1
|
Denney DA, Patel P, Anderson JT. Elevated [CO 2] and temperature augment gas exchange and shift the fitness landscape in a montane forb. THE NEW PHYTOLOGIST 2024; 243:58-71. [PMID: 38655662 DOI: 10.1111/nph.19765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Climate change is simultaneously increasing carbon dioxide concentrations ([CO2]) and temperature. These factors could interact to influence plant physiology and performance. Alternatively, increased [CO2] may offset costs associated with elevated temperatures. Furthermore, the interaction between elevated temperature and [CO2] may differentially affect populations from along an elevational gradient and disrupt local adaptation. We conducted a multifactorial growth chamber experiment to examine the interactive effects of temperature and [CO2] on fitness and ecophysiology of diverse accessions of Boechera stricta (Brassicaceae) sourced from a broad elevational gradient in Colorado. We tested whether increased [CO2] would enhance photosynthesis across accessions, and whether warmer conditions would depress the fitness of high-elevation accessions owing to steep reductions in temperature with increasing elevation in this system. Elevational clines in [CO2] are not as evident, making it challenging to predict how locally adapted ecotypes will respond to elevated [CO2]. This experiment revealed that elevated [CO2] increased photosynthesis and intrinsic water use efficiency across all accessions. However, these instantaneous responses to treatments did not translate to changes in fitness. Instead, increased temperatures reduced the probability of reproduction for all accessions. Elevated [CO2] and increased temperatures interacted to shift the adaptive landscape, favoring lower elevation accessions for the probability of survival and fecundity. Our results suggest that elevated temperatures and [CO2] associated with climate change could have severe negative consequences, especially for high-elevation populations.
Collapse
Affiliation(s)
- Derek A Denney
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Pratik Patel
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Lupitu A, Moisa C, Bortes F, Peteleu D, Dochia M, Chambre D, Ciutină V, Copolovici DM, Copolovici L. The Impact of Increased CO 2 and Drought Stress on the Secondary Metabolites of Cauliflower ( Brassica oleracea var. botrytis) and Cabbage ( Brassica oleracea var. capitata). PLANTS (BASEL, SWITZERLAND) 2023; 12:3098. [PMID: 37687345 PMCID: PMC10490549 DOI: 10.3390/plants12173098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Elevated carbon dioxide and drought are significant stressors in light of climate change. This study explores the interplay between elevated atmospheric CO2, drought stress, and plant physiological responses. Two Brassica oleracea varieties (cauliflowers and cabbage) were utilized as model plants. Our findings indicate that elevated CO2 accelerates assimilation rate decline during drought. The integrity of photosynthetic components influenced electron transport, potentially due to drought-induced nitrate reductase activation changes. While CO2 positively influenced photosynthesis and water-use efficiency during drought, recovery saw decreased stomatal conductance in high-CO2-grown plants. Drought-induced monoterpene emissions varied, influenced by CO2 concentration and species-specific responses. Drought generally increased polyphenols, with an opposing effect under elevated CO2. Flavonoid concentrations fluctuated with drought and CO2 levels, while chlorophyll responses were complex, with high CO2 amplifying drought's effects on chlorophyll content. These findings contribute to a nuanced understanding of CO2-drought interactions and their intricate effects on plant physiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lucian Copolovici
- Institute for Research, Development and Innovation in Technical and Natural Sciences, Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, Elena Drăgoi Street., No. 2, 310330 Arad, Romania; (A.L.); (C.M.); (F.B.); (D.P.); (M.D.); (D.C.); (V.C.); (D.M.C.)
| |
Collapse
|
3
|
Li F, Guo D, Gao X, Zhao X. Water Deficit Modulates the CO 2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:775477. [PMID: 34912360 PMCID: PMC8667667 DOI: 10.3389/fpls.2021.775477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (P n ) and transpiration rates (T r) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased P n and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased P n by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced P n by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of P n and T r, whereas a water deficit induced increase in WUE was linked to the decrease in T r. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.
