1
|
Zhao YW, Zhao TT, Sun Q, Liu XL, Huang XY, Li LG, Wang HB, Li WK, Wang CK, Wang WY, Xiang Y, Ma CN, Chen XS, Cheng L, Hu DG. Enrichment of two important metabolites D-galacturonic acid and D-glucuronic acid inhibits MdHb1-mediated fruit softening in apple. NATURE PLANTS 2025; 11:891-908. [PMID: 40247144 DOI: 10.1038/s41477-025-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/27/2025] [Indexed: 04/19/2025]
Abstract
In apples, fruit firmness is a crucial quality trait influencing fruit storability, transportability, shelf life and consumer preference. However, the genetic network underlying this trait remains unclear. Therefore, the present study investigated the changes in apple fruit at different stages of postharvest storage using a combination of transcriptomic and metabolomic analyses. With prolonged storage, we detected a significant increase in two metabolites, D-galacturonic acid (D-GalUA) and D-glucuronic acid (D-GlcA), which are associated with a key class 1 non-symbiotic haemoglobin (MdHb1). We innovatively found that MdHb1 regulates fruit softening by catalysing the conversion from protopectin to water-soluble pectin. Biochemical analysis demonstrated that MdMYB2/MdNAC14/MdNTL9 transcription factors directly bind to the MdHb1 promoter to activate its transcriptional expression and promote fruit softening. Further injection experiments in apple fruit and histological as well as transmission electron microscopy analyses of the fruit samples revealed that D-GalUA and D-GlcA reduce the transcription of MdHb1, or through the MdMYB2/MdNAC14/MdNTL9-MdHb1 regulatory module, thereby delaying fruit softening. Our study provides novel insights into the role of two important metabolites, D-GalUA and D-GlcA, in the regulation of MdHb1-mediated fruit softening in apples.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ting-Ting Zhao
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Long Liu
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lin-Guang Li
- Shandong Institute of Pomology, Key Laboratory for Fruit Biotechnology Breeding of Shandong, Tai'an, Shandong, China
| | - Hai-Bo Wang
- Shandong Institute of Pomology, Key Laboratory for Fruit Biotechnology Breeding of Shandong, Tai'an, Shandong, China
| | - Wan-Kun Li
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ying Xiang
- Department of Horticulture, Agriculture College, Shihezi University, Shihezi, China
| | - Chang-Ning Ma
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xue-Sen Chen
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
2
|
Fang T, Li Y, Xie T, Xian H, Bao Y, Zeng L. The bHLH transcription factor DlbHLH68 positively regulates DlSPS1 expression to promote sucrose biosynthesis in longan. Int J Biol Macromol 2025; 296:139594. [PMID: 39798759 DOI: 10.1016/j.ijbiomac.2025.139594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Sucrose is an important factor affecting plant growth and fruit quality, but the molecular regulatory mechanism of sucrose biosynthesis in longan is not yet understood. Here, we characterized a transcription factor, DlbHLH68, positively regulates sucrose accumulation in longan. Subcellular localization and transcriptional activity analysis indicated that DlbHLH68 is a nuclear transcriptional activator. Overexpressing DlbHLH68 in Arabidopsis enhanced sucrose content, plant height, and the relative expression level of sucrose phosphate synthase genes (AtSPS1 and AtSPS2). Yeast one-hybrid and dual-luciferase reporter assays indicated that DlbHLH68 was able to activate the expression of DlSPS1, the homology gene of AtSPS1. As expected, overexpression of DlSPS1 significantly increased the sucrose content in transgenic Arabidopsis and longan fruits. Collectively, this study reveals that DlbHLH68 is a positive regulator in sucrose accumulation by activating DlSPS1 expression to mediate sucrose biosynthesis, which is helpful for understanding the molecular basis of sucrose biosynthesis and accumulation in longan fruit and provides candidate genes for further breeding.
Collapse
Affiliation(s)
- Ting Fang
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yun Li
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tao Xie
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huimin Xian
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuying Bao
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Zeng
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Qiang X, Ren T, Zhang Y, Jia Y. Genome-Wide Identification and Expression Profiling of the Invertase Genes Involved in Sugar Metabolism and Accumulation in Actinidia arguta. Int J Mol Sci 2025; 26:2150. [PMID: 40076770 PMCID: PMC11899927 DOI: 10.3390/ijms26052150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Invertase (INV, EC3.2.1.26) is widely recognized as an indispensable enzyme for catalyzing sucrose degradation and plays a central role in plant growth as well as fruit quality improvement. However, no systematic study has been performed in kiwifruit. Here, we identified 102 AaINV genes in the Actinidia arguta "M1" genome. Their physical and chemical properties, subcellular localizations, phylogenetic relationships and expression profiles were characterized. Phylogenetic analysis showed that the INV members were clustered into three groups (vacuole invertases (VINVs) and cell wall invertases (CWINVs) in Group I, alkaline/neutral invertase (NINVs) in Group II and Group III), demonstrating evolutionary conservation in the INV family across Arabidopsis and Actinidia species. Gene replication analysis revealed that many AaINV genes were derived from gene duplication events. Molecular evolution analysis based on Ka/Ks ratios indicated that the INV members have experienced extensive purifying selection during evolution. To explore the potential gene functions, we integrated RNA-seq and metabolomics to analyze AaINV gene expression patterns and sugar accumulation in three A. arguta varieties ("Kukuwa", "Qinhuang", "Xianziguang"), respectively. The expression analysis of the 102 genes showed that the expression patterns varied among the three kiwifruit varieties at fruit maturity stage. The expression levels of AaINVs were also investigated via qRT-PCR in these varieties. Specifically, we constructed a complex regulatory network that regulates sugar metabolism in kiwifruit based on the correlation between 42 AaINV genes and 14 sugar metabolites. These findings provide insights into physiological functions of AaINVs in kiwifruit, especially roles in governing sugars accumulation in fruits.
Collapse
Affiliation(s)
- Xu Qiang
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ting Ren
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
| | - Ying Zhang
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
| | - Yun Jia
- Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China
| |
Collapse
|
4
|
Pan C, Liao Y, Shi B, Zhang M, Zhou Y, Wu J, Wu H, Qian M, Bai S, Teng Y, Ni J. Blue light-induced MiBBX24 and MiBBX27 simultaneously promote peel anthocyanin and flesh carotenoid biosynthesis in mango. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109315. [PMID: 39608340 DOI: 10.1016/j.plaphy.2024.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Blue light simultaneously enhances anthocyanin and carotenoid biosynthesis in mango (Mangifera indica L.) fruit peel and flesh, respectively, but the mechanism remains unclear. In this study, two blue light-triggered zinc-finger transcription factors, MiBBX24 and MiBBX27, that positively regulate anthocyanin and carotenoid biosynthesis in mango fruit were identified. Both MiBBXs transcriptionally activate the expression of MiMYB1, a positive regulator of anthocyanin biosynthesis. Furthermore, both MiBBXs also trigger the expression of a phytoene synthase gene (MiPSY), which is essential for carotenoid biosynthesis. Ectopic expression of MiBBX24 or MiBBX27 in Arabidopsis increased anthocyanin contents, and their positive effects on anthocyanin accumulation in mango peel were confirmed through transient overexpression and virus-induced silencing. Transient expression of MiBBX24 or MiBBX27 in tomato (Solanum lycopersicum) and mango fruit flesh increased the carotenoid content, while the virus-induced silencing of MiBBX24 or MiBBX27 in the mango fruit flesh decreased carotenoid accumulation. Overall, our study results reveal that MiBBX24 and MiBBX27 simultaneously promote the biosynthesis of anthocyanin and carotenoids biosynthesis in mango fruit peel and flesh under blue light, indicating that BBX-mediated dual effects on physiological functions contribute to mango fruit pigment accumulation. Furthermore, we herein shed new light on the simultaneous transcriptional regulatory effects of a single factor on the biosynthesis of different plant pigments.
Collapse
Affiliation(s)
- Chen Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Yifei Liao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Baojing Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Manman Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Yi Zhou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Jiahao Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Hongxia Wu
- National Key Laboratory for Tropical Crop Breeding, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524013, PR China.
| | - Minjie Qian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan 572025, PR China.
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Hainan Institute of Zhejiang University, Sanya, Hainan 572000, PR China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou, Zhejiang 310058, PR China; The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
5
|
Lin X, Li S, Shi Y, Ma Y, Li Y, Tan H, Zhang B, Xu C, Chen K. CitGATA7 interact with histone acetyltransferase CitHAG28 to promote citric acid degradation by regulating the glutamine synthetase pathway in citrus. MOLECULAR HORTICULTURE 2025; 5:8. [PMID: 39891226 PMCID: PMC11786515 DOI: 10.1186/s43897-024-00126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/03/2024] [Indexed: 02/03/2025]
Abstract
Organic acid is a crucial indicator of fruit quality traits. Citric acid, the predominant organic acid in citrus fruit, directly influences its edible quality and economic value. While the transcriptional regulatory mechanisms of citric acid metabolism have been extensively studied, the understanding about the transcriptional and epigenetic co-regulation mechanisms is limited. This study characterized a transcription factor, CitGATA7, which directly binds to and activates the expression of genes associated with the glutamine synthetase pathway regulating citric acid degradation. These genes include the aconitase encoding gene CitACO3, the isocitrate dehydrogenase encoding gene CitIDH1, and the glutamine synthetase encoding gene CitGS1. Furthermore, CitGATA7 physically interacts with the histone acetyltransferase CitHAG28 to enhance histone 3 acetylation levels near the transcription start site of CitACO3, CitIDH1, and CitGS1, thereby increasing their transcription and promoting citric acid degradation. The findings demonstrate that the CitGATA7-CitHAG28 protein complex transcriptionally regulate the expression of the GS pathway genes, i.e., CitACO3, CitIDH1, and CitGS1, via histone acetylation, thus promoting citric acid catabolism. This study establishes a direct link between transcriptional regulation and histone acetylation regarding citric acid metabolism, providing insights for strategies to manipulate organic acid accumulation in fruit.
Collapse
Affiliation(s)
- Xiahui Lin
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yuchen Ma
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Yinchun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Haohan Tan
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Bo Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Changjie Xu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China.
