1
|
Luo J, Havé M, Soulay F, Balliau T, Clément G, Tellier F, Zivy M, Avice JC, Masclaux-Daubresse C. Multi-omics analyses of sid2 mutant reflect the need of isochorismate synthase ICS1 to cope with sulfur limitation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1635-1651. [PMID: 38498624 DOI: 10.1111/tpj.16702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.
Collapse
Affiliation(s)
- Jie Luo
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Marien Havé
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Frédérique Tellier
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Jean-Christophe Avice
- UMR 950 EVA (Ecophysiologie Végétale & Agronomie), INRAE, Normandie Université (UNICAEN), Federation of Research Normandie Végétal (Fed4277 NORVEGE), 14032, Caen, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| |
Collapse
|
2
|
Wang D, Lv S, Guo Z, Lin K, Zhang X, Jiang P, Lou T, Yi Z, Zhang B, Xie W, Li Y. PHT1;5 Repressed by ANT Mediates Pi Acquisition and Distribution under Low Pi and Salinity in Salt Cress. PLANT & CELL PHYSIOLOGY 2024; 65:20-34. [PMID: 37758243 DOI: 10.1093/pcp/pcad114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Salinity and phosphate (Pi) starvation are the most common abiotic stresses that threaten crop productivity. Salt cress (Eutrema salsugineum) displays good tolerance to both salinity and Pi limitation. Previously, we found several Phosphate Transporter (PHT) genes in salt cress upregulated under salinity. Here, EsPHT1;5 induced by both low Pi (LP) and salinity was further characterized. Overexpression of EsPHT1;5 in salt cress enhanced plant tolerance to LP and salinity, while the knock-down lines exhibited growth retardation. The analysis of phosphorus (P) content and shoot/root ratio of total P in EsPHT1;5-overexpressing salt cress seedlings and the knock-down lines as well as arsenate uptake assays suggested the role of EsPHT1;5 in Pi acquisition and root-shoot translocation under Pi limitation. In addition, overexpression of EsPHT1;5 driven by the native promoter in salt cress enhanced Pi mobilization from rosettes to siliques upon a long-term salt treatment. Particularly, the promoter of EsPHT1;5 outperformed that of AtPHT1;5 in driving gene expression under salinity. We further identified a transcription factor EsANT, which negatively regulated EsPHT1;5 expression and plant tolerance to LP and salinity. Taken together, EsPHT1;5 plays an integral role in Pi acquisition and distribution in plant response to LP and salt stress. Further, EsANT may be involved in the cross-talk between Pi starvation and salinity signaling pathways. This work provides further insight into the mechanism underlying high P use efficiency in salt cress in its natural habitat, and evidence for a link between Pi and salt signaling.
Collapse
Affiliation(s)
- Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Wenzhu Xie
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
3
|
Eshel G, Duppen N, Wang G, Oh D, Kazachkova Y, Herzyk P, Amtmann A, Gordon M, Chalifa‐Caspi V, Oscar MA, Bar‐David S, Marshall‐Colon A, Dassanayake M, Barak S. Positive selection and heat-response transcriptomes reveal adaptive features of the Brassicaceae desert model, Anastatica hierochuntica. THE NEW PHYTOLOGIST 2022; 236:1006-1026. [PMID: 35909295 PMCID: PMC9804903 DOI: 10.1111/nph.18411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.
