1
|
Ye H, Gao H, Li J, Lu L, Zheng S, Wu C, Jin Y, Cao C, Zhu H, Liu S, Zhong F. Mitigating Response of SlCSE06 Induced by 2-Ethylfuran to Botrytis cinerea Infection. PLANTS (BASEL, SWITZERLAND) 2025; 14:575. [PMID: 40006834 PMCID: PMC11859901 DOI: 10.3390/plants14040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Tomato (Solanum lycopersicum L.) is a major economic vegetable crop globally, yet it is prone to gray mold disease caused by Botrytis cinerea infection during cultivation. Caffeoyl shikimate esterase (CSE) is a crucial component of the lignin biosynthesis pathway, which significantly contributes to plant stress resistance. Therefore, investigating the expression patterns of SlCSE after Botrytis cinerea infection may offer a theoretical foundation for breeding resistant tomato varieties. In this study, 11 SlCSE family members were identified from the tomato genome using bioinformatics analyses. Public transcriptome databases and RT-qPCR experiments were used to analyze gene expression in tomato tissues, responses to Botrytis cinerea infection, and the temporal characteristics of the response to 2-ethylfuran treatment during infection. These experiments resulted in the identification of the key gene SlCSE06. Transgenic tomato lines that overexpressed SlCSE06 were constructed to examine their resistance levels to gray mold disease. Many SlCSE genes were upregulated when tomato fruit were infected with Botrytis cinerea during the ripening stage. Furthermore, 24 h after treatment with 2-ethylfuran, most SlCSE genes exhibited increased expression levels compared with the control group, but they exhibited significantly lower levels at other time points. Thus, 2-ethylfuran treatment may enhance the responsiveness of SlCSEs. Based on this research, SlCSE06 was identified as the key gene involved in the response to Botrytis cinerea infection. The SlCSE06-overexpressing (OE6) tomato plants exhibited a 197.94% increase in expression levels compared to the wild type (WT). Furthermore, the lignin content in OE6 was significantly higher than in WT, suggesting that the overexpression of SlCSE06 enhanced lignin formation in tomato plants. At 5 days post-inoculation with Botrytis cinerea, the lesion diameter in OE6 decreased by 31.88% relative to the WT, whereas the lignin content increased by 370.90%. Furthermore, the expression level of SlCSE06 was significantly upregulated, showing a 17.08-fold increase compared with the WT. These findings suggest that 2-ethylfuran enhances the activation of the critical tomato disease resistance gene SlCSE06 in response to gray mold stress, thereby promoting lignin deposition to mitigate further infection by Botrytis cinerea.
Collapse
Affiliation(s)
- Huilan Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Hongdou Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jinnian Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Linye Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Shilan Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Chengxin Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Youliang Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Chengjuan Cao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
| | - Haisheng Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
| | - Shuang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (H.G.); (J.L.); (L.L.); (S.Z.); (C.W.); (Y.J.); (C.C.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
- Key Laboratory of Crop Biological Breeding in Fujian and Taiwan, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
2
|
Ma H, Su L, Zhang W, Sun Y, Li D, Li S, Lin YJ, Zhou C, Li W. Epigenetic regulation of lignin biosynthesis in wood formation. THE NEW PHYTOLOGIST 2025; 245:1589-1607. [PMID: 39639540 PMCID: PMC11754936 DOI: 10.1111/nph.20328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Lignin, a major wood component, is the key limiting factor for wood conversion efficiency. Its biosynthesis is controlled by transcriptional regulatory networks involving transcription factor (TF)-DNA interactions. However, the epigenetic mechanisms underlying these interactions in lignin biosynthesis remain largely unknown. Here, using yeast one-hybrid, chromatin immunoprecipitation, and electrophoretic mobility shift assays, we identified that PtrbZIP44-A1, a key wood-forming TF, directly interacts with the promoters of PtrCCoAOMT2 and PtrCCR2, genes involved in the monolignol biosynthetic pathway. We used yeast two-hybrid, bimolecular fluorescence complementation, biochemical analyses, transient and CRISPR-mediated transgenesis in Populus trichocarpa to demonstrate that PtrHDA15, a histone deacetylase, acts as an epigenetic inhibitor and is recruited by PtrbZIP44-A1 for chromatin histone modifications to repress PtrCCoAOMT2 and PtrCCR2, leading to reduced lignin deposition. In transgenic lines overexpressing PtrbZIP44-A1 or PtrHDA15, histone acetylation at the promoters of PtrCCoAOMT2 and PtrCCR2 decreased, reducing their expression and lignin content. Conversely, in loss-of-function ptrbzip44-a1 and ptrhda15 mutants, histone acetylation levels at PtrCCoAOMT2 and PtrCCR2 promoters increased, enhancing target gene expression and lignin content. Our study uncovered an epigenetic mechanism that suppresses lignin biosynthesis. This finding may help fill a knowledge gap between epigenetic regulation and lignin biosynthesis during wood formation in Populus.