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, P.R. China.
| |
Collapse
|
6
|
Tang X, Huang M, Deng L, Li Y, Jin X, Xu J, Xiong B, Liao L, Zhang M, He J, Sun G, He S, Wang Z. Comparative Transcriptome Analysis Reveals Potential Molecular Regulation of Organic Acid Metabolism During Fruit Development in Late-Maturing Hybrid Citrus Varieties. Int J Mol Sci 2025; 26:803. [PMID: 39859515 PMCID: PMC11765802 DOI: 10.3390/ijms26020803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Late-maturing hybrid citrus is a significant fruit that combines the best traits of both parents and is highly prized for its unique flavor. Not only can organic acids alter the flavor of citrus pulp, but they are also essential for cellular metabolism, energy conversion, and maintaining the acidbase balance in plant tissues. Although organic acids play a key role in the quality formation of citrus fruits, there is still insufficient research on the metabolic processes of organic acids in late-maturing hybrid citrus varieties. In this study, three late-maturing citrus varieties with different acidity levels, namely 'Huangjinjia' (HJ), 'Kiyomi' (QJ), and 'Harumi' (CJ), were selected to systematically investigate the metabolic regulation mechanism of organic acids in late-maturing citrus through transcriptome sequencing technology, combined with physiological and biochemical analyses. This study revealed gene expression differences related to organic acid synthesis and degradation. Through gene expression profiling, several genes closely associated with organic acid metabolism were identified, and a preliminary gene network related to the regulation of organic acid metabolism was constructed. The results showed that there were significant differences in the organic acid metabolic pathways between different varieties and growth stages of the fruit. Specifically, HJ had a higher TA content than QJ and CJ, primarily due to the significantly higher citric acid and malic acid contents in HJ compared to the other two varieties. Further analysis revealed that four gene modules showed a high correlation with the levels of major organic acids in the fruits. The genes involved in these modules are closely related to organic acid synthesis, degradation, and transport. Additionally, we also identified several key genes (AS1, BZP44, COL4, TCP4, IDD10, YAB2, and GAIPB) that might be involved in the regulation of organic acid metabolism. The functions of these genes could have a significant impact on the expression levels changes of enzymes related to organic acid metabolism. This study provides a foundation for exploring the intrinsic mechanisms regulating the organic acid content in late-maturing hybrid citrus fruits and contributes to the functional research of organic acids in late-maturing hybrid citrus and the molecular design of high-quality varieties.
Collapse
Affiliation(s)
- Xiaoyu Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengqi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijun Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixuan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojun Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaqi Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Siya He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihui Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Chi Z, Wang L, Hu Q, Yi G, Wang S, Guo Q, Jing D, Liang G, Xia Y. The MADS-Box Transcription Factor EjAGL18 Negatively Regulates Malic Acid Content in Loquat by Repressing EjtDT1. Int J Mol Sci 2025; 26:530. [PMID: 39859247 PMCID: PMC11765138 DOI: 10.3390/ijms26020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Malic acid is the major organic acid in loquat fruit, contributing to the sourness of fruit and affecting fruit flavor. However, the transcriptional regulation of malic acid in loquat is not well understood. Here, we discovered a MADS-box transcription factor (TF), EjAGL18, that regulated malic acid accumulation in loquat. EjAGL18 is a nucleus-localized TF without transcriptional activity. The expression of EjAGL18 increased during fruit ripening, opposite to the accumulation pattern of malic acid in loquat. The transient overexpression of EjAGL18 in loquat fruit downregulated malic acid accumulation and the transcriptional level of the tonoplast dicarboxylate transporter EjtDT1. Conversely, silencing EjAGL18 in loquat fruit upregulated the malic acid content and EjtDT1 expression level. Dual-luciferase assays and yeast one-hybrid experiments further confirmed that EjAGL18 could bind to the promoter of EjtDT1 and repress its transcriptions. Furthermore, the transient overexpression of EjtDT1 in loquat fruit increased the malic acid content. These results revealed that EjAGL18 negatively regulates malic acid content by repressing EjtDT1 in loquat. This study broadens the understanding of the MADS-box TF's regulatory mechanisms in malic acid and provides new insights into fruit flavor improvement in loquat.
Collapse
Affiliation(s)
- Zhuoheng Chi
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Luwei Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qiankun Hu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guangquan Yi
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Danlong Jing
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yan Xia
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (Z.C.); (L.W.); (Q.H.); (G.Y.); (S.W.); (Q.G.); (D.J.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Lei Y, Jiu S, Xu Y, Chen B, Dong X, Lv Z, Bernard A, Liu X, Wang L, Wang L, Wang J, Zhang Z, Cai Y, Zheng W, Zhang X, Li F, Li H, Liu C, Li M, Wang J, Zhu J, Peng L, Barreneche T, Yu F, Wang S, Dong Y, Elisabeth D, Duan S, Zhang C. Population sequencing of cherry accessions unravels the evolution of Cerasus species and the selection of genetic characteristics in edible cherries. MOLECULAR HORTICULTURE 2025; 5:6. [PMID: 39780235 PMCID: PMC11708008 DOI: 10.1186/s43897-024-00120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025]
Abstract
Cerasus is a subgenus of Prunus in the family Rosaceae that is popular owing to its ornamental, edible, and medicinal properties. Understanding the evolution of the Cerasus subgenus and identifying selective trait loci in edible cherries are crucial for the improvement of cherry cultivars to meet producer and consumer demands. In this study, we performed a de novo assembly of a chromosome-scale genome for the sweet cherry (Prunus avium L.) cultivar 'Burlat', covering 297.55 Mb and consisting of eight chromosomes with 33,756 protein-coding genes. The resequencing and population structural analysis of 384 Cerasus representative accessions revealed that they could be divided into four groups (Group 1, Group 2, Group 3, and Group 4). We inferred that Group 1 was the oldest population and Groups 2, 3, and 4 were clades derived from it. In addition, we found selective sweeps for fruit flavor and improved stress resistance in different varieties of edible cherries (P. avium, P. cerasus, and P. pseudocerasus). Transcriptome analysis revealed significant differential expression of genes associated with key pathways, such as sucrose starch and sucrose metabolism, fructose and mannose metabolism, and the pentose phosphate pathway, between the leaves and fruits of P. avium. This study enhances the understanding of the evolutionary processes of the Cerasus subgenus and provides resources for functional genomics research and the improvement of edible cherries.
Collapse
Affiliation(s)
- Yahui Lei
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- College of Science, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Baozheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, P. R. China
| | - Xiao Dong
- College of Science, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Anthony Bernard
- UMR BFP, INRAE, Univ. Bordeaux, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhuo Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuliang Cai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Wei Zheng
- Dalian Academy of Agricultural Sciences, Dalian, Liaoning, 116036, P. R. China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, P. R. China
| | - Fangdong Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, P. R. China
| | - Hongwen Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, P. R. China
| | - Congli Liu
- Zhengzhou Fruit Tree Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, P. R. China
| | - Ming Li
- Zhengzhou Fruit Tree Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, P. R. China
| | - Jing Wang
- Forestry and Fruit Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - Jijun Zhu
- Shanghai Botanical Garden, Shanghai, 200231, P. R. China
| | - Lei Peng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
| | - Teresa Barreneche
- UMR BFP, INRAE, Univ. Bordeaux, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
| | - Fei Yu
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650201, P. R. China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yang Dong
- College of Science, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, P. R. China
| | - Dirlewanger Elisabeth
- UMR BFP, INRAE, Univ. Bordeaux, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.
| | - Shengchang Duan
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
9
|
Zhang Z, Huang Z, Wu B, Wu T, Wang Y, Han Z, Zhang X. Epistasis between genetic variations on MdMYB109 and MdHXK1 exerts a large effect on sugar content in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17187. [PMID: 39652439 DOI: 10.1111/tpj.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/25/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Many quantitative traits are controlled by multiple genetic variations with minor effects, making it challenging to resolve the underlying genetic network and to apply functional markers in breeding. Affected by up to a hundred quantitative trait loci (QTLs), fruit-soluble sugar content is one of the most complex quantitative traits in apple (Malus sp.). Here, QTLs for apple fruit sucrose and fructose content were identified via QTL mapping and bulked-segregant analysis sequencing (BSA-seq) using a population derived from a 'Jonathan' × 'Golden Delicious' cross. Allelic variations and non-allelic interactions were validated in the candidate genes within these defined QTL regions. Three single-nucleotide polymorphisms (SNPs) (SNP -326 C/T, SNP -705 A/G, and SNP -706 G/T) in the MdMYB109 promoter region affected the binding ability of the repressive transcription factor MdWRKY33, leading to increased MdMYB109 expression. MdMYB109 bound directly to the promoter of the sucrose transporter gene MdSUT2.2 and activated its expression, raising fruit sucrose content. A SNP (SNP1060 A/G) in the hexokinase gene MdHXK1 affected the phosphorylation of the transcription factor MdbHLH3, and phosphorylated MdbHLH3 interacted with MdMYB109 to co-activate MdSUT2.2 expression and increase fruit sucrose content. Adding the joint effects of the genotype combinations at the SNP markers based on the SNPs in MdMYB109 and MdHXK1 increased the prediction accuracy of a genomics-assisted prediction (GAP) model for total soluble solid content from 0.3758 to 0.5531. These results uncovered functional variations in MdMYB109 and MdHXK1 regulating apple fruit sucrose content. The updated GAP model with improved predictability can be used efficiently in apple breeding.
Collapse
Affiliation(s)
- Zhongyan Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenyu Huang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou, Henan, 450009, China
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Chen J, Fu C, Wang H, Sun X, Ma K, Yang H, Qin D, Huo J, Gang H. Combination transcriptomic and metabolomic reveal deterioration of the blue honeysuckle (Lonicera caerulea L.) fruit and candidate genes regulating metabolism in the post-harvest stage. Int J Biol Macromol 2025; 284:138074. [PMID: 39603300 DOI: 10.1016/j.ijbiomac.2024.138074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Blue honeysuckle, a new berry with high nutritional value, possesses typical berry postharvest properties, including extreme perishability, rapid quality loss, and high sensitivity to microbial infections. At present, the underlying mechanisms of postharvest quality deterioration, senescence, and low-temperature regulation remain largely unknown. This study aimed to elucidate the metabolic shifts and genetic regulation underlying the preservation or deterioration of blue honeysuckle during storage at room temperature (25 °C) and low temperature (4 °C). Storage at 4 °C inhibited fruit decay and preserved better visual quality, weight, firmness, and total soluble solid and acid contents. We identified 24 key differentially accumulated metabolites that specifically changed during the qualitative shift at room temperature and were effectively regulated by 4 °C. Commonly associated metabolites, sorbitol, succinic acid, malic acid, naringenin, pinobanksin, and taxifolin, characterize the deterioration of blue honeysuckle. These metabolites were integrated with transcriptomic data for weighted correlation network analysis (WGCNA). Regulatory networks were used for the identification of key genes and transcription factors (TFs) influencing sugar, organic acid, flavonoid, and phenolic acid metabolism during storage. The findings provide insight into metabolic regulation and the improvement of flavor in postharvest blue honeysuckle fruit.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Chunlin Fu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Haoyu Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Xueqing Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Ke Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Hao Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China.
| | - Huixin Gang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Liu X, Cai K, Zhang Q, An W, Qu G, Jiang L, Wang F, Zhao X. Unlocking the Growth Potential of Poplar: A Novel Transcriptomic-Metabolomic Approach to Evaluating the Impact of Divergent Pruning Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:3391. [PMID: 39683183 DOI: 10.3390/plants13233391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Pruning is a common forest-tending method; its purpose is to promote growth and improve the overall stand quality. Poplar is a fast-growing, broad-leaved tree species with high ecological and economic value. It is a common management method to promote its growth by pruning and adjusting the spatial structure of the stand, but its potential regulatory mechanism remains unclear. In this study, transcriptome and metabolome data of different parts at all pruning intensities were determined and analyzed. The results showed that 7316 differentially expressed genes were identified in this study. In the plant hormone signal transduction pathway, candidate genes were found in eight kinds of plant hormones, among which the main expression was gibberellin, auxin, and brassinosteroid. Some candidate gene structures (beta-glucosidase, endoglucanase, hexokinase, glucan endo-1, 3-beta-D-glucosidase, beta-fructofuranosidase, fructokinase, maltase-glucoamylase, phosphoglucomutase, and sucrose) were specifically associated with starch and sucrose biosynthesis. In the starch and sucrose biosynthesis pathway, D-fructose 6-phosphate, D-glucose 1,6-bisphosphate, and glucose-1-phosphate were the highest in stems and higher in the first round of pruning than in no pruning. The bHLH plays a key role in the starch and sucrose synthetic pathway, and AP2/ERF-ERF is important in the plant hormone signal transduction pathway. These results laid a foundation for understanding the molecular mechanism of starch and sucrose biosynthesis and provided a theoretical basis for promoting tree growth through pruning.
