1
|
Yang J, Li N, Li M, Yi R, Qiu L, Wang K, Zhao S, Ma F, Mao K. The MdHB7L-MdICE1L-MdHOS1 Module Fine-Tunes Apple Cold Response via CBF-Dependent and CBF-Independent Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501524. [PMID: 40285577 DOI: 10.1002/advs.202501524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/23/2025] [Indexed: 04/29/2025]
Abstract
Cold stress is a major environmental factor limiting crop yield, quality, and geographical distribution worldwide. The homeodomain-leucine zipper (HD-Zip) transcription factor (TF) family plays a role in regulating plant abiotic stress responses, but the underlying mechanisms remain unclear. A HD-Zip TF, MdHB7L, is identified as promoting cold tolerance in apple. MdHB7L interacts with MdICE1L, enhancing its transcriptional activation of MdCBFs, and directly binds to MdCBF promoters to activate their expression. Conversely, MdICE1L inhibits the direct binding of MdHB7L on MdCBF promoters, revealing that MdHB7L acts as a cofactor rather than a TF when interacting with MdICE1L. Using ChIP-seq and RNA-seq, MdHB7L is found to directly regulate the expression of several key genes involved in ROS scavenging and biosynthesis of anthocyanins, soluble sugars, and proline, thereby enhancing apple cold tolerance. The E3 ubiquitin ligase MdHOS1 negatively regulates cold tolerance by interacting with and mediating the degradation of MdHB7L and MdICE1L, with a preference for MdICE1L over MdHB7L. This preference inhibits the MdHOS1-MdHB7L interaction and stabilizes MdHB7L, allowing it to sustain the plant's cold response as a TF after MdICE1L degradation. These findings provide new insights into the dynamic plant response to cold stress mediated by the MdHB7L-MdICE1-MdHOS1 module.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Na Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ming Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ran Yi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Lina Qiu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Kangning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shuang Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ke Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Garcia-Oliveira AL, Ortiz R, Sarsu F, Rasmussen SK, Agre P, Asfaw A, Kante M, Chander S. The importance of genotyping within the climate-smart plant breeding value chain - integrative tools for genetic enhancement programs. FRONTIERS IN PLANT SCIENCE 2025; 15:1518123. [PMID: 39980758 PMCID: PMC11839310 DOI: 10.3389/fpls.2024.1518123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 02/22/2025]
Abstract
The challenges faced by today's agronomists, plant breeders, and their managers encompass adapting sustainably to climate variability while working with limited budgets. Besides, managers are dealing with a multitude of issues with different organizations working on similar initiatives and projects, leading to a lack of a sustainable impact on smallholder farmers. To transform the current food systems as a more sustainable and resilient model efficient solutions are needed to deliver and convey results. Challenges such as logistics, labour, infrastructure, and equity, must be addressed alongside adapting to increasingly unstable climate conditions which affect the life cycle of transboundary pathogens and pests. In this context, transforming food systems go far beyond just farmers and plant breeders and it requires substantial contributions from industry, global finances, transportation, energy, education, and country developmental sectors including legislators. As a result, a holistic approach is essential for achieving sustainable and resilient food systems to sustain a global population anticipated to reach 9.7 billion by 2050 and 11.2 billion by 2100. As of 2021, nearly 193 million individuals were affected by food insecurity, 40 million more than in 2020. Meanwhile, the digital world is rapidly advancing with the digital economy estimated at about 20% of the global gross domestic product, suggesting that digital technologies are increasingly accessible even in areas affected by food insecurity. Leveraging these technologies can facilitate the development of climate-smart cultivars that adapt effectively to climate variation, meet consumer preferences, and address human and livestock nutritional needs. Most economically important traits in crops are controlled by multiple loci often with recessive alleles. Considering particularly Africa, this continent has several agro-climatic zones, hence crops need to be adapted to these. Therefore, targeting specific loci using modern tools offers a precise and efficient approach. This review article aims to address how these new technologies can provide a better support to smallholder farmers.
Collapse
Affiliation(s)
- Ana Luísa Garcia-Oliveira
- Genetic Resources Program, Alliance Bioversity International and International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Fatma Sarsu
- Plant Breeding and Genetics Section, Joint FAO/IAEA Center, International Atomic Energy Agency, Vienna, Austria
| | | | - Paterne Agre
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Asrat Asfaw
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Moctar Kante
- Genetics, Genomics, and Crop Improvement Division, International Potato Center, Lima, Peru
| | - Subhash Chander
- Oilseeds Section, Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
3
|
Roychowdhury R, Das SP, Das S, Biswas S, Patel MK, Kumar A, Sarker U, Choudhary SP, Das R, Yogendra K, Gangurde SS. Advancing vegetable genetics with gene editing: a pathway to food security and nutritional resilience in climate-shifted environments. Funct Integr Genomics 2025; 25:31. [PMID: 39891757 DOI: 10.1007/s10142-025-01533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
As global populations grow and climate change increasingly disrupts agricultural systems, ensuring food security and nutritional resilience has become a critical challenge. In addition to grains and legumes, vegetables are very important for both human and animals because they contain vitamins, minerals, and fibre. Enhancing the ability of vegetables to withstand climate change threats is essential; however, traditional breeding methods face challenges due to the complexity of the genomic clonal multiplication process. In the postgenomic era, gene editing (GE) has emerged as a powerful tool for improving vegetables. GE can help to increase traits such as abiotic stress tolerance, herbicide tolerance, and disease resistance; improve agricultural productivity; and improve nutritional content and shelf-life by fine-tuning key genes. GE technologies such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR-Cas9) have revolutionized vegetable breeding by enabling specific gene modifications in the genome. This review highlights recent advances in CRISPR-mediated editing across various vegetable species, highlighting successful modifications that increase their resilience to climatic stressors. Additionally, it explores the potential of GE to address malnutrition by increasing the nutrient content of vegetable crops, thereby contributing to public health and food system sustainability. Additionally, it addresses the implementation of GE-guided breeding strategies in agriculture, considering regulatory, ethical, and public acceptance issues. Enhancing vegetable genetics via GE may provide a reliable and nutritious food supply for an expanding global population under more unpredictable environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Agricultural Research Organization (ARO), The Volcani Institute, Rishon Lezion, 7505101, Israel.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| | - Soumya Prakash Das
- School of Life Sciences, Seacom Skills University, Bolpur, 731236, West Bengal, India
| | - Siddhartha Das
- Department of Plant Pathology, MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, 761211, Odisha, India
| | - Sabarni Biswas
- Department of Botany, Sonarpur Mahavidyalaya, Rajpur, Kolkata, 700149, West Bengal, India
| | - Manish Kumar Patel
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Madrid, Spain
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sikander Pal Choudhary
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006, India
| | - Ranjan Das
- Department of Crop Physiology, College of Agriculture, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| |
Collapse
|
4
|
Herold L, Choi S, He SY, Zipfel C. The conserved AvrE family of bacterial effectors: functions and targets during pathogenesis. Trends Microbiol 2025; 33:184-193. [PMID: 39278787 DOI: 10.1016/j.tim.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
The AvrE family of type III secreted effectors are highly conserved among many agriculturally important phytopathogenic bacteria. Despite their critical roles in the pathogenesis of phytopathogenic bacteria, the molecular functions and virulence mechanisms of these effectors have been largely unknown. However, recent studies have identified host-interacting proteins and demonstrated that AvrE family effectors can form water-permeable channels in the plant plasma membrane (PM) to create a hydrated and nutrient-rich extracellular space (apoplast) required for disease establishment. Here, we summarize these recent discoveries and highlight open questions related to AvrE-targeted host proteins.
Collapse
Affiliation(s)
- Laura Herold
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sera Choi
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
5
|
Mei Q, Li M, Chen J, Yang J, Duan D, Yang J, Ma F, Mao K. Genome-wide analyses of Ariadne family genes reveal their involvement in abiotic stress responses in apple. Gene 2025; 935:149076. [PMID: 39505090 DOI: 10.1016/j.gene.2024.149076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
E3 ligases are essential for ubiquitination and play a role in regulating various aspects of eukaryotic life. Ariadne (ARI) proteins, a subfamily of RBR (RING-between-RING) proteins, have been recognized as a new class of RING-finger E3 ligases. Recent research has shed light on their potential involvement in plants' responses to abiotic stress. However, comprehensive studies on ARI genes in apple (Malus domestica) are still lacking. This study identified ten MdARI genes in the apple genome, and examined intraspecific and interspecific collinearity to explore the evolutionary relationships of ARI family members. Phylogenetic analyses classified MdARIs into two subfamilies (A and B), and by integrating gene structure, conserved motifs, and sequence comparison results, subfamily B was further divided into two subgroups (I and II). Tissue expression analyses revealed varied expression patterns of MdARI genes in different tissues, and subcellular localization showed that MdARI1-1, MdARI1-2, and MdARI9-1 were located in the nucleus, while the other seven MdARIs were distributed throughout the cell. Analyses of promoter cis-elements and expression patterns under cold, salt, and drought treatments indicated the involvement of MdARIs in abiotic stress responses. Several proteins crucial to the plant stress response were predicted to be potential MdARIs-interacting proteins based on the protein interaction network. Additionally, the interaction between UBC11 (E2) and MdARI7-2 was confirmed by a yeast two-hybrid (Y2H) experiment, suggesting that MdARI7-2 may function as an E3. These findings will greatly benefit future research on the role and mechanisms of ARI proteins in apple stress response.