Collapse
Affiliation(s)
- Hongyan Ma
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Liwei Su
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Wen Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Danning Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | | | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Wei Li
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
3
|
Cao HX, Michels D, Vu GTH, Gailing O. Applications of CRISPR Technologies in Forestry and Molecular Wood Biotechnology. Int J Mol Sci 2024; 25:11792. [PMID: 39519342 PMCID: PMC11547103 DOI: 10.3390/ijms252111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Forests worldwide are under increasing pressure from climate change and emerging diseases, threatening their vital ecological and economic roles. Traditional breeding approaches, while valuable, are inherently slow and limited by the long generation times and existing genetic variation of trees. CRISPR technologies offer a transformative solution, enabling precise and efficient genome editing to accelerate the development of climate-resilient and productive forests. This review provides a comprehensive overview of CRISPR applications in forestry, exploring its potential for enhancing disease resistance, improving abiotic stress tolerance, modifying wood properties, and accelerating growth. We discuss the mechanisms and applications of various CRISPR systems, including base editing, prime editing, and multiplexing strategies. Additionally, we highlight recent advances in overcoming key challenges such as reagent delivery and plant regeneration, which are crucial for successful implementation of CRISPR in trees. We also delve into the potential and ethical considerations of using CRISPR gene drive for population-level genetic alterations, as well as the importance of genetic containment strategies for mitigating risks. This review emphasizes the need for continued research, technological advancements, extensive long-term field trials, public engagement, and responsible innovation to fully harness the power of CRISPR for shaping a sustainable future for forests.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - David Michels
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Akyuz Turumtay E, Turumtay H, Tian Y, Lin CY, Chai YN, Louie KB, Chen Y, Lipzen A, Harwood T, Satish Kumar K, Bowen BP, Wang Q, Mansfield SD, Blow MJ, Petzold CJ, Northen TR, Mortimer JC, Scheller HV, Eudes A. Expression of dehydroshikimate dehydratase in poplar induces transcriptional and metabolic changes in the phenylpropanoid pathway. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4960-4977. [PMID: 38809816 PMCID: PMC11349870 DOI: 10.1093/jxb/erae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we acquired fundamental knowledge on lignin-modified poplar expressing 3-dehydroshikimate dehydratase using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibited the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. The changes affected predominantly the shikimate and phenylpropanoid pathways as well as secondary cell wall metabolism, and resulted in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.
Collapse
Affiliation(s)
- Emine Akyuz Turumtay
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Recep Tayyip Erdogan University, Department of Chemistry, 53100, Rize, Turkiye
| | - Halbay Turumtay
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Karadeniz Technical University, Department of Energy System Engineering, 61830, Trabzon, Turkiye
| | - Yang Tian
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chien-Yuan Lin
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yen Ning Chai
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine B Louie
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yan Chen
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Harwood
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kavitha Satish Kumar
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qian Wang
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI 53726, USA
| | - Matthew J Blow
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jenny C Mortimer
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA, Australia
| | - Henrik V Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aymerick Eudes
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
5
|
Unda F, de Vries L, Karlen SD, Rainbow J, Zhang C, Bartley LE, Kim H, Ralph J, Mansfield SD. Enhancing monolignol ferulate conjugate levels in poplar lignin via OsFMT1. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:97. [PMID: 39003470 PMCID: PMC11246582 DOI: 10.1186/s13068-024-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The phenolic polymer lignin is one of the primary chemical constituents of the plant secondary cell wall. Due to the inherent plasticity of lignin biosynthesis, several phenolic monomers have been shown to be incorporated into the polymer, as long as the monomer can undergo radicalization so it can participate in coupling reactions. In this study, we significantly enhance the level of incorporation of monolignol ferulate conjugates into the lignin polymer to improve the digestibility of lignocellulosic biomass. RESULTS Overexpression of a rice Feruloyl-CoA Monolignol Transferase (FMT), OsFMT1, in hybrid poplar (Populus alba x grandidentata) produced transgenic trees clearly displaying increased cell wall-bound ester-linked ferulate, p-hydroxybenzoate, and p-coumarate, all of which are in the lignin cell wall fraction, as shown by NMR and DFRC. We also demonstrate the use of a novel UV-Vis spectroscopic technique to rapidly screen plants for the presence of both ferulate and p-hydroxybenzoate esters. Lastly we show, via saccharification assays, that the OsFMT1 transgenic p oplars have significantly improved processing efficiency compared to wild-type and Angelica sinensis-FMT-expressing poplars. CONCLUSIONS The findings demonstrate that OsFMT1 has a broad substrate specificity and a higher catalytic efficiency compared to the previously published FMT from Angelica sinensis (AsFMT). Importantly, enhanced wood processability makes OsFMT1 a promising gene to optimize the composition of lignocellulosic biomass.
Collapse
Affiliation(s)
- Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Steven D Karlen
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jordan Rainbow
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Chengcheng Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hoon Kim
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- US Department of Agriculture (USDA), Forest Service, Forest Products Laboratory (FPL), Madison, WI, 53726, USA
| | - John Ralph
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA.