Collapse
Affiliation(s)
- Xiaoting Liu
- National Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Qinhui Zhang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Weizi An
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Guanzheng Qu
- National Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Luping Jiang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Fusen Wang
- Qiqihar Branch of Heilongjiang Academy of Forestry, Qiqihar 161000, China
| | - Xiyang Zhao
- National Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
12
|
Fang Q, Wu D, Sun H, Wang L, Liu Y, Mei W, Guo H. A bHLH Transcription Factor Confers Salinity Stress Tolerance in Betula platyphylla. PLANT DIRECT 2024; 8:e70029. [PMID: 39691550 PMCID: PMC11651711 DOI: 10.1002/pld3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/22/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024]
Abstract
Basic helix-loop-helix (bHLH) proteins comprise a large family of transcription factors that are involved in plant growth and development, as well as responses to various types of environmental stress. Betula platyphylla (birch) is a pioneer tree species in secondary forest that plays a key role in maintaining ecosystem stability and forest regeneration, but few bHLHs involved in abiotic stress responses have been unveiled in birch. In this study, nine BpbHLH TFs related to stress responses in the birch genome were identified. Quantitative real-time polymerase chain reaction (RT-PCR) analysis indicated that the expression of these TFs can be induced by salt stress, and the expression of BpbHLH1 was higher than that of other BpbHLH genes. Particle bombardment analysis revealed that BpbHLH1 was localized to the nucleus. Yeast transformation found that BpbHLH1 has transcriptional activation activity. We generated BpbHLH1-overexpressing and silencing transgenic birch plants and subjected them to salt stress analysis. BpbHLH1 can enhance the salt tolerance of birch plants by increasing the reactive oxygen species scavenging ability and inhibiting cell death. Yeast one-hybrid, ß-glucuronidase, and chromatin immunoprecipitation assays revealed that BpbHLH1 can regulate the expression of target genes involved in stress resistance by binding to the E-box-1, E-box-2 and G-box elements in their promoters. The results of this study enhanced our understanding of the salt tolerance conferred by BpbHLH TFs in B. platyphylla and identified useful genes for the breeding of novel birch germplasm.
Collapse
Affiliation(s)
- Qilong Fang
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Di Wu
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Hu Sun
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Luyao Wang
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Yuping Liu
- State Owned Forest Farm Management Service Center, Kuandian Manchu Autonomous CountyDandongChina
| | - Wenfeng Mei
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| | - Huiyan Guo
- College of ForestryShenyang Agricultural UniversityShenyangChina
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning ProvinceShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
13
|
Han X, Jiang C, GuipingWang, Wang J, Nie P, Xue X. The changes in sugar content and the selection of key genes at different developmental stages of 'Katy' and 'Kuijin' apricots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109280. [PMID: 39541863 DOI: 10.1016/j.plaphy.2024.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
'Katy' and 'Kuijin' apricots are the main cultivated varieties in Shandong province. The flavor of the fruit is mainly determined by sugars and acids, with soluble sugar components serving as important nutritional elements in fruits as well as crucial indicators of fruit sweetness and flavor quality. However, little is known about the changes in soluble sugar content, especially sucrose content, and the sucrose metabolism mechanism during the entire fruit growth and development process of 'Katy' and 'Kuijin' apricots. In this study, we first detected the changes in sucrose, fructose, and glucose content at nine fruit development stages of 'Katy' and 'Kuijin' apricots, and found that the stage of rapid accumulation of sucrose and fructose was from 56 days after full bloom (DAF) to 63 DAF. Therefore, we identified the key gene PaSS1 of sucrose synthase through transcriptome data screening, and further analyzed the function of the PaSS1 gene in fruit sucrose metabolism process using virus-induced gene silencing (VIGS) technology. Silencing the PaSS1 gene reduced the breakdown activity of sucrose synthase, increasing sucrose content while decreasing glucose and fructose content, delaying fruit coloring and ripening, indicating that the PaSS1 gene may regulate the ripening of apricot fruits. This study provides a theoretical basis for further research on the molecular mechanism of the PaSS1 gene in apricot fruit ripening process.
Collapse
Affiliation(s)
- Xueping Han
- Shandong Institute of Pomology, Taian, 271000, China
| | - Caina Jiang
- College of Horticulture, China Agricultural University, Beijing, 100000, China
| | - GuipingWang
- Shandong Institute of Pomology, Taian, 271000, China
| | - Jinzheng Wang
- Shandong Institute of Pomology, Taian, 271000, China
| | - Peixian Nie
- Shandong Institute of Pomology, Taian, 271000, China
| | - Xiaomin Xue
- Shandong Institute of Pomology, Taian, 271000, China.
| |
Collapse
|
14
|
Zhou H, Wang L, Su M, Zhang X, Du J, Li X, Zhang M, Hu Y, Zheng X, Ye Z, Huan C. Comparative network analysis reveals the regulatory mechanism of 1-methylcyclopropene on sugar and acid metabolisms in yellow peach stored at non-chilling temperatures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109100. [PMID: 39250845 DOI: 10.1016/j.plaphy.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Soluble carbohydrates and organic acids are critical determinants of fruit flavor and consumer preference, both of which are susceptible to postharvest treatments and storage conditions. While the individual effectiveness of 1-methylcyclopropene (1-MCP) and non-chilling temperature storage in delaying fruit ripening and influencing flavor development has been established, their combined effects on peach storage traits remain unexplored. This study investigated the impact of 1-MCP combined with non-chilling temperature storage on the quality and flavor attributes of yellow peach. Our results revealed that 1-MCP treatment reduced ethylene production during storage and delayed ripening and softening by down-regulating ethylene biosynthesis and signaling genes. Transcriptomic analysis indicated that 1-MCP maintained higher levels of soluble carbohydrates by up-regulating sucrose phosphate synthase (PpSPS1/2) and sorbitol dehydrogenase (PpSDH1) while down-regulating hexokinase (PpHXK1). Concurrently, 1-MCP preserved citric and malic acid levels by suppressing aconitate hydratase (PpACO1) and inducing malate dehydrogenase (PpMDH1), thereby delaying flavor degradation. Co-expression network analysis implicated ethylene response factors (PpERFs) as major regulators of sugar and acid metabolisms genes, with PpERF19 potentially functioning as a key transcriptional controller. Overall, this study verified the efficacy of combined 1-MCP and non-chilling storage for yellow peach preservation, identified key 1-MCP-modulated genes involved in sugar and acid metabolisms, and provided insights into regulating peach flavor development via postharvest approaches.
Collapse
Affiliation(s)
- Huijuan Zhou
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Lufan Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Mingshen Su
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Xianan Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Jihong Du
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Xiongwei Li
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Minghao Zhang
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Yang Hu
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Zhengwen Ye
- Forestry and Fruit Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China.
| | - Chen Huan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| |
Collapse
|
15
|
Li K, Li Y, Liu C, Li M, Bao R, Wang H, Zeng C, Zhou X, Chen Y, Wang W, Chen X. Protein kinase MeSnRK2.3 positively regulates starch biosynthesis by interacting with the transcription factor MebHLH68 in cassava. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6369-6387. [PMID: 39139055 DOI: 10.1093/jxb/erae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Starch biosynthesis involves numerous enzymes and is a crucial metabolic activity in plant storage organs. Sucrose non-fermenting related protein kinase 2 (SnRK2) is an abscisic acid (ABA)-dependent kinase and a significant regulatory enzyme in the ABA signaling pathway. However, whether SnRK2 kinases regulate starch biosynthesis is unclear. In this study, we identified that MeSnRK2.3, encoding an ABA-dependent kinase, was highly expressed in the storage roots of cassava (Manihot esculenta) and was induced by ABA. Overexpression of MeSnRK2.3 in cassava significantly increased the starch content in the storage roots and promoted plant growth. MeSnRK2.3 was further found to interact with the cassava basic helix-loop-helix 68 (MebHLH68) transcription factor in vivo and in vitro. MebHLH68 directly bound to the promoters of sucrose synthase 1 (MeSUS1), granule-bound starch synthase I a (MeGBSSIa), and starch-branching enzyme 2.4 (MeSBE2.4), thereby up-regulating their transcriptional activities. Additionally, MebHLH68 negatively regulated the transcriptional activity of sucrose phosphate synthase B (MeSPSB). Moreover, MebHLH68 phosphorylated by MeSnRK2.3 up-regulated the transcription activity of MeSBE2.4. These findings demonstrated that the MeSnRK2.3-MebHLH68 module connects the ABA signaling pathway and starch biosynthesis in cassava, thereby providing direct evidence of ABA-mediated participation in the sucrose metabolism and starch biosynthesis pathways.
Collapse
Affiliation(s)
- Ke Li
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
| | - Chen Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Mengtao Li
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Ruxue Bao
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Haiyan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
| | - Changying Zeng
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Xincheng Zhou
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, Hainan, China
| | - Yinhua Chen
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Wenquan Wang
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
| | - Xin Chen
- Sanya Nanfan Research Institute, Hainan University/National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, Hainan, China
| |
Collapse
|
16
|
Fu W, Zhao L, Qiu W, Xu X, Ding M, Lan L, Qu S, Wang S. Whole-genome resequencing identifies candidate genes and allelic variation in the MdNADP-ME promoter that regulate fruit malate and fructose contents in apple. PLANT COMMUNICATIONS 2024; 5:100973. [PMID: 38751120 PMCID: PMC11412932 DOI: 10.1016/j.xplc.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024]
Abstract
Soluble sugar and organic acids are key determinants of fruit organoleptic quality and directly affect the commodity value and economic returns of fruit crops. We performed whole-genome sequencing of the apple varieties Gala and Xiahongrou, along with their F1 hybrids, to construct a high-density bin map. Our quantitative genetic analysis pinpointed 53 quantitative trait loci (QTLs) related to 11 sugar and acid traits. We identified a candidate gene, MdNADP-ME, responsible for malate degradation, in a stable QTL on linkage group 15. Sequence analysis revealed an A/C SNP in the promoter region (MEp-799) that influences binding of the MdMYB2 transcription factor, thereby affecting MdNADP-ME expression. In our study of various apple genotypes, this SNP has been demonstrated to be linked to malate and fructose levels. We also developed a dCAPS marker associated with fruit fructose content. These results substantiate the role of MdNADP-ME in maintaining the equilibrium between sugar and acid contents in apple fruits.
