1
|
Grewal S, Yang CY, Krasheninnikova K, Collins J, Wood JMD, Ashling S, Scholefield D, Kaithakottil GG, Swarbreck D, Yao E, Sen TZ, King IP, King J. Chromosome-level haplotype-resolved genome assembly of bread wheat's wild relative Aegilops mutica. Sci Data 2025; 12:438. [PMID: 40082453 PMCID: PMC11906796 DOI: 10.1038/s41597-025-04737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Bread wheat (Triticum aestivum) is a vital staple crop, with an urgent need for increased production to help feed the world's growing population. Aegilops mutica (2n = 2x = 14; T genome) is a diploid wild relative of wheat carrying valuable agronomic traits resulting in its extensive exploitation for wheat improvement. This paper reports a chromosome-scale, haplotype-resolved genome assembly of Ae. mutica using HiFi reads and Omni-C data. The final lengths for the curated genomes were ~4.65 Gb (haplotype 1) and 4.56 Gb (haplotype 2), featuring a contig N50 of ~4.35 Mb and ~4.60 Mb, respectively. Genome annotation predicted 96,723 gene models and repeats. In summary, the genome assembly of Ae. mutica provides a valuable resource for the wheat breeding community, facilitating faster and more efficient pre-breeding of wheat to enhance food security.
Collapse
Affiliation(s)
- Surbhi Grewal
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Cai-Yun Yang
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | | - Joanna Collins
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Jonathan M D Wood
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Stephen Ashling
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Duncan Scholefield
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eric Yao
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Taner Z Sen
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
| | - Ian P King
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Julie King
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
2
|
Li X, Song D, Li M, Li D, You M, Peng Y, Yan J, Bai S. An initial exploration of core collection construction and DNA fingerprinting in Elymus sibiricus L. using SNP markers. FRONTIERS IN PLANT SCIENCE 2025; 16:1534085. [PMID: 39990717 PMCID: PMC11844813 DOI: 10.3389/fpls.2025.1534085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025]
Abstract
Elymus sibiricus L., an excellent forage and ecological restoration grass, plays a key role in grassland ecological construction and the sustainable development of animal husbandry. In China, the wild germplasm resources of E. sibiricus are abundant, and they are shaped by similar and contrasting climatic conditions to form distinct populations, which enrich the genetic diversity of E. sibiricus. To more comprehensively aggregate E. sibiricus germplasm resources at a lower cost and to more accurately utilize its genetic variation, this study conducted a preliminary exploration of core germplasm collections and fingerprinting of E. sibiricus using single nucleotide polymorphism (SNP) markers. By combining multiple evaluation measures with weighted processing, we successfully identified 36 materials from 90 wild E. sibiricus samples to serve as a core collection. Genetic diversity assessments, allele evaluations, and principal component analyses of the 36 core germplasm samples all indicate that these 36 samples accurately and comprehensively represent the genetic diversity of all 90 E. sibiricus germplasm accessions. Additionally, we identified 290 SNP loci from among the high-quality SNP loci generated by whole-genome sequencing of the 90 E. sibiricus samples as candidate markers. Of these, 52 SNP loci were selected as core markers for DNA fingerprinting of E. sibiricus. Using kompetitive allele-specific PCR (KASP) technology, we also performed population origin identification for 60 wild E. sibiricus germplasm accessions based on these core markers. The core SNP markers screened in this study were able to accurately distinguish between E. sibiricus germplasms from the Qinghai-Tibet Plateau and those from elsewhere. This study not only provides a reference for the continued collection and identification of E. sibiricus germplasm resources but also offers a scientific basis for their conservation and utilization.
Collapse
Affiliation(s)
- Xinrui Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Daping Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Mingfeng Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Minghong You
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiajun Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
3
|
Yang F, Lang T, Wu J, Zhang C, Qu H, Pu Z, Yang F, Yu M, Feng J. SNP loci identification and KASP marker development system for genetic diversity, population structure, and fingerprinting in sweetpotato (Ipomoea batatas L.). BMC Genomics 2024; 25:1245. [PMID: 39719557 DOI: 10.1186/s12864-024-11139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Sweetpotato (Ipomoea batatas L.), an important food and industrial crop in the world, has a highly heterozygous hexaploid genome, making the development of single nucleotide polymorphism (SNP) markers challenging. Identifying SNP loci and developing practical SNP markers are crucial for genomic and genetic research on sweetpotato. A restriction site-associated DNA sequencing analysis of 60 sweetpotato accessions in this study yielded about 7.97 million SNPs. Notably, 954 candidate SNPs were obtained from 21,681 high-quality SNPs. Based on their stability and polymorphism, 274 kompetitive allele specific PCR (KASP) markers were then developed and uniformly distributed on chromosomes. The 274 KASP markers were used to genotype 93 sweetpotato accessions to evaluate their utility for assessing germplasm and analyzing genetic diversity and population structures. These markers had respective mean values of 0.24, 0.34, 0.31, and 0.25 for minor allele frequency, heterozygosity, gene diversity, and polymorphic information content (PIC). Their genetic pedigree led to the division of all accessions into three primary clusters, which were found to be both interrelated and independent. Finally, 74 KASP markers with PIC values greater than 0.35 were selected as core markers. These markers were used to construct the DNA fingerprints of 93 sweetpotato accessions and were able to differentiate between all accessions. To the best of our knowledge, this is the first attempt at the development and application of KASP markers in sweetpotato. However, due to sweetpotato's polyploidy, heterozygosity and the complex genome, the KASP marker conversion rate in this study was relatively low. To improve the KASP marker conversion rate, and accuracies in SNP discovery and marker validation, further studies including more accessions from underrepresented regions are needed in sweetpotato.
Collapse
Affiliation(s)
- Feiyang Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
- School of life science and engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Tao Lang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Jingyu Wu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Cong Zhang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Huijuan Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Zhigang Pu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Fan Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China
| | - Ma Yu
- School of life science and engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610011, China.
| |
Collapse
|
4
|
Tiwari VK, Saripalli G, Sharma PK, Poland J. Wheat genomics: genomes, pangenomes, and beyond. Trends Genet 2024; 40:982-992. [PMID: 39191555 DOI: 10.1016/j.tig.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
There is an urgent need to improve wheat for upcoming challenges, including biotic and abiotic stresses. Sustainable wheat improvement requires the introduction of new genes and alleles in high-yielding wheat cultivars. Using new approaches, tools, and technologies to identify and introduce new genes in wheat cultivars is critical. High-quality genomes, transcriptomes, and pangenomes provide essential resources and tools to examine wheat closely to identify and manipulate new and targeted genes and alleles. Wheat genomics has improved excellently in the past 5 years, generating multiple genomes, pangenomes, and transcriptomes. Leveraging these resources allows us to accelerate our crop improvement pipelines. This review summarizes the progress made in wheat genomics and trait discovery in the past 5 years.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506, USA
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
King J, Dreisigacker S, Reynolds M, Bandyopadhyay A, Braun HJ, Crespo-Herrera L, Crossa J, Govindan V, Huerta J, Ibba MI, Robles-Zazueta CA, Saint Pierre C, Singh PK, Singh RP, Achary VMM, Bhavani S, Blasch G, Cheng S, Dempewolf H, Flavell RB, Gerard G, Grewal S, Griffiths S, Hawkesford M, He X, Hearne S, Hodson D, Howell P, Jalal Kamali MR, Karwat H, Kilian B, King IP, Kishii M, Kommerell VM, Lagudah E, Lan C, Montesinos-Lopez OA, Nicholson P, Pérez-Rodríguez P, Pinto F, Pixley K, Rebetzke G, Rivera-Amado C, Sansaloni C, Schulthess U, Sharma S, Shewry P, Subbarao G, Tiwari TP, Trethowan R, Uauy C. Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. GLOBAL CHANGE BIOLOGY 2024; 30:e17440. [PMID: 39185562 DOI: 10.1111/gcb.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 08/27/2024]
Abstract
The use of plant genetic resources (PGR)-wild relatives, landraces, and isolated breeding gene pools-has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end-use quality, and grain yield. In the Global South, post-Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared. Without PGR-derived disease resistance, fungicide use would have easily doubled, massively increasing selection pressure for fungicide resistance. It is estimated that in wheat, a billion liters of fungicide application have been avoided just since 2000. This review presents examples of successful use of PGR including the relentless battle against wheat rust epidemics/pandemics, defending against diseases that jump species barriers like blast, biofortification giving nutrient-dense varieties and the use of novel genetic variation for improving polygenic traits like climate resilience. Crop breeding genepools urgently need to be diversified to increase yields across a range of environments (>200 Mha globally), under less predictable weather and biotic stress pressure, while increasing input use efficiency. Given that the ~0.8 m PGR in wheat collections worldwide are relatively untapped and massive impacts of the tiny fraction studied, larger scale screenings and introgression promise solutions to emerging challenges, facilitated by advanced phenomic and genomic tools. The first translocations in wheat to modify rhizosphere microbiome interaction (reducing biological nitrification, reducing greenhouse gases, and increasing nitrogen use efficiency) is a landmark proof of concept. Phenomics and next-generation sequencing have already elucidated exotic haplotypes associated with biotic and complex abiotic traits now mainstreamed in breeding. Big data from decades of global yield trials can elucidate the benefits of PGR across environments. This kind of impact cannot be achieved without widescale sharing of germplasm and other breeding technologies through networks and public-private partnerships in a pre-competitive space.