- Botany Department, Faculty of Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
6
|
Saberi Riseh R, Fathi F, Lagzian A, Vatankhah M, Kennedy JF. Modifying lignin: A promising strategy for plant disease control. Int J Biol Macromol 2024; 271:132696. [PMID: 38823737 DOI: 10.1016/j.ijbiomac.2024.132696] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Lignin is a complex polymer found in the cell walls of plants, providing structural support and protection against pathogens. By modifying lignin composition and structure, scientists aim to optimize plant defense responses and increase resistance to pathogens. This can be achieved through various genetic engineering techniques which involve manipulating the genes responsible for lignin synthesis. By either up regulating or down regulating specific genes, researchers can alter the lignin content, composition, or distribution in plant tissues. Reducing lignin content in specific tissues like leaves can improve the effectiveness of defense mechanisms by allowing for better penetration of antimicrobial compounds. Overall, Lignin modification through techniques has shown promising results in enhancing various plants resistance against pathogens. Furthermore, lignin modification can have additional benefits beyond pathogen resistance. It can improve biomass processing for biofuel production by reducing lignin recalcitrance, making the extraction of sugars from cellulose more efficient. The complexity of lignin biosynthesis and its interactions with other plant components make it a challenging target for modification. Additionally, the potential environmental impact and regulatory considerations associated with genetically modified organisms (GMOs) require careful evaluation. Ongoing research aims to further optimize this approach and develop sustainable solutions for crop protection.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
7
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
8
|
Kruse LH, Sunstrum FG, Garcia D, López Pérez G, Jancsik S, Bohlmann J, Irmisch S. Improved production of the antidiabetic metabolite montbretin A in Nicotiana benthamiana: discovery, characterization, and use of Crocosmia shikimate shunt genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:766-785. [PMID: 37960967 DOI: 10.1111/tpj.16528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The plant-specialized metabolite montbretin A (MbA) is being developed as a new treatment option for type-2 diabetes, which is among the ten leading causes of premature death and disability worldwide. MbA is a complex acylated flavonoid glycoside produced in small amounts in below-ground organs of the perennial plant Montbretia (Crocosmia × crocosmiiflora). The lack of a scalable production system limits the development and potential application of MbA as a pharmaceutical or nutraceutical. Previous efforts to reconstruct montbretin biosynthesis in Nicotiana benthamiana (Nb) resulted in low yields of MbA and higher levels of montbretin B (MbB) and montbretin C (MbC). MbA, MbB, and MbC are nearly identical metabolites differing only in their acyl moieties, derived from caffeoyl-CoA, coumaroyl-CoA, and feruloyl-CoA, respectively. In contrast to MbA, MbB and MbC are not pharmaceutically active. To utilize the montbretia caffeoyl-CoA biosynthesis for improved MbA engineering in Nb, we cloned and characterized enzymes of the shikimate shunt of the general phenylpropanoid pathway, specifically hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (CcHCT), p-coumaroylshikimate 3'-hydroxylase (CcC3'H), and caffeoylshikimate esterase (CcCSE). Gene expression patterns suggest that CcCSE enables the predominant formation of MbA, relative to MbB and MbC, in montbretia. This observation is supported by results from in vitro characterization of CcCSE and reconstruction of the shikimate shunt in yeast. Using CcHCT together with montbretin biosynthetic genes in multigene constructs resulted in a 30-fold increase of MbA in Nb. This work advances our understanding of the phenylpropanoid pathway and features a critical step towards improved MbA production in bioengineered Nb.
Collapse
Affiliation(s)
- Lars H Kruse
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Frederick G Sunstrum
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Daniela Garcia
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Guillermo López Pérez
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sharon Jancsik
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Forest and Conservation Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sandra Irmisch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Plant Sciences, Institute of Biology, Leiden University, Leiden, 2333 BE, Netherlands
| |
Collapse
|
9
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
10
|
Chen L, Liu L, Yang G, Li X, Dai X, Xue L, Yin T. Expression Quantitative Trait Locus of Wood Formation-Related Genes in Salix suchowensis. Int J Mol Sci 2023; 25:247. [PMID: 38203430 PMCID: PMC10778782 DOI: 10.3390/ijms25010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Shrub willows are widely planted for landscaping, soil remediation, and biomass production, due to their rapid growth rates. Identification of regulatory genes in wood formation would provide clues for genetic engineering of willows for improved growth traits on marginal lands. Here, we conducted an expression quantitative trait locus (eQTL) analysis, using a full sibling F1 population of Salix suchowensis, to explore the genetic mechanisms underlying wood formation. Based on variants identified from simplified genome sequencing and gene expression data from RNA sequencing, 16,487 eQTL blocks controlling 5505 genes were identified, including 2148 cis-eQTLs and 16,480 trans-eQTLs. eQTL hotspots were identified, based on eQTL frequency in genomic windows, revealing one hotspot controlling genes involved in wood formation regulation. Regulatory networks were further constructed, resulting in the identification of key regulatory genes, including three transcription factors (JAZ1, HAT22, MYB36) and CLV1, BAM1, CYCB2;4, CDKB2;1, associated with the proliferation and differentiation activity of cambium cells. The enrichment of genes in plant hormone pathways indicates their critical roles in the regulation of wood formation. Our analyses provide a significant groundwork for a comprehensive understanding of the regulatory network of wood formation in S. suchowensis.