Collapse
Affiliation(s)
- Gil Eshel
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Nick Duppen
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Guannan Wang
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Dong‐Ha Oh
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Yana Kazachkova
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Anna Amtmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Michal Gordon
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Vered Chalifa‐Caspi
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Michelle Arland Oscar
- Blaustein Center for Scientific CooperationBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Shirli Bar‐David
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Amy Marshall‐Colon
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| |
Collapse
|
4
|
Hüner NPA, Smith DR, Cvetkovska M, Zhang X, Ivanov AG, Szyszka-Mroz B, Kalra I, Morgan-Kiss R. Photosynthetic adaptation to polar life: Energy balance, photoprotection and genetic redundancy. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153557. [PMID: 34922115 DOI: 10.1016/j.jplph.2021.153557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 06/14/2023]
Abstract
The persistent low temperature that characterize polar habitats combined with the requirement for light for all photoautotrophs creates a conundrum. The absorption of too much light at low temperature can cause an energy imbalance that decreases photosynthetic performance that has a negative impact on growth and can affect long-term survival. The goal of this review is to survey the mechanism(s) by which polar photoautotrophs maintain cellular energy balance, that is, photostasis to overcome the potential for cellular energy imbalance in their low temperature environments. Photopsychrophiles are photosynthetic organisms that are obligately adapted to low temperature (0⁰- 15 °C) but usually die at higher temperatures (≥20 °C). In contrast, photopsychrotolerant species can usually tolerate and survive a broad range of temperatures (5⁰- 40 °C). First, we summarize the basic concepts of excess excitation energy, energy balance, photoprotection and photostasis and their importance to survival in polar habitats. Second, we compare the photoprotective mechanisms that underlie photostasis and survival in aquatic cyanobacteria and green algae as well as terrestrial Antarctic and Arctic plants. We show that polar photopsychrophilic and photopsychrotolerant organisms attain energy balance at low temperature either through a regulated reduction in the efficiency of light absorption or through enhanced capacity to consume photosynthetic electrons by the induction of O2 as an alternative electron acceptor. Finally, we compare the published genomes of three photopsychrophilic and one photopsychrotolerant alga with five mesophilic green algae including the model green alga, Chlamydomonas reinhardtii. We relate our genomic analyses to photoprotective mechanisms that contribute to the potential attainment of photostasis. Finally, we discuss how the observed genomic redundancy in photopsychrophilic genomes may confer energy balance, photoprotection and resilience to their harsh polar environment. Primary production in aquatic, Antarctic and Arctic environments is dependent on diverse algal and cyanobacterial communities. Although mosses and lichens dominate the Antarctic terrestrial landscape, only two extant angiosperms exist in the Antarctic. The identification of a single 'molecular key' to unravel adaptation of photopsychrophily and photopsychrotolerance remains elusive. Since these photoautotrophs represent excellent biomarkers to assess the impact of global warming on polar ecosystems, increased study of these polar photoautotrophs remains essential.
Collapse
Affiliation(s)
- Norman P A Hüner
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| | - David R Smith
- Dept. of Biology, University of Western Ontario, London, N6A 5B7, Canada.
| | | | - Xi Zhang
- Dept. of Biology, University of Western Ontario, London, N6A 5B7, Canada.
| | - Alexander G Ivanov
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada; Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria.
| | - Beth Szyszka-Mroz
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| | - Isha Kalra
- Dept. of Microbiology, Miami University of Ohio, Oxford, OH, 45056, USA.
| | | |
Collapse
|
5
|
Lv S, Wang D, Jiang P, Jia W, Li Y. Variation of PHT families adapts salt cress to phosphate limitation under salinity. PLANT, CELL & ENVIRONMENT 2021; 44:1549-1564. [PMID: 33560528 DOI: 10.1111/pce.14027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 05/25/2023]
Abstract
Salt cress (Eutrema salsugineum) presents relatively high phosphate (Pi) use efficiency cy in its natural habitat. Phosphate Transporters (PHTs) play critical roles in Pi acquisition and homeostasis. Here, a comparative study of PHT families between salt cress and Arabidopsis was performed. A total of 27 putative PHT genes were identified in E. salsugineum genome. Notably, seven tandem genes encoding PHT1;3 were found, and function analysis in Arabidopsis indicated at least six EsPHT1;3s participated in Pi uptake. Meanwhile, different expression profiles of PHT genes between the two species under Pi limitation and salt stress were documented. Most PHT1 genes were down-regulated in Arabidopsis while up-regulated in salt cress under salinity, among which EsPHT1;9 was further characterized. EsPHT1;9 was involved in root-to-shoot Pi translocation. Particularly, the promoter of EsPHT1;9 outperformed that of AtPHT1;9 in promoting Pi translocation, K+ /Na+ ratio, thereby salt tolerance. Through cis-element analysis, we identified a bZIP transcription factor EsABF5 negatively regulating EsPHT1;9 and plant tolerance to low-Pi and salt stress. Altogether, more copies and divergent transcriptional regulation of PHT genes contribute to salt cress adaptation to the co-occurrence of salinity and Pi limitation, which add our knowledge on the evolutionary and molecular component of multistress- tolerance of this species.