Collapse
Affiliation(s)
- Julie King
- School of Biosciences, The University of Nottingham, Loughborough, UK
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Anindya Bandyopadhyay
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Hans-Joachim Braun
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | | | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- Colegio de Postgraduados, Montecillos, Mexico
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Julio Huerta
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Valle de México, Texcoco, Mexico
| | - Maria Itria Ibba
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | | | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- Huazhong Agricultural University, Wuhan, Hubei, China
| | - V Mohan Murali Achary
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Gerald Blasch
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Shifeng Cheng
- Chinese Academy of Agricultural Science (AGIS), Shenzhen, China
| | - Hannes Dempewolf
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | | | - Guillermo Gerard
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Surbhi Grewal
- School of Biosciences, The University of Nottingham, Loughborough, UK
| | | | | | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Sarah Hearne
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - David Hodson
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Phil Howell
- National Institute of Agricultural Botany (NIAB), Cambridge, UK
| | | | - Hannes Karwat
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | | | - Ian P King
- School of Biosciences, The University of Nottingham, Loughborough, UK
| | - Masahiro Kishii
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | | | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Caixia Lan
- Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Paul Nicholson
- John Innes Centre (JIC), Norwich Research Park, Norwich, UK
| | | | - Francisco Pinto
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University Research, Wageningen, The Netherlands
| | - Kevin Pixley
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Greg Rebetzke
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Carolina Rivera-Amado
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Urs Schulthess
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- CIMMYT-China Joint Center for Wheat and Maize Improvement, Henan Agricultural University, Zhengzhou, China
| | | | | | - Guntar Subbarao
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Thakur Prasad Tiwari
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Richard Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, University of Sydney, Narrabri, New South Wales, Australia
| | - Cristobal Uauy
- John Innes Centre (JIC), Norwich Research Park, Norwich, UK
| |
Collapse
|
6
|
Guwela VF, Maliro MF, Broadley MR, Hawkesford MJ, Bokosi JM, Grewal S, Coombes B, Hall A, Yang C, Banda M, Wilson L, King J. The 4T and 7T introgressions from Amblyopyrum muticum and the 5A u introgression from Triticum urartu increases grain zinc and iron concentrations in Malawian wheat backgrounds. FRONTIERS IN PLANT SCIENCE 2024; 15:1346046. [PMID: 39086916 PMCID: PMC11289773 DOI: 10.3389/fpls.2024.1346046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Micronutrient deficiencies (MNDs) particularly zinc (Zn) and iron (Fe) remain widespread in sub-Saharan Africa (SSA) due to low dietary intake. Wheat is an important source of energy globally, although cultivated wheat is inherently low in grain micronutrient concentrations. Malawian wheat/Am. muticum and Malawian wheat/T. urartu BC1F3 introgression lines, developed by crossing three Malawian wheat varieties (Kenya nyati, Nduna and Kadzibonga) with DH-348 (wheat/Am. muticum) and DH-254 (wheat/T. urartu), were phenotyped for grain Zn and Fe, and associated agronomic traits in Zn-deficient soils, in Malawi. 98% (47) of the BC1F3 introgression lines showed higher Zn above the checks Paragon, Chinese Spring, Kadzibonga, Kenya Nyati and Nduna. 23% (11) of the introgression lines showed a combination of high yields and an increase in grain Zn by 16-30 mg kg -1 above Nduna and Kadzibonga, and 11-25 mg kg -1 above Kenya nyati, Paragon and Chinese Spring. Among the 23%, 64% (7) also showed 8-12 mg kg -1 improvement in grain Fe compared to Nduna and Kenya nyati. Grain Zn concentrations showed a significant positive correlation with grain Fe, whilst grain Zn and Fe negatively and significantly correlated with TKW and grain yield. This work will contribute to the efforts of increasing mineral nutrient density in wheat, specifically targeting countries in the SSA.
Collapse
Affiliation(s)
- Veronica F. Guwela
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- Rothamsted Research, Harpenden, United Kingdom
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Moses F. Maliro
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Martin R. Broadley
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- Rothamsted Research, Harpenden, United Kingdom
| | | | - James M. Bokosi
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Surbhi Grewal
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Benedict Coombes
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Caiyun Yang
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Mike Banda
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Lolita Wilson
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Julie King
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
7
|
Wu D, Zhao X, Xie Y, Li L, Li Y, Zhu W, Xu L, Wang Y, Zeng J, Cheng Y, Sha L, Fan X, Zhang H, Zhou Y, Kang H. Cytogenetic and Genomic Characterization of a Novel Wheat-Tetraploid Thinopyrum elongatum 1BS⋅1EL Translocation Line with Stripe Rust Resistance. PLANT DISEASE 2024; 108:2065-2072. [PMID: 38381966 DOI: 10.1094/pdis-12-23-2799-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a destructive wheat disease pathogen. Thinopyrum elongatum is a valuable germplasm including diploid, tetraploid, and decaploid with plenty of biotic and abiotic resistance. In a previous study, we generated a stripe rust-resistant wheat-tetraploid Th. elongatum 1E/1D substitution line, K17-841-1. To further apply the wild germplasm for wheat breeding, we selected and obtained a new homozygous wheat-tetraploid Th. elongatum translocation line, T1BS⋅1EL, using genomic in situ hybridization, fluorescence in situ hybridization (FISH), oligo-FISH painting, and the wheat 55K single nucleotide polymorphism genotyping array. The T1BS⋅1EL is highly resistant to stripe rust at the seedling and adult stages. Pedigree and molecular marker analyses revealed that the resistance gene was located on the chromosome arm 1EL of tetraploid Th. elongatum, tentatively named Yr1EL. In addition, we developed and validated 32 simple sequence repeat markers and two kompetitive allele-specific PCR assays that were specific to the tetraploid Th. elongatum chromosome arm 1EL to facilitate marker-assisted selection for alien 1EL stripe rust resistance breeding. This will help us explore and locate the stripe rust resistance gene mapping on the 1E chromosome and deploy it in the wheat breeding program.
Collapse
Affiliation(s)
- Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yangqiu Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lingyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yinghui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haigin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huoyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
8
|
Han B, Wang X, Sun Y, Kang X, Zhang M, Luo J, Han H, Zhou S, Lu Y, Liu W, Yang X, Li X, Zhang J, Li L. Pre-breeding of spontaneous Robertsonian translocations for density planting architecture by transferring Agropyron cristatum chromosome 1P into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:110. [PMID: 38656338 DOI: 10.1007/s00122-024-04614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
KEY MESSAGE We developed T1AL·1PS and T1AS·1PL Robertsonian translocations by breakage-fusion mechanism based on wheat-A. cristatum 1P(1A) substitution line with smaller leaf area, shorter plant height, and other excellent agronomic traits Agropyron cristatum, a wild relative of wheat, is a valuable germplasm resource for improving wheat genetic diversity and yield. Our previous study confirmed that the A. cristatum chromosome 1P carries alien genes that reduce plant height and leaf size in wheat. Here, we developed T1AL·1PS and T1AS·1PL Robertsonian translocations (RobTs) by breakage-fusion mechanism based on wheat-A. cristatum 1P (1A) substitution line II-3-1c. Combining molecular markers and cytological analysis, we identified 16 spontaneous RobTs from 911 F2 individuals derived from the cross of Jimai22 and II-3-1c. Fluorescence in situ hybridization (FISH) was applied to detect the fusion structures of the centromeres in wheat and A. cristatum chromosomes. Resequencing results indicated that the chromosomal junction point was located at the physical position of Triticum aestivum chromosome 1A (212.5 Mb) and A. cristatum chromosome 1P (230 Mb). Genomic in situ hybridization (GISH) in pollen mother cells showed that the produced translocation lines could form stable ring bivalent. Introducing chromosome 1PS translocation fragment into wheat significantly increased the number of fertile tillers, grain number per spike, and grain weight and reduced the flag leaf area. However, introducing chromosome 1PL translocation fragment into wheat significantly reduced flag leaf area and plant height with a negative effect on yield components. The pre-breeding of two spontaneous RobTs T1AL·1PS and T1AS·1PL was important for wheat architecture improvement.
Collapse
Affiliation(s)
- Bohui Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yangyang Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xilu Kang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiawen Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiming Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shenghui Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqing Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China.
| | - Lihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China.
| |
Collapse
|
9
|
Grewal S, Yang CY, Scholefield D, Ashling S, Ghosh S, Swarbreck D, Collins J, Yao E, Sen TZ, Wilson M, Yant L, King IP, King J. Chromosome-scale genome assembly of bread wheat's wild relative Triticum timopheevii. Sci Data 2024; 11:420. [PMID: 38653999 PMCID: PMC11039740 DOI: 10.1038/s41597-024-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Wheat (Triticum aestivum) is one of the most important food crops with an urgent need for increase in its production to feed the growing world. Triticum timopheevii (2n = 4x = 28) is an allotetraploid wheat wild relative species containing the At and G genomes that has been exploited in many pre-breeding programmes for wheat improvement. In this study, we report the generation of a chromosome-scale reference genome assembly of T. timopheevii accession PI 94760 based on PacBio HiFi reads and chromosome conformation capture (Hi-C). The assembly comprised a total size of 9.35 Gb, featuring a contig N50 of 42.4 Mb and included the mitochondrial and plastid genome sequences. Genome annotation predicted 166,325 gene models including 70,365 genes with high confidence. DNA methylation analysis showed that the G genome had on average more methylated bases than the At genome. In summary, the T. timopheevii genome assembly provides a valuable resource for genome-informed discovery of agronomically important genes for food security.