Collapse
Affiliation(s)
- Weihong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhao
- Xuzhou Institute of Agricultural Sciences in Xuhuai Region of Jiangsu, Xuzhou 221131, China
| | - Wanjun Qiu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Lan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Gao M, Yang N, Shao Y, Shen T, Li W, Ma B, Wei X, Ruan YL, Ma F, Li M. An insertion in the promoter of a malate dehydrogenase gene regulates malic acid content in apple fruit. PLANT PHYSIOLOGY 2024; 196:432-445. [PMID: 38788771 DOI: 10.1093/plphys/kiae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Malic acid is an important flavor determinant in apple (Malus × domestica Borkh.) fruit. One known variation controlling malic acid is the A/G single nucleotide polymorphism in an aluminum-activated malate transporter gene (MdMa1). Nevertheless, there are still differences in malic acid content in apple varieties with the same Ma1 genotype (Ma1/Ma1 homozygous), such as 'Honeycrisp' (high malic acid content) and 'Qinguan' (low malic acid content), indicating that other loci may influence malic acid and fruit acidity. Here, the F1 (Filial 1) hybrid generation of 'Honeycrisp' × 'Qinguan' was used to analyze quantitative trait loci for malic acid content. A major locus (Ma7) was identified on chromosome 13. Within this locus, a malate dehydrogenase gene, MDH1 (MdMa7), was the best candidate for further study. Subcellular localization suggested that MdMa7 encodes a cytosolic protein. Overexpression and RNA interference of MdMa7 in apple fruit increased and decreased malic acid content, respectively. An insertion/deletion (indel) in the MdMa7 promoter was found to affect MdMa7 expression and malic acid content in both hybrids and other cultivated varieties. The insertion and deletion genotypes were designated as MA7 and ma7, respectively. The transcription factor MdbHLH74 was found to stimulate MdMa7 expression in the MA7 genotype but not in the ma7 genotype. Transient transformation of fruit showed that MdbHLH74 affected MdMa7 expression and malic acid content in 'Gala' (MA7/MA7) but not in 'Fuji' (ma7/ma7). Our results indicated that genetic variation in the MdMa7 (MDH1) promoter alters the binding ability of the transcription factor MdbHLH74, which alters MdMa7 (MDH1) transcription and the malic acid content in apple fruit, especially in Ma1/Ma1 homozygous accessions.
Collapse
Affiliation(s)
- Meng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Nanxiang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingli Shao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tian Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenxin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong-Ling Ruan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
18
|
Zheng L, Ma W, Liu P, Song S, Wang L, Yang W, Ren H, Wei X, Zhu L, Peng J, Ma F, Li M, Ma B. Transcriptional factor MdESE3 controls fruit acidity by activating genes regulating malic acid content in apple. PLANT PHYSIOLOGY 2024; 196:261-272. [PMID: 38758108 DOI: 10.1093/plphys/kiae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Acidity is a key factor controlling fruit flavor and quality. In a previous study, combined transcriptome and methylation analyses identified a P3A-type ATPase from apple (Malus domestica), MdMa11, which regulates vacuolar pH when expressed in Nicotiana benthamiana leaves. In this study, the role of MdMa11 in controlling fruit acidity was verified in apple calli, fruits, and plantlets. In addition, we isolated an APETALA2 domain-containing transcription factor, designated MdESE3, based on yeast one-hybrid (Y1H) screening using the MdMa11 promoter as bait. A subcellular localization assay indicated that MdESE3 localized to the nucleus. Analyses of transgenic apple calli, fruits, and plantlets, as well as tomatoes, demonstrated that MdESE3 enhances fruit acidity and organic acid accumulation. Meanwhile, chromatin immunoprecipitation quantitative PCR, luciferase (LUC) transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the ethylene-responsive element (ERE; 5'-TTTAAAAT-3') upstream of the MdMa11 transcription start site, thereby activating its expression. Furthermore, MdtDT, MdDTC2, and MdMDH12 expression increased in apple fruits and plantlets overexpressing MdESE3 and decreased in apple fruits and plantlets where MdESE3 was silenced. The ERE was found in MdtDT and MdMDH12 promoters, but not in the MdDTC2 promoter. The Y1H, LUC transactivation assays, and GUS reporter assays indicated that MdESE3 could bind to the MdtDT and MdMDH12 promoters and activate their expression. Our findings provide valuable functional validation of MdESE3 and its role in the transcriptional regulation of MdMa11, MdtDT, and MdMDH12 and malic acid accumulation in apple.
Collapse
Affiliation(s)
- Litong Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan 442714, Hubei, China
| | - Peipei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shujie Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hang Ren
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqing Peng
- Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan 442714, Hubei, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
19
|
Zhang QY, Ma CN, Gu KD, Wang JH, Yu JQ, Liu B, Wang Y, He JX, Hu DG, Sun Q. The BTB-BACK-TAZ domain protein MdBT2 reduces drought resistance by weakening the positive regulatory effect of MdHDZ27 on apple drought tolerance via ubiquitination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:283-299. [PMID: 38606500 DOI: 10.1111/tpj.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Drought stress is one of the dominating challenges to the growth and productivity in crop plants. Elucidating the molecular mechanisms of plants responses to drought stress is fundamental to improve fruit quality. However, such molecular mechanisms are poorly understood in apple (Malus domestica Borkh.). In this study, we explored that the BTB-BACK-TAZ protein, MdBT2, negatively modulates the drought tolerance of apple plantlets. Moreover, we identified a novel Homeodomain-leucine zipper (HD-Zip) transcription factor, MdHDZ27, using a yeast two-hybrid (Y2H) screen with MdBT2 as the bait. Overexpression of MdHDZ27 in apple plantlets, calli, and tomato plantlets enhanced their drought tolerance by promoting the expression of drought tolerance-related genes [responsive to dehydration 29A (MdRD29A) and MdRD29B]. Biochemical analyses demonstrated that MdHDZ27 directly binds to and activates the promoters of MdRD29A and MdRD29B. Furthermore, in vitro and in vivo assays indicate that MdBT2 interacts with and ubiquitinates MdHDZ27, via the ubiquitin/26S proteasome pathway. This ubiquitination results in the degradation of MdHDZ27 and weakens the transcriptional activation of MdHDZ27 on MdRD29A and MdRD29B. Finally, a series of transgenic analyses in apple plantlets further clarified the role of the relationship between MdBT2 and MdHDZ27, as well as the effect of their interaction on drought resistance in apple plantlets. Collectively, our findings reveal a novel mechanism by which the MdBT2-MdHDZ27 regulatory module controls drought tolerance, which is of great significance for enhancing the drought resistance of apple and other plants.
Collapse
Affiliation(s)
- Quan-Yan Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Chang-Ning Ma
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kai-Di Gu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jia-Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Bo Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Yun Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Jun-Xia He
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
20
|
Yang G, Sun M, Brewer L, Tang Z, Nieuwenhuizen N, Cooney J, Xu S, Sheng J, Andre C, Xue C, Rebstock R, Yang B, Chang W, Liu Y, Li J, Wang R, Qin M, Brendolise C, Allan AC, Espley RV, Lin‐Wang K, Wu J. Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1468-1490. [PMID: 38169146 PMCID: PMC11123420 DOI: 10.1111/pbi.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.
Collapse
Affiliation(s)
- Guangyan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Manyi Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Lester Brewer
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Zikai Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Shaozhuo Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiawen Sheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Christelle Andre
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Ria Rebstock
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Bo Yang
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Wenjing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yueyuan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiaming Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| | - Runze Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Mengfan Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Cyril Brendolise
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Kui Lin‐Wang
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
| | - Jun Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratoryNanjingJiangsuChina
| |
Collapse
|
21
|
Liu H, Zhao X, Bi J, Dong X, Zhang C. A natural mutation in the promoter of the aconitase gene ZjACO3 influences fruit citric acid content in jujube. HORTICULTURE RESEARCH 2024; 11:uhae003. [PMID: 38464475 PMCID: PMC10923642 DOI: 10.1093/hr/uhae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024]
Abstract
Jujube (Ziziphus jujuba Mill.) is the most economically important fruit tree of the Rhamnaceae and was domesticated from wild or sour jujube (Z. jujuba Mill. var. spinosa Hu). During the process of domestication, there was a substantial reduction in the content of organic acids, particularly malate and citrate, which greatly influence the taste and nutritional value of the fruit. We previously demonstrated that ZjALMT4 is crucial for malate accumulation. However, the mechanism of citrate degradation in jujube remains poorly understood. In the present study, aconitase ZjACO3 was shown to participate in citric acid degradation in the cytoplasm through the GABA pathway. Interestingly, we discovered an E-box mutation in the ZjACO3 promoter (-484A > G; CAAGTG in sour jujube mutated to CAGGTG in cultivated jujube) that was strongly correlated with fruit citrate content; 'A' represented a high-citrate genotype and 'G' represented a low-citrate genotype. We developed and validated an ACO-based Kompetitive allele-specific PCR (KASP) marker for determining citric acid content. Yeast one-hybrid screening, transient dual-luciferase assays, and overexpression analyses showed that the transcription factor ZjbHLH113 protein directly binds to CAGGTG in the promoter of ZjACO3 in cultivated jujube plants, transcriptionally activating ZjACO3 expression, and enhancing citric acid degradation. Conversely, binding ability of the ZjbHLH113 protein to CAAGTG was weakened in sour jujube, thereby promoting citrate accumulation in the fruit. These findings will assist in elucidating the mechanism by which ZjACO3 modulates citrate accumulation in sour jujube and its cultivars.
Collapse
Affiliation(s)
- Hanxiao Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Xiangning Zhao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Jingxin Bi
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| | - Xiaochang Dong
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, 271000, China
| | - Chunmei Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, Shandong, 271018, China
| |
Collapse
|
22
|
Li X, Xu Y, Wei Z, Kuang J, She M, Wang Y, Jin Q. NnSnRK1-NnATG1-mediated autophagic cell death governs flower bud abortion in shaded lotus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:979-998. [PMID: 38102881 DOI: 10.1111/tpj.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Many plants can terminate their flowering process in response to unfavourable environments, but the mechanisms underlying this response are poorly understood. In this study, we observed that the lotus flower buds were susceptible to abortion under shaded conditions. The primary cause of abortion was excessive autophagic cell death (ACD) in flower buds. Blockade of autophagic flux in lotus flower buds consistently resulted in low levels of ACD and improved flowering ability under shaded conditions. Further evidence highlights the importance of the NnSnRK1-NnATG1 signalling axis in inducing ACD in lotus flower buds and culminating in their timely abortion. Under shaded conditions, elevated levels of NnSnRK1 activated NnATG1, which subsequently led to the formation of numerous autophagosome structures in lotus flower bud cells. Excessive autophagy levels led to the bulk degradation of cellular material, which triggered ACD and the abortion of flower buds. NnSnRK1 does not act directly on NnATG1. Other components, including TOR (target of rapamycin), PI3K (phosphatidylinositol 3-kinase) and three previously unidentified genes, appeared to be pivotal for the interaction between NnSnRK1 and NnATG1. This study reveals the role of autophagy in regulating the abortion of lotus flower buds, which could improve reproductive success and act as an energy-efficient measure in plants.