Collapse
Affiliation(s)
- Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory on Water Environment of Reservoir Watershed, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Yang S, Feng Y, Zhao Y, Bai J, Wang J. Overexpression of a Eutrema salsugineum phosphate transporter gene EsPHT1;4 enhances tolerance to low phosphorus stress in soybean. Biotechnol Lett 2020; 42:2425-2439. [PMID: 32683523 DOI: 10.1007/s10529-020-02968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/12/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To enhance Pi absorption and utilization efficiency of soybean, a member of PHT1 gene family was isolated and characterized from E. salsugineum, which was a homologous gene of AtPHT1;4 and consequently designated as EsPHT1;4. RESULTS Quantitative real-time PCR (qRT-PCR) analysis showed that the transcript level of EsPHT1;4 significantly increased both in roots and leaves of E. salsugineum under Pi deficient conditions. Furthermore, EsPHT1;4 was transferred to soybean cultivar "YD22" using an Agrobacterium-mediated cotyledonary-node transformation method. Overexpression of EsPHT1;4 in soybean not only promoted the increase of plant biomass and yield of transgenic plants upon low P stress, but also increased the accumulation and transportation of Pi from roots to leaves in the transgenic soybean lines. CONCLUSION EsPHT1;4 was critical for controlling the accumulation and translocation of Pi in plants, and can be subsequently used as an effective foreign gene for the improvement of P use efficiency of crops by genetic manipulation.
Collapse
Affiliation(s)
- Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China.
| | - Yue Feng
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China
| | - Yue Zhao
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China
| | - Jingping Bai
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China
| |
Collapse
|
7
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Simopoulos CMA, MacLeod MJR, Irani S, Sung WWL, Champigny MJ, Summers PS, Golding GB, Weretilnyk EA. Coding and long non-coding RNAs provide evidence of distinct transcriptional reprogramming for two ecotypes of the extremophile plant Eutrema salsugineum undergoing water deficit stress. BMC Genomics 2020; 21:396. [PMID: 32513102 PMCID: PMC7278158 DOI: 10.1186/s12864-020-06793-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Background The severity and frequency of drought has increased around the globe, creating challenges in ensuring food security for a growing world population. As a consequence, improving water use efficiency by crops has become an important objective for crop improvement. Some wild crop relatives have adapted to extreme osmotic stresses and can provide valuable insights into traits and genetic signatures that can guide efforts to improve crop tolerance to water deficits. Eutrema salsugineum, a close relative of many cruciferous crops, is a halophytic plant and extremophyte model for abiotic stress research. Results Using comparative transcriptomics, we show that two E. salsugineum ecotypes display significantly different transcriptional responses towards a two-stage drought treatment. Even before visibly wilting, water deficit led to the differential expression of almost 1,100 genes for an ecotype from the semi-arid, sub-arctic Yukon, Canada, but only 63 genes for an ecotype from the semi-tropical, monsoonal, Shandong, China. After recovery and a second drought treatment, about 5,000 differentially expressed genes were detected in Shandong plants versus 1,900 genes in Yukon plants. Only 13 genes displayed similar drought-responsive patterns for both ecotypes. We detected 1,007 long non-protein coding RNAs (lncRNAs), 8% were only expressed in stress-treated plants, a surprising outcome given the documented association between lncRNA expression and stress. Co-expression network analysis of the transcriptomes identified eight gene clusters where at least half of the genes in each cluster were differentially expressed. While many gene clusters were correlated to drought treatments, only a single cluster significantly correlated to drought exposure in both ecotypes. Conclusion Extensive, ecotype-specific transcriptional reprogramming with drought was unexpected given that both ecotypes are adapted to saline habitats providing persistent exposure to osmotic stress. This ecotype-specific response would have escaped notice had we used a single exposure to water deficit. Finally, the apparent capacity to improve tolerance and growth after a drought episode represents an important adaptive trait for a plant that thrives under semi-arid Yukon conditions, and may be similarly advantageous for crop species experiencing stresses attributed to climate change.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada.,Current address: Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Canada
| | - Mitchell J R MacLeod
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Solmaz Irani
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Wilson W L Sung