Collapse
Affiliation(s)
- Surbhi Grewal
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Cai-Yun Yang
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Duncan Scholefield
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Stephen Ashling
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Sreya Ghosh
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Joanna Collins
- Genome Reference Informatics Team, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Eric Yao
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Taner Z Sen
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Michael Wilson
- University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Levi Yant
- University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ian P King
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Julie King
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
10
|
Horsnell R, Leigh FJ, Wright TIC, Burridge AJ, Ligeza A, Przewieslik-Allen AM, Howell P, Uauy C, Edwards KJ, Bentley AR. A wheat chromosome segment substitution line series supports characterization and use of progenitor genetic variation. THE PLANT GENOME 2024; 17:e20288. [PMID: 36718796 DOI: 10.1002/tpg2.20288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/20/2022] [Indexed: 06/18/2023]
Abstract
Genome-wide introgression and substitution lines have been developed in many plant species, enhancing mapping precision, gene discovery, and the identification and exploitation of variation from wild relatives. Created over multiple generations of crossing and/or backcrossing accompanied by marker-assisted selection, the resulting introgression lines are a fixed genetic resource. In this study we report the development of spring wheat (Triticum aestivum L.) chromosome segment substitution lines (CSSLs) generated to systematically capture genetic variation from tetraploid (T. turgidum ssp. dicoccoides) and diploid (Aegilops tauschii) progenitor species. Generated in a common genetic background over four generations of backcrossing, this is a base resource for the mapping and characterization of wheat progenitor variation. To facilitate further exploitation the final population was genetically characterized using a high-density genotyping array and a range of agronomic and grain traits assessed to demonstrate the potential use of the populations for trait localization in wheat.
Collapse
Affiliation(s)
- Richard Horsnell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | - Fiona J Leigh
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | - Tally I C Wright
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | | | - Aleksander Ligeza
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | | | - Philip Howell
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Alison R Bentley
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, UK
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico
| |
Collapse
|
11
|
Xing X, Hu T, Wang Y, Li Y, Wang W, Hu H, Wei Q, Yan Y, Gan D, Bao C, Wang J. Construction of SNP fingerprints and genetic diversity analysis of radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1329890. [PMID: 38371408 PMCID: PMC10869463 DOI: 10.3389/fpls.2024.1329890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
Radish (Raphanus sativus L.) is a vegetable crop with economic value and ecological significance in the genus Radish, family Brassicaceae. In recent years, developed countries have attached great importance to the collection and conservation of radish germplasm resources and their research and utilization, but the lack of population genetic information and molecular markers has hindered the development of the genetic breeding of radish. In this study, we integrated the radish genomic data published in databases for the development of single-nucleotide polymorphism (SNP) markers, and obtained a dataset of 308 high-quality SNPs under strict selection criteria. With the support of Kompetitive Allele-Specific PCR (KASP) technology, we screened a set of 32 candidate core SNP marker sets to analyse the genetic diversity of the collected 356 radish varieties. The results showed that the mean values of polymorphism information content (PIC), minor allele frequency (MAF), gene diversity and heterozygosity of the 32 candidate core SNP markers were 0.32, 0.30, 0.40 and 0.25, respectively. Population structural analysis, principal component analysis and genetic evolutionary tree analysis indicated that the 356 radish materials were best classified into two taxa, and that the two taxa of the material were closely genetically exchanged. Finally, on the basis of 32 candidate core SNP markers we calculated 15 core markers using a computer algorithm to construct a fingerprint map of 356 radish varieties. Furthermore, we constructed a core germplasm population consisting of 71 radish materials using 32 candidate core markers. In this study, we developed SNP markers for radish cultivar identification and genetic diversity analysis, and constructed DNA fingerprints, providing a basis for the identification of radish germplasm resources and molecular marker-assisted breeding as well as genetic research.
Collapse
Affiliation(s)
- Xiaolin Xing
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tianhua Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yikui Wang
- Institute of Vegetables, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yan Li
- Institute of Vegetables, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wuhong Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haijiao Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingzhen Wei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaqin Yan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Defang Gan
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Chonglai Bao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinglei Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
12
|
Boehm J, Cai X. Enrichment and Diversification of the Wheat Genome via Alien Introgression. PLANTS (BASEL, SWITZERLAND) 2024; 13:339. [PMID: 38337872 PMCID: PMC10857235 DOI: 10.3390/plants13030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Wheat, including durum and common wheat, respectively, is an allopolyploid with two or three homoeologous subgenomes originating from diploid wild ancestral species. The wheat genome's polyploid origin consisting of just three diploid ancestors has constrained its genetic variation, which has bottlenecked improvement. However, wheat has a large number of relatives, including cultivated crop species (e.g., barley and rye), wild grass species, and ancestral species. Moreover, each ancestor and relative has many other related subspecies that have evolved to inhabit specific geographic areas. Cumulatively, they represent an invaluable source of genetic diversity and variation available to enrich and diversify the wheat genome. The ancestral species share one or more homologous genomes with wheat, which can be utilized in breeding efforts through typical meiotic homologous recombination. Additionally, genome introgressions of distant relatives can be moved into wheat using chromosome engineering-based approaches that feature induced meiotic homoeologous recombination. Recent advances in genomics have dramatically improved the efficacy and throughput of chromosome engineering for alien introgressions, which has served to boost the genetic potential of the wheat genome in breeding efforts. Here, we report research strategies and progress made using alien introgressions toward the enrichment and diversification of the wheat genome in the genomics era.
Collapse
Affiliation(s)
- Jeffrey Boehm
- USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, NE 68583, USA;
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Xiwen Cai
- USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, NE 68583, USA;
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
13
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Karam A, El-Assal SEDS, Hussein BA, Atia MAM. Transcriptome data mining towards characterization of single nucleotide polymorphisms (SNPs) controlling salinity tolerance in bread wheat. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2081516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ahmed Karam
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | | | | | - Mohamed Atia Mohamed Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
15
|
Zhang W, Danilova T, Zhang M, Ren S, Zhu X, Zhang Q, Zhong S, Dykes L, Fiedler J, Xu S, Frels K, Wegulo S, Boehm J, Cai X. Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4409-4419. [PMID: 36201026 DOI: 10.1007/s00122-022-04228-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
We identified and integrated the novel FHB-resistant Fhb7The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived (Thinopyrum elongatum, genome EE) Fhb7 allele, designated Fhb7The2, was identified and integrated into the wheat B genome through a small 7B-7E translocation (7BS·7BL-7EL) involving the terminal regions of the long arms. Fhb7The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum-derived Fhb7 allele Fhb7Thp. This will further improve the utility of Fhb7The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7The2, Fhb7Thp, and another Th. elongatum-derived Fhb7 allele Fhb7The1, which led to seven amino acid conversions in Fhb7The2, Fhb7Thp, and Fhb7The1, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7The2. The 7EL segment containing Fhb7The2 in the translocation chromosome 7BS·7BL-7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.
Collapse
Affiliation(s)
- Wei Zhang
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, 030031, China
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Tatiana Danilova
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Mingyi Zhang
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Shuangfeng Ren
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qijun Zhang
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Linda Dykes
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Jason Fiedler
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Steven Xu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA
| | - Katherine Frels
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Stephen Wegulo
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jeffrey Boehm
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Xiwen Cai
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA.
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA.
| |
Collapse
|
16
|
Yang Y, Lyu M, Liu J, Wu J, Wang Q, Xie T, Li H, Chen R, Sun D, Yang Y, Yao X. Construction of an SNP fingerprinting database and population genetic analysis of 329 cauliflower cultivars. BMC PLANT BIOLOGY 2022; 22:522. [PMID: 36357859 PMCID: PMC9647966 DOI: 10.1186/s12870-022-03920-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cauliflower is one of the most important vegetable crops grown worldwide. However, the lack of genetic diversity information and efficient molecular markers hinders efforts to improve cauliflower. This study aims to construct DNA fingerprints for 329 cauliflower cultivars based on SNP markers and the KASP system. After rigorous filtering, a total of 1662 candidate SNPs were obtained from nearly 17.9 million SNP loci. The mean values of PIC, MAF, heterozygosity and gene diversity of these SNPs were 0.389, 0.419, 0.075, and 0.506, respectively. We developed a program for in silico simulations on 153 core germplasm samples to generate ideal SNP marker sets from the candidates. Finally, 41 highly polymorphic KASP markers were selected and applied to identify 329 cauliflower cultivars, mainly collected from the public market. Furthermore, based on the KASP genotyping data, we performed phylogenetic analysis and population structure analysis of the 329 cultivars. As a result, these cultivars could be classified into three major clusters, and the classification patterns were significantly related to their curd solidity and geographical origin. Finally, fingerprints of the 329 cultivars and 2D barcodes with the genetic information of each sample were generated. The fingerprinting database developed in this study provides a practical tool for identifying the authenticity and purity of cauliflower seeds and valuable genetic information about the current cauliflower cultivars.