Collapse
Affiliation(s)
- Quanlin Mei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxin Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ke Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Hoengenaert L, Anders C, Van Doorsselaere J, Vanholme R, Boerjan W. Transgene-free genome editing in poplar. THE NEW PHYTOLOGIST 2025. [PMID: 39841625 DOI: 10.1111/nph.20415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety. Here, we describe an efficient method for generating gene-edited Populus tremula × P. alba (poplar) trees without incorporating foreign DNA into its genome. Using Agrobacterium tumefaciens, we expressed a base-editing construct targeting CCoAOMT1 along with the ALS genes for positive selection on a chlorsulfuron-containing medium. About 50% of the regenerated shoots were derived from transient transformation and were free of T-DNA. Overall, 7% of the chlorsulfuron-resistant shoots were T-DNA free, edited in the CCoAOMT1 gene and nonchimeric. Long-read whole-genome sequencing confirmed the absence of any foreign DNA in the tested gene-edited lines. Additionally, we evaluated the CodA gene as a negative selection marker to eliminate lines that stably incorporated the T-DNA into their genome. Although the latter negative selection is not essential for selecting transgene-free, gene-edited Populus tremula × P. alba shoots, it may prove valuable for other genotypes or varieties.
Collapse
Affiliation(s)
- Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | | | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| |
Collapse
|
7
|
Gélinas Bélanger J. Taming the wild: domesticating untapped northern fruit tree and shrub resources in the era of high-throughput technologies. AOB PLANTS 2025; 17:plae074. [PMID: 39886049 PMCID: PMC11780843 DOI: 10.1093/aobpla/plae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025]
Abstract
New crop`s need to emerge to provide sustainable solutions to climate change and increasing abiotic and biotic constraints on agriculture. A large breadth of northern fruit trees and shrubs exhibit a high potential for domestication; however, obstacles to implementing traditional breeding methods have hampered or dissuaded efforts for improvement. This review article proposes a unique roadmap for de novo domestication of northern fruit crops, with a focus on biotechnological (e.g. genome editing, rapid cycle breeding, and in planta transformation) approaches that can boast rapid evolutionary gains. In addition, numerous biotechnological (e.g. virus-induced flowering and grafting-mediated flowering) and breeding strategies (e.g. adaptation of speed breeding to fruit trees) that can hasten the transition from juvenility to sexual maturity are described. A description of an accelerated genetic breeding strategy with insights for 16 underutilized species (e.g. shagbark hickory, running serviceberry, horse chestnut, and black walnut) is provided to support their enhancement. Deemed unrealistic only a decade ago, progress in the realm of bioengineering heralds a future for northern orphan crops through the implementation of fast-tracked crop improvement programs. As such, the roadmap presented in this article paves the way to integrating these novel biotechnological discoveries and propel the development of these forgotten crops in a sustainable and timely manner.
Collapse
Affiliation(s)
- Jérôme Gélinas Bélanger
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Rue Lakeshore, Ste-Anne-de-Bellevue, H9X 3V9, Québec, Canada
- Centre de recherche sur les grains (CÉROM) Inc., 740 Chem. Trudeau, Saint-Mathieu-de-Beloeil, J3G 0E2, Québec, Canada
| |
Collapse
|
8
|
Súnico V, Piunti I, Bhattacharjee M, Mezzetti B, Caballero JL, Muñoz-Blanco J, Ricci A, Sabbadini S. Overview on Current Selectable Marker Systems and Novel Marker Free Approaches in Fruit Tree Genetic Engineering. Int J Mol Sci 2024; 25:11902. [PMID: 39595971 PMCID: PMC11594270 DOI: 10.3390/ijms252211902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Selectable marker genes are useful for recognizing which cells have integrated specific sequences in their genome after genetic transformation processes. They are especially important for fruit trees genetic transformation to individuate putatively genetically modified events, because most of the protocols used to genetic engineer these species are often unsuccessful or with low efficiency. Traditional selectable marker genes, mainly of bacterial origin, confer antibiotics/herbicides-resistance or metabolic advantages to transformed cells. Genes that allow the visual recognition of engineered tissues without using any selective agent, such as morphogenic regulators and reporter genes, are also used as selection tools to in vitro identify genetically modified regenerated lines. As final step, genetic engineered plants should be tested in field conditions, where selectable marker genes are no longer necessary, and strongly unpopular especially for the commercial development of the new products. Thus, different approaches, mainly based on the use of site-specific recombinases and/or editing nucleases, are being now used to recover marker-free fruit crops. This review describes and comments the most used and suitable selection tools of interest, particularly for fruit tree genetic engineering. Lastly, a spotlight highlights the biosafety aspects related to the use of selectable marker genes exploited for fruit species genetic engineering.
Collapse
Affiliation(s)
- Victoria Súnico
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Irene Piunti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Mamta Bhattacharjee
- DBT-NECAB, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - José L. Caballero
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Juan Muñoz-Blanco
- Plant Biotechnology and Pharmacognosy Research Group (BIO-278), Department of Biochemistry and Molecular Biology, Severo Ochoa Building-C6, University of Cordoba, UCO-CeiA3, 14071 Cordoba, Spain; (J.L.C.); (J.M.-B.)
| | - Angela Ricci
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (V.S.); (I.P.); (B.M.)
| |
Collapse
|
9
|
Cao HX, Michels D, Vu GTH, Gailing O. Applications of CRISPR Technologies in Forestry and Molecular Wood Biotechnology. Int J Mol Sci 2024; 25:11792. [PMID: 39519342 PMCID: PMC11547103 DOI: 10.3390/ijms252111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Forests worldwide are under increasing pressure from climate change and emerging diseases, threatening their vital ecological and economic roles. Traditional breeding approaches, while valuable, are inherently slow and limited by the long generation times and existing genetic variation of trees. CRISPR technologies offer a transformative solution, enabling precise and efficient genome editing to accelerate the development of climate-resilient and productive forests. This review provides a comprehensive overview of CRISPR applications in forestry, exploring its potential for enhancing disease resistance, improving abiotic stress tolerance, modifying wood properties, and accelerating growth. We discuss the mechanisms and applications of various CRISPR systems, including base editing, prime editing, and multiplexing strategies. Additionally, we highlight recent advances in overcoming key challenges such as reagent delivery and plant regeneration, which are crucial for successful implementation of CRISPR in trees. We also delve into the potential and ethical considerations of using CRISPR gene drive for population-level genetic alterations, as well as the importance of genetic containment strategies for mitigating risks. This review emphasizes the need for continued research, technological advancements, extensive long-term field trials, public engagement, and responsible innovation to fully harness the power of CRISPR for shaping a sustainable future for forests.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - David Michels
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
10
|
Mascarenhas MS, Nascimento FDS, Rocha ADJ, Ferreira MDS, Oliveira WDDS, Morais Lino LS, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Use of CRISPR Technology in Gene Editing for Tolerance to Biotic Factors in Plants: A Systematic Review. Curr Issues Mol Biol 2024; 46:11086-11123. [PMID: 39451539 PMCID: PMC11505962 DOI: 10.3390/cimb46100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.
Collapse
Affiliation(s)
- Marcelly Santana Mascarenhas
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (M.S.M.); (W.D.d.S.O.)
| | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Mileide dos Santos Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Lucymeire Souza Morais Lino
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| |
Collapse
|
11
|
Fizikova A, Tukhuzheva Z, Zhokhova L, Tvorogova V, Lutova L. A New Approach for CRISPR/Cas9 Editing and Selection of Pathogen-Resistant Plant Cells of Wine Grape cv. 'Merlot'. Int J Mol Sci 2024; 25:10011. [PMID: 39337500 PMCID: PMC11432302 DOI: 10.3390/ijms251810011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Grape is one of the most economically significant berry crops. Owing to the biological characteristics of grapes, such as the long juvenile period (5-8 years), high degree of genome heterozygosity, and the frequent occurrence of inbreeding depression, homozygosity during crossbreeding leads to loss of varietal characteristics and viability. CRISPR/Cas editing has become the tool of choice for improving elite technical grape varieties. This study provides the first evidence of a decrease in the total fraction of phenolic compounds and an increase in the concentration of peroxide compounds in grape callus cells upon the addition of chitosan to the culture medium. These previously unreported metabolic features of the grape response to chitosan have been described and used for the first time to increase the probability of selecting plant cells with MLO7 knockout characterised by an oxidative burst in response to the presence of a pathogen modulated by chitosan in the high-metabolite black grape variety 'Merlot'. This was achieved by using a CRISPR/Cas9 editing vector construction with the peroxide sensor HyPer as a reporter. This research represents the first CRISPR/Cas9 editing of 'Merlot', one of the most economically important elite technical grape varieties.