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Marc J Champigny
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - Peter S Summers
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Canada
| | | |
Collapse
|
9
|
Wan Y, Wang Z, Xia J, Shen S, Guan M, Zhu M, Qiao C, Sun F, Liang Y, Li J, Lu K, Qu C. Genome-Wide Analysis of Phosphorus Transporter Genes in Brassica and Their Roles in Heavy Metal Stress Tolerance. Int J Mol Sci 2020; 21:E2209. [PMID: 32210032 PMCID: PMC7139346 DOI: 10.3390/ijms21062209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
Phosphorus transporter (PHT) genes encode H2PO4-/H+ co-transporters that absorb and transport inorganic nutrient elements required for plant development and growth and protect plants from heavy metal stress. However, little is known about the roles of PHTs in Brassica compared to Arabidopsis thaliana. In this study, we identified and extensively analyzed 336 PHTs from three diploid (B. rapa, B. oleracea, and B. nigra) and two allotetraploid (B. juncea and B. napus) Brassica species. We categorized the PHTs into five phylogenetic clusters (PHT1-PHT5), including 201 PHT1 homologs, 15 PHT2 homologs, 40 PHT3 homologs, 54 PHT4 homologs, and 26 PHT5 homologs, which are unevenly distributed on the corresponding chromosomes of the five Brassica species. All PHT family genes from Brassica are more closely related to Arabidopsis PHTs in the same vs. other clusters, suggesting they are highly conserved and have similar functions. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the PHT gene family during the process of polyploidization and that members of this family have undergone purifying selection during evolution based on Ka/Ks values. Finally, we explored the expression profiles of BnaPHT family genes in specific tissues, at various developmental stages, and under heavy metal stress via RNA-seq analysis and qRT-PCR. BnaPHTs that were induced by heavy metal treatment might mediate the response of rapeseed to this important stress. This study represents the first genome-wide analysis of PHT family genes in Brassica species. Our findings improve our understanding of PHT family genes and provide a basis for further studies of BnaPHTs in plant tolerance to heavy metal stress.
Collapse
Affiliation(s)
- Yuanyuan Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhen Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jichun Xia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Meichen Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fujun Sun
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (Y.W.); (Z.W.); (J.X.); (S.S.); (M.G.); (M.Z.); (C.Q.); (F.S.); (Y.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Yang J, Zhou J, Zhou HJ, Wang MM, Liu MM, Ke YZ, Li PF, Li JN, Du H. Global Survey and Expressions of the Phosphate Transporter Gene Families in Brassica napus and Their Roles in Phosphorus Response. Int J Mol Sci 2020; 21:E1752. [PMID: 32143436 PMCID: PMC7084545 DOI: 10.3390/ijms21051752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/24/2023] Open
Abstract
Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, currently little is known about these genes in oil crops. In this study, we aimed to characterize the five Pi transporter gene families (PHT1-5) in allotetraploid Brassica napus. We identified and characterized 81 putative PHT genes in B. napus (BnaPHTs), including 45 genes in PHT1 family (BnaPHT1s), four BnaPHT2s, 10 BnaPHT3s, 13 BnaPHT4s and nine BnaPHT5s. Phylogenetic analyses showed that the largest PHT1 family could be divided into two groups (Group I and II), while PHT4 may be classified into five, Groups I-V. Gene structure analysis revealed that the exon-intron pattern was conservative within the same family or group. The sequence characteristics of these five families were quite different, which may contribute to their functional divergence. Transcription factor (TF) binding network analyses identified many potential TF binding sites in the promoter regions of candidates, implying their possible regulating patterns. Collinearity analysis demonstrated that most BnaPHTs were derived from an allopolyploidization event (~40.7%) between Brassica rapa and Brassica oleracea ancestors, and small-scale segmental duplication events (~39.5%) in the descendant. RNA-Seq analyses proved that many BnaPHTs were preferentially expressed in leaf and flower tissues. The expression profiles of most colinearity-pairs in B. napus are highly correlated, implying functional redundancy, while a few pairs may have undergone neo-functionalization or sub-functionalization during evolution. The expression levels of many BnaPHTs tend to be up-regulated by different hormones inductions, especially for IAA, ABA and 6-BA treatments. qRT-PCR assay demonstrated that six BnaPHT1s (BnaPHT1.11, BnaPHT1.14, BnaPHT1.20, BnaPHT1.35, BnaPHT1.41, BnaPHT1.44) were significantly up-regulated under low- and/or rich- Pi conditions in B. napus roots. This work analyzes the evolution and expression of the PHT family in Brassica napus, which will help further research on their role in Pi transport.