Collapse
Affiliation(s)
- Yuyao Yang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mingjie Lyu
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianjin Wu
- Tianjin Agricultural Development Service Center, Tianjin, 300061, China
| | - Qian Wang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Tianyu Xie
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Haichao Li
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Rui Chen
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Deling Sun
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Yingxia Yang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Xingwei Yao
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| |
Collapse
|
17
|
King J, Grewal S, Othmeni M, Coombes B, Yang CY, Walter N, Ashling S, Scholefield D, Walker J, Hubbart-Edwards S, Hall A, King IP. Introgression of the Triticum timopheevii Genome Into Wheat Detected by Chromosome-Specific Kompetitive Allele Specific PCR Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:919519. [PMID: 35720607 PMCID: PMC9198554 DOI: 10.3389/fpls.2022.919519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 05/08/2023]
Abstract
Triticum timopheevii (2n = 28, A t A t GG) is a tetraploid wild relative species with great potential to increase the genetic diversity of hexaploid wheat Triticum aestivum (2n = 42, AABBDD) for various important agronomic traits. A breeding scheme that propagated advanced backcrossed populations of wheat-T. timopheevii introgression lines through further backcrossing and self-fertilisation resulted in the generation of 99 introgression lines (ILs) that carried 309 homozygous segments from the A t and G subgenomes of T. timopheevii. These introgressions contained 89 and 74 unique segments from the A t and G subgenomes, respectively. These overlapping segments covered 98.9% of the T. timopheevii genome that has now been introgressed into bread wheat cv. Paragon including the entirety of all T. timopheevii chromosomes via varying sized segments except for chromosomes 3A t , 4G, and 6G. Homozygous ILs contained between one and eight of these introgressions with an average of three per introgression line. These homozygous introgressions were detected through the development of a set of 480 chromosome-specific Kompetitive allele specific PCR (KASP) markers that are well-distributed across the wheat genome. Of these, 149 were developed in this study based on single nucleotide polymorphisms (SNPs) discovered through whole genome sequencing of T. timopheevii. A majority of these KASP markers were also found to be T. timopheevii subgenome specific with 182 detecting A t subgenome and 275 detecting G subgenome segments. These markers showed that 98% of the A t segments had recombined with the A genome of wheat and 74% of the G genome segments had recombined with the B genome of wheat with the rest recombining with the D genome of wheat. These results were validated through multi-colour in situ hybridisation analysis. Together these homozygous wheat-T. timopheevii ILs and chromosome-specific KASP markers provide an invaluable resource to wheat breeders for trait discovery to combat biotic and abiotic stress factors affecting wheat production due to climate change.
Collapse
Affiliation(s)
- Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Manel Othmeni
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Cai-yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Nicola Walter
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Jack Walker
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Ian Phillip King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
18
|
Radanović A, Sprycha Y, Jocković M, Sundt M, Miladinović D, Jansen C, Horn R. KASP Markers Specific for the Fertility Restorer Locus Rf1 and Application for Genetic Purity Testing in Sunflowers ( Helianthus annuus L.). Genes (Basel) 2022; 13:465. [PMID: 35328019 PMCID: PMC8951052 DOI: 10.3390/genes13030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) were significantly associated with fertility restoration of cytoplasmic male sterility (CMS) PET1 by the restorer gene Rf1. For these SNPs, four Kompetitive allele-specific PCR (KASP) markers were successfully designed. The KASP markers cover the fertility restorer locus Rf1, spanning about 3 Mb, and clearly differentiate restorer and maintainer lines. For genetic purity testing in sunflower hybrid production, the efficiency for detecting contaminations in samples was simulated using mixtures of hypocotyls or leaves. Contaminations of restorer lines with 1%, 3%, 5%, 10%, and 50% of maintainer lines were screened with all four KASP markers. Contaminations of 10% could be clearly detected in pools of 100 plants. Contaminations below this level require detection on a single plant level. For single plant detections, ethyl methanesulfonate-treated sunflower F1 hybrids, which had been phenotypically evaluated for male sterility (potential mutation in the Rf1 gene) were screened. Nine identified either partially male-sterile or male-sterile plants were analyzed with all four KASP markers and only one proved to be a hybrid with a mutation, seven were male-sterile contaminants in the F1 seeds used (1.6%) and one a recombinant plant. The four KASP markers should be valuable tools for marker-assisted selection (MAS) in sunflower breeding regarding the restorer locus Rf1.
Collapse
Affiliation(s)
- Aleksandra Radanović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Yves Sprycha
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| | - Milan Jocković
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Monja Sundt
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Constantin Jansen
- Strube Research GmbH & Co. KG, Hauptstr. 1, D-38387 Söllingen, Germany;
| | - Renate Horn
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| |
Collapse
|
19
|
Grewal S, Coombes B, Joynson R, Hall A, Fellers J, Yang CY, Scholefield D, Ashling S, Isaac P, King IP, King J. Chromosome-specific KASP markers for detecting Amblyopyrum muticum segments in wheat introgression lines. THE PLANT GENOME 2022; 15:e20193. [PMID: 35102721 DOI: 10.1002/tpg2.20193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 05/23/2023]
Abstract
Many wild-relative species are being used in prebreeding programs to increase the genetic diversity of wheat (Triticum aestivum L.). Genotyping tools such as single nucleotide polymorphism (SNP)-based arrays and molecular markers have been widely used to characterize wheat-wild relative introgression lines. However, due to the polyploid nature of the recipient wheat genome, it is difficult to develop SNP-based Kompetitive allele-specific polymerase chain reaction (KASP) markers that are codominant to track the introgressions from the wild species. Previous attempts to develop KASP markers have involved both exome- and polymerase chain reaction (PCR)-amplicon-based sequencing of the wild species. But chromosome-specific KASP assays have been hindered by homoeologous SNPs within the wheat genome. This study involved whole genome sequencing of the diploid wheat wild relative Amblyopyrum muticum (Boiss.) Eig and development of a de novo SNP discovery pipeline that generated ∼38,000 SNPs in unique wheat genome sequences. New assays were designed to increase the density of Am. muticum polymorphic KASP markers. With a goal of one marker per 60 Mbp, 335 new KASP assays were validated as diagnostic for Am. muticum in a wheat background. Together with assays validated in previous studies, 498 well distributed chromosome-specific markers were used to recharacterize previously genotyped wheat-Am. muticum doubled haploid (DH) introgression lines. The chromosome-specific nature of the KASP markers allowed clarification of which wheat chromosomes were involved with recombination events or substituted with Am. muticum chromosomes and the higher density of markers allowed detection of new small introgressions in these DH lines.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | | | - Ryan Joynson
- Earlham Institute, Norwich Research Park, Norwich, UK
- Current address: Limagrain Europe, Clermont-Ferrand, France
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - John Fellers
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Cai-Yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Peter Isaac
- iDna Genetics Ltd., Norwich Research Park, Norwich, UK
| | - Ian P King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, Univ. of Nottingham, Loughborough, UK
| |
Collapse
|
20
|
Othmeni M, Grewal S, Walker J, Yang CY, King IP, King J. Assessing the Potential of Using the Langdon 5D(5B) Substitution Line for the Introgression of Aegilops tauschii Into Durum Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:927728. [PMID: 35873983 PMCID: PMC9302120 DOI: 10.3389/fpls.2022.927728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/07/2022] [Indexed: 05/17/2023]
Abstract
Aegilops tauschii, the D-genome donor of hexaploid wheat, provides a source of genetic variation that could be used for tetraploid (durum) wheat improvement. In addition to the genes for wheat quality on the D-genome, which differentiate between bread and durum wheats in terms of end-use properties, genes coding for resistances to biotic and abiotic stresses are also present on the D-genome which would be useful in durum wheat. The introgression of Ae. tauschii into durum wheat, however, requires cytogenetic manipulation to induce homoeologous chromosome pairing to promote recombination. For this purpose, the introgression of Ae. tauschii into durum wheat was performed through a bridge cross of the wild species to the Langdon 5D(5B) disomic substitution line that lacks the Ph1 locus present on chromosome 5B, followed by a cross of the F1 to the durum wheat cultivar Om Rabi 5. Subsequent generations were self-fertilized, and these were screened for D-genome introgressions using (i) D-genome-specific Kompetitive Allele-Specific PCR (KASP) markers and (ii) KASP markers polymorphic between the 5D chromosomes of wheat, present in the Langdon 5D(5B) substitution line, and of Ae. tauschii. Homozygous introgression lines were confirmed using genomic and fluorescence in situ hybridization. The results showed that the use of the Langdon 5D(5B) disomic substitution line did not promote D-genome introgression across all linkage groups with only a limited success in the introgression of Ae. tauschii 5D segments into durum wheat.
Collapse
|
21
|
Yang G, Zheng Q, Hu P, Li H, Luo Q, Li B, Li Z. Cytogenetic identification and molecular marker development for the novel stripe rust-resistant wheat- Thinopyrum intermedium translocation line WTT11. ABIOTECH 2021; 2:343-356. [PMID: 36304423 PMCID: PMC9590478 DOI: 10.1007/s42994-021-00060-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Xiaoyan 78829, a partial amphidiploid developed by crossing common wheat with Thinopyrum intermedium, is immune to wheat stripe rust. To transfer the resistance gene of this excellent germplasm resource to wheat, the translocation line WTT11 was produced by pollen irradiation and assessed for immunity to stripe rust races CYR32, CYR33 and CYR34. A novel stripe rust-resistance locus derived from Th. intermedium was confirmed by linkage and diagnostic marker analyses. Molecular cytogenetic analyses revealed that WTT11 carries a TTh·2DL translocation. The breakpoint of 1B was located at 95.5 MB, and the alien segments were found to be homoeologous to wheat-group chromosomes 6 and 7 according to a wheat660K single-nucleotide polymorphism (SNP) array analysis. Ten previously developed PCR-based markers were confirmed to rapidly trace the alien segments of WTT11, and 20 kompetitive allele-specific PCR (KASP) markers were developed to enable genotyping of Th. intermedium and common wheat. Evaluation of agronomic traits in two consecutive crop seasons uncovered some favorable agronomic traits in WTT11, such as lower plant height and longer main panicles, that may be applicable to wheat improvement. As a novel genetic resource, the new resistance locus may be useful for wheat disease-resistance breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00060-3.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Pan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qiaoling Luo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
22
|
Chang CC, Silva BBI, Huang HY, Tsai CY, Flores RJD, Tayo LL, Tyan YC, Tsai MA, Catulin GEM, Chuang KP, Yang JL. Development and Validation of KASP Assays for the Genotyping of Racing Performance-Associated Single Nucleotide Polymorphisms in Pigeons. Genes (Basel) 2021; 12:1383. [PMID: 34573366 PMCID: PMC8468996 DOI: 10.3390/genes12091383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Pigeon racing's recent upturn in popularity can be attributed in part to the huge prize money involved in these competitions. As such, methods to select pigeons with desirable genetic characteristics for racing or for selective breeding have also been gaining more interest. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for genotyping-specific genes is one of the most commonly used molecular techniques, which can be costly, laborious and time consuming. The present study reports the development of an alternative genotyping method that employs Kompetitive Allele Specific Polymerase Chain Reaction (KASP) technology with specifically designed primers to detect previously reported racing performance-associated polymorphisms within the LDHA, MTYCB, and DRD4 genes. To validate, KASP assays and PCR-RFLP assays results from 107 samples genotyped for each of the genes were compared and the results showed perfect (100%) agreement of both methods. The developed KASP assays present an alternative rapid, reliable, and cost-effective method to identify polymorphisms in pigeons.