Collapse
Affiliation(s)
| | | | | | | | | | - Liangjiao Xue
- State Key Laboratory of Tree Genetics and Breeding, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- State Key Laboratory of Tree Genetics and Breeding, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Yu Y, He J, Liu L, Zhao H, Zhang M, Hong J, Meng X, Fan H. Characterization of caffeoyl shikimate esterase gene family identifies CsCSE5 as a positive regulator of Podosphaera xanthii and Corynespora cassiicola pathogen resistance in cucumber. PLANT CELL REPORTS 2023; 42:1937-1950. [PMID: 37823975 DOI: 10.1007/s00299-023-03074-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
KEY MESSAGE CsCSE genes might be involved in the tolerance of cucumber to pathogens. Silencing of the CsCSE5 gene resulted in attenuated resistance of cucumber to Podosphaera xanthii and Corynespora cassiicola. Caffeoyl shikimate esterase (CSE), a key enzyme in the lignin biosynthetic pathway, has recently been characterized to play a key role in defense against pathogenic infection in plants. However, a systematic analysis of the CSE gene family in cucumber (Cucumis sativus) has not yet been conducted. Here, we identified eight CsCSE genes from the cucumber genome via bioinformatic analyses, and these genes were unevenly distributed on chromosomes 1, 3, 4, and 5. Results from multiple sequence alignment indicated that the CsCSE proteins had domains required for CSE activity. Phylogenetic analysis of gene structure and protein motifs revealed the conservation and diversity of the CsCSE gene family. Collinearity analysis showed that CsCSE genes had high homology with CSE genes in wax gourd (Benincasa hispida). Cis-acting element analysis of the promoters suggested that CsCSE genes might play important roles in growth, development, and stress tolerance. Expression pattern analysis indicated that CsCSE5 might be involved in regulating the resistance of cucumber to pathogens. Functional verification data confirmed that CsCSE5 positively regulates the resistance of cucumber to powdery mildew pathogen Podosphaera xanthii and target leaf spot pathogen Corynespora cassiicola. The results of our study provide information that will aid the genetic improvement of resistant cucumber varieties.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jiajing He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Linghao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hongyan Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Mengmeng Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jinghang Hong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
12
|
Kim JY, Cho KH, Keene SA, Colquhoun TA. Altered profile of floral volatiles and lignin content by down-regulation of Caffeoyl Shikimate Esterase in Petunia. BMC PLANT BIOLOGY 2023; 23:210. [PMID: 37085749 PMCID: PMC10122356 DOI: 10.1186/s12870-023-04203-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The floral volatile profile of Petunia x hybrida 'Mitchell diploid' (MD) is dominated by phenylpropanoids, many of which are derived from p-coumaric acid. However, the downstream processes involved in the production of caffeoyl-CoA and feruloyl-CoA from p-coumaric acid are complex, as the genes and biosynthesis steps are associated with flavonoids and lignin synthesis as well as floral volatiles benzenoid/phenylpropanoid (FVBP). Caffeoyl shikimate esterase (CSE) converts caffeoyl shikimate to caffeic acid and is considered one of the essential regulators in lignin production. Moreover, CSE in involved in phenylpropanoid production. To investigate the roles of CSE in FVBP biosynthesis, we used RNAi-mediated CSE down-regulated (ir-PhCSE) petunias. RESULTS Lowered CSE transcript accumulation in ir-PhCSE plants resulted in reduced lignin layers in the stems and stunted growth, suggesting a positive correlation between lignin layers and lignin content. The altered CSE level influenced the expression of many FVBP genes, including elevated transcripts of p-coumarate-3-hydroxylase (C3H), hydroxycinnamoyl transferase (HCT), and 4-coumaric acid: CoA ligase (4CL). In particular, the expression of C4H in ir-PhCSE plants was more than twice the expression in MD plants. Moreover, the production of volatile compounds was alterend in ir-PhCSE plants. Most floral volatiles decreased, and the amounts of phenylalanine and caffeic acid were significantly lower. CONCLUSIONS Reduced lignin layers in the stems and stunted growth in ir-PhCSE plants suggest that PhCSE is essential for lignin production and plant growth in petunia. The decreased CSE level influenced the expression of many FVBP genes, and interference of shikimate derivates altered volatile compound production. Significantly decreased caffeic acid, but not ferulic acid, in ir-PhCSE plants suggest that CSE is primarily involved in the reaction of caffeoyl shikimate. Higher C3H and C4H transcripts seem to alleviate accumulated p-coumaric acid resulting from altered CSE. Finally, alteration in C3H, HCT, and 4CL in CSE down-regulated plants suggests an interaction of the FVBP genes, leading to the regulation of floral volatiles of petunia.
Collapse
Affiliation(s)
- Joo Young Kim
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, 1529 Fifield Hall, Gainesville, FL, 32611, USA
| | - Keun Ho Cho
- Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Shea A Keene
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, 1529 Fifield Hall, Gainesville, FL, 32611, USA
| | - Thomas A Colquhoun
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, 1529 Fifield Hall, Gainesville, FL, 32611, USA.
| |
Collapse
|
13
|
Anders C, Hoengenaert L, Boerjan W. Accelerating wood domestication in forest trees through genome editing: Advances and prospects. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102329. [PMID: 36586396 PMCID: PMC7614060 DOI: 10.1016/j.pbi.2022.102329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The high economic value of wood requires intensive breeding towards multipurpose biomass. However, long breeding cycles hamper the fast development of novel tree varieties that have improved biomass properties, are tolerant to biotic and abiotic stresses, and resilient to climate change. To speed up domestication, the integration of conventional breeding and new breeding techniques is needed. In this review, we discuss recent advances in genome editing and Cas-DNA-free genome engineering of forest trees, and briefly discuss how multiplex editing combined with multi-omics approaches can accelerate the genetic improvement of forest trees, with a focus on wood.