Collapse
Affiliation(s)
- Jin Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jie Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hong-Jun Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Mang-Mang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Ming-Ming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yun-Zhuo Ke
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Peng-Feng Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China; (J.Y.); (J.Z.); (H.-J.Z.); (M.-M.W.); (M.-M.L.); (Y.-Z.K.); (P.-F.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
11
|
Velasco VME, Irani S, Axakova A, da Silva R, Summers PS, Weretilnyk EA. Evidence that tolerance of Eutrema salsugineum to low phosphate conditions is hard-wired by constitutive metabolic and root-associated adaptations. PLANTA 2019; 251:18. [PMID: 31781937 DOI: 10.1007/s00425-019-03314-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The extremophyte Eutrema salsugineum (Yukon ecotype) has adapted to an environment low in available phosphate through metabolic and root-associated traits that enables it to efficiently retrieve, use, and recycle phosphorus. Efficient phosphate (Pi) use by plants would increase crop productivity under Pi-limiting conditions and reduce our reliance on Pi applied as fertilizer. An ecotype of Eutrema salsugineum originating from the Yukon, Canada, shows no evidence of decreased relative growth rate or biomass under low Pi conditions and, as such, offers a promising model for identifying mechanisms to improve Pi use by crops. We evaluated traits associated with efficient Pi use by Eutrema (Yukon ecotype) seedlings and 4-week-old plants, including acquisition, remobilization, and the operation of metabolic bypasses. Relative to Arabidopsis, Eutrema was slower to remobilize phosphorus (P) from senescing leaves, primary and lateral roots showed a lower capacity for rhizosphere acidification, and root acid phosphatase activity was more broadly distributed and not Pi responsive. Both species produced long root hairs on low Pi media, whereas Arabidopsis root hairs were well endowed with phosphatase activity. This capacity was largely absent in Eutrema. In contrast to Arabidopsis, maximal in vitro rates of pyrophosphate-dependent phosphofructokinase and phosphoenolpyruvate carboxylase activities were not responsive to low Pi conditions suggesting that Eutrema has a constitutive and likely preferential capacity to use glycolytic bypass enzymes. Rhizosphere acidification, exudation of acid phosphatases, and rapid remobilization of leaf P are unlikely strategies used by Eutrema for coping with low Pi. Rather, equipping an entire root system for Pi acquisition and utilizing a metabolic strategy suited to deficient Pi conditions offer better explanations for how Eutrema has adapted to thrive on alkaline, highly saline soil that is naturally low in available Pi.