Collapse
Affiliation(s)
- Xiehongsheng Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingchun Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongyao Wei
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaying Kuang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhao She
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanjie Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qijiang Jin
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Xiang Y, Huang XY, Zhao YW, Wang CK, Sun Q, Hu DG. Optimization of apple fruit flavor by MdVHP1-2 via modulation of soluble sugar and organic acid accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108227. [PMID: 38043254 DOI: 10.1016/j.plaphy.2023.108227] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
For fleshy fruits, the content and ratio of organic acids and soluble sugars are key factors for their flavor. Therefore, a better understanding of soluble sugar and organic acid accumulation in vacuoles is essential to the improvement of fruit quality. Vacuolar-type inorganic pyrophosphatase (V-PPase) has been found in various plants with crucial functions based on the hydrolysis of PPi. However, the effects of V-PPase on the soluble sugar and organic acid accumulation in apple fruit remain unclear. In this study, MdVHP1-2, a V-PPase protein in the vacuolar membrane, was identified. The results showed a positive correlation between the expression of MdVHP1-2 and the sugar/acid ratio during ripening of apple fruits. A series of transgenic analyses showed that overexpression of MdVHP1-2 significantly elevated the contents of soluble sugars and organic acids as well as the sugar/acid ratio in apple fruits and calli. Additionally, transient interference induced by MdVHP1-2 expression inhibited the accumulation of soluble sugars and organic acids in apple fruits. In summary, this study provides insight into the mechanisms by which MdVHP1-2 modulates fruit flavor through mediation of soluble sugar and organic acid accumulation, thereby facilitating improvement of the overall quality of apple and other fruits.
Collapse
Affiliation(s)
- Ying Xiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
24
|
Song H, Cao Y, Zhao X, Zhang L. Na+-preferential ion transporter HKT1;1 mediates salt tolerance in blueberry. PLANT PHYSIOLOGY 2023; 194:511-529. [PMID: 37757893 DOI: 10.1093/plphys/kiad510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Soil salinity is a major environmental factor constraining growth and productivity of highbush blueberry (Vaccinium corymbosum). Leaf Na+ content is associated with variation in salt tolerance among blueberry cultivars; however, the determinants and mechanisms conferring leaf Na+ exclusion are unknown. Here, we observed that the blueberry cultivar 'Duke' was more tolerant than 'Sweetheart' and accumulated less Na+ in leaves under salt stress conditions. Through transcript profiling, we identified a member of the high-affinity K+ transporter (HKT) family in blueberry, VcHKT1;1, as a candidate gene involved in leaf Na+ exclusion and salt tolerance. VcHKT1;1 encodes a Na+-preferential transporter localized to the plasma membrane and is preferentially expressed in the root stele. Heterologous expression of VcHKT1;1 in Arabidopsis (Arabidopsis thaliana) rescued the salt hypersensitivity phenotype of the athkt1 mutant. Decreased VcHKT1;1 transcript levels in blueberry plants expressing antisense-VcHKT1;1 led to increased Na+ concentrations in xylem sap and higher leaf Na+ contents compared with wild-type plants, indicating that VcHKT1;1 promotes leaf Na+ exclusion by retrieving Na+ from xylem sap. A naturally occurring 8-bp insertion in the promoter increased the transcription level of VcHKT1;1, thus promoting leaf Na+ exclusion and blueberry salt tolerance. Collectively, we provide evidence that VcHKT1;1 promotes leaf Na+ exclusion and propose natural variation in VcHKT1;1 will be valuable for breeding Na+-tolerant blueberry cultivars in the future.
Collapse
Affiliation(s)
- Huifang Song
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xinyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
25
|
Huang XY, Xiang Y, Zhao YW, Wang CK, Wang JH, Wang WY, Liu XL, Sun Q, Hu DG. Regulation of a vacuolar proton-pumping P-ATPase MdPH5 by MdMYB73 and its role in malate accumulation and vacuolar acidification. ABIOTECH 2023; 4:303-314. [PMID: 38106434 PMCID: PMC10721769 DOI: 10.1007/s42994-023-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 12/19/2023]
Abstract
As the main organic acid in fruits, malate is produced in the cytoplasm and is then transported into the vacuole. It accumulates by vacuolar proton pumps, transporters, and channels, affecting the taste and flavor of fruits. Among the three types of proton pumps (V-ATPases, V-PPases, and P-ATPases), the P-ATPases play an important role in the transport of malate into vacuoles. In this study, the transcriptome data, collected at different stages after blooming and during storage, were analyzed and the results demonstrated that the expression of MdPH5, a vacuolar proton-pumping P-ATPase, was associated with both pre- and post-harvest malate contents. Moreover, MdPH5 is localized at the tonoplast and regulates malate accumulation and vacuolar pH. In addition, MdMYB73, an upstream MYB transcription factor of MdPH5, directly binds to its promoter, thereby transcriptionally activating its expression and enhancing its activity. In this way, MdMYB73 can also affect malate accumulation and vacuolar pH. Overall, this study clarifies how MdMYB73 and MdPH5 act to regulate vacuolar malate transport systems, thereby affecting malate accumulation and vacuolar pH. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00115-7.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Ying Xiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Jia-Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xiao-Long Liu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
26
|
Zhang M, Lu W, Yang X, Li Q, Lin X, Liu K, Yin C, Xiong B, Liao L, Sun G, He S, He J, Wang X, Wang Z. Comprehensive analyses of the citrus WRKY gene family involved in the metabolism of fruit sugars and organic acids. FRONTIERS IN PLANT SCIENCE 2023; 14:1264283. [PMID: 37780491 PMCID: PMC10540311 DOI: 10.3389/fpls.2023.1264283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Sugars and organic acids are the main factors determining the flavor of citrus fruit. The WRKY transcription factor family plays a vital role in plant growth and development. However, there are still few studies about the regulation of citrus WRKY transcription factors (CsWRKYs) on sugars and organic acids in citrus fruit. In this work, a genome-wide analysis of CsWRKYs was carried out in the citrus genome, and a total of 81 CsWRKYs were identified, which contained conserved WRKY motifs. Cis-regulatory element analysis revealed that most of the CsWRKY promoters contained several kinds of hormone-responsive and abiotic-responsive cis-elements. Furthermore, gene expression analysis and fruit quality determination showed that multiple CsWRKYs were closely linked to fruit sugars and organic acids with the development of citrus fruit. Notably, transcriptome co-expression network analysis further indicated that three CsWRKYs, namely, CsWRKY3, CsWRKY47, and CsWRKY46, co-expressed with multiple genes involved in various pathways, such as Pyruvate metabolism and Citrate cycle. These CsWRKYs may participate in the metabolism of fruit sugars and organic acids by regulating carbohydrate metabolism genes in citrus fruit. These findings provide comprehensive knowledge of the CsWRKY family on the regulation of fruit quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Wei R, Hao Z, Huang D, Wang R, Pan X, Zhang W. Overexpression of JsFLS5 in calli improves salinity tolerance by maintaining active oxygen balance and reducing Na + toxicity in Juglans sigillata. PHYSIOLOGIA PLANTARUM 2023; 175:e14002. [PMID: 37882294 DOI: 10.1111/ppl.14002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023]
Abstract
The escalating global climate change significantly threatens plant growth, development, and production through salinity stress. Flavonoids, a crucial category of secondary metabolites, have been extensively studied for their role in modulating plant growth and development mechanisms in the face of biological and abiotic stress. The flavonol synthetase (FLS) gene plays a key role in the biosynthesis and accumulation of flavonoids. To investigate the correlation between salt tolerance and flavonol synthesis, JsFLS5 was overexpressed in the callus of Juglans sigillata cv. "Qianhe-7." This study shows that the upregulation of JsFLS5 significantly elevates the overall flavonoid content by modulating the expression of genes associated with flavonoid synthesis under salinity stress conditions. Additionally, the overexpressing callus exhibited enhanced resistance to salt stress compared to the wild-type callus, as evidenced by reduced levels of reactive oxygen species accumulation, electrolyte leakage, and malondialdehyde content in the overexpressing callus relative to the wild type (WT). Moreover, the overexpressing callus showed higher antioxidant enzyme activity and a more efficient ascorbic acid-glutathione cycle. Furthermore, the concentration of Na+ in the overexpressing callus was lower than WT, resulting in a decreased Na+ /K+ ratio. These findings suggest that JsFLS5 overexpression in calli effectively mitigates the oxidative damage induced by osmotic stress and reduces Na+ toxicity by enhancing flavonoid synthesis under salt stress conditions. Consequently, this study offers a novel perspective for comprehending the role of JsFLS5 in the response to abiotic stress in J. sigillata.
Collapse
Affiliation(s)
- Rong Wei
- College of Agricultural, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, China
| | - Zhenkun Hao
- College of Agricultural, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, China
| | - Dong Huang
- College of Agricultural, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, China
| | - Ruipu Wang
- College of Agricultural, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, China
| | - Xuejun Pan
- College of Agricultural, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang, China
- College of Agricultural, Guizhou University, Guiyang, China
| | - Wen'e Zhang
- College of Agricultural, Guizhou University, Guiyang, China
| |
Collapse
|
28
|
Peng Y, Yuan Y, Chang W, Zheng L, Ma W, Ren H, Liu P, Zhu L, Su J, Ma F, Li M, Ma B. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1231-1242. [PMID: 37219375 DOI: 10.1111/tpj.16314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Malic acid is a major organic acid component of apples and a crucial determinant of fruit organoleptic quality. A candidate gene for malic acid content, designated MdMa1, was previously identified in the Ma locus, which is a major quantitative trait locus (QTL) for apple fruit acidity located on the linkage group 16. Region-based association mapping to detect candidate genes in the Ma locus identified MdMa1 and an additional MdMYB21 gene putatively associated with malic acid. MdMYB21 was significantly associated with fruit malic acid content, accounting for ~7.48% of the observed phenotypic variation in the apple germplasm collection. Analyses of transgenic apple calli, fruits and tomatoes demonstrated that MdMYB21 negatively regulated malic acid accumulation. The apple fruit acidity-related MdMa1 and its tomato ortholog, SlALMT9, exhibited lower expression profiles in apple calli, mature fruits and tomatoes in which MdMYB21 was overexpressed, compared with their corresponding wild-type variety. MdMYB21 directly binds to the MdMa1 promoter and represses its expression. Interestingly, a 2-bp variation in the MdMYB21 promoter region altered its expression and regulation of its target gene, MdMa1, expression. Our findings not only demonstrate the efficiency of integrating QTL and association mapping in the identification of candidate genes controlling complex traits in apples, but also provide insights into the complex regulatory mechanism of fruit malic acid accumulation.