Collapse
Affiliation(s)
- Ching-Chi Chang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-C.C.); (H.-Y.H.); (C.-Y.T.)
| | - Benji Brayan I. Silva
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (B.B.I.S.); (Y.-C.T.)
| | - Huai-Ying Huang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-C.C.); (H.-Y.H.); (C.-Y.T.)
- Demin Veterinary Hospital, Kaohsiung 807, Taiwan
| | - Ching-Yi Tsai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-C.C.); (H.-Y.H.); (C.-Y.T.)
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (B.B.I.S.); (Y.-C.T.)
| | - Ronilo Jose D. Flores
- Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines;
- Graduate School, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines; (L.L.T.); (G.E.M.C.)
| | - Yu-Chang Tyan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (B.B.I.S.); (Y.-C.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Research Center for Environmental Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-An Tsai
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Gail Everette M. Catulin
- School of Chemical, Biological and Materials Engineering and Sciences, Mapúa University, Intramuros, Manila 1002, Philippines; (L.L.T.); (G.E.M.C.)
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-C.C.); (H.-Y.H.); (C.-Y.T.)
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (B.B.I.S.); (Y.-C.T.)
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jenq-Lin Yang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
23
|
Steadham J, Schulden T, Kalia B, Koo DH, Gill BS, Bowden R, Yadav IS, Chhuneja P, Erwin J, Tiwari V, Rawat N. An approach for high-resolution genetic mapping of distant wild relatives of bread wheat: example of fine mapping of Lr57 and Yr40 genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2671-2686. [PMID: 34013456 DOI: 10.1007/s00122-021-03851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The article reports a powerful but simple approach for high-resolution mapping and eventual map-based cloning of agronomically important genes from distant relatives of wheat, using the already existing germplasm resources. Wild relatives of wheat are a rich reservoir of genetic diversity for its improvement. The effective utilization of distant wild relatives in isolation of agronomically important genes is hindered by the lack of recombination between the homoeologous chromosomes. In this study, we propose a simple yet powerful approach that can be applied for high-resolution mapping of a targeted gene from wheat's distant gene pool members. A wheat-Aegilops geniculata translocation line TA5602 with a small terminal segment from chromosome 5 Mg of Ae. geniculata translocated to 5D of wheat contains genes Lr57 and Yr40 for leaf rust and stripe rust resistance, respectively. To map these genes, TA5602 was crossed with a susceptible Ae. geniculata 5 Mg addition line. Chromosome pairing between the 5 Mg chromosomes of susceptible and resistant parents resulted in the development of a high-resolution mapping panel for the targeted genes. Next-generation-sequencing data from flow-sorted 5 Mg chromosome of Ae. geniculata allowed us to generate 5 Mg-specific markers. These markers were used to delineate Lr57 and Yr40 genes each to distinct ~ 1.5 Mb physical intervals flanked by gene markers on 5 Mg. The method presented here will allow researchers worldwide to utilize existing germplasm resources in genebanks and seed repositories toward routinely performing map-based cloning of important genes from tertiary gene pools of wheat.
Collapse
Affiliation(s)
- James Steadham
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Taylor Schulden
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Bhanu Kalia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Dal-Hoe Koo
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Bowden
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506, USA
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - John Erwin
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
24
|
Bansal M, Adamski NM, Toor PI, Kaur S, Sharma A, Srivastava P, Bansal U, Uauy C, Chhuneja P. A robust KASP marker for selection of four pairs of linked leaf rust and stripe rust resistance genes introgressed on chromosome arm 5DS from different wheat genomes. Mol Biol Rep 2021; 48:5209-5216. [PMID: 34213711 DOI: 10.1007/s11033-021-06525-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Stripe rust and leaf rust are among the most devastating diseases of wheat, limiting its production globally. Wheat wild relatives harbour genetic diversity for new genes and alleles for all major wheat diseases. However, the use of this genetic variation from wild progenitor and non-progenitor species has been limited in the breeding programs. Reasons include limited recombination of donor and recipient genomes and the lack of tertiary gene pool markers. Here, we describe the development of a SNP based marker from the flow-sorted and sequenced Aegilops umbellulata chromosome 5U which can be used for marker assisted selection of four pair of alien leaf rust and stripe rust resistance genes. Lr57-Yr40_CAPS16 marker was reported earlier to be linked with alien leaf and stripe rust resistance genes introgressed on wheat chromosome 5DS. Due to its dominant nature and laborious to work with, a new SNP-based KASP marker, XTa5DS-2754099_kasp23, was developed from the same CAPS marker contig. XTa5DS-2754099_kasp23 was tested in Aegilops umbellulata, Ae. geniculata, Ae. peregrina and Ae. caudata derived alien introgression lines, which harbour four pairs of linked leaf and stripe rust genes; Lr76-Yr70, Lr57-Yr40, LrP- YrP, LrAc-YrAc, respectively. This KASP marker was found to be effective for the selection of the aforesaid four pairs of leaf rust and stripe rust resistance genes. Further, we tested and validated XTa5DS-2754099_kasp23 on commercial varieties and advanced breeding lines from four countries (India, Egypt, Australia and UK) including hexaploid and durum wheat. Our results provide evidence that KASP marker, XTa5DS-2754099_kasp23 can be used in marker-assisted selection of the four pairs of rust resistance alien genes in wheat breeding programmes.
Collapse
Affiliation(s)
- Mitaly Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | | | - Puneet Inder Toor
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Urmil Bansal
- University of Sydney Plant Breeding Institute-Cobbitty, PMB 4011, Narellan, NSW, 2567, Australia
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India.
| |
Collapse
|
25
|
Qiao L, Liu S, Li J, Li S, Yu Z, Liu C, Li X, Liu J, Ren Y, Zhang P, Zhang X, Yang Z, Chang Z. Development of Sequence-Tagged Site Marker Set for Identification of J, J S, and St Sub-genomes of Thinopyrum intermedium in Wheat Background. FRONTIERS IN PLANT SCIENCE 2021; 12:685216. [PMID: 34249056 PMCID: PMC8261300 DOI: 10.3389/fpls.2021.685216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Thinopyrum intermedium (2n = 6x = 42, JJJSJSStSt) is one of the important resources for the wheat improvement. So far, a few Th. intermedium (Thi)-specific molecular markers have been reported, but the number is far from enough to meet the need of identifying alien fragments in wheat-Th. intermedium hybrids. In this study, 5,877,409 contigs were assembled using the Th. intermedium genotyping-by-sequencing (GBS) data. We obtained 5,452 non-redundant contigs containing mapped Thi-GBS markers with less than 20% similarity to the wheat genome and developed 2,019 sequence-tagged site (STS) molecular markers. Among the markers designed, 745 Thi-specific markers with amplification products in Th. intermedium but not in eight wheat landraces were further selected. The distribution of these markers in different homologous groups of Th. intermedium varied from 47 (7/12/28 on 6J/6St/6JS) to 183 (54/62/67 on 7J/7St/7JS). Furthermore, the effectiveness of these Thi-specific markers was verified using wheat-Th. intermedium partial amphidiploids, addition lines, substitution lines, and translocation lines. Markers developed in this study provide a convenient, rapid, reliable, and economical method for identifying Th. intermedium chromosomes in wheat. In addition, this set of Thi-specific markers can also be used to estimate genetic and physical locations of Th. intermedium chromatin in the introgression lines, thus providing valuable information for follow-up studies such as alien gene mining.
Collapse
Affiliation(s)
- Linyi Qiao
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Shujuan Liu
- Department of Plant Science, College of Agronomy, Northwest Agriculture & Forestry University, Yangling, China
| | - Jianbo Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Life and Environmental Sciences, Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, Australia
| | - Shijiao Li
- Department of Botany, College of Life Science, Shanxi University, Taiyuan, China
| | - Zhihui Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Liu
- School of Life and Environmental Sciences, Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia
| | - Xin Li
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Jing Liu
- Department of Botany, College of Life Science, Shanxi University, Taiyuan, China
| | - Yongkang Ren
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Peng Zhang
- School of Life and Environmental Sciences, Plant Breeding Institute, The University of Sydney, Cobbitty, NSW, Australia
| | - Xiaojun Zhang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhijian Chang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
26
|
Tello-Ruiz MK, Naithani S, Gupta P, Olson A, Wei S, Preece J, Jiao Y, Wang B, Chougule K, Garg P, Elser J, Kumari S, Kumar V, Contreras-Moreira B, Naamati G, George N, Cook J, Bolser D, D'Eustachio P, Stein LD, Gupta A, Xu W, Regala J, Papatheodorou I, Kersey PJ, Flicek P, Taylor C, Jaiswal P, Ware D. Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res 2021; 49:D1452-D1463. [PMID: 33170273 DOI: 10.1093/nar/gkaa979/5973447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 05/20/2023] Open
Abstract
Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide. The resource is committed to open access and reproducible science based on the FAIR data principles. Since the last NAR update, we made nine releases; doubled the genome portal's content; expanded curated genes, pathways and expression sets; and implemented the Domain Informational Vocabulary Extraction (DIVE) algorithm for extracting gene function information from publications. The current release, #63 (October 2020), hosts 93 reference genomes-over 3.9 million genes in 122 947 families with orthologous and paralogous classifications. Plant Reactome portrays pathway networks using a combination of manual biocuration in rice (320 reference pathways) and orthology-based projections to 106 species. The Reactome platform facilitates comparison between reference and projected pathways, gene expression analyses and overlays of gene-gene interactions. Gramene integrates ontology-based protein structure-function annotation; information on genetic, epigenetic, expression, and phenotypic diversity; and gene functional annotations extracted from plant-focused journals using DIVE. We train plant researchers in biocuration of genes and pathways; host curated maize gene structures as tracks in the maize genome browser; and integrate curated rice genes and pathways in the Plant Reactome.