Collapse
Affiliation(s)
- Anastasia Fizikova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Zhanneta Tukhuzheva
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Lada Zhokhova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Varvara Tvorogova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| | - Ludmila Lutova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| |
Collapse
|
12
|
Khan A, Švara A, Wang N. Comparing Apples and Oranges: Advances in Disease Resistance Breeding of Woody Perennial Fruit Crops. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:263-287. [PMID: 38768395 DOI: 10.1146/annurev-phyto-021622-120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Apple and citrus are perennial tree fruit crops that are vital for nutritional security and agricultural economy and to achieve the Sustainable Development Goals of the United Nations. Apple scab and fire blight, along with Huanglongbing, canker, and tristeza virus, stand out as their most notorious diseases and annually destabilize fruit supply. An environmentally sound approach to managing these diseases is improving tree resistance through breeding and biotechnology. Perennial fruit tree germplasm collections are distributed globally and offer untapped potential as sources of resistance. However, long juvenility, specific pollination and flowering habits, and extensive outcrossing hinder apple and citrus breeding. Advances in breeding approaches include trans- and cis-genesis, genome editing, and rapid-cycle breeding, which, in addition to conventional crossbreeding, can all facilitate accelerated integration of resistance into elite germplasm. In addition, the global pool of available sources of resistance can be characterized by the existing genetic mapping and gene expression studies for accurate discovery of associated loci, genes, and markers to efficiently include these sources in breeding efforts. We discuss and propose a multitude of approaches to overcome the challenges of breeding for resistance in woody perennials and outline a technical path to reduce the time required for the ultimate deployment of disease-resistant cultivars.
Collapse
Affiliation(s)
- Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Anže Švara
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
13
|
Goralogia GS, Andreatta IM, Conrad V, Xiong Q, Vining KJ, Strauss SH. Rare but diverse off-target and somatic mutations found in field and greenhouse grown trees expressing CRISPR/Cas9. Front Bioeng Biotechnol 2024; 12:1412927. [PMID: 38974658 PMCID: PMC11224489 DOI: 10.3389/fbioe.2024.1412927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction: CRISPR gene editing, while highly efficient in creating desired mutations, also has the potential to cause off-target mutations. This risk is especially high in clonally propagated plants, where editing reagents may remain in the genome for long periods of time or in perpetuity. We studied a diverse population of Populus and Eucalyptus trees that had CRISPR/Cas9-containing transgenes that targeted one or two types of floral development genes, homologs of LEAFY and AGAMOUS. Methods: Using a targeted sequence approach, we studied approximately 20,000 genomic sites with degenerate sequence homology of up to five base pairs relative to guide RNA (gRNA) target sites. We analyzed those sites in 96 individual tree samples that represented 37 independent insertion events containing one or multiples of six unique gRNAs. Results: We found low rates of off-target mutations, with rates of 1.2 × 10-9 in poplar and 3.1 × 10-10 in eucalypts, respectively, comparable to that expected due to sexual reproduction. The rates of mutation were highly idiosyncratic among sites and not predicted by sequence similarity to the target sites; a subset of two gRNAs showed off-target editing of four unique genomic sites with up to five mismatches relative to the true target sites, reaching fixation in some gene insertion events and clonal ramets. The location of off-target mutations relative to the PAM site were essentially identical to that seen with on-target CRISPR mutations. Discussion: The low rates observed support many other studies in plants that suggest that the rates of off-target mutagenesis from CRISPR/Cas9 transgenes are negligible; our study extends this conclusion to trees and other long-lived plants where CRISPR/Cas9 transgenes were present in the genome for approximately four years.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Isabella M. Andreatta
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Victoria Conrad
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Kelly J. Vining
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
15
|
Campa M, Miranda S, Licciardello C, Lashbrooke JG, Dalla Costa L, Guan Q, Spök A, Malnoy M. Application of new breeding techniques in fruit trees. PLANT PHYSIOLOGY 2024; 194:1304-1322. [PMID: 37394947 DOI: 10.1093/plphys/kiad374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Climate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species. This review focuses on the successful application of these technologies in fruit trees to confer pathogen resistance and tolerance to abiotic stress and improve quality traits. In addition, we review the optimization and diversification of CRISPR/Cas genome editing tools applied to fruit trees, such as multiplexing, CRISPR/Cas-mediated base editing and site-specific recombination systems. Advances in protoplast regeneration and delivery techniques, including the use of nanoparticles and viral-derived replicons, are described for the obtention of exogenous DNA-free fruit tree species. The regulatory landscape and broader social acceptability for cisgenesis and CRISPR/Cas genome editing are also discussed. Altogether, this review provides an overview of the versatility of applications for fruit crop improvement, as well as current challenges that deserve attention for further optimization and potential implementation of new breeding techniques.
Collapse
Affiliation(s)
- Manuela Campa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| | - Simón Miranda
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | | | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Armin Spök
- Science, Technology and Society Unit, Graz University of Technology, Graz, Austria
| | - Mickael Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| |
Collapse
|
16
|
Švara A, De Storme N, Carpentier S, Keulemans W, De Coninck B. Phenotyping, genetics, and "-omics" approaches to unravel and introgress enhanced resistance against apple scab ( Venturia inaequalis) in apple cultivars ( Malus × domestica). HORTICULTURE RESEARCH 2024; 11:uhae002. [PMID: 38371632 PMCID: PMC10873587 DOI: 10.1093/hr/uhae002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
Apple scab disease, caused by the fungus Venturia inaequalis, endangers commercial apple production globally. It is predominantly managed by frequent fungicide sprays that can harm the environment and promote the development of fungicide-resistant strains. Cultivation of scab-resistant cultivars harboring diverse qualitative Rvi resistance loci and quantitative trait loci associated with scab resistance could reduce the chemical footprint. A comprehensive understanding of the host-pathogen interaction is, however, needed to efficiently breed cultivars with enhanced resistance against a variety of pathogenic strains. Breeding efforts should not only encompass pyramiding of Rvi loci and their corresponding resistance alleles that directly or indirectly recognize pathogen effectors, but should also integrate genes that contribute to effective downstream defense mechanisms. This review provides an overview of the phenotypic and genetic aspects of apple scab resistance, and currently known corresponding defense mechanisms. Implementation of recent "-omics" approaches has provided insights into the complex network of physiological, molecular, and signaling processes that occur before and upon scab infection, thereby revealing the importance of both constitutive and induced defense mechanisms. Based on the current knowledge, we outline advances toward more efficient introgression of enhanced scab resistance into novel apple cultivars by conventional breeding or genetic modification techniques. However, additional studies integrating different "-omics" approaches combined with functional studies will be necessary to unravel effective defense mechanisms as well as key regulatory genes underpinning scab resistance in apple. This crucial information will set the stage for successful knowledge-based breeding for enhanced scab resistance.
Collapse
Affiliation(s)
- Anže Švara
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Sebastien Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Genetic resources, Bioversity International, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Wannes Keulemans
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven 3001 Leuven, Belgium
| | - Barbara De Coninck
- Laboratory of Plant Health and Protection, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, KU Leuven Plant Institute, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
17
|
Mishra A, Pandey VP. CRISPR/Cas system: A revolutionary tool for crop improvement. Biotechnol J 2024; 19:e2300298. [PMID: 38403466 DOI: 10.1002/biot.202300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024]
Abstract
World's population is elevating at an alarming rate thus, the rising demands of producing crops with better adaptability to biotic and abiotic stresses, superior nutritional as well as morphological qualities, and generation of high-yielding varieties have led to encourage the development of new plant breeding technologies. The availability and easy accessibility of genome sequences for a number of crop plants as well as the development of various genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has opened up possibilities to develop new varieties of crop plants with superior desirable traits. However, these approaches has limitation of being more expensive as well as having complex steps and time-consuming. The CRISPR/Cas genome editing system has been intensively studied for allowing versatile target-specific modifications of crop genome that fruitfully aid in the generation of novel varieties. It is an advanced and promising technology with the potential to meet hunger needs and contribute to food production for the ever-growing human population. This review summarizes the usage of novel CRISPR/Cas genome editing tool for targeted crop improvement in stress resistance, yield, quality and nutritional traits in the desired crop plants.