Collapse
Affiliation(s)
- Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
14
|
Mitra S, Anand U, Ghorai M, Kant N, Kumar M, Radha, Jha NK, Swamy MK, Proćków J, de la Lastra JMP, Dey A. Genome editing technologies, mechanisms and improved production of therapeutic phytochemicals: Opportunities and prospects. Biotechnol Bioeng 2023; 120:82-94. [PMID: 36224758 PMCID: PMC10091730 DOI: 10.1002/bit.28260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/10/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Plants produce a large number of secondary metabolites, known as phytometabolites that may be employed as medicines, dyes, poisons, and insecticides in the field of medicine, agriculture, and industrial use, respectively. The rise of genome management approaches has promised a factual revolution in genetic engineering. Targeted genome editing in living entities permits the understanding of the biological systems very clearly, and also sanctions to address a wide-ranging objective in the direction of improving features of plant and their yields. The last few years have introduced a number of unique genome editing systems, including transcription activator-like effector nucleases, zinc finger nucleases, and miRNA-regulated clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing systems have helped in the transformation of metabolic engineering, allowing researchers to modify biosynthetic pathways of different secondary metabolites. Given the growing relevance of editing genomes in plant research, the exciting novel methods are briefly reviewed in this chapter. Also, this chapter highlights recent discoveries on the CRISPR-based modification of natural products in different medicinal plants.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaUttar PradeshIndia
| | | | - Mimosa Ghorai
- Department of Life SciencesPresidency UniversityKolkataWest BengalIndia
| | - Nishi Kant
- Department of Chemical EngineeringIndian Institute of Technology DelhiDelhiNew DelhiIndia
| | - Manoj Kumar
- Chemical and Biochemical Processing DivisionICAR‐Central Institute for Research on Cotton TechnologyMumbaiMaharashtraIndia
| | - Radha
- School of Biological and Environmental SciencesShoolini University of Biotechnology and Management SciencesSolanHimachal PradeshIndia
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaUttar PradeshIndia
- Department of Biotechnology Engineering and Food TechnologyChandigarh UniversityMohaliPunjabIndia
- Department of Biotechnology, School of Applied & Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | - Mallappa K. Swamy
- Department of BiotechnologyEast West First Grade College of ScienceBengaluruKarnatakaIndia
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental BiologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Department of Life and Earth SciencesInstituto de Productos Naturales y Agrobiología‐Consejo Superior de Investigaciones Científicas, (IPNA‐CSIC)San Cristóbal de La LagunaTenerifeSpain
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityKolkataWest BengalIndia
| |
Collapse
|
15
|
De Meester B, Vanholme R, Mota T, Boerjan W. Lignin engineering in forest trees: From gene discovery to field trials. PLANT COMMUNICATIONS 2022; 3:100465. [PMID: 36307984 PMCID: PMC9700206 DOI: 10.1016/j.xplc.2022.100465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Wood is an abundant and renewable feedstock for the production of pulp, fuels, and biobased materials. However, wood is recalcitrant toward deconstruction into cellulose and simple sugars, mainly because of the presence of lignin, an aromatic polymer that shields cell-wall polysaccharides. Hence, numerous research efforts have focused on engineering lignin amount and composition to improve wood processability. Here, we focus on results that have been obtained by engineering the lignin biosynthesis and branching pathways in forest trees to reduce cell-wall recalcitrance, including the introduction of exotic lignin monomers. In addition, we draw general conclusions from over 20 years of field trial research with trees engineered to produce less or altered lignin. We discuss possible causes and solutions for the yield penalty that is often associated with lignin engineering in trees. Finally, we discuss how conventional and new breeding strategies can be combined to develop elite clones with desired lignin properties. We conclude this review with priorities for the development of commercially relevant lignin-engineered trees.
Collapse
Affiliation(s)
- Barbara De Meester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thatiane Mota
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
| |
Collapse
|
16
|
Ferreira SS, Goeminne G, Simões MS, Pina AVDA, Lima LGAD, Pezard J, Gutiérrez A, Rencoret J, Mortimer JC, Del Río JC, Boerjan W, Cesarino I. Transcriptional and metabolic changes associated with internode development and reduced cinnamyl alcohol dehydrogenase activity in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6307-6333. [PMID: 35788296 DOI: 10.1093/jxb/erac300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms associated with secondary cell wall (SCW) deposition in sorghum remain largely uncharacterized. Here, we employed untargeted metabolomics and large-scale transcriptomics to correlate changes in SCW deposition with variation in global gene expression profiles and metabolite abundance along an elongating internode of sorghum, with a major focus on lignin and phenolic metabolism. To gain deeper insight into the metabolic and transcriptional changes associated with pathway perturbations, a bmr6 mutant [with reduced cinnamyl alcohol dehydrogenase (CAD) activity] was analyzed. In the wild type, internode development was accompanied by an increase in the content of oligolignols, p-hydroxybenzaldehyde, hydroxycinnamate esters, and flavonoid glucosides, including tricin derivatives. We further identified modules of genes whose expression pattern correlated with SCW deposition and the accumulation of these target metabolites. Reduced CAD activity resulted in the accumulation of hexosylated forms of hydroxycinnamates (and their derivatives), hydroxycinnamaldehydes, and benzenoids. The expression of genes belonging to one specific module in our co-expression analysis correlated with the differential accumulation of these compounds and contributed to explaining this metabolic phenotype. Metabolomics and transcriptomics data further suggested that CAD perturbation activates distinct detoxification routes in sorghum internodes. Our systems biology approach provides a landscape of the metabolic and transcriptional changes associated with internode development and with reduced CAD activity in sorghum.