Collapse
Affiliation(s)
- Vera Marjorie Elauria Velasco
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biology, University of Toronto, Mississauga, ON, L5L 1C6, Canada
| | - Solmaz Irani
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Anna Axakova
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Rosa da Silva
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Peter S Summers
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | |
Collapse
|
12
|
Molecular Traits of Long Non-protein Coding RNAs from Diverse Plant Species Show Little Evidence of Phylogenetic Relationships. G3-GENES GENOMES GENETICS 2019; 9:2511-2520. [PMID: 31235560 PMCID: PMC6686929 DOI: 10.1534/g3.119.400201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) represent a diverse class of regulatory loci with roles in development and stress responses throughout all kingdoms of life. LncRNAs, however, remain under-studied in plants compared to animal systems. To address this deficiency, we applied a machine learning prediction tool, Classifying RNA by Ensemble Machine learning Algorithm (CREMA), to analyze RNAseq data from 11 plant species chosen to represent a wide range of evolutionary histories. Transcript sequences of all expressed and/or annotated loci from plants grown in unstressed (control) conditions were assembled and input into CREMA for comparative analyses. On average, 6.4% of the plant transcripts were identified by CREMA as encoding lncRNAs. Gene annotation associated with the transcripts showed that up to 99% of all predicted lncRNAs for Solanum tuberosum and Amborella trichopoda were missing from their reference annotations whereas the reference annotation for the genetic model plant Arabidopsis thaliana contains 96% of all predicted lncRNAs for this species. Thus a reliance on reference annotations for use in lncRNA research in less well-studied plants can be impeded by the near absence of annotations associated with these regulatory transcripts. Moreover, our work using phylogenetic signal analyses suggests that molecular traits of plant lncRNAs display different evolutionary patterns than all other transcripts in plants and have molecular traits that do not follow a classic evolutionary pattern. Specifically, GC content was the only tested trait of lncRNAs with consistently significant and high phylogenetic signal, contrary to high signal in all tested molecular traits for the other transcripts in our tested plant species.
Collapse
|
13
|
Fan L, Wang G, Hu W, Pantha P, Tran KN, Zhang H, An L, Dassanayake M, Qiu QS. Transcriptomic view of survival during early seedling growth of the extremophyte Haloxylon ammodendron. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:475-489. [PMID: 30292980 DOI: 10.1016/j.plaphy.2018.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/08/2018] [Accepted: 09/18/2018] [Indexed: 05/27/2023]
Abstract
Seedling establishment in an extreme environment requires an integrated genomic and physiological response to survive multiple abiotic stresses. The extremophyte, Haloxylon ammodendron is a pioneer species capable of colonizing temperate desert sand dunes. We investigated the induced and basal transcriptomes in H. ammodendron under water-deficit stress during early seedling establishment. We find that not only drought-responsive genes, but multiple genes in pathways associated with salt, osmotic, cold, UV, and high-light stresses were induced, suggesting an altered regulatory stress response system. Additionally, H. ammodendron exhibited enhanced biotic stress tolerance by down-regulation of genes that were generally up-regulated during pathogen entry in susceptible plants. By comparing the H. ammodendron basal transcriptome to six closely related transcriptomes in Amaranthaceae, we detected enriched basal level transcripts in H. ammodendron that shows preadaptation to abiotic stress and pathogens. We found transcripts that were generally maintained at low levels and some induced only under abiotic stress in the stress-sensitive model, Arabidopsis thaliana to be highly expressed under basal conditions in the Amaranthaceae transcriptomes including H. ammodendron. H. ammodendron shows coordinated expression of genes that regulate stress tolerance and seedling development resource allocation to support survival against multiple stresses in a sand dune dominated temperate desert environment.
Collapse
Affiliation(s)
- Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Wei Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Kieu-Nga Tran
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Hua Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
14
|
Functional and structural insights into candidate genes associated with nitrogen and phosphorus nutrition in wheat (Triticum aestivum L.). Int J Biol Macromol 2018; 118:76-91. [DOI: 10.1016/j.ijbiomac.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/17/2022]
|
15
|
Bechtold U. Plant Life in Extreme Environments: How Do You Improve Drought Tolerance? FRONTIERS IN PLANT SCIENCE 2018; 9:543. [PMID: 29868044 PMCID: PMC5962824 DOI: 10.3389/fpls.2018.00543] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/09/2018] [Indexed: 05/11/2023]
Abstract
Systems studies of drought stress in resurrection plants and other xerophytes are rapidly identifying a large number of genes, proteins and metabolites that respond to severe drought stress or desiccation. This has provided insight into drought resistance mechanisms, which allow xerophytes to persist under such extreme environmental conditions. Some of the mechanisms that ensure cellular protection during severe dehydration appear to be unique to desert species, while many other stress signaling pathways are in common with well-studied model and crop species. However, despite the identification of many desiccation inducible genes, there are few "gene-to-field" examples that have led to improved drought tolerance and yield stability derived from resurrection plants, and only few examples have emerged from model species. This has led to many critical reviews on the merit of the experimental approaches and the type of plants used to study drought resistance mechanisms. This article discusses the long-standing arguments between the ecophysiology and molecular biology communities, on how to "drought-proof" future crop varieties. It concludes that a more positive and inclusive dialogue between the different disciplines is needed, to allow us to move forward in a much more constructive way.
