant Research, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Gijs A Kleter
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Evy Battaglia-de Wilde
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
46
|
Haroon M, Wang X, Afzal R, Zafar MM, Idrees F, Batool M, Khan AS, Imran M. Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1052. [PMID: 35448780 PMCID: PMC9025237 DOI: 10.3390/plants11081052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 06/01/2023]
Abstract
Cereals are the main source of human food on our planet. The ever-increasing food demand, continuously changing environment, and diseases of cereal crops have made adequate production a challenging task for feeding the ever-increasing population. Plant breeders are striving their hardest to increase production by manipulating conventional breeding methods based on the biology of plants, either self-pollinating or cross-pollinating. However, traditional approaches take a decade, space, and inputs in order to make crosses and release improved varieties. Recent advancements in genome editing tools (GETs) have increased the possibility of precise and rapid genome editing. New GETs such as CRISPR/Cas9, CRISPR/Cpf1, prime editing, base editing, dCas9 epigenetic modification, and several other transgene-free genome editing approaches are available to fill the lacuna of selection cycles and limited genetic diversity. Over the last few years, these technologies have led to revolutionary developments and researchers have quickly attained remarkable achievements. However, GETs are associated with various bottlenecks that prevent the scaling development of new varieties that can be dealt with by integrating the GETs with the improved conventional breeding methods such as speed breeding, which would take plant breeding to the next level. In this review, we have summarized all these traditional, molecular, and integrated approaches to speed up the breeding procedure of cereals.
Collapse
Affiliation(s)
- Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Rabail Afzal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdul Saboor Khan
- Institute of Plant Sciences, University of Cologne, 50667 Cologne, Germany
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agriculture University, Guangzhou 510642, China
| |
Collapse
|
47
|
Xiong X, Li Z, Liang J, Liu K, Li C, Li JF. A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Res 2022; 50:3565-3580. [PMID: 35286371 PMCID: PMC8989527 DOI: 10.1093/nar/gkac166] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas-derived base editing tools empower efficient alteration of genomic cytosines or adenines associated with essential genetic traits in plants and animals. Diversified target sequences and customized editing products call for base editors with distinct features regarding the editing window and target scope. Here we developed a toolkit of plant base editors containing AID10, an engineered human AID cytosine deaminase. When fused to the N-terminus or C-terminus of the conventional Cas9 nickase (nSpCas9), AID10 exhibited a broad or narrow activity window at the protospacer adjacent motif (PAM)-distal and -proximal protospacer, respectively, while AID10 fused to both termini conferred an additive activity window. We further replaced nSpCas9 with orthogonal or PAM-relaxed Cas9 variants to widen target scopes. Moreover, we devised dual base editors with AID10 located adjacently or distally to the adenine deaminase ABE8e, leading to juxtaposed or spaced cytosine and adenine co-editing at the same target sequence in plant cells. Furthermore, we expanded the application of this toolkit in plants for tunable knockdown of protein-coding genes via creating upstream open reading frame and for loss-of-function analysis of non-coding genes, such as microRNA sponges. Collectively, this toolkit increases the functional diversity and versatility of base editors in basic and applied plant research.
Collapse
Affiliation(s)
- Xiangyu Xiong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenxiang Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jieping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kehui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chenlong Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
48
|
Nganso BT, Pines G, Soroker V. Insights into gene manipulation techniques for Acari functional genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103705. [PMID: 35134533 DOI: 10.1016/j.ibmb.2021.103705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Functional genomics is an essential tool for elucidating the structure and function of genes in any living organism. Here, we review the use of different gene manipulation techniques in functional genomics of Acari (mites and ticks). Some of these Acari species inflict severe economic losses to managed crops and health problems to humans, wild and domestic animals, but many also provide important ecosystem services worldwide. Currently, RNA interference (RNAi) is the leading gene expression manipulation tool followed by gene editing via the bacterial type II Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 system (CRISPR-Cas9). Whilst RNAi, via siRNA, does not always lead to expected outcomes, the exploitations of the CRISPR systems in Acari are still in their infancy and are limited only to CRISP/Cas9 to date. In this review, we discuss the advantages and disadvantages of RNAi and CRISPR-Cas9 and the technical challenges associated with their exploitations. We also compare the biochemical machinery of RNAi and CRISPR-Cas9 technologies. We highlight some potential solutions for experimental optimization of each mechanism in gene function studies. The potential benefits of adopting various CRISPR-Cas9 systems for expanding on functional genomics experiments in Acari are also discussed.
Collapse
Affiliation(s)
- Beatrice T Nganso
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Gur Pines
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Victoria Soroker
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| |
Collapse
|
49
|
Hua K, Han P, Zhu JK. Improvement of base editors and prime editors advances precision genome engineering in plants. PLANT PHYSIOLOGY 2022; 188:1795-1810. [PMID: 34962995 PMCID: PMC8968349 DOI: 10.1093/plphys/kiab591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 05/11/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-mediated gene disruption has revolutionized biomedical research as well as plant and animal breeding. However, most disease-causing mutations and agronomically important genetic variations are single base polymorphisms (single-nucleotide polymorphisms) that require precision genome editing tools for correction of the sequences. Although homology-directed repair of double-stranded breaks (DSBs) can introduce precise changes, such repairs are inefficient in differentiated animal and plant cells. Base editing and prime editing are two recently developed genome engineering approaches that can efficiently introduce precise edits into target sites without requirement of DSB formation or donor DNA templates. They have been applied in several plant species with promising results. Here, we review the extensive literature on improving the efficiency, target scope, and specificity of base editors and prime editors in plants. We also highlight recent progress on base editing in plant organellar genomes and discuss how these precision genome editing tools are advancing basic plant research and crop breeding.
Collapse
Affiliation(s)
- Kai Hua
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Peijin Han
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
50
|
Chennakesavulu K, Singh H, Trivedi PK, Jain M, Yadav SR. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants. PLANT CELL REPORTS 2022; 41:815-831. [PMID: 33742256 DOI: 10.1007/s00299-021-02681-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 05/28/2023]
Abstract
Our review has described principles and functional importance of CRISPR-Cas9 with emphasis on the recent advancements, such as CRISPR-Cpf1, base editing (BE), prime editing (PE), epigenome editing, tissue-specific (CRISPR-TSKO), and inducible genome editing and their potential applications in generating stress-tolerant plants. Improved agricultural practices and enhanced food crop production using innovative crop breeding technology is essential for increasing access to nutritious foods across the planet. The crop plants play a pivotal role in energy and nutrient supply to humans. The abiotic stress factors, such as drought, heat, and salinity cause a substantial yield loss in crop plants and threaten food security. The most sustainable and eco-friendly way to overcome these challenges are the breeding of crop cultivars with improved tolerance against abiotic stress factors. The conventional plant breeding methods have been highly successful in developing abiotic stress-tolerant crop varieties, but usually cumbersome and time-consuming. Alternatively, the CRISPR/Cas genome editing has emerged as a revolutionary tool for making efficient and precise genetic manipulations in plant genomes. Here, we provide a comprehensive review of the CRISPR/Cas genome editing (GE) technology with an emphasis on recent advances in the plant genome editing, including base editing (BE), prime editing (PE), epigenome editing, tissue-specific (CRISPR-TSKO), and inducible genome editing (CRISPR-IGE), which can be used for obtaining cultivars with enhanced tolerance to various abiotic stress factors. We also describe tissue culture-free, DNA-free GE technology, and some of the CRISPR-based tools that can be modified for their use in crop plants.
Collapse
Affiliation(s)
- Kunchapu Chennakesavulu
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Harshita Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Prabodh Kumar Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|