Collapse
Affiliation(s)
- Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenjing Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hang Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peipei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Su
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
29
|
Zhou M, Yang J. Delaying or promoting? Manipulation of leaf senescence to improve crop yield and quality. PLANTA 2023; 258:48. [PMID: 37477756 DOI: 10.1007/s00425-023-04204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
MAIN CONCLUSION Senescence influences leaf productivity through two aspects: photosynthesis and nutrient remobilization. Through distinctively manipulating progress of leaf senescence, it is promising to improve crop yield and quality simultaneously. Crop yield and quality are two chief goals pursued in agricultural and horticultural production. The basis of crop yield is leaf photosynthesis. Senescence is the last stage of leaf development, which usually causes decreasing of leaf photosynthetic activity. Delaying leaf senescence through physiological or molecular strategies may result in higher photosynthetic activity with a longer duration, thus producing more photoassimilates for biomass accumulation. On the other side, leaf senescence always induces degradation of macromolecular nutrients (including chlorophylls and proteins), and nutritional elements in leaves are then resorbed for development of other organs. For those crops with non-leaf organs as harvested biomass, translocating nutritional elements from leaves to harvested biomass is an indispensable physiological process to increase crop yield and quality. This review summarized successful studies about effects of delaying or promoting senescence on crop yield or quality improvement. Considering the distinctiveness of various crops, manipulation of leaf senescence should be specialized during agricultural and horticultural practices. Rational regulation of leaf senescence, such as inhibiting senescence to maintain leaf photosynthesis and then promoting senescence (with appropriate onset and efficiency) to remobilize more nutrients from leaves to target organs, may ultimately improve both crop yield and quality.
Collapse
Affiliation(s)
- Min Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiading Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
30
|
Alabd A, Cheng H, Ahmad M, Wu X, Peng L, Wang L, Yang S, Bai S, Ni J, Teng Y. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. PLANT PHYSIOLOGY 2023; 192:1982-1996. [PMID: 36932703 PMCID: PMC10315288 DOI: 10.1093/plphys/kiad168] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Malate impacts fruit acidity and plays a vital role in stress tolerance. Malate accumulation is induced by salinity in various plants as a metabolite in coping with this stress. However, the exact molecular mechanism responsible for salinity-induced malate accumulation remains unclear. Here, we determined that salinity treatment induces malate accumulation in pear (Pyrus spp.) fruit, calli, and plantlets compared to the control. Genetic and biochemical analyses established the key roles of PpWRKY44 and ABRE-BINDING FACTOR3 (PpABF3) transcription factors in promoting malate accumulation in response to salinity. We found that PpWRKY44 is involved in salinity-induced malate accumulation by directly binding to a W-box on the promoter of the malate-associated gene aluminum-activated malate transporter 9 (PpALMT9) to activate its expression. A series of in-vivo and in-vitro assays revealed that the G-box cis-element in the promoter of PpWRKY44 was targeted by PpABF3, which further enhanced salinity-induced malate accumulation. Taken together, these findings suggest that PpWRKY44 and PpABF3 play positive roles in salinity-induced malate accumulation in pears. This research provides insights into the molecular mechanism by which salinity affects malate accumulation and fruit quality.
Collapse
Affiliation(s)
- Ahmed Alabd
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Pomology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Haiyan Cheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lin Peng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shulin Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| |
Collapse
|
31
|
Wang P, Lu S, Cao X, Ma Z, Chen B, Mao J. Physiological and transcriptome analyses of the effects of excessive water deficit on malic acid accumulation in apple. TREE PHYSIOLOGY 2023; 43:851-866. [PMID: 36579825 DOI: 10.1093/treephys/tpac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Acidity is a determinant of the organoleptic quality of apple, whereas its regulatory mechanism under water stress remains obscure. Fruit from apple 'Yanfu 3' of Fuji trees grown under normal water irrigation (CK), excessive water deficit treatment (DRT) and excessive water irrigation treatment (WAT) were sampled at 85, 100, 115, 130, 145, 160 and 175 days after full bloom designated stages S1, S2, S3, S4, S5, S6 and S7, respectively. DRT treatment reduced the individual fruit weight and fruit moisture content, and increased fruit firmness. The malate content of DRT treatment was higher than that of CK and WAT from stages S1 to S7. RNA sequencing (RNA-seq) analysis of the transcriptome at stages S4, S6 and S7 indicated that malate anabolism was associated with cysteine and methionine, auxin signaling, glyoxylate and dicarboxylate and pyruvate metabolism. Overexpression of MdPEPC4 increased the malate content in apple calli induced by 4% PEG. Our study provides novel insights into the effects of water stress on the molecular mechanism underlying apple fruit acidity.
Collapse
Affiliation(s)
- Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejing Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
32
|
Xu S, Sun M, Yao JL, Liu X, Xue Y, Yang G, Zhu R, Jiang W, Wang R, Xue C, Mao Z, Wu J. Auxin inhibits lignin and cellulose biosynthesis in stone cells of pear fruit via the PbrARF13-PbrNSC-PbrMYB132 transcriptional regulatory cascade. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37031416 DOI: 10.1111/pbi.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Stone cells are often present in pear fruit, and they can seriously affect the fruit quality when present in large numbers. The plant growth regulator NAA, a synthetic auxin, is known to play an active role in fruit development regulation. However, the genetic mechanisms of NAA regulation of stone cell formation are still unclear. Here, we demonstrated that exogenous application of 200 μM NAA reduced stone cell content and also significantly decreased the expression level of PbrNSC encoding a transcriptional regulator. PbrNSC was shown to bind to an auxin response factor, PbrARF13. Overexpression of PbrARF13 decreased stone cell content in pear fruit and secondary cell wall (SCW) thickness in transgenic Arabidopsis plants. In contrast, knocking down PbrARF13 expression using virus-induced gene silencing had the opposite effect. PbrARF13 was subsequently shown to inhibit PbrNSC expression by directly binding to its promoter, and further to reduce stone cell content. Furthermore, PbrNSC was identified as a positive regulator of PbrMYB132 through analyses of co-expression network of stone cell formation-related genes. PbrMYB132 activated the expression of gene encoding cellulose synthase (PbrCESA4b/7a/8a) and lignin laccase (PbrLAC5) binding to their promotors. As expected, overexpression or knockdown of PbrMYB132 increased or decreased stone cell content in pear fruit and SCW thickness in Arabidopsis transgenic plants. In conclusion, our study shows that the 'PbrARF13-PbrNSC-PbrMYB132' regulatory cascade mediates the biosynthesis of lignin and cellulose in stone cells of pear fruit in response to auxin signals and also provides new insights into plant SCW formation.
Collapse
Affiliation(s)
- Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd, Mt Albert Research Centre, Auckland, New Zealand
| | - Xiuxia Liu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Yongsong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongxiang Zhu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weitao Jiang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Runze Wang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Cheng Xue
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhiquan Mao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Bao M, Wang X, Sun R, Wang Z, Li J, Jiang T, Lin A, Wang H, Feng J. Full-Length Transcriptome of the Great Himalayan Leaf-Nosed Bats ( Hipposideros armiger) Optimized Genome Annotation and Revealed the Expression of Novel Genes. Int J Mol Sci 2023; 24:ijms24054937. [PMID: 36902366 PMCID: PMC10003721 DOI: 10.3390/ijms24054937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The Great Himalayan Leaf-nosed bat (Hipposideros armiger) is one of the most representative species of all echolocating bats and is an ideal model for studying the echolocation system of bats. An incomplete reference genome and limited availability of full-length cDNAs have hindered the identification of alternatively spliced transcripts, which slowed down related basic studies on bats' echolocation and evolution. In this study, we analyzed five organs from H. armiger for the first time using PacBio single-molecule real-time sequencing (SMRT). There were 120 GB of subreads generated, including 1,472,058 full-length non-chimeric (FLNC) sequences. A total of 34,611 alternative splicing (AS) events and 66,010 Alternative Polyadenylation (APA) sites were detected by transcriptome structural analysis. Moreover, a total of 110,611 isoforms were identified, consisting of 52% new isoforms of known genes and 5% of novel gene loci, as well as 2112 novel genes that have not been annotated before in the current reference genome of H. armiger. Furthermore, several key novel genes, including Pol, RAS, NFKB1, and CAMK4, were identified as being associated with nervous, signal transduction, and immune system processes, which may be involved in regulating the auditory nervous perception and immune system that helps bats to regulate in echolocation. In conclusion, the full-length transcriptome results optimized and replenished existing H. armiger genome annotation in multiple ways and offer advantages for newly discovered or previously unrecognized protein-coding genes and isoforms, which can be used as a reference resource.
Collapse
Affiliation(s)
- Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xue Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Ruyi Sun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Jiqian Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (H.W.); (J.F.)
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Correspondence: (H.W.); (J.F.)
| |
Collapse
|
34
|
Zhang C, Geng Y, Liu H, Wu M, Bi J, Wang Z, Dong X, Li X. Low-acidity ALUMINUM-DEPENDENT MALATE TRANSPORTER4 genotype determines malate content in cultivated jujube. PLANT PHYSIOLOGY 2023; 191:414-427. [PMID: 36271866 PMCID: PMC9806563 DOI: 10.1093/plphys/kiac491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Jujube (Ziziphus jujuba Mill.), the most economically important fruit tree in Rhamnaceae, was domesticated from sour jujube (Z. jujuba Mill. var. spinosa (Bunge) Hu ex H.F.Chow.). During domestication, fruit sweetness increased and acidity decreased. Reduction in organic acid content is crucial for the increase in sweetness of jujube fruit. In this study, the determination of malate content among 46 sour jujube and 35 cultivated jujube accessions revealed that malate content varied widely in sour jujube (0.90-13.31 mg g-1) but to a lesser extent in cultivated jujube (0.33-2.81 mg g-1). Transcriptome sequencing analysis showed that the expression level of Aluminum-Dependent Malate Transporter 4 (ZjALMT4) was substantially higher in sour jujube than in jujube. Correlation analysis of mRNA abundance and fruit malate content and transient gene overexpression showed that ZjALMT4 participates in malate accumulation. Further sequencing analyses revealed that three genotypes of the W-box in the promoter of ZjALMT4 in sour jujube associated with malate content were detected, and the genotype associated with low malate content was fixed in jujube. Yeast one-hybrid screening showed that ZjWRKY7 binds to the W-box region of the high-acidity genotype in sour jujube, whereas the binding ability was weakened in jujube. Transient dual-luciferase and overexpression analyses showed that ZjWRKY7 directly binds to the promoter of ZjALMT4, activating its transcription, and thereby promoting malate accumulation. These findings provide insights into the mechanism by which ZjALMT4 modulates malate accumulation in sour jujube and jujube. The results are of theoretical and practical importance for the exploitation and domestication of germplasm resources.