Collapse
Affiliation(s)
- Fei Li
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Dagang Guo
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
| | - Xiaodong Gao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
- Institute of Soil and Water Conservation, Northwest A&F University, Xianyang, China
| | - Xining Zhao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- National Engineering Research Center of Water Saving and Irrigation Technology, Yangling, China
| |
Collapse
|
4
|
Short Term Elevated CO2 Interacts with Iron Deficiency, Further Repressing Growth, Photosynthesis and Mineral Accumulation in Soybean (Glycine max L.) and Common Bean (Phaseolus vulgaris L.). ENVIRONMENTS 2021. [DOI: 10.3390/environments8110122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elevated CO2 (eCO2) has been reported to cause mineral losses in several important food crops such as soybean (Glycine max L.) and common bean (Phaseolus vulgaris L.). In addition, more than 30% of the world’s arable land is calcareous, leading to iron (Fe) deficiency chlorosis and lower Fe levels in plant tissues. We hypothesize that there will be combinatorial effects of eCO2 and Fe deficiency on the mineral dynamics of these crops at a morphological, biochemical and physiological level. To test this hypothesis, plants were grown hydroponically under Fe sufficiency (20 μM Fe-EDDHA) or deficiency (0 μM Fe-EDDHA) at ambient CO2 (aCO2, 400 ppm) or eCO2 (800 ppm). Plants of both species exposed to eCO2 and Fe deficiency showed the lowest biomass accumulation and the lowest root: shoot ratio. Soybean at eCO2 had significantly higher chlorophyll levels (81%, p < 0.0001) and common bean had significantly higher photosynthetic rates (60%, p < 0.05) but only under Fe sufficiency. In addition, eCO2 increased ferric chelate reductase acivity (FCR) in Fe-sufficient soybean by 4-fold (p < 0.1) and in Fe-deficient common bean plants by 10-fold (p < 0.0001). In common bean, an interactive effect of both environmental factors was observed, resulting in the lowest root Fe levels. The lowering of Fe accumulation in both crops under eCO2 may be linked to the low root citrate accumulation in these plants when grown with unrestricted Fe supply. No changes were observed for malate in soybean, but in common bean, shoot levels were significantly lower under Fe deficiency (77%, p < 0.05) and Fe sufficiency (98%, p < 0.001). These results suggest that the mechanisms involved in reduced Fe accumulation caused by eCO2 and Fe deficiency may not be independent, and an interaction of these factors may lead to further reduced Fe levels.
Collapse
|
5
|
Dhami N, Cazzonelli CI. Short photoperiod attenuates CO 2 fertilization effect on shoot biomass in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:825-834. [PMID: 33967465 PMCID: PMC8055755 DOI: 10.1007/s12298-021-00968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 05/09/2023]
Abstract
The level of carbon dioxide (CO2) in the air can affect several traits in plants. Elevated atmospheric CO2 (eCO2) can enhance photosynthesis and increase plant productivity, including biomass, although there are inconsistencies regarding the effects of eCO2 on the plant growth response. The compounding effects of ambient environmental conditions such as light intensity, photoperiod, water availability, and soil nutrient composition can affect the extent to which eCO2 enhances plant productivity. This study aimed to investigate the growth response of Arabidopsis thaliana to eCO2 (800 ppm) under short photoperiod (8/16 h, light/dark cycle). Here, we report an attenuated fertilization effect of eCO2 on the shoot biomass of Arabidopsis plants grown under short photoperiod. The biomass of two-, three-, and four-week-old Arabidopsis plants was increased by 10%, 15%, and 28%, respectively, under eCO2 compared to the ambient CO2 (aCO2, 400 ppm) i.e. control. However, the number of rosette leaves, rosette area, and shoot biomass were similar in mature plants under both CO2 conditions, despite 40% higher photosynthesis in eCO2 exposed plants. The levels of chlorophylls and carotenoids were similar in the fully expanded rosette leaves regardless of the level of CO2. In conclusion, CO2 enrichment moderately increased Arabidopsis shoot biomass at the juvenile stage, whereas the eCO2-induced