Collapse
Affiliation(s)
- Ayushi Mishra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
18
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
19
|
Jacobson S, Bondarchuk N, Nguyen TA, Canada A, McCord L, Artlip TS, Welser P, Klocko AL. Apple CRISPR-Cas9-A Recipe for Successful Targeting of AGAMOUS-like Genes in Domestic Apple. PLANTS (BASEL, SWITZERLAND) 2023; 12:3693. [PMID: 37960050 PMCID: PMC10649517 DOI: 10.3390/plants12213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Fruit trees and other fruiting hardwood perennials are economically valuable, and there is interest in developing improved varieties. Both conventional breeding and biotechnology approaches are being utilized towards the goal of developing advanced cultivars. Increased knowledge of the effectiveness and efficiency of biotechnology approaches can help guide use of the CRISPR gene-editing technology. Here, we examined CRISPR-Cas9-directed genome editing in the valuable commodity fruit tree Malus x domestica (domestic apple). We transformed two cultivars with dual CRISPR-Cas9 constructs designed to target two AGAMOUS-like genes simultaneously. The main goal was to determine the effectiveness of this approach for achieving target gene changes. We obtained 6 Cas9 control and 38 independent CRISPR-Cas9 events. Of the 38 CRISPR-Cas9 events, 34 (89%) had gene edits and 14 (37%) showed changes to all alleles of both target genes. The most common change was large deletions, which were present in 59% of all changed alleles, followed by small deletions (21%), small insertions (12%), and a combination of small insertions and deletions (8%). Overall, a high rate of successful gene alterations was found. Many of these changes are predicted to cause frameshifts and alterations to the predicted peptides. Future work will include monitoring the floral development and floral form.
Collapse
Affiliation(s)
- Seth Jacobson
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Natalie Bondarchuk
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Thy Anh Nguyen
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Allison Canada
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Logan McCord
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Timothy S. Artlip
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), The Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA;
| | - Philipp Welser
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), The Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA;
| | - Amy L. Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
20
|
Sardar A. Genetic amelioration of fruit and vegetable crops to increase biotic and abiotic stress resistance through CRISPR Genome Editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1260102. [PMID: 37841604 PMCID: PMC10570431 DOI: 10.3389/fpls.2023.1260102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
Environmental changes and increasing population are major concerns for crop production and food security as a whole. To address this, researchers had focussed on the improvement of cereals and pulses and have made considerable progress till the beginning of this decade. However, cereals and pulses together, without vegetables and fruits, are inadequate to meet the dietary and nutritional demands of human life. Production of good quality vegetables and fruits is highly challenging owing to their perishable nature and short shelf life as well as abiotic and biotic stresses encountered during pre- and post-harvest. Genetic engineering approaches to produce good quality, to increase shelf life and stress-resistance, and to change the time of flowering and fruit ripening by introducing foreign genes to produce genetically modified crops were quite successful. However, several biosafety concerns, such as the risk of transgene-outcrossing, limited their production, marketing, and consumption. Modern genome editing techniques, like the CRISPR/Cas9 system, provide a perfect solution in this scenario, as it can produce transgene-free genetically edited plants. Hence, these genetically edited plants can easily satisfy the biosafety norms for crop production and consumption. This review highlights the potential of the CRISPR/Cas9 system for the successful generation of abiotic and biotic stress resistance and thereby improving the quality, yield, and overall productivity of vegetables and fruits.
Collapse
Affiliation(s)
- Atish Sardar
- Department of Botany, Jogesh Chandra Chaudhuri College, West Bengal, Kolkata, India
| |
Collapse
|
21
|
Li X, Ma Z, Song Y, Shen W, Yue Q, Khan A, Tahir MM, Wang X, Malnoy M, Ma F, Bus V, Zhou S, Guan Q. Insights into the molecular mechanisms underlying responses of apple trees to abiotic stresses. HORTICULTURE RESEARCH 2023; 10:uhad144. [PMID: 37575656 PMCID: PMC10421731 DOI: 10.1093/hr/uhad144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Apple (Malus[Formula: see text]domestica) is a popular temperate fruit crop worldwide. However, its growth, productivity, and quality are often adversely affected by abiotic stresses such as drought, extreme temperature, and high salinity. Due to the long juvenile phase and highly heterozygous genome, the conventional breeding approaches for stress-tolerant cultivars are time-consuming and resource-intensive. These issues may be resolved by feasible molecular breeding techniques for apples, such as gene editing and marker-assisted selection. Therefore, it is necessary to acquire a more comprehensive comprehension of the molecular mechanisms underpinning apples' response to abiotic stress. In this review, we summarize the latest research progress in the molecular response of apples to abiotic stressors, including the gene expression regulation, protein modifications, and epigenetic modifications. We also provide updates on new approaches for improving apple abiotic stress tolerance, while discussing current challenges and future perspectives for apple molecular breeding.
Collapse
Affiliation(s)
- Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271000, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige 38098, Italy
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Vincent Bus
- The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
23
|
Zhou J, Luan X, Liu Y, Wang L, Wang J, Yang S, Liu S, Zhang J, Liu H, Yao D. Strategies and Methods for Improving the Efficiency of CRISPR/Cas9 Gene Editing in Plant Molecular Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:1478. [PMID: 37050104 PMCID: PMC10097296 DOI: 10.3390/plants12071478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Following recent developments and refinement, CRISPR-Cas9 gene-editing technology has become increasingly mature and is being widely used for crop improvement. The application of CRISPR/Cas9 enables the generation of transgene-free genome-edited plants in a short period and has the advantages of simplicity, high efficiency, high specificity, and low production costs, which greatly facilitate the study of gene functions. In plant molecular breeding, the gene-editing efficiency of the CRISPR-Cas9 system has proven to be a key step in influencing the effectiveness of molecular breeding, with improvements in gene-editing efficiency recently becoming a focus of reported scientific research. This review details strategies and methods for improving the efficiency of CRISPR/Cas9 gene editing in plant molecular breeding, including Cas9 variant enzyme engineering, the effect of multiple promoter driven Cas9, and gRNA efficient optimization and expression strategies. It also briefly introduces the optimization strategies of the CRISPR/Cas12a system and the application of BE and PE precision editing. These strategies are beneficial for the further development and optimization of gene editing systems in the field of plant molecular breeding.
Collapse
Affiliation(s)
- Junming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Xinchao Luan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Yixuan Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Lixue Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Jiaxin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Songnan Yang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (S.Y.); (J.Z.)
| | - Shuying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Jun Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (S.Y.); (J.Z.)
| | - Huijing Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (J.Z.); (X.L.); (Y.L.); (L.W.); (J.W.); (S.L.)
| |
Collapse
|
24
|
López-Casado G, Sánchez-Raya C, Ric-Varas PD, Paniagua C, Blanco-Portales R, Muñoz-Blanco J, Pose S, Matas AJ, Mercado JA. CRISPR/Cas9 editing of the polygalacturonase FaPG1 gene improves strawberry fruit firmness. HORTICULTURE RESEARCH 2023; 10:uhad011. [PMID: 36960432 PMCID: PMC10028403 DOI: 10.1093/hr/uhad011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Firmness is one of the most important fruit quality traits in strawberries. The postharvest shelf life of this soft fruit is highly limited by the loss of firmness, where cell wall disassembly plays an important role. Previous studies demonstrated that the polygalacturonase FaPG1 has a key role in remodelling pectins during strawberry softening. In this study, FaPG1 knockout strawberry plants have been generated using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Ten independent lines, cv. "Chandler", were obtained, and all of them were successfully edited as determined by PCR amplification and T7 endonuclease assay. The targeted mutagenesis insertion and deletion rates were analyzed using targeted deep sequencing. The percentage of edited sequences varied from 47% up to almost 100%, being higher than 95% for seven of the selected lines. Phenotypic analyses showed that 7 out of the eight lines analyzed produced fruits significantly firmer than the control, ranging from 33 to 70% increase in firmness. There was a positive relationship between the degree of FaPG1 editing and the rise in fruit firmness. Minor changes were observed in other fruit quality traits, such as colour, soluble solids, titratable acidity or anthocyanin content. Edited fruits showed a reduced softening rate during postharvest, displayed a reduced transpirational water loss, and were less damaged by Botrytis cinerea inoculation. The analysis of four potential off-target sites revealed no mutation events. In conclusion, editing the FaPG1 gene using the CRISPR/Cas9 system is an efficient method for improving strawberry fruit firmness and shelf life.
Collapse
Affiliation(s)
| | | | - Pablo D Ric-Varas
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Universidad de Málaga, 29071 Málaga, Spain
| | - Candelas Paniagua
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Universidad de Málaga, 29071 Málaga, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Sara Pose
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Universidad de Málaga, 29071 Málaga, Spain
| | - Antonio J Matas
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Universidad de Málaga, 29071 Málaga, Spain
| | | |
Collapse
|
25
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
26
|
Nerva L, Dalla Costa L, Ciacciulli A, Sabbadini S, Pavese V, Dondini L, Vendramin E, Caboni E, Perrone I, Moglia A, Zenoni S, Michelotti V, Micali S, La Malfa S, Gentile A, Tartarini S, Mezzetti B, Botta R, Verde I, Velasco R, Malnoy MA, Licciardello C. The Role of Italy in the Use of Advanced Plant Genomic Techniques on Fruit Trees: State of the Art and Future Perspectives. Int J Mol Sci 2023; 24:977. [PMID: 36674493 PMCID: PMC9861864 DOI: 10.3390/ijms24020977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.