Collapse
Affiliation(s)
- Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | - Geert Goeminne
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
| | | | | | - Jade Pezard
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida de la Reina Mercedes, Seville, Spain
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| |
Collapse
|
17
|
Wouters M, Corneillie S, Dewitte A, Van Doorsselaere J, Van den Bulcke J, Van Acker J, Vanholme B, Boerjan W. Whole genome duplication of wild-type and CINNAMYL ALCOHOL DEHYDROGENASE1-downregulated hybrid poplar reduces biomass yield and causes a brittle apex phenotype in field-grown wild types. FRONTIERS IN PLANT SCIENCE 2022; 13:995402. [PMID: 36160989 PMCID: PMC9504066 DOI: 10.3389/fpls.2022.995402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The potential of whole genome duplication to increase plant biomass yield is well-known. In Arabidopsis tetraploids, an increase in biomass yield was accompanied by a reduction in lignin content and, as a result, a higher saccharification efficiency was achieved compared with diploid controls. Here, we evaluated whether the results obtained in Arabidopsis could be translated into poplar and whether the enhanced saccharification yield upon alkaline pretreatment of hairpin-downregulated CINNAMYL ALCOHOL DEHYDROGENASE1 (hpCAD) transgenic poplar could be further improved upon a whole genome duplication. Using a colchicine treatment, wild-type (WT) Populus tremula x P. alba cv. INRA 717-1B4, a commonly used model clone in tree biotechnology research, and hpCAD tetraploids were generated and grown in the greenhouse. In parallel, WT tetraploid poplars were grown in the field. In contrast to Arabidopsis, a whole genome duplication of poplar had a negative impact on the biomass yield of both greenhouse- and field-grown trees. Strikingly, field-grown WT tetraploids developed a brittle apex phenotype, i.e., their tip broke off just below the apex. In addition, the chromosome doubling altered the biomass composition of field-grown, but not of greenhouse-grown tetraploid poplars. More specifically, the lignin content of field-grown tetraploid poplars was increased at the expense of matrix polysaccharides. This increase in lignin deposition in biomass is likely the cause of the observed brittle apex phenotype, though no major differences in stem anatomy or in mechanical properties could be found between di- and tetraploid WT poplars grown in the field. Finally, without biomass pretreatment, the saccharification efficiency of greenhouse- and field-grown WT diploids was not different from that of tetraploids, whereas that of greenhouse-grown hpCAD tetraploids was higher than that of greenhouse-grown diploids. Upon alkaline pretreatment, the saccharification yield of diploids was similar to that of tetraploids for all genotypes and growth conditions tested. This study showed that a whole genome duplication in hybrid WT and hpCAD poplar did neither result in further improvements in biomass yield, nor in improved biomass composition and, hence, saccharification performance.
Collapse
Affiliation(s)
- Marlies Wouters
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sander Corneillie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Angelo Dewitte
- Expertisecentrum Agro- en Biotechnologie, VIVES, Roeselare, Belgium
| | | | - Jan Van den Bulcke
- Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris Van Acker
- Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
18
|
CRISPR-Based Genome Editing and Its Applications in Woody Plants. Int J Mol Sci 2022; 23:ijms231710175. [PMID: 36077571 PMCID: PMC9456532 DOI: 10.3390/ijms231710175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 12/21/2022] Open
Abstract
CRISPR/Cas-based genome editing technology provides straightforward, proficient, and multifunctional ways for the site-directed modification of organism genomes and genes. The application of CRISPR-based technology in plants has a vast potential value in gene function research, germplasm innovation, and genetic improvement. The complexity of woody plants genome may pose significant challenges in the application and expansion of various new editing techniques, such as Cas9, 12, 13, and 14 effectors, base editing, particularly for timberland species with a long life span, huge genome, and ploidy. Therefore, many novel optimisms have been drawn to molecular breeding research based on woody plants. This review summarizes the recent development of CRISPR/Cas applications for essential traits, including wood properties, flowering, biological stress, abiotic stress, growth, and development in woody plants. We outlined the current problems and future development trends of this technology in germplasm and the improvement of products in woody plants.