Collapse
Affiliation(s)
- Chunmei Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanqiu Geng
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxiao Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mengjia Wu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jingxin Bi
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | | | | | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
35
|
New Insights into MdSPS4-Mediated Sucrose Accumulation under Different Nitrogen Levels Revealed by Physiological and Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms232416073. [PMID: 36555711 PMCID: PMC9782777 DOI: 10.3390/ijms232416073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Nitrogen nutrition participates in many physiological processes and understanding the physiological and molecular mechanisms of apple responses to nitrogen is very significant for improving apple quality. This study excavated crucial genes that regulates sugar metabolism in response to nitrogen in apples through physiology and transcriptome analysis, so as to lay a theoretical foundation for improving fruit quality. In this paper, the content of sugar and organic acid in apple fruit at different developmental periods under different nitrogen levels (0, 150, 300, and 600 kg·hm-2) were determined. Then, the transcriptomic analysis was performed in 120 days after bloom (DAB) and 150 DAB. The results showed that the fructose and glucose content were the highest at 120 DAB under 600 kg·hm-2 nitrogen level. Meanwhile, different nitrogen treatments decreased malate content in 30 and 60 DAB. RNA-seq analysis revealed a total of 4537 UniGenes were identified as differentially expressed genes (DEGs) under nitrogen treatments. Among these DEGs, 2362 (52.06%) were up-regulated and 2175 (47.94%) were down-regulated. The gene co-expression clusters revealed that most DEGs were significantly annotated in the photosynthesis, glycolysis/gluconeogenesis, pyruvate metabolism, carbon metabolism, carbon fixation in photosynthetic organisms and plant hormone signal transduction pathways. The key transcription factor genes (ERF, NAC, WRKY, and C2H2 genes) were differentially expressed in apple fruit. Sugar and acid metabolism-related genes (e.g., HXK1, SPS4, SS2, PPC16-2, and MDH2 genes) exhibited significantly up-regulated expression at 120 DAB, whereas they were down-regulated at 150 DAB. Furthermore, the MdSPS4 gene overexpression positively promoted sucrose accumulation in apple callus and fruit. In conclusion, the combinational analysis of transcriptome and the functional validation of the MdSPS4 gene provides new insights into apple responses to different nitrogen levels.
Collapse
|
36
|
Shen F, Hu C, Huang X, Wu R, Luo S, Xu C, Zhang H, Wang X, Zhao J. Characterization of the genetic and regulatory networks associated with sugar and acid metabolism in apples via an integrated strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:1066592. [PMID: 36466245 PMCID: PMC9712955 DOI: 10.3389/fpls.2022.1066592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Although sugars and acids have a substantial influence on the taste of apple fruits, the genetic and regulatory networks underlying their metabolism in fruit remain insufficiently determined. To fully decipher the genetic basis of the accumulation of sugars and acids in apple fruits, we adopted an integrated strategy that included time-course RNA-seq, QTL mapping, and whole-genome sequencing to examine two typical cultivars ('HanFu' and 'Huahong') characterized by distinctive flavors. Whole-genome sequencing revealed substantial genetic variation between the two cultivars, thereby providing an indication of the genetic basis of the distinct phenotypes. Constructed co-expression networks yielded information regarding the intra-relationships among the accumulation of different types of metabolites, and also revealed key regulatory nodes associated with the accumulation of sugars and acids, including the genes MdEF2, MdPILS5, and MdGUN8. Additionally, on the basis of QTL mapping using a high-density genetic map, we identified a series of QTLs and functional genes underlying vital traits, including sugar and acid contents. Collectively, our methodology and observations will provide an important reference for further studies focusing on the flavor of apples.
Collapse
Affiliation(s)
- Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chenyang Hu
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Xin Huang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Ruigang Wu
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Shuzhen Luo
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Chengnan Xu
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Hong Zhang
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Xuan Wang
- Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China
| | - Jirong Zhao
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| |
Collapse
|
37
|
Genome-wide chromatin accessibility analysis unveils open chromatin convergent evolution during polyploidization in cotton. Proc Natl Acad Sci U S A 2022; 119:e2209743119. [PMID: 36279429 PMCID: PMC9636936 DOI: 10.1073/pnas.2209743119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allopolyploidization, resulting in divergent genomes in the same cell, is believed to trigger a “genome shock”, leading to broad genetic and epigenetic changes. However, little is understood about chromatin and gene-expression dynamics as underlying driving forces during allopolyploidization. Here, we examined the genome-wide DNase I-hypersensitive site (DHS) and its variations in domesticated allotetraploid cotton (
Gossypium hirsutum
and
Gossypium barbadense
, AADD) and its extant AA (
Gossypium arboreum
) and DD (
Gossypium raimondii
) progenitors. We observed distinct DHS distributions between
G. arboreum
and
G. raimondii
. In contrast, the DHSs of the two subgenomes of
G. hirsutum
and
G. barbadense
showed a convergent distribution. This convergent distribution of DHS was also present in the wild allotetraploids
Gossypium darwinii
and
G. hirsutum
var.
yucatanense
, but absent from a resynthesized hybrid of
G. arboreum
and
G. raimondii
, suggesting that it may be a common feature in polyploids, and not a consequence of domestication after polyploidization. We revealed that putative
cis
-regulatory elements (CREs) derived from polyploidization-related DHSs were dominated by several families, including Dof, ERF48, and BPC1. Strikingly, 56.6% of polyploidization-related DHSs were derived from transposable elements (TEs). Moreover, we observed positive correlations between DHS accessibility and the histone marks H3K4me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac, indicating that coordinated interplay among histone modifications, TEs, and CREs drives the DHS landscape dynamics under polyploidization. Collectively, these findings advance our understanding of the regulatory architecture in plants and underscore the complexity of regulome evolution during polyploidization.
Collapse
|
38
|
Liu YJ, An JP, Gao N, Wang X, Chen XX, Wang XF, Zhang S, You CX. MdTCP46 interacts with MdABI5 to negatively regulate ABA signalling and drought response in apple. PLANT, CELL & ENVIRONMENT 2022; 45:3233-3248. [PMID: 36043225 DOI: 10.1111/pce.14429] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in plant abiotic stresses. However, little is known about the role of TCP genes in the drought stress tolerance of apple. Here, we found that abscisic acid (ABA) and drought treatment reduced the expression of MdTCP46, and overexpression of MdTCP46 reduced ABA sensitivity and drought stress resistance. MdTCP46 was found to interact with MdABI5 both in vitro and in vivo, and this interaction was essential for drought resistance via the ABA-dependent pathway. Overexpression of MdABI5 enhanced ABA sensitivity and drought stress resistance by directly activating the expression of MdEM6 and MdRD29A. MdTCP46 significantly suppressed the transcriptional activity of MdABI5, thereby negatively regulating MdABI5-mediated ABA signalling and drought response. Overall, our results demonstrate that the MdTCP46-MdABI5-MdEM6/MdRD29A regulatory module plays a key role in the modulation of ABA signalling and the drought stress response. These findings provide new insight into the role of MdTCP46 in ABA signalling and abiotic stress responses.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ning Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xi-Xia Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shuai Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
39
|
Unraveling the malate biosynthesis during development of Torreya grandis nuts. Curr Res Food Sci 2022; 5:2309-2315. [DOI: 10.1016/j.crfs.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
|
40
|
Liu W, Yi Y, Zhuang J, Ge C, Cao Y, Zhang L, Liu M. Genome-wide identification and transcriptional profiling of the basic helix-loop-helix gene family in tung tree ( Vernicia fordii). PeerJ 2022; 10:e13981. [PMID: 36193421 PMCID: PMC9526410 DOI: 10.7717/peerj.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor gene family is one of the largest gene families and is extensively involved in plant growth, development, biotic and abiotic stress responses. Tung tree (Vernicia fordii) is an economically important woody oil plant that produces tung oil rich in eleostearic acid. However, the characteristics of the bHLH gene family in the tung tree genome are still unclear. Hence, VfbHLHs were first searched at a genome-wide level, and their expression levels in various tissues or under low temperature were investigated systematically. In this study, we identified 104 VfbHLHs in the tung tree genome, and these genes were classified into 18 subfamilies according to bHLH domains. Ninety-eight VfbHLHs were mapped to but not evenly distributed on 11 pseudochromosomes. The domain sequences among VfbHLHs were highly conserved, and their conserved residues were also identified. To explore their expression, we performed gene expression profiling using RNA-Seq and RT-qPCR. We identified five, 18 and 28 VfbHLH genes in female flowers, male flowers and seeds, respectively. Furthermore, we found that eight genes (VfbHLH29, VfbHLH31, VfbHLH47, VfbHLH51, VfbHLH57, VfbHLH59, VfbHLH70, VfbHLH72) were significant differential expressed in roots, leaves and petioles under low temperature stress. This study lays the foundation for future studies on bHLH gene cloning, transgenes, and biological mechanisms.
Collapse
Affiliation(s)
- Wenjuan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yaqi Yi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jingyi Zhuang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Chang Ge
- School of Urban Design, Wuhan University, Wuhan, Hubei, China
| | - Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China,Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
41
|
Lu D, Zhang L, Wu Y, Pan Q, Zhang Y, Liu P. An integrated metabolome and transcriptome approach reveals the fruit flavor and regulatory network during jujube fruit development. FRONTIERS IN PLANT SCIENCE 2022; 13:952698. [PMID: 36212371 PMCID: PMC9537746 DOI: 10.3389/fpls.2022.952698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The fruit flavor is a key economic value attribute of jujube. Here we compared metabolomes and transcriptomes of "Mazao" (ST) and "Ping'anhuluzao" (HK) with unique flavors during fruit development. We identified 437 differential metabolites, mainly sugars, acids, and lipids. Fructose, glucose, mannose and citric acid, and malic acid are the determinants of sugar and acid taste of jujube fruit. Based on the transcriptome, 16,245 differentially expressed genes (DEGs) were identified, which were involved in "glucosyltransferase activity," "lipid binding," and "anion transmembrane transporter activity" processes. Both transcriptome and metabolome showed that developmental stages 2 and 3 were important transition periods for jujube maturation. Based on WGCNA and gene-metabolite correlation analysis, modules, and transcription factors (ZjHAP3, ZjTCP14, and ZjMYB78) highly related to sugar and acid were identified. Our results provide new insights into the mechanism of sugar and acid accumulation in jujube fruit and provide clues for the development of jujube with a unique flavor.
Collapse
Affiliation(s)
- Dongye Lu
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yang Wu
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Qinghua Pan
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Yuping Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Forestry and Pomology, Beijing, China
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| |
Collapse
|
42
|
Xue S, Wan X, Lu S, Zhong Y, Xie D. A time-course transcriptome analysis of wax gourd fruit development reveals predominant genes regulating taste and nutrition. FRONTIERS IN PLANT SCIENCE 2022; 13:971274. [PMID: 36161022 PMCID: PMC9493329 DOI: 10.3389/fpls.2022.971274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Wax gourd, which belongs to Cucurbitaceae, is an excellent plant resource with the concomitant function of both medicine and foodstuff. Its unique taste and rich nutrition are deeply accepted by consumers. However, the main flavor and nutrients are still unclear, which restricts the quality breeding process of wax gourd. Here, we discovered that monosaccharides, malic acid and citrulline affect the flavor and nutrition of wax gourd and clarified the dynamic accumulation process of these metabolites. To gain insights into the underlying predominant genes regulating accumulation of these metabolites, we performed a time-course transcriptome analysis using RNA-sequencing analysis and compared the expression of screened genes among twenty-four germplasms with different metabolites levels. In addition, the expression abundance among the homologous genes were also analyzed. Finally, a total of 8 genes related to sugar [AGA2 (Bhi03G001926), SUS (Bhi12G001032)], malic acid [MDH (Bhi12G001426, Bhi01G000427), PEPC (Bhi12G000721, Bhi09G002867), ME (Bhi01G002616)] and citrulline [ASS (Bhi02G000401)], respectively were determined. In summary, understanding the core genes influencing taste or nutrition will provide a theoretical basis for fruit quality improvement in wax gourd.