Collapse
Affiliation(s)
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Priyanka Garg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Justin Cook
- Informatics and Bio-computing Program, Ontario Institute of Cancer Research, Toronto M5G 1L7, Canada
| | - Daniel Bolser
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Current affiliation: Geromics Inc., Cambridge CB1 3NF, UK
| | - Peter D'Eustachio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lincoln D Stein
- Adaptive Oncology Program, Ontario Institute for Cancer Research, Toronto M5G 0A3, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amit Gupta
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Weijia Xu
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Jennifer Regala
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA
- Current affiliation: American Urological Association, Linthicum, MD 21090, USA
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Current affiliation: Royal Botanic Gardens, Kew Richmond, Surrey TW9 3AE, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Crispin Taylor
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Tello-Ruiz MK, Naithani S, Gupta P, Olson A, Wei S, Preece J, Jiao Y, Wang B, Chougule K, Garg P, Elser J, Kumari S, Kumar V, Contreras-Moreira B, Naamati G, George N, Cook J, Bolser D, D’Eustachio P, Stein LD, Gupta A, Xu W, Regala J, Papatheodorou I, Kersey PJ, Flicek P, Taylor C, Jaiswal P, Ware D. Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res 2021; 49:D1452-D1463. [PMID: 33170273 PMCID: PMC7779000 DOI: 10.1093/nar/gkaa979] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide. The resource is committed to open access and reproducible science based on the FAIR data principles. Since the last NAR update, we made nine releases; doubled the genome portal's content; expanded curated genes, pathways and expression sets; and implemented the Domain Informational Vocabulary Extraction (DIVE) algorithm for extracting gene function information from publications. The current release, #63 (October 2020), hosts 93 reference genomes-over 3.9 million genes in 122 947 families with orthologous and paralogous classifications. Plant Reactome portrays pathway networks using a combination of manual biocuration in rice (320 reference pathways) and orthology-based projections to 106 species. The Reactome platform facilitates comparison between reference and projected pathways, gene expression analyses and overlays of gene-gene interactions. Gramene integrates ontology-based protein structure-function annotation; information on genetic, epigenetic, expression, and phenotypic diversity; and gene functional annotations extracted from plant-focused journals using DIVE. We train plant researchers in biocuration of genes and pathways; host curated maize gene structures as tracks in the maize genome browser; and integrate curated rice genes and pathways in the Plant Reactome.
Collapse
Affiliation(s)
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Priyanka Garg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Justin Cook
- Informatics and Bio-computing Program, Ontario Institute of Cancer Research, Toronto M5G 1L7, Canada
| | - Daniel Bolser
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Current affiliation: Geromics Inc., Cambridge CB1 3NF, UK
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lincoln D Stein
- Adaptive Oncology Program, Ontario Institute for Cancer Research, Toronto M5G 0A3, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amit Gupta
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Weijia Xu
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Jennifer Regala
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA
- Current affiliation: American Urological Association, Linthicum, MD 21090, USA
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Current affiliation: Royal Botanic Gardens, Kew Richmond, Surrey TW9 3AE, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Crispin Taylor
- American Society of Plant Biologists, Rockville, MD 20855-2768, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
28
|
Grewal S, Guwela V, Newell C, Yang CY, Ashling S, Scholefield D, Hubbart-Edwards S, Burridge A, Stride A, King IP, King J. Generation of Doubled Haploid Wheat- Triticum urartu Introgression Lines and Their Characterisation Using Chromosome-Specific KASP Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:643636. [PMID: 34054892 PMCID: PMC8155260 DOI: 10.3389/fpls.2021.643636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 05/07/2023]
Abstract
Wheat is one of the most important food and protein sources in the world and although, in recent years wheat breeders have achieved yield gains, they are not sufficient to meet the demands of an ever-growing population. Development of high yielding wheat varieties, resilient to abiotic and biotic stress resulting from climate change, has been limited by wheat's narrow genetic base. In contrast to wheat, the wild relatives of wheat provide a vast reservoir of genetic variation for most, if not all, agronomic traits. Previous studies by the authors have shown the transfer of genetic variation from T. urartu into bread wheat. However, before the introgression lines can be exploited for trait analysis, they are required to have stable transmission of the introgressions to the next generation. In this work, we describe the generation of 86 doubled haploid (DH) wheat-T. urartu introgression lines that carry homozygous introgressions which are stably inherited. The DH lines were characterised using the Axiom® Wheat Relative Genotyping Array and 151 KASP markers to identify 65 unique T. urartu introgressions in a bread wheat background. DH production has helped accelerate the breeding process and facilitated the early release of homozygous wheat-T. urartu introgression lines. Together with the KASP markers, this valuable resource could greatly advance identification of beneficial alleles that can be used in wheat improvement.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Veronica Guwela
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Claire Newell
- Limagrain UK Limited, Bury St Edmunds, United Kingdom
| | - Cai-yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Amanda Burridge
- School of Biological Sciences, University of Bristol, United Kingdom
| | - Alex Stride
- Limagrain UK Limited, Bury St Edmunds, United Kingdom
| | - Ian P. King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- *Correspondence: Julie King,
| |
Collapse
|
29
|
Yang F, Liu Q, Wang Q, Yang N, Li J, Wan H, Liu Z, Yang S, Wang Y, Zhang J, Liu H, Fan X, Ma W, Yang W, Zhou Y. Characterization of the Durum Wheat- Aegilops tauschii 4D(4B) Disomic Substitution Line YL-443 With Superior Characteristics of High Yielding and Stripe Rust Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:745290. [PMID: 34659315 PMCID: PMC8514839 DOI: 10.3389/fpls.2021.745290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 05/10/2023]
Abstract
Durum wheat is one of the important food and cash crops. The main goals in current breeding programs are improving its low yield potential, kernel characteristics, and lack of resistance or tolerance to some biotic and abiotic stresses. In this study, a nascent synthesized hexaploid wheat Lanmai/AT23 is used as the female parent in crosses with its AB genome donor Lanmai. A tetraploid line YL-443 with supernumerary spikelets and high resistance to stripe rust was selected out from the pentaploid F7 progeny. Somatic analysis using multicolor fluorescence in situ hybridization (mc-FISH) revealed that this line is a disomic substitution line with the 4B chromosome pair of Lanmai replaced by the 4D chromosome pair of Aegilops tauschii AT23. Comparing with Lanmai, YL-443 shows an increase in the number of spikelets and florets per spike by 36.3 and 75.9%, respectively. The stripe rust resistance gene Yr28 carried on the 4D chromosome was fully expressed in the tetraploid background. The present 4D(4B) disomic substitution line YL-443 was distinguished from the previously reported 4D(4B) lines with the 4D chromosomes from Chinese Spring (CS). Our study demonstrated that YL-443 can be used as elite germplasm for durum wheat breeding targeting high yield potential and stripe rust resistance. The Yr28-specific PCR marker and the 4D chromosome-specific KASP markers together with its unique features of pubescent leaf sheath and auricles can be utilized for assisting selection in breeding.
Collapse
Affiliation(s)
- Fan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Qier Liu
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Honshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
| | - Sujie Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Ying Wang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Jie Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Hang Liu
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wujun Ma
- Australia-China Joint Centre for Wheat Improvement, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Wujun Ma
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture, Chengdu, China
- Wuyun Yang
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Yonghong Zhou
| |
Collapse
|
30
|
McAusland L, Vialet-Chabrand S, Jauregui I, Burridge A, Hubbart-Edwards S, Fryer MJ, King IP, King J, Pyke K, Edwards KJ, Carmo-Silva E, Lawson T, Murchie EH. Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. THE NEW PHYTOLOGIST 2020; 228:1767-1780. [PMID: 32910841 DOI: 10.1111/nph.16832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/03/2020] [Indexed: 05/26/2023]
Abstract
The wild relatives of modern wheat represent an underutilized source of genetic and phenotypic diversity and are of interest in breeding owing to their wide adaptation to diverse environments. Leaf photosynthetic traits underpin the rate of production of biomass and yield and have not been systematically explored in the wheat relatives. This paper identifies and quantifies the phenotypic variation in photosynthetic, stomatal, and morphological traits in up to 88 wheat wild relative accessions across five genera. Both steady-state measurements and dynamic responses to step changes in light intensity are assessed. A 2.3-fold variation for flag leaf light and CO2 -saturated rates of photosynthesis Amax was observed. Many accessions showing higher and more variable Amax , maximum rates of carboxylation, electron transport, and Rubisco activity when compared with modern genotypes. Variation in dynamic traits was also significant; with distinct genus-specific trends in rates of induction of nonphotochemical quenching and rate of stomatal opening. We conclude that utilization of wild relatives for improvement of photosynthesis is supported by the existence of a high degree of natural variation in key traits and should consider not only genus-level properties but variation between individual accessions.