Collapse
Affiliation(s)
- Luca Nerva
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Angelo Ciacciulli
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Vera Pavese
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Luca Dondini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Elisa Vendramin
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Emilia Caboni
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council, 10135 Torino, Italy
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Vania Michelotti
- Research Center for Genomics and Bioinformatics, Council for Agricultural Research and Economics, 29017 Fiorenzuola D’Arda, Italy
| | - Sabrina Micali
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Stefano La Malfa
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Alessandra Gentile
- Department of Biotechnology, University of Catania, 95124 Catania, Italy
| | - Stefano Tartarini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Roberto Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Torino, Italy
| | - Ignazio Verde
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 00134 Rome, Italy
| | - Riccardo Velasco
- Research Center for Viticulture and Enology, Council for Agricultural Research and Economics, 31015 Conegliano, Italy
| | - Mickael Arnaud Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| |
Collapse
|
27
|
Miranda S, Piazza S, Nuzzo F, Li M, Lagrèze J, Mithöfer A, Cestaro A, Tarkowska D, Espley R, Dare A, Malnoy M, Martens S. CRISPR/Cas9 genome-editing applied to MdPGT1 in apple results in reduced foliar phloridzin without impacting plant growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:92-105. [PMID: 36401738 DOI: 10.1111/tpj.16036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Phloridzin is the most abundant polyphenolic compound in apple (Malus × domestica Borkh.), which results from the action of a key phloretin-specific UDP-2'-O-glucosyltransferase (MdPGT1). Here, we simultaneously assessed the effects of targeting MdPGT1 by conventional transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing. To this end, we conducted transcriptomic and metabolic analyses of MdPGT1 RNA interference knockdown and genome-edited lines. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology, whereas genome-edited lines exhibited normal growth despite reduced foliar phloridzin. RNA-sequencing analysis identified a common core of regulated genes, involved in phenylpropanoid and flavonoid pathways. However, we identified genes and processes differentially modulated in stunted and genome-edited lines, including key transcription factors and genes involved in phytohormone signalling. Therefore, we conducted a phytohormone profiling to obtain insight into their role in the phenotypes observed. We found that salicylic and jasmonic acid were increased in dwarf lines, whereas auxin and ABA showed no correlation with the growth phenotype. Furthermore, bioactive brassinosteroids were commonly up-regulated, whereas gibberellin GA4 was distinctively altered, showing a sharp decrease in RNA interference knockdown lines. Expression analysis by reverse transcriptase-quantitative polymerase chain reaction expression analysis further confirmed transcriptional regulation of key factors involved in brassinosteroid and gibberellin interaction. These findings suggest that a differential modulation of phytohormones may be involved in the contrasting effects on growth following phloridzin reduction. The present study also illustrates how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple.
Collapse
Affiliation(s)
- Simón Miranda
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
- C3A Center Agriculture Food Environment, University of Trento, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland, 1025, New Zealand
| | - Stefano Piazza
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Floriana Nuzzo
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Mingai Li
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Jorge Lagrèze
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
- C3A Center Agriculture Food Environment, University of Trento, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Alessandro Cestaro
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Danuše Tarkowska
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacky University, Slechtitelu 19, Olomouc, CZ-783 71, Czech Republic
| | - Richard Espley
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland, 1025, New Zealand
| | - Andrew Dare
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland, 1025, New Zealand
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| | - Stefan Martens
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all'Adige, 38098, Italy
| |
Collapse
|
28
|
Salonia F, Ciacciulli A, Pappalardo HD, Poles L, Pindo M, Larger S, Caruso P, Caruso M, Licciardello C. A dual sgRNA-directed CRISPR/Cas9 construct for editing the fruit-specific β-cyclase 2 gene in pigmented citrus fruits. FRONTIERS IN PLANT SCIENCE 2022; 13:975917. [PMID: 36582639 PMCID: PMC9792771 DOI: 10.3389/fpls.2022.975917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
CRISPR/Cas9 genome editing is a modern biotechnological approach used to improve plant varieties, modifying only one or a few traits of a specific variety. However, this technology cannot be easily used to improve fruit quality traits in citrus, due to the lack of knowledge of key genes, long juvenile stage, and the difficulty regenerating whole plants of specific varieties. Here, we introduce a genome editing approach with the aim of producing citrus plantlets whose fruits contain both lycopene and anthocyanins. Our method employs a dual single guide RNA (sgRNA)-directed genome editing approach to knockout the fruit-specific β-cyclase 2 gene, responsible for the conversion of lycopene to beta-carotene. The gene is targeted by two sgRNAs simultaneously to create a large deletion, as well as to induce point mutations in both sgRNA targets. The EHA105 strain of Agrobacterium tumefaciens was used to transform five different anthocyanin-pigmented sweet oranges, belonging to the Tarocco and Sanguigno varietal groups, and 'Carrizo' citrange, a citrus rootstock as a model for citrus transformation. Among 58 plantlets sequenced in the target region, 86% of them were successfully edited. The most frequent mutations were deletions (from -1 to -74 nucleotides) and insertions (+1 nucleotide). Moreover, a novel event was identified in six plantlets, consisting of the inversion of the region between the two sgRNAs. For 20 plantlets in which a single mutation occurred, we excluded chimeric events. Plantlets did not show an altered phenotype in vegetative tissues. To the best of our knowledge, this work represents the first example of the use of a genome editing approach to potentially improve qualitative traits of citrus fruit.
Collapse
Affiliation(s)
- Fabrizio Salonia
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Angelo Ciacciulli
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Helena Domenica Pappalardo
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Lara Poles
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Trento with S. Michele all’ Adige, Trento, Italy
| | - Simone Larger
- Research and Innovation Centre, Trento with S. Michele all’ Adige, Trento, Italy
| | - Paola Caruso
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Marco Caruso
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Concetta Licciardello
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| |
Collapse
|
29
|
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022; 11:3928. [PMID: 36497186 PMCID: PMC9736268 DOI: 10.3390/cells11233928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Naeem Zafar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qurban Ali
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hakim Manghwar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Scintilla S, Salvagnin U, Giacomelli L, Zeilmaker T, Malnoy MA, Rouppe van der Voort J, Moser C. Regeneration of non-chimeric plants from DNA-free edited grapevine protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1078931. [PMID: 36531381 PMCID: PMC9752144 DOI: 10.3389/fpls.2022.1078931] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/19/2023]
Abstract
The application of New Breeding Techniques (NBTs) in Vitis vinifera is highly desirable to introduce valuable traits while preserving the genotype of the elite cultivars. However, a broad application of NBTs through standard DNA-based transformation is poorly accepted by public opinion and law regulations in Europe and other countries due to the stable integration of exogenous DNA, which leads to transgenic plants possibly affected by chimerism. A single-cell based approach, coupled with a DNA-free transfection of the CRISPR/Cas editing machinery, constitutes a powerful tool to overcome these problems and maintain the original genetic make-up in the whole organism. We here describe a successful single-cell based, DNA-free methodology to obtain edited grapevine plants, regenerated from protoplasts isolated from embryogenic callus of two table grapevine varieties (V. vinifera cv. Crimson seedless and Sugraone). The regenerated, non-chimeric plants were edited on the downy- and powdery-mildew susceptibility genes, VviDMR6 and VviMlo6 respectively, either as single or double mutants.
Collapse
Affiliation(s)
- Simone Scintilla
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
| | - Umberto Salvagnin
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
- Consorzio Innovazione Vite (CIVIT), Trento, TN, Italy
| | - Lisa Giacomelli
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
- Scienza Biotechnologies BV., Enkhuizen, Netherlands
| | | | - Mickael A. Malnoy
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
| | | | - Claudio Moser
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
| |
Collapse
|
31
|
Bowen JK, Brummell DA, Gapper NE. Biotechnological approaches for reducing fruit losses caused by pathogenic infection. Curr Opin Biotechnol 2022; 78:102795. [PMID: 36116332 DOI: 10.1016/j.copbio.2022.102795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Fruit loss due to disease occurs in both the field and postharvest. Knowledge of host immune responses and pathogen virulence is enabling the formulation of increasingly sophisticated strategies for disease control. Traditional genetic modification, typically involving overexpression of genes involved in pathogen perception and defence responses, is beginning to be superseded by CRISPR-Cas9 manipulation of host susceptibility targets. Moreover, the refinement of RNA interference (RNAi) strategies, including spray-induced gene silencing (SIGS), is allowing more nuanced control options. These latter approaches have the advantage over earlier technologies in that either they do not result in the generation of genetically modified organisms (RNAi-based SIGS), or the genetic manipulation used leaves no trace of introduced genetic material (gene editing). Thus, these strategies may be more widely acceptable for deployment for future disease control.