Collapse
|
19
|
Yu Y, Yu Y, Cui N, Ma L, Tao R, Ma Z, Meng X, Fan H. Lignin biosynthesis regulated by CsCSE1 is required for Cucumis sativus defence to Podosphaera xanthii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:88-98. [PMID: 35830761 DOI: 10.1016/j.plaphy.2022.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Lignin is a complex phenolic compound that can enhance the stiffness, hydrophobicity, and antioxidant capacity of the cell wall; it thus provides a critical barrier against pathogen and insect invaders. Caffeoyl shikimate esterase (CSE) is a key novel enzyme involved in lignin biosynthesis that is associated with genetic improvements in lignocellulosic biomass; however, no research thus far have revealed the role of CSE in resistance to pathogenic stress. CsCSE1 (Cucsa.134370) has previously been shown to highly associated with the response of cucumber to attack by Podosphaera xanthii through RNA sequencing. Here, we detected the exactly role of CsCSE1 in the defence of cucumber to P. xanthii infection. Homologous sequence alignment revealed that CsCSE1 contains two highly conserved lyase domains (GXSXG), suggesting that CsCSE1 possesses CSE activity. Subcellular localization analysis manifested that CsCSE1 was localized to the plasma membrane and endoplasmic reticulum (ER). Functional analysis demonstrated that the transient silencing of CsCSE1 in cucumber dramatically attenuated resistance to P. xanthii, whereas overexpression of CsCSE1 in cucumber markedly increased resistance to P. xanthii. Further investigation of the abundance of lignin in transient transgenic plants revealed that CsCSE1 might actively mediate the disease resistance of cucumber by promoting lignin biosynthesis. CsCSE1 also affects the expression of its downstream lignin biosynthesis-related genes, like CsLAC, CsCOMT, CsCCR, and CsCAD. The results of this study provide targets for the genetic breeding of tolerant cucumber cultivars as well as new insights that could aid the control of plant diseases.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lifeng Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Tao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
20
|
De Meester B, Oyarce P, Vanholme R, Van Acker R, Tsuji Y, Vangeel T, Van den Bosch S, Van Doorsselaere J, Sels B, Ralph J, Boerjan W. Engineering Curcumin Biosynthesis in Poplar Affects Lignification and Biomass Yield. FRONTIERS IN PLANT SCIENCE 2022; 13:943349. [PMID: 35860528 PMCID: PMC9289561 DOI: 10.3389/fpls.2022.943349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 06/02/2023]
Abstract
Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars mainly due to the presence of lignin. By engineering plants to partially replace traditional lignin monomers with alternative ones, lignin degradability and extractability can be enhanced. Previously, the alternative monomer curcumin has been successfully produced and incorporated into lignified cell walls of Arabidopsis by the heterologous expression of DIKETIDE-CoA SYNTHASE (DCS) and CURCUMIN SYNTHASE2 (CURS2). The resulting transgenic plants did not suffer from yield penalties and had an increased saccharification yield after alkaline pretreatment. Here, we translated this strategy into the bio-energy crop poplar. Via the heterologous expression of DCS and CURS2 under the control of the secondary cell wall CELLULOSE SYNTHASE A8-B promoter (ProCesA8-B), curcumin was also produced and incorporated into the lignified cell walls of poplar. ProCesA8-B:DCS_CURS2 transgenic poplars, however, suffered from shoot-tip necrosis and yield penalties. Compared to that of the wild-type (WT), the wood of transgenic poplars had 21% less cellulose, 28% more matrix polysaccharides, 23% more lignin and a significantly altered lignin composition. More specifically, ProCesA8-B:DCS_CURS2 lignin had a reduced syringyl/guaiacyl unit (S/G) ratio, an increased frequency of p-hydroxyphenyl (H) units, a decreased frequency of p-hydroxybenzoates and a higher fraction of phenylcoumaran units. Without, or with alkaline or hot water pretreatment, the saccharification efficiency of the transgenic lines was equal to that of the WT. These differences in (growth) phenotype illustrate that translational research in crops is essential to assess the value of an engineering strategy for applications. Further fine-tuning of this research strategy (e.g., by using more specific promoters or by translating this strategy to other crops such as maize) might lead to transgenic bio-energy crops with cell walls more amenable to deconstruction without settling in yield.
Collapse
Affiliation(s)
- Barbara De Meester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Paula Oyarce
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yukiko Tsuji
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Thijs Vangeel
- Center for Sustainable Catalysis and Engineering, KU Leuven, Leuven, Belgium
| | | | | | - Bert Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Leuven, Belgium
| | - John Ralph
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- US Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI, United States
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
21
|
Hu S, Kamimura N, Sakamoto S, Nagano S, Takata N, Liu S, Goeminne G, Vanholme R, Uesugi M, Yamamoto M, Hishiyama S, Kim H, Boerjan W, Ralph J, Masai E, Mitsuda N, Kajita S. Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:358-376. [PMID: 35044002 DOI: 10.1111/tpj.15674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Lignin is a phenolic polymer deposited in the plant cell wall, and is mainly polymerized from three canonical monomers (monolignols), i.e. p-coumaryl, coniferyl and sinapyl alcohols. After polymerization, these alcohols form different lignin substructures. In dicotyledons, monolignols are biosynthesized from phenylalanine, an aromatic amino acid. Shikimate acts at two positions in the route to the lignin building blocks. It is part of the shikimate pathway that provides the precursor for the biosynthesis of phenylalanine, and is involved in the transesterification of p-coumaroyl-CoA to p-coumaroyl shikimate, one of the key steps in the biosynthesis of coniferyl and sinapyl alcohols. The shikimate residue in p-coumaroyl shikimate is released in later steps, and the resulting shikimate becomes available again for the biosynthesis of new p-coumaroyl shikimate molecules. In this study, we inhibited cytosolic shikimate recycling in transgenic hybrid aspen by accelerated phosphorylation of shikimate in the cytosol through expression of a bacterial shikimate kinase (SK). This expression elicited an increase in p-hydroxyphenyl units of lignin and, by contrast, a decrease in guaiacyl and syringyl units. Transgenic plants with high SK activity produced a lignin content comparable to that in wild-type plants, and had an increased processability via enzymatic saccharification. Although expression of many genes was altered in the transgenic plants, elevated SK activity did not exert a significant effect on the expression of the majority of genes responsible for lignin biosynthesis. The present results indicate that cytosolic shikimate recycling is crucial to the monomeric composition of lignin rather than for lignin content.