Collapse
Affiliation(s)
- Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | - Iván Jauregui
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Stella Hubbart-Edwards
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Michael J Fryer
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Ian P King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Julie King
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | - Kevin Pyke
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| | | | | | - Tracy Lawson
- School of Life Science, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK
| |
Collapse
|
31
|
Zhang M, Zhang W, Zhu X, Sun Q, Yan C, Xu SS, Fiedler J, Cai X. Dissection and physical mapping of wheat chromosome 7B by inducing meiotic recombination with its homoeologues in Aegilops speltoides and Thinopyrum elongatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3455-3467. [PMID: 32930833 DOI: 10.1007/s00122-020-03680-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
We constructed a homoeologous recombination-based bin map of wheat chromosome 7B, providing a unique physical framework for further study of chromosome 7B and its homoeologues in wheat and its relatives. Homoeologous recombination leads to the dissection and diversification of the wheat genome. Advances in genome sequencing and genotyping have dramatically improved the efficacy and throughput of homoeologous recombination-based genome studies and alien introgression in wheat and its relatives. In this study, we aimed to physically dissect and map wheat chromosome 7B by inducing meiotic recombination of chromosome 7B with its homoeologues 7E in Thinopyrum elongatum and 7S in Aegilops speltoides. The special genotypes, which were double monosomic for chromosomes 7B' + 7E' or 7B' + 7S' and homozygous for the ph1b mutant, were produced to enhance 7B - 7E and 7B - 7S recombination. Chromosome-specific DNA markers were developed and used to pre-screen the large recombination populations for 7B - 7E and 7B - 7S recombinants. The DNA marker-mediated preselections were verified by fluorescent genomic in situ hybridization (GISH). In total, 29 7B - 7E and 61 7B - 7S recombinants and multiple chromosome aberrations were recovered and delineated by GISH and the wheat 90 K SNP assay. Integrated GISH and SNP analysis of the recombinants physically mapped the recombination breakpoints and partitioned wheat chromosome 7B into 44 bins with 523 SNPs assigned within. A composite bin map was constructed for chromosome 7B, showing the bin size and physical distribution of SNPs. This provides a unique physical framework for further study of chromosome 7B and its homoeologues. In addition, the 7B - 7E and 7B - 7S recombinants extend the genetic variability of wheat chromosome 7B and represent useful germplasm for wheat breeding. Thereby, this genomics-enabled chromosome engineering approach facilitates wheat genome study and enriches the gene pool of wheat improvement.
Collapse
Affiliation(s)
- Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qing Sun
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Jason Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
32
|
Makhoul M, Rambla C, Voss-Fels KP, Hickey LT, Snowdon RJ, Obermeier C. Overcoming polyploidy pitfalls: a user guide for effective SNP conversion into KASP markers in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2413-2430. [PMID: 32500260 PMCID: PMC7360542 DOI: 10.1007/s00122-020-03608-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 05/11/2023]
Abstract
Conversion of SNP chip assays into locus-specific KASP markers requires adapted strategies in polyploid species with high genome homeology. Procedures are exemplified by QTL-associated SNPs in hexaploid wheat. Kompetitive allele-specific PCR (KASP) markers are commonly used in marker-assisted commercial plant breeding due to their cost-effectiveness and throughput for high sample volumes. However, conversion of trait-linked SNP markers from array-based SNP detection technologies into KASP markers is particularly challenging in polyploid crop species, due to the presence of highly similar homeologous and paralogous genome sequences. We evaluated strategies and identified key requirements for successful conversion of Illumina Infinium assays from the wheat 90 K SNP array into robust locus-specific KASP markers. Numerous examples showed that commonly used software for semiautomated KASP primer design frequently fails to achieve locus-specificity of KASP assays in wheat. Instead, alignment of SNP probes with multiple reference genomes and Sanger sequencing of relevant genotypes, followed by visual KASP primer placement, was critical for locus-specificity. To identify KASP assays resulting in false calling of heterozygous individuals, validation of KASP assays using extended reference genotype sets including heterozygous genotypes is strongly advised for polyploid crop species. Applying this strategy, we developed highly reproducible, stable KASP assays that are predictive for root biomass QTL haplotypes from highly homoeologous wheat chromosome regions. Due to their locus-specificity, these assays predicted root biomass considerably better than the original trait-associated markers from the Illumina array.
Collapse
Affiliation(s)
- M Makhoul
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - C Rambla
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | - K P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | - L T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | - R J Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - C Obermeier
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
33
|
Fellers JP, Matthews A, Fritz AK, Rouse MN, Grewal S, Hubbart‐Edwards S, King IP, King J. Resistance to wheat rusts identified in wheat/ Amblyopyrum muticum chromosome introgressions. CROP SCIENCE 2020; 60:1957-1964. [PMID: 34354296 PMCID: PMC8317048 DOI: 10.1002/csc2.20120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 12/30/2019] [Indexed: 06/01/2023]
Abstract
Wheat (Triticum aestivum L.) rusts are a worldwide production problem. Plant breeders have used genetic resistance to combat these fungi. However, single-gene resistance is rapidly overcome as a result of frequent occurrence of new virulent fungal strains. Thus, a supply of new resistance sources is continually needed, and new resistance sources are limited within hexaploid wheat genetic stocks. Wild relatives are able to be a resource for new resistance genes but are hindered because of chromosome incapability with domesticated wheats. Twenty-eight double-haploid hexaploid wheat/Amblyopyrum muticum (Boiss.) Eig introgression lines, with introgressions covering the majority of the T genome, were evaluated for resistance to Puccinia triticina Erikss., P. graminis Pers.:Pers. f.sp. tritici Erikss. & E. Henning, and P. striiformis Westend. f.sp. tritici Erikss.. At the seedling level, four lines were resistant to races of P. triticina, six lines were resistant to P. graminis, and 15 lines were resistant to P. striiformis. At the adult stage, 16 lines were resistant to P. triticina. Line 355 had resistance to all three rusts and line 161 had resistance to all tested races of P. triticina. Some of these lines will require further work to reduce the size of the introgressed segment; however, lines 92 and 355 have very small fragments and can be used directly as new resistance donors.
Collapse
Affiliation(s)
- John P. Fellers
- USDA–ARS Hard Winter Wheat Genetics Research UnitManhattanKS66506USA
| | - Angie Matthews
- Department of AgronomyKansas State UniversityManhattanKS66506USA
| | - Allan K. Fritz
- Department of AgronomyKansas State UniversityManhattanKS66506USA
| | | | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughLE12 5RDUK
| | - Stella Hubbart‐Edwards
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughLE12 5RDUK
| | - Ian P. King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughLE12 5RDUK
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Crop Sciences, School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughLE12 5RDUK
| |
Collapse
|
34
|
Manimekalai R, Suresh G, Govinda Kurup H, Athiappan S, Kandalam M. Role of NGS and SNP genotyping methods in sugarcane improvement programs. Crit Rev Biotechnol 2020; 40:865-880. [PMID: 32508157 DOI: 10.1080/07388551.2020.1765730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sugarcane (Saccharum spp.) is one of the most economically significant crops because of its high sucrose content and it is a promising biomass feedstock for biofuel production. Sugarcane genome sequencing and analysis is a difficult task due to its heterozygosity and polyploidy. Long sequence read technologies, PacBio Single-Molecule Real-Time (SMRT) sequencing, the Illumina TruSeq, and the Oxford Nanopore sequencing could solve the problem of genome assembly. On the applications side, next generation sequencing (NGS) technologies played a major role in the discovery of single nucleotide polymorphism (SNP) and the development of low to high throughput genotyping platforms. The two mainstream high throughput genotyping platforms are the SNP microarray and genotyping by sequencing (GBS). This paper reviews the NGS in sugarcane genomics, genotyping methodologies, and the choice of these methods. Array-based SNP genotyping is robust, provides consistent SNPs, and relatively easier downstream data analysis. The GBS method identifies large scale SNPs across the germplasm. A combination of targeted GBS and array-based genotyping methods should be used to increase the accuracy of genomic selection and marker-assisted breeding.
Collapse
Affiliation(s)
- Ramaswamy Manimekalai
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Gayathri Suresh
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Hemaprabha Govinda Kurup
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Selvi Athiappan
- Crop Improvement Division, ICAR - Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Coimbatore, Tamil Nadu, India
| | - Mallikarjuna Kandalam
- Business Development, Asia Pacific Japan region, Thermo Fisher Scientific, Waltham, MA, USA
| |
Collapse
|
35
|
Song L, Zhao H, Zhang Z, Zhang S, Liu J, Zhang W, Zhang N, Ji J, Li L, Li J. Molecular Cytogenetic Identification of Wheat- Aegilops Biuncialis 5M b Disomic Addition Line with Tenacious and Black Glumes. Int J Mol Sci 2020; 21:E4053. [PMID: 32517065 PMCID: PMC7312955 DOI: 10.3390/ijms21114053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 12/02/2022] Open
Abstract
Production of wheat-alien disomic addition lines is of great value to the exploitation and utilization of elite genes originated from related species to wheat. In this study, a novel wheat-Aegilops biuncialis 5Mb disomic addition line WA317 was characterized by in situ hybridization (ISH) and specific-locus amplified fragment sequencing (SLAF-seq) markers. Compared to its parent Chinese Spring (CS), the glumes of WA317 had black color and were difficult to remove after harvesting, suggesting chromosome 5Mb carried gene(s) related to glume development and Triticeae domestication process. A total of 242 Ae. biuncialis SLAF-based markers (298 amplified patterns) were developed and further divided into four categories by Ae. biuncialis Y17, Ae. umbellulata Y139 and Ae. comosa Y258, including 172 markers amplifying the same bands of U and M genome, six and 102 markers amplifying U-specific and M-specific bands, respectively and eighteen markers amplifying specific bands in Y17. Among them, 45 markers had the specific amplifications in WA317 and were 5Mb specific markers. Taken together, line WA317 with tenacious and black glumes should serve as the foundation for understanding of the Triticeae domestication process and further exploitation of primitive alleles for wheat improvement. Ae. biuncialis SLAF-based markers can be used for studying syntenic relationships between U and M genomes as well as rapid tracking of U and M chromosomal segments in wheat background.