Collapse
Affiliation(s)
- Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
32
|
Hoffman NE. USDA's revised biotechnology regulation's contribution to increasing agricultural sustainability and responding to climate change. FRONTIERS IN PLANT SCIENCE 2022; 13:1055529. [PMID: 36507369 PMCID: PMC9726801 DOI: 10.3389/fpls.2022.1055529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Biotechnology can provide a valuable tool to meet UN Sustainable Development Goals and U.S. initiatives to find climate solutions and improve agricultural sustainability. The literature contains hundreds of examples of crops that may serve this purpose, yet most remain un-launched due to high regulatory barriers. Recently the USDA revised its biotechnology regulations to make them more risk-proportionate, science-based, and streamlined. Here, we review some of the promising leads that may enable agriculture to contribute to UN sustainability goals. We further describe and discuss how the revised biotechnology regulation would hypothetically apply to these cases.
Collapse
|
33
|
Khan A, Korban SS. Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3961-3985. [PMID: 35441862 DOI: 10.1007/s00122-022-04093-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Climate change, large monocultures of disease-susceptible cultivars, overuse of pesticides, and the emergence of new pathogens or pathogenic strains causing economic losses are all major threats to our environment, health, food, and nutritional supply. Temperate tree fruit crops belonging to the Rosaceae family are the most economically important and widely grown fruit crops. These long-lived crops are under attack from many different pathogens, incurring major economic losses. Multiple chemical sprays to control various diseases annually is a common practice, resulting in significant input costs, as well as environmental and health concerns. Breeding for disease resistance has been undertaken primarily in pome fruit crops (apples and pears) for a few fungal and bacterial diseases, and to a lesser extent in some stone fruit crops. These breeding efforts have taken multiple decades due to the biological constraints and complex genetics of these tree fruit crops. Over the past couple of decades, major advances have been made in genetic and physical mapping, genomics, biotechnology, genome sequencing, and phenomics, along with accumulation of large germplasm collections in repositories. These valuable resources offer opportunities to make significant advances in greatly reducing the time needed to either develop new cultivars or modify existing economic cultivars for enhanced resistance to multiple diseases. This review will cover current knowledge, challenges, and opportunities in breeding for disease resistance in temperate tree fruit crops.
Collapse
Affiliation(s)
- Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| | - Schuyler S Korban
- Department of Natural Sciences and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
34
|
Gouthu S, Mandelli C, Eubanks BA, Deluc LG. Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations. FRONTIERS IN PLANT SCIENCE 2022; 13:979742. [PMID: 36325537 PMCID: PMC9621297 DOI: 10.3389/fpls.2022.979742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
For the past fifteen years, significant research advances in sequencing technology have led to a substantial increase in fruit tree genomic resources and databases with a massive number of OMICS datasets (transcriptomic, proteomics, metabolomics), helping to find associations between gene(s) and performance traits. Meanwhile, new technology tools have emerged for gain- and loss-of-function studies, specifically in gene silencing and developing tractable plant models for genetic transformation. Additionally, innovative and adapted transformation protocols have optimized genetic engineering in most fruit trees. The recent explosion of new gene-editing tools allows for broadening opportunities for functional studies in fruit trees. Yet, the fruit tree research community has not fully embraced these new technologies to provide large-scale genome characterizations as in cereals and other staple food crops. Instead, recent research efforts in the fruit trees appear to focus on two primary translational tools: transgene-free gene editing via Ribonucleoprotein (RNP) delivery and the ectopic application of RNA-based products in the field for crop protection. The inherent nature of the propagation system and the long juvenile phase of most fruit trees are significant justifications for the first technology. The second approach might have the public favor regarding sustainability and an eco-friendlier environment for a crop production system that could potentially replace the use of chemicals. Regardless of their potential, both technologies still depend on the foundational knowledge of gene-to-trait relationships generated from basic genetic studies. Therefore, we will discuss the status of gene silencing and DNA-based gene editing techniques for functional studies in fruit trees followed by the potential and limitations of their translational tools (RNP delivery and RNA-based products) in the context of crop production.
Collapse
Affiliation(s)
- Satyanarayana Gouthu
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Christian Mandelli
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| | - Britt A. Eubanks
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Laurent G. Deluc
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
35
|
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB. Future of Bacterial Disease Management in Crop Production. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:259-282. [PMID: 35790244 DOI: 10.1146/annurev-phyto-021621-121806] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial diseases are a constant threat to crop production globally. Current management strategies rely on an array of tactics, including improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and use of resistant varieties when available. However, effective management remains a challenge, as the longevity of deployed tactics is threatened by constantly changing bacterial populations. Increased scrutiny of the impact of pesticides on human and environmental health underscores the need for alternative solutions that are durable, sustainable, accessible to farmers, and environmentally friendly. In this review, we discuss the strengths and shortcomings of existing practices and dissect recent advances that may shape the future of bacterial disease management. We conclude that disease resistance through genome modification may be the most effective arsenal against bacterial diseases. Nonetheless, more research is necessary for developing novel bacterial disease management tactics to meet the food demand of a growing global population.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Peter Abrahamian
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
- Plant Pathogen Confirmatory Diagnostic Laboratory, USDA-APHIS, Beltsville, Maryland, USA
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Manoj Choudhary
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Gary E Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
36
|
Increasing disease resistance in host plants through genome editing. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Sun X, Li X, Wang Y, Xu J, Jiang S, Zhang Y. MdMKK9-Mediated the Regulation of Anthocyanin Synthesis in Red-Fleshed Apple in Response to Different Nitrogen Signals. Int J Mol Sci 2022; 23:ijms23147755. [PMID: 35887103 PMCID: PMC9324793 DOI: 10.3390/ijms23147755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade is a widely existing signal transduction system in eukaryotes, and plays an important role in the signal transduction processes of plant cells in response to environmental stress. In this study, we screened MdMKK9, a gene in the MAPK family. This gene is directly related to changes in anthocyanin synthesis in the ‘Daihong’ variety of red-fleshed apple (Malus sieversii f neidzwetzkyana (Dieck) Langenf). MdMKK9 expression was up-regulated in ‘Daihong’ tissue culture seedlings cultured at low levels of nitrogen. This change in gene expression up-regulated the expression of genes related to anthocyanin synthesis and nitrogen transport, thus promoting anthocyanin synthesis and causing the tissue culture seedlings to appear red in color. To elucidate the function of MdMKK9, we used the CRISPR/Cas9 system to construct a gene editing vector for MdMKK9 and successfully introduced it into the calli of the ‘Orin’ apple. The MdMKK9 deletion mutants (MUT) calli could not respond to the low level of nitrogen signal, the expression level of anthocyanin synthesis-related genes was down-regulated, and the anthocyanin content was lower than that of the wild type (WT). In contrast, the MdMKK9-overexpressed calli up-regulated the expression level of anthocyanin synthesis-related genes and increased anthocyanin content, and appeared red in conditions of low level of nitrogen or nitrogen deficiency. These results show that MdMKK9 plays a role in the adaptation of red-fleshed apple to low levels of nitrogen by regulating the nitrogen status and anthocyanin accumulation.
Collapse
Affiliation(s)
- Xiaohong Sun
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinxin Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
| | - Jihua Xu
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
- Correspondence: (S.J.); (Y.Z.)
| | - Yugang Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
- Correspondence: (S.J.); (Y.Z.)
| |
Collapse
|
38
|
Gaucher M, Righetti L, Aubourg S, Dugé de Bernonville T, Brisset MN, Chevreau E, Vergne E. An Erwinia amylovora inducible promoter for improvement of apple fire blight resistance. PLANT CELL REPORTS 2022; 41:1499-1513. [PMID: 35385991 PMCID: PMC9270298 DOI: 10.1007/s00299-022-02869-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes. Intragenesis is an important alternative to transgenesis to produce modified plants containing native DNA only. A key point to develop such a strategy is the availability of regulatory sequences controlling the expression of the gene of interest. With the aim of finding apple gene promoters either inducible by the fire blight pathogen Erwinia amylovora (Ea) or moderately constitutive, we focused on polyphenoloxidase genes (PPO). These genes encode oxidative enzymes involved in many physiological processes and have been previously shown to be upregulated during the Ea infection process. We found ten PPO and two PPO-like sequences in the apple genome and characterized the promoters of MdPPO16 (pPPO16) and MdKFDV02 PPO-like (pKFDV02) for their potential as Ea-inducible and low-constitutive regulatory sequences, respectively. Expression levels of reporter genes fused to these promoters and transiently or stably expressed in apple were quantified after various treatments. Unlike pKFDV02 which displayed a variable activity, pPPO16 allowed a fast and strong expression of transgenes in apple following Ea infection in a Type 3 Secretion System dependent manner. Altogether our results does not confirmed pKFDV02 as a constitutive and weak promoter whereas pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes.