Collapse
Affiliation(s)
- Ulrike Bechtold
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
16
|
Wang D, Lv S, Jiang P, Li Y. Roles, Regulation, and Agricultural Application of Plant Phosphate Transporters. FRONTIERS IN PLANT SCIENCE 2017; 8:817. [PMID: 28572810 PMCID: PMC5435767 DOI: 10.3389/fpls.2017.00817] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential mineral nutrient for plant growth and development. Low availability of inorganic phosphate (orthophosphate; Pi) in soil seriously restricts the crop production, while excessive fertilization has caused environmental pollution. Pi acquisition and homeostasis depend on transport processes controlled Pi transporters, which are grouped into five families so far: PHT1, PHT2, PHT3, PHT4, and PHT5. This review summarizes the current understanding on plant PHT families, including phylogenetic analysis, function, and regulation. The potential application of Pi transporters and the related regulatory factors for developing genetically modified crops with high phosphorus use efficiency (PUE) are also discussed in this review. At last, we provide some potential strategies for developing high PUE crops under salt or drought stress conditions, which can be valuable for improving crop yields challenged by global scarcity of water resources and increasing soil salinization.
Collapse
Affiliation(s)
- Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
17
|
Eshel G, Shaked R, Kazachkova Y, Khan A, Eppel A, Cisneros A, Acuna T, Gutterman Y, Tel-Zur N, Rachmilevitch S, Fait A, Barak S. Anastatica hierochuntica, an Arabidopsis Desert Relative, Is Tolerant to Multiple Abiotic Stresses and Exhibits Species-Specific and Common Stress Tolerance Strategies with Its Halophytic Relative, Eutrema ( Thellungiella) salsugineum. FRONTIERS IN PLANT SCIENCE 2017; 7:1992. [PMID: 28144244 PMCID: PMC5239783 DOI: 10.3389/fpls.2016.01992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 05/08/2023]
Abstract
The search for novel stress tolerance determinants has led to increasing interest in plants native to extreme environments - so called "extremophytes." One successful strategy has been comparative studies between Arabidopsis thaliana and extremophyte Brassicaceae relatives such as the halophyte Eutrema salsugineum located in areas including cold, salty coastal regions of China. Here, we investigate stress tolerance in the desert species, Anastatica hierochuntica (True Rose of Jericho), a member of the poorly investigated lineage III Brassicaceae. We show that A. hierochuntica has a genome approximately 4.5-fold larger than Arabidopsis, divided into 22 diploid chromosomes, and demonstrate that A. hierochuntica exhibits tolerance to heat, low N and salt stresses that are characteristic of its habitat. Taking salt tolerance as a case study, we show that A. hierochuntica shares common salt tolerance mechanisms with E. salsugineum such as tight control of shoot Na+ accumulation and resilient photochemistry features. Furthermore, metabolic profiling of E. salsugineum and A. hierochuntica shoots demonstrates that the extremophytes exhibit both species-specific and common metabolic strategies to cope with salt stress including constitutive up-regulation (under control and salt stress conditions) of ascorbate and dehydroascorbate, two metabolites involved in ROS scavenging. Accordingly, A. hierochuntica displays tolerance to methyl viologen-induced oxidative stress suggesting that a highly active antioxidant system is essential to cope with multiple abiotic stresses. We suggest that A. hierochuntica presents an excellent extremophyte Arabidopsis relative model system for understanding plant survival in harsh desert conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Simon Barak
- French Associates Institute for Biotechnology and Agriculture of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevSde Boker, Israel
| |
Collapse
|