Collapse
Affiliation(s)
- Liqiang Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhao
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
| | - Zhi Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (L.L.)
| | - Shuai Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Jiajia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (L.L.)
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Grewal S, Othmeni M, Walker J, Hubbart-Edwards S, Yang CY, Scholefield D, Ashling S, Isaac P, King IP, King J. Development of Wheat- Aegilops caudata Introgression Lines and Their Characterization Using Genome-Specific KASP Markers. FRONTIERS IN PLANT SCIENCE 2020; 11:606. [PMID: 32477394 PMCID: PMC7240103 DOI: 10.3389/fpls.2020.00606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 05/23/2023]
Abstract
Aegilops caudata L. [syn. Ae. markgrafii (Greuter) Hammer], is a diploid wild relative of wheat (2n = 2x = 14, CC) and a valuable source for new genetic diversity for wheat improvement. It has a variety of disease resistance factors along with tolerance for various abiotic stresses and can be used for wheat improvement through the generation of genome-wide introgressions resulting in different wheat-Ae. caudata recombinant lines. Here, we report the generation of nine such wheat-Ae. caudata recombinant lines which were characterized using wheat genome-specific KASP (Kompetitive Allele Specific PCR) markers and multi-color genomic in situ hybridization (mcGISH). Of these, six lines have stable homozygous introgressions from Ae. caudata and will be used for future trait analysis. Using cytological techniques and molecular marker analysis of the recombinant lines, 182 KASP markers were physically mapped onto the seven Ae. caudata chromosomes, of which 155 were polymorphic specifically with only one wheat subgenome. Comparative analysis of the physical positions of these markers in the Ae. caudata and wheat genomes confirmed that the former had chromosomal rearrangements with respect to wheat, as previously reported. These wheat-Ae. caudata recombinant lines and KASP markers are useful resources that can be used in breeding programs worldwide for wheat improvement. Additionally, the genome-specific KASP markers could prove to be a valuable tool for the rapid detection and marker-assisted selection of other Aegilops species in a wheat background.
Collapse
Affiliation(s)
- Surbhi Grewal
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Manel Othmeni
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jack Walker
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Stella Hubbart-Edwards
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Cai-yun Yang
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Duncan Scholefield
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Ashling
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Peter Isaac
- IDna Genetics Ltd., Norwich Research Park, Norwich, United Kingdom
| | - Ian P. King
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Julie King
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
37
|
Adamski NM, Borrill P, Brinton J, Harrington SA, Marchal C, Bentley AR, Bovill WD, Cattivelli L, Cockram J, Contreras-Moreira B, Ford B, Ghosh S, Harwood W, Hassani-Pak K, Hayta S, Hickey LT, Kanyuka K, King J, Maccaferrri M, Naamati G, Pozniak CJ, Ramirez-Gonzalez RH, Sansaloni C, Trevaskis B, Wingen LU, Wulff BBH, Uauy C. A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. eLife 2020; 9:e55646. [PMID: 32208137 PMCID: PMC7093151 DOI: 10.7554/elife.55646] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 02/04/2023] Open
Abstract
Understanding the function of genes within staple crops will accelerate crop improvement by allowing targeted breeding approaches. Despite their importance, a lack of genomic information and resources has hindered the functional characterisation of genes in major crops. The recent release of high-quality reference sequences for these crops underpins a suite of genetic and genomic resources that support basic research and breeding. For wheat, these include gene model annotations, expression atlases and gene networks that provide information about putative function. Sequenced mutant populations, improved transformation protocols and structured natural populations provide rapid methods to study gene function directly. We highlight a case study exemplifying how to integrate these resources. This review provides a helpful guide for plant scientists, especially those expanding into crop research, to capitalise on the discoveries made in Arabidopsis and other plants. This will accelerate the improvement of crops of vital importance for food and nutrition security.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Jemima Brinton
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | | | | | | | - William D Bovill
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food (CSIRO)CanberraAustralia
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and BioinformaticsFiorenzuola d'ArdaItaly
| | | | - Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Brett Ford
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food (CSIRO)CanberraAustralia
| | - Sreya Ghosh
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Wendy Harwood
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | | | - Sadiye Hayta
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of QueenslandSt LuciaAustralia
| | | | - Julie King
- Division of Plant and Crop Sciences, The University of Nottingham, Sutton Bonington CampusLoughboroughUnited Kingdom
| | - Marco Maccaferrri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna (University of Bologna)BolognaItaly
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Curtis J Pozniak
- Crop Development Centre, University of SaskatchewanSaskatoonCanada
| | | | | | - Ben Trevaskis
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food (CSIRO)CanberraAustralia
| | - Luzie U Wingen
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Brande BH Wulff
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
38
|
Han G, Liu S, Jin Y, Jia M, Ma P, Liu H, Wang J, An D. Scale development and utilization of universal PCR-based and high-throughput KASP markers specific for chromosome arms of rye (Secale cereale L.). BMC Genomics 2020; 21:206. [PMID: 32131733 PMCID: PMC7057559 DOI: 10.1186/s12864-020-6624-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 02/01/2023] Open
Abstract
Background Rye (Secale cereale L., 2n = 2x = 14, RR), a relative of common wheat, is a large gene resource pool for wheat improvement. Accurate and convenient identification of the rye chromatin in wheat background will facilitate the transfer and utilization of elite genes derived from rye in wheat breeding. Results In the present study, five rye cultivars including Imperial, German White, Jingzhouheimai, Baili and Guyuan were sequenced by specific-locus amplified fragment sequencing (SLAF-seq) to develop large-scale rye-specific markers. Based on SLAF-seq and bioinformatics analyses, a total of 404 universal PCR-based and a whole set of Kompetitive allele-specific PCR (KASP) markers specific for the 14 individual rye chromosome arms were developed and validated. Additionally, two KASP markers specific for 1RS and 2RL were successfully applied in the detection of 1RS translocations in a natural population and 2RL chromosome arms in wheat-rye derived progenies that conferred adult resistance to powdery mildew. Conclusion The 404 PCR-based markers and 14 KASP markers specific for the 14 individual rye chromosome arms developed in this study can enrich the marker densities for gene mapping and accelerate the utilization of rye-derived genes in wheat improvement. Especially, the KASP markers achieved high-throughput and accurate detection of rye chromatin in wheat background, thus can be efficiently used in marker-assisted selection (MAS). Besides, the strategy of rye-specific PCR-based markers converting into KASP markers was high-efficient and low-cost, which will facilitate the tracing of alien genes, and can also be referred for other wheat relatives.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Mengshu Jia
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Pengtao Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China.,School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, Hebei, China. .,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Othmeni M, Grewal S, Hubbart-Edwards S, Yang C, Scholefield D, Ashling S, Yahyaoui A, Gustafson P, Singh PK, King IP, King J. The Use of Pentaploid Crosses for the Introgression of Amblyopyrum muticum and D-Genome Chromosome Segments Into Durum Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1110. [PMID: 31620148 PMCID: PMC6760530 DOI: 10.3389/fpls.2019.01110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
The wild relatives of wheat provide an important source of genetic variation for wheat improvement. Much of the work in the past aimed at transferring genetic variation from wild relatives into wheat has relied on the exploitation of the ph1b mutant, located on the long arm of chromosome 5B. This mutation allows homologous recombination to occur between chromosomes from related but different genomes, e.g. between the chromosomes of wheat and related chromosomes from a wild relative resulting in the generation of interspecific recombinant chromosomes. However, the ph1b mutant also enables recombination to occur between the homologous genomes of wheat, e.g. A/B, A/D, B/D, resulting in the generation of wheat intergenomic recombinant chromosomes. In this work we report on the presence of wheat intergenomic recombinants in the genomic background of hexaploid wheat/Amblyopyrum muticum introgression lines. The transfer of genomic rearrangements involving the D-genome through pentaploid crosses provides a strategy by which the D-genome of wheat can be introgressed into durum wheat. Hence, a pentaploid crossing strategy was used to transfer D-genome segments, introgressed with either the A- and/or the B-genome, into the tetraploid background of two durum wheat genotypes Karim and Om Rabi 5 in either the presence or absence of different Am. muticum (2n = 2x = 14, TT) introgressions. Introgressions were monitored in backcross generations to the durum wheat parents via multi-color genomic in situ hybridization (mc-GISH). Tetraploid lines carrying homozygous D-genome introgressions, as well as simultaneous homozygous D- and T-genome introgressions, were developed. Introgression lines were characterized via Kompetitive Allele-Specific PCR (KASP) markers and multi-color fluorescence in situ hybridization (FISH). Results showed that new wheat sub-genomic translocations were generated at each generation in progeny that carried any Am. muticum chromosome introgression irrespective of the linkage group that the segment was derived from. The highest frequencies of homologous recombination were observed between the A- and the D-genomes. Results indicated that the genotype Karim had a higher tolerance to genomic rearrangements and T-genome introgressions compared to Om Rabi 5. This indicates the importance of the selection of the parental genotype when attempting to transfer/develop introgressions into durum wheat from pentaploid crosses.
Collapse
Affiliation(s)
- Manel Othmeni
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Caiyun Yang
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Amor Yahyaoui
- International Maize and Wheat Improvement Center (CIMMYT) Mexico, Mexico City, Mexico
| | - Perry Gustafson
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT) Mexico, Mexico City, Mexico
| | - Ian P. King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|