Collapse
Affiliation(s)
- Matthieu Gaucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Laura Righetti
- Research Centre for Cereal and Industrial Crops (CREA-CI), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Sébastien Aubourg
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Thomas Dugé de Bernonville
- EA2106 Biomolécules et Biotechnologies Végétales, UFR Sciences Pharmaceutiques, Université François Rabelais, 31 avenue Monge, 37200, Tours, France
| | | | - Elisabeth Chevreau
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France
| | - Emilie Vergne
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, 49000, Angers, France.
| |
Collapse
|
39
|
He Y, Mudgett M, Zhao Y. Advances in gene editing without residual transgenes in plants. PLANT PHYSIOLOGY 2022; 188:1757-1768. [PMID: 34893903 PMCID: PMC8968301 DOI: 10.1093/plphys/kiab574] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 05/24/2023]
Abstract
Transgene residuals in edited plants affect genetic analysis, pose off-target risks, and cause regulatory concerns. Several strategies have been developed to efficiently edit target genes without leaving any transgenes in plants. Some approaches directly address this issue by editing plant genomes with DNA-free reagents. On the other hand, DNA-based techniques require another step for ensuring plants are transgene-free. Fluorescent markers, pigments, and chemical treatments have all been employed as tools to distinguish transgenic plants from transgene-free plants quickly and easily. Moreover, suicide genes have been used to trigger self-elimination of transgenic plants, greatly improving the efficiency of isolating the desired transgene-free plants. Transgenes can also be excised from plant genomes using site-specific recombination, transposition or gene editing nucleases, providing a strategy for editing asexually produced plants. Finally, haploid induction coupled with gene editing may make it feasible to edit plants that are recalcitrant to transformation. Here, we evaluate the strengths and weaknesses of recently developed approaches for obtaining edited plants without transgene residuals.
Collapse
Affiliation(s)
- Yubing He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Michael Mudgett
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| |
Collapse
|
40
|
Tu M, Fang J, Zhao R, Liu X, Yin W, Wang Y, Wang X, Wang X, Fang Y. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera). HORTICULTURE RESEARCH 2022; 9:uhac022. [PMID: 35184164 PMCID: PMC9174745 DOI: 10.1093/hr/uhac022] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 05/19/2023]
Abstract
Anthocyanins are plant secondary metabolites that have a variety of biological functions, including pigmentation. The accumulation of anthocyanins is regulated by both transcriptional activators and repressors. Studies have shown that the bZIP family act primarily as positive regulators of anthocyanin biosynthesis, but there are few reports of negative regulation. Here, we report that a grapevine (Vitis vinifera) bZIP gene from group K, VvbZIP36, acts as a negative regulator of anthocyanin biosynthesis. Knocking-out one allele of VvbZIP36 in grapevine utilizing the CRISPR/Cas9 technology promoted anthocyanin accumulation. Correlation analysis of transcriptome and metabolome data showed that, compared with wild type, a range of anthocyanin biosynthesis genes were activated in VvbZIP36 mutant plants, resulting in the accumulation of related metabolites, including naringenin chalcone, naringenin, dihydroflavonols and cyanidin-3-O-glucoside. Furthermore, the synthesis of stilbenes (α-viniferin), lignans and some flavonols (including quercetin-3-O-rhamnoside, kaempferol-3-O-rhamnoside and kaempferol-7-O-rhamnoside) was significantly inhibited and several genes linked to these metabolism, were down-regulated in the mutant plants. In summary, our results demonstrate that VvbZIP36, as a negative regulator of anthocyanin biosynthesis, plays a role in balancing the synthesis of stilbenes (α-viniferin), lignans, flavonols and anthocyanins.
Collapse
Affiliation(s)
- Mingxing Tu
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghao Fang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruikang Zhao
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingyu Liu
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianhang Wang
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
41
|
Schröpfer S, Lempe J, Emeriewen OF, Flachowsky H. Recent Developments and Strategies for the Application of Agrobacterium-Mediated Transformation of Apple Malus × domestica Borkh. FRONTIERS IN PLANT SCIENCE 2022; 13:928292. [PMID: 35845652 PMCID: PMC9280197 DOI: 10.3389/fpls.2022.928292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/08/2022] [Indexed: 05/09/2023]
Abstract
Genetic transformation has become an important tool in plant genome research over the last three decades. This applies not only to model plants such as Arabidopsis thaliana but also increasingly to cultivated plants, where the establishment of transformation methods could still pose many problems. One of such plants is the apple (Malus spp.), the most important fruit of the temperate climate zone. Although the genetic transformation of apple using Agrobacterium tumefaciens has been possible since 1989, only a few research groups worldwide have successfully applied this technology, and efficiency remains poor. Nevertheless, there have been some developments, especially in recent years, which allowed for the expansion of the toolbox of breeders and breeding researchers. This review article attempts to summarize recent developments in the Agrobacterium-mediated transformation strategies of apple. In addition to the use of different tissues and media for transformation, agroinfiltration, as well as pre-transformation with a Baby boom transcription factor are notable successes that have improved transformation efficiency in apple. Further, we highlight targeted gene silencing applications. Besides the classical strategies of RNAi-based silencing by stable transformation with hairpin gene constructs, optimized protocols for virus-induced gene silencing (VIGS) and artificial micro RNAs (amiRNAs) have emerged as powerful technologies for silencing genes of interest. Success has also been achieved in establishing methods for targeted genome editing (GE). For example, it was recently possible for the first time to generate a homohistont GE line into which a biallelic mutation was specifically inserted in a target gene. In addition to these methods, which are primarily aimed at increasing transformation efficiency, improving the precision of genetic modification and reducing the time required, methods are also discussed in which genetically modified plants are used for breeding purposes. In particular, the current state of the rapid crop cycle breeding system and its applications will be presented.
Collapse
|
42
|
Scintilla S, Salvagnin U, Giacomelli L, Zeilmaker T, Malnoy MA, Rouppe van der Voort J, Moser C. Regeneration of non-chimeric plants from DNA-free edited grapevine protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1078931. [PMID: 36531381 DOI: 10.1101/2021.07.16.452503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/20/2023]
Abstract
The application of New Breeding Techniques (NBTs) in Vitis vinifera is highly desirable to introduce valuable traits while preserving the genotype of the elite cultivars. However, a broad application of NBTs through standard DNA-based transformation is poorly accepted by public opinion and law regulations in Europe and other countries due to the stable integration of exogenous DNA, which leads to transgenic plants possibly affected by chimerism. A single-cell based approach, coupled with a DNA-free transfection of the CRISPR/Cas editing machinery, constitutes a powerful tool to overcome these problems and maintain the original genetic make-up in the whole organism. We here describe a successful single-cell based, DNA-free methodology to obtain edited grapevine plants, regenerated from protoplasts isolated from embryogenic callus of two table grapevine varieties (V. vinifera cv. Crimson seedless and Sugraone). The regenerated, non-chimeric plants were edited on the downy- and powdery-mildew susceptibility genes, VviDMR6 and VviMlo6 respectively, either as single or double mutants.
Collapse
Affiliation(s)
- Simone Scintilla
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
| | - Umberto Salvagnin
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
- Consorzio Innovazione Vite (CIVIT), Trento, TN, Italy
| | - Lisa Giacomelli
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
- Scienza Biotechnologies BV., Enkhuizen, Netherlands
| | | | - Mickael A Malnoy
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
| | | | - Claudio Moser
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
| |
Collapse
|
43
|
Schröpfer S, Flachowsky H. Tracing CRISPR/Cas12a Mediated Genome Editing Events in Apple Using High-Throughput Genotyping by PCR Capillary Gel Electrophoresis. Int J Mol Sci 2021; 22:ijms222212611. [PMID: 34830492 PMCID: PMC8619667 DOI: 10.3390/ijms222212611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023] Open
Abstract
The use of the novel CRISPR/Cas12a system is advantageous, as it expands the possibilities for genome editing (GE) applications due to its different features compared to the commonly used CRISPR/Cas9 system. In this work, the CRISPR/Cas12a system was applied for the first time to apple to investigate its general usability for GE applications. Efficient guide RNAs targeting different exons of the endogenous reporter gene MdPDS, whose disruption leads to the albino phenotype, were pre-selected by in vitro cleavage assays. A construct was transferred to apple encoding for a CRISPR/Cas12a system that simultaneously targets two loci in MdPDS. Using fluorescent PCR capillary electrophoresis and amplicon deep sequencing, all identified GE events of regenerated albino shoots were characterized as deletions. Large deletions between the two neighboring target sites were not observed. Furthermore, a chimeric composition of regenerates and shoots that exhibited multiple GE events was observed frequently. By comparing both analytical methods, it was shown that fluorescent PCR capillary gel electrophoresis is a sensitive high-throughput genotyping method that allows accurate predictions of the size and proportion of indel mutations for multiple loci simultaneously. Especially for species exhibiting high frequencies of chimerism, it can be recommended as a cost-effective method for efficient selection of homohistont GE lines.