Collapse
Affiliation(s)
- Shudan Xue
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaotong Wan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sen Lu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yujuan Zhong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Dasen Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
43
|
Integration of transcriptomic and metabonomic reveals molecular differences of sweetness and aroma between postharvest and vine ripened tomato fruit. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Wang N, Nian Y, Li R, Shao Y, Li W. Transcription Factor CpbHLH3 and CpXYN1 Gene Cooperatively Regulate Fruit Texture and Counteract 1-Methylcyclopropene Inhibition of Softening in Postharvest Papaya ( Carica papaya L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9919-9930. [PMID: 35921197 DOI: 10.1021/acs.jafc.2c01908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Papaya (Carica papaya L.) is a climacteric fruit susceptible to postharvest losses attributable to ethylene-induced ripening and softening. In this study, we examined the effect of 1-methylcyclopropene (1-MCP) treatment (1 μL L-1 for 20 h) on the textural properties of "SunUp" papaya fruit and investigated the regulatory mechanisms of molecular profiles. Compared with control, postharvest 1-MCP treatment significantly inhibited fruit softening, which is associated with higher hemicellulose content and lower xylanase activity of papaya fruit. Moreover, RNA-seq and qRT-PCR analyses indicated that CpbHLH3 and CpXYN1 were differentially expressed during storage. Yeast one-hybrid, electrophoretic mobility shift assays, and dual-luciferase reporter assays disclosed that CpbHLH3 activated the transcription of CpXYN1 by binding directly to its promoter. Transient overexpression of CpbHLH3 alleviates the inhibitory effect of 1-MCP on softening by increasing xylanase activity and upregulating the gene expression. Our observations provide new insights into the transcriptional regulatory mechanisms that govern softening of postharvest papaya fruit.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, P. R. China
| | - Yuwei Nian
- School of Life Sciences, Hainan University, Haikou 570228, P. R. China
| | - Rui Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, P. R. China
| | - Yuanzhi Shao
- School of Life Sciences, Hainan University, Haikou 570228, P. R. China
| | - Wen Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
45
|
Zhang Y, Zhu D, Ren X, Shen Y, Cao X, Liu H, Li J. Quality changes and shelf-life prediction model of postharvest apples using partial least squares and artificial neural network analysis. Food Chem 2022; 394:133526. [PMID: 35749881 DOI: 10.1016/j.foodchem.2022.133526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
The quality of postharvest apples is greatly affected by storage temperatures. In this paper, the sensory qualities, such as flavor, texture, color, and taste change of apples during storage at 4 °C and 20 °C were investigated. After correlation analysis, the partial least squares (PLS) and artificial neural network (ANN) techniques were used to build a shelf-life prediction model. The results showed that lower temperature storage can better maintain the color, flesh hardness, and release of volatile compounds of apples. The acidity of apples stored at 20 °C decreased much faster than that at 4 °C. The PLS models were successful in predicting the apple shelf life. When modeling using PLS with a single type index, the order of accuracy of the prediction model was texture, color, and flavor. As a nonlinear algorithm, the ANN model was also an effective predictive tool of apple shelf life at both temperatures.
Collapse
Affiliation(s)
- Yueyi Zhang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Xiaojun Ren
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yusi Shen
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuehui Cao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
46
|
Mou ZL, Zeng RX, Chen NH, Liu ZL, Zeng ZX, Qin YH, Shan W, Kuang JF, Lu WJ, Chen JY, Zhao YT. The association of HpDof1.7 and HpDof5.4 with soluble sugar accumulation in pitaya fruit by transcriptionally activating sugar metabolic genes. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Soluble sugar is one of the important factors affecting fruit flavor and quality. Here, we report the identification of two Dof (DNA-binding with one finger) transcription factors termed HpDof1.7 and HpDof5.4, and their roles in influencing sugar accumulation in pitayas. HpDof1.7 and HpDof5.4 shared a similar expression pattern with sugar metabolism-related genes HpSuSy1 and HpINV2, and sugar transporter genes HpTMT2 and HpSWEET14 during pitayas maturation, and their expression pattern was also consistent with the accumulation of glucose and fructose, which were the predominant sugars in pitayas. HpDof1.7 and HpDof5.4 were both typical nucleus-localized proteins with trans-activation ability. Gel mobility shift assay revealed that HpDof1.7 and HpDof5.4 were bound to promoters of HpSuSy1, HpINV2, HpTMT2 and HpSWEET14. Finally, transient expression assays in tobacco leaves showed that HpDof1.7 and HpDof5.4 increased the activities of HpSuSy1, HpINV2, HpTMT2 and HpSWEET14 promoters, thus facilitating sugar accumulation by transcriptionally enhancing sugar metabolic pathway genes. Our findings provide a new perspective on the regulatory mechanisms of Dof transcription factors in sugar accumulation and pitaya fruit quality formation.
Collapse
|
47
|
Lyu Z, Hao Y, Chen L, Xu S, Wang H, Li M, Ge W, Hou B, Cheng X, Li X, Che N, Zhen T, Sun S, Bao Y, Yang Z, Jia J, Kong L, Wang H. Wheat- Thinopyrum Substitution Lines Imprint Compensation Both From Recipients and Donors. FRONTIERS IN PLANT SCIENCE 2022; 13:837410. [PMID: 35498638 PMCID: PMC9051513 DOI: 10.3389/fpls.2022.837410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Even frequently used in wheat breeding, we still have an insufficient understanding of the biology of the products via distant hybridization. In this study, a transcriptomic analysis was performed for six Triticum aestivum-Thinopyrum elongatum substitution lines in comparison with the host plants. All the six disomic substitution lines showed much stronger "transcriptomic-shock" occurred on alien genomes with 57.43-69.22% genes changed expression level but less on the recipient genome (2.19-8.97%). Genome-wide suppression of alien genes along chromosomes was observed with a high proportion of downregulated genes (39.69-48.21%). Oppositely, the wheat recipient showed genome-wide compensation with more upregulated genes, occurring on all chromosomes but not limited to the homeologous groups. Moreover, strong co-upregulation of the orthologs between wheat and Thinopyrum sub-genomes was enriched in photosynthesis with predicted chloroplastic localization, which indicates that the compensation happened not only on wheat host genomes but also on alien genomes.
Collapse
Affiliation(s)
- Zhongfan Lyu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yongchao Hao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Shoushen Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Hongjin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengyao Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Bingqian Hou
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xinxin Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xuefeng Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Naixiu Che
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Tianyue Zhen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yinguang Bao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| |
Collapse
|
48
|
Yu JQ, Gu KD, Zhang LL, Sun CH, Zhang QY, Wang JH, Wang CK, Wang WY, Du MC, Hu DG. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:884-900. [PMID: 35199464 DOI: 10.1111/jipb.13236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Sugars are involved in plant growth, fruit quality, and signaling perception. Therefore, understanding the mechanisms involved in soluble sugar accumulation is essential to understand fruit development. Here, we report that MdPFPβ, a pyrophosphate-dependent phosphofructokinase gene, regulates soluble sugar accumulation by enhancing the photosynthetic performance and sugar-metabolizing enzyme activities in apple (Malus domestica Borkh.). Biochemical analysis revealed that a basic helix-loop-helix (bHLH) transcription factor, MdbHLH3, binds to the MdPFPβ promoter and activates its expression, thus promoting soluble sugar accumulation in apple fruit. In addition, MdPFPβ overexpression in tomato influenced photosynthesis and carbon metabolism in the plant. Furthermore, we determined that MdbHLH3 increases photosynthetic rates and soluble sugar accumulation in apple by activating MdPFPβ expression. Our results thus shed light on the mechanism of soluble sugar accumulation in apple leaves and fruit: MdbHLH3 regulates soluble sugar accumulation by activating MdPFPβ gene expression and coordinating carbohydrate allocation.
Collapse
Affiliation(s)
- Jian-Qiang Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Li-Li Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Quan-Yan Zhang
- College of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Wen-Yan Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Meng-Chi Du
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Tai'an, 271018, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, 271018, China
| |
Collapse
|
49
|
Zhang L, Ma B, Wang C, Chen X, Ruan YL, Yuan Y, Ma F, Li M. MdWRKY126 modulates malate accumulation in apple fruit by regulating cytosolic malate dehydrogenase (MdMDH5). PLANT PHYSIOLOGY 2022; 188:2059-2072. [PMID: 35078249 PMCID: PMC8968328 DOI: 10.1093/plphys/kiac023] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 05/10/2023]
Abstract
The content of organic acids greatly influences the taste and storage life of fleshy fruit. Our current understanding of the molecular mechanism of organic acid accumulation in apple (Malus domestica) fruit focuses on the aluminum-activated malate transporter 9/Ma1 gene. In this study, we identified a candidate gene, MdWRKY126, for controlling fruit acidity independent of Ma1 using homozygous recessive mutants of Ma1, namely Belle de Boskoop "BSKP" and Aifeng "AF." Analyses of transgenic apple calli and flesh and tomato (Solanum lycopersicum) fruit demonstrated that MdWRKY126 was substantially associated with malate content. MdWRKY126 was directly bound to the promoter of the cytoplasmic NAD-dependent malate dehydrogenase MdMDH5 and promoted its expression, thereby enhancing the malate content of apple fruit. In MdWRKY126 overexpressing calli, the mRNA levels of malate-associated transporters and proton pump genes also significantly increased, which contributed to the transport of malate accumulated in the cytoplasm to the vacuole. These findings demonstrated that MdWRKY126 regulates malate anabolism in the cytoplasm and coordinates the transport between cytoplasm and vacuole to regulate malate accumulation. Our study provides useful information to improve our understanding of the complex mechanism regulating apple fruit acidity.
Collapse
Affiliation(s)
| | | | - Changzhi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingyu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | |
Collapse
|
50
|
Wang Q, Cao K, Cheng L, Li Y, Guo J, Yang X, Wang J, Khan IA, Zhu G, Fang W, Chen C, Wang X, Wu J, Xu Q, Wang L. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. HORTICULTURE RESEARCH 2022; 9:uhac026. [PMID: 35184194 PMCID: PMC9171119 DOI: 10.1093/hr/uhac026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Organic acid content in fruit is an important determinant of peach organoleptic quality, which undergoes considerable variations during development and maturation. However, its molecular mechanism remains largely unclear. In this study, an integrative approach of genome-wide association studies and comparative transcriptome analysis were applied to identify candidate genes involved in organic acid accumulation in peach. A key gene PpTST1, encoding tonoplast sugar transporter, was identified and the genotype of PpTST1 with a single-base transversion (G1584T) in the third exon which leads to a single amino acid substitution (Q528H) was associated with low level of organic acid content in peach. Overexpression of PpTST1His resulted in reduced organic acid content along with increased sugar content both in peach and tomato fruits, suggesting its dual function in sugar accumulation and organic acid content reduction. Two V-type proton ATPases interact with PpTST1 in yeast two-hybridization assay. In addition, the G1584T transversion appeared and gradually accumulated during domestication and improvement, which indicated that PpTST1 was under selection. The identification and characterization of PpTST1 would facilitate the improvement of peach fruit quality.
Collapse
Affiliation(s)
- Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qiang Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|