Collapse
Affiliation(s)
- Shi Hu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Sarah Liu
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core Ghent, VIB, Ghent, Belgium
| | - Mikiko Uesugi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shojiro Hishiyama
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, Japan
| | - Hoon Kim
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - John Ralph
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Smart CO2 Utilization Research Team, Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
22
|
Wang X, Chao N, Zhang A, Kang J, Jiang X, Gai Y. Systematic Analysis and Biochemical Characterization of the Caffeoyl Shikimate Esterase Gene Family in Poplar. Int J Mol Sci 2021; 22:ijms222413366. [PMID: 34948162 PMCID: PMC8704367 DOI: 10.3390/ijms222413366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Caffeoyl shikimate esterase (CSE) hydrolyzes caffeoyl shikimate into caffeate and shikimate in the phenylpropanoid pathway. In this study, we performed a systematic analysis of the CSE gene family and investigated the possible roles of CSE and CSE-like genes in Populus. We conducted a genome-wide analysis of the CSE gene family, including functional and phylogenetic analyses of CSE and CSE-like genes, using the poplar (Populus trichocarpa) genome. Eighteen CSE and CSE-like genes were identified in the Populus genome, and five phylogenetic groups were identified from phylogenetic analysis. CSEs in Group Ia, which were proposed as bona fide CSEs, have probably been lost in most monocots except Oryza sativa. Primary functional classification showed that PoptrCSE1 and PoptrCSE2 had putative function in lignin biosynthesis. In addition, PoptrCSE2, along with PoptrCSE12, might also respond to stress with a function in cell wall biosynthesis. Enzymatic assay of PoptoCSE1 (Populus tomentosa), -2 and -12 showed that PoptoCSE1 and -2 maintained CSE activity. PoptoCSE1 and 2 had similar biochemical properties, tissue expression patterns and subcellular localization. Most of the PoptrCSE-like genes are homologs of AtMAGL (monoacylglycerol lipase) genes in Arabidopsis and may function as MAG lipase in poplar. Our study provides a systematic understanding of this novel gene family and suggests the function of CSE in monolignol biosynthesis in Populus.
Collapse
Affiliation(s)
- Xuechun Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Nan Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Aijing Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Jiaqi Kang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (N.C.); (A.Z.); (J.K.); (X.J.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory, National Forestry and Grassland Administration, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-6233-8063
| |
Collapse
|
23
|
CRISPR-Knockout of CSE Gene Improves Saccharification Efficiency by Reducing Lignin Content in Hybrid Poplar. Int J Mol Sci 2021; 22:ijms22189750. [PMID: 34575913 PMCID: PMC8466951 DOI: 10.3390/ijms22189750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Caffeoyl shikimate esterase (CSE) has been shown to play an important role in lignin biosynthesis in plants and is, therefore, a promising target for generating improved lignocellulosic biomass crops for sustainable biofuel production. Populus spp. has two CSE genes (CSE1 and CSE2) and, thus, the hybrid poplar (Populus alba × P. glandulosa) investigated in this study has four CSE genes. Here, we present transgenic hybrid poplars with knockouts of each CSE gene achieved by CRISPR/Cas9. To knockout the CSE genes of the hybrid poplar, we designed three single guide RNAs (sg1-sg3), and produced three different transgenic poplars with either CSE1 (CSE1-sg2), CSE2 (CSE2-sg3), or both genes (CSE1/2-sg1) mutated. CSE1-sg2 and CSE2-sg3 poplars showed up to 29.1% reduction in lignin deposition with irregularly shaped xylem vessels. However, CSE1-sg2 and CSE2-sg3 poplars were morphologically indistinguishable from WT and showed no significant differences in growth in a long-term living modified organism (LMO) field-test covering four seasons. Gene expression analysis revealed that many lignin biosynthetic genes were downregulated in CSE1-sg2 and CSE2-sg3 poplars. Indeed, the CSE1-sg2 and CSE2-sg3 poplars had up to 25% higher saccharification efficiency than the WT control. Our results demonstrate that precise editing of CSE by CRISPR/Cas9 technology can improve lignocellulosic biomass without a growth penalty.
Collapse
|
24
|
Yao T, Feng K, Xie M, Barros J, Tschaplinski TJ, Tuskan GA, Muchero W, Chen JG. Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704697. [PMID: 34484267 PMCID: PMC8416159 DOI: 10.3389/fpls.2021.704697] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
The phenylpropanoid pathway serves as a rich source of metabolites in plants and provides precursors for lignin biosynthesis. Lignin first appeared in tracheophytes and has been hypothesized to have played pivotal roles in land plant colonization. In this review, we summarize recent progress in defining the lignin biosynthetic pathway in lycophytes, monilophytes, gymnosperms, and angiosperms. In particular, we review the key structural genes involved in p-hydroxyphenyl-, guaiacyl-, and syringyl-lignin biosynthesis across plant taxa and consider and integrate new insights on major transcription factors, such as NACs and MYBs. We also review insight regarding a new transcriptional regulator, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, canonically identified as a key enzyme in the shikimate pathway. We use several case studies, including EPSP synthase, to illustrate the evolution processes of gene duplication and neo-functionalization in lignin biosynthesis. This review provides new insights into the genetic engineering of the lignin biosynthetic pathway to overcome biomass recalcitrance in bioenergy crops.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Jaime Barros
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|