Collapse
|
44
|
Dalla Costa L, Vinciguerra D, Giacomelli L, Salvagnin U, Piazza S, Spinella K, Malnoy M, Moser C, Marchesi U. Integrated approach for the molecular characterization of edited plants obtained via Agrobacterium tumefaciens-mediated gene transfer. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03881-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractAgrobacterium tumefaciens-mediated gene transfer—actually the most used method to engineer plants—may lead to integration of multiple copies of T-DNA in the plant genome, as well as to chimeric tissues composed of modified cells and wild type cells. A molecular characterization of the transformed lines is thus a good practice to select the best ones for further investigation. Nowadays, several quantitative and semi-quantitative techniques are available to estimate the copy number (CN) of the T-DNA in genetically modified plants. In this study, we compared three methods based on (1) real-time polymerase chain reaction (qPCR), (2) droplet digital PCR (ddPCR), and (3) next generation sequencing (NGS), to carry out a molecular characterization of grapevine edited lines. These lines contain a knock-out mutation, obtained via CRISPR/Cas9 technology, in genes involved in plant susceptibility to two important mildew diseases of grapevine. According to our results, qPCR and ddPCR outputs are largely in agreement in terms of accuracy, especially for low CN values, while ddPCR resulted more precise than qPCR. With regard to the NGS analysis, the CNs detected with this method were often not consistent with those calculated by qPCR and ddPCR, and NGS was not able to discriminate the integration points in three out of ten lines. Nevertheless, the NGS method can positively identify T-DNA truncations or the presence of tandem/inverted repeats, providing distinct and relevant information about the transgene integration asset. Moreover, the expression analysis of Cas9 and single guide RNA (sgRNA), and the sequencing of the target site added new information to be related to CN data. This work, by reporting a practical case-study on grapevine edited lines, explores pros and cons of the most advanced diagnostic techniques available for the precocious selection of the proper transgenic material. The results may be of interest both to scientists developing new transgenic lines, and to laboratories in charge of GMO control.
Collapse
|
45
|
Savadi S, Mangalassery S, Sandesh MS. Advances in genomics and genome editing for breeding next generation of fruit and nut crops. Genomics 2021; 113:3718-3734. [PMID: 34517092 DOI: 10.1016/j.ygeno.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Fruit tree crops are an essential part of the food production systems and are key to achieve food and nutrition security. Genetic improvement of fruit trees by conventional breeding has been slow due to the long juvenile phase. Advancements in genomics and molecular biology have paved the way for devising novel genetic improvement tools like genome editing, which can accelerate the breeding of these perennial crops to a great extent. In this article, advancements in genomics of fruit trees covering genome sequencing, transcriptome sequencing, genome editing technologies (GET), CRISPR-Cas system based genome editing, potential applications of CRISPR-Cas9 in fruit tree crops improvement, the factors influencing the CRISPR-Cas editing efficiency and the challenges for CRISPR-Cas9 applications in fruit tree crops improvement are reviewed. Besides, base editing, a recently emerging more precise editing system, and the future perspectives of genome editing in the improvement of fruit and nut crops are covered.
Collapse
Affiliation(s)
- Siddanna Savadi
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India.
| | | | - M S Sandesh
- ICAR- Directorate of Cashew Research (DCR), Puttur 574 202, Dakshina Kannada, Karnataka, India
| |
Collapse
|
46
|
Piazza S, Campa M, Pompili V, Costa LD, Salvagnin U, Nekrasov V, Zipfel C, Malnoy M. The Arabidopsis pattern recognition receptor EFR enhances fire blight resistance in apple. HORTICULTURE RESEARCH 2021; 8:204. [PMID: 34465763 PMCID: PMC8408165 DOI: 10.1038/s41438-021-00639-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 05/12/2023]
Abstract
Fire blight disease, caused by the bacterium Erwinia amylovora (E. amylovora), is responsible for substantial losses in cultivated apples worldwide. An important mechanism of plant immunity is based on the recognition of conserved microbial molecules, named pathogen-associated or microbe-associated molecular patterns (PAMPs or MAMPs), through pattern recognition receptors (PRRs), leading to pattern-triggered immunity (PTI). The interspecies transfer of PRRs represents a promising strategy to engineer broad-spectrum and durable disease resistance in crops. EFR, the Arabidopsis thaliana PRR for the PAMP elf18 derived from the elongation factor thermal unstable (EF-Tu) proved to be effective in improving bacterial resistance when expressed into Solanaceae and other plant species. In this study, we tested whether EFR can affect the interaction of apple with E. amylovora by its ectopic expression in the susceptible apple rootstock M.26. Stable EFR expression led to the activation of PAMP-triggered immune response in apple leaves upon treatment with supernatant of E. amylovora, as measured by the production of reactive oxygen species and the induction of known defense genes. The amount of tissue necrosis associated with E. amylovora infection was significantly reduced in the EFR transgenic rootstock compared to the wild-type. Our results show that the expression of EFR in apple rootstock may be a valuable biotechnology strategy to improve the resistance of apple to fire blight.
Collapse
Affiliation(s)
- Stefano Piazza
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
| | - Manuela Campa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
- Genetics Department, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Valerio Pompili
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
| | - Umberto Salvagnin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy
| | - Vladimir Nekrasov
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Plant Sciences Department, Rothamsted Research, Harpenden, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele a/Adige, Italy.
| |
Collapse
|
47
|
Kashtwari M, Mansoor S, Wani AA, Najar MA, Deshmukh RK, Baloch FS, Abidi I, Zargar SM. Random mutagenesis in vegetatively propagated crops: opportunities, challenges and genome editing prospects. Mol Biol Rep 2021; 49:5729-5749. [PMID: 34427889 DOI: 10.1007/s11033-021-06650-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022]
Abstract
In order to meet the growing human food and nutrition demand a perpetual process of crop improvement is idealized. It has seen changing trends and varying concepts throughout human history; from simple selection to complex gene-editing. Among these techniques, random mutagenesis has been shown to be a promising technology to achieve desirable genetic gain with less time and minimal efforts. Over the decade, several hundred varieties have been released through random mutagenesis, but the production is falling behind the demand. Several food crops like banana, potato, cassava, sweet potato, apple, citrus, and others are vegetatively propagated. Since such crops are not propagated through seed, genetic improvement through classical breeding is impractical for them. Besides, in the case of polyploids, accomplishment of allelic homozygosity requires a considerable land area, extensive fieldwork with huge manpower, and hefty funding for an extended period of time. Apart from induction, mapping of induced genes to facilitate the knowledge of biological processes has been performed only in a few selected facultative vegetative crops like banana and cassava which can form a segregating population. During the last few decades, there has been a shift in the techniques used for crop improvement. With the introduction of the robust technologies like meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) more and more crops are being subjected to gene editing. However, more work needs to be done in case of vegetatively propagated crops.
Collapse
Affiliation(s)
- Mahpara Kashtwari
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Sheikh Mansoor
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, FBSc, Jammu, Jammu and Kashmir, 180009, India
| | - Aijaz A Wani
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mushtaq Ahmad Najar
- Cytogenetics and Molecular Biology Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Rupesh K Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140308, India
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Ishfaq Abidi
- Directorate of Research, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
48
|
Giudice G, Moffa L, Varotto S, Cardone MF, Bergamini C, De Lorenzis G, Velasco R, Nerva L, Chitarra W. Novel and emerging biotechnological crop protection approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1495-1510. [PMID: 33945200 PMCID: PMC8384607 DOI: 10.1111/pbi.13605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 05/05/2023]
Abstract
Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non-model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation.
Collapse
Affiliation(s)
- Gaetano Giudice
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Loredana Moffa
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A)University of UdineUdineItaly
| | - Serena Varotto
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE)University of PadovaLegnaroPDItaly
| | - Maria Francesca Cardone
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Carlo Bergamini
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)TuriBAItaly
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences ‐ Production, Landscape, Agroenergy (DiSAA)University of MilanoMilanoItaly
| | - Riccardo Velasco
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
| | - Luca Nerva
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| | - Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and Economics (CREA‐VE)ConeglianoTVItaly
- Institute for Sustainable Plant ProtectionNational Research Council (IPSP‐CNR)TorinoItaly
| |
Collapse
|
49
|
Peil A, Emeriewen OF, Khan A, Kostick S, Malnoy M. Status of fire blight resistance breeding in Malus. JOURNAL OF PLANT PATHOLOGY 2021; 103:3-12. [PMID: 0 DOI: 10.1007/s42161-020-00581-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/21/2020] [Indexed: 05/20/2023]
|
50
|
Yuan X, Hulin MT, Sundin GW. Effectors, chaperones, and harpins of the Type III secretion system in the fire blight pathogen Erwinia amylovora: a review. JOURNAL OF PLANT PATHOLOGY 2021; 103:25-39. [PMID: 0 DOI: 10.1007/s42161-020-00623-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 05/20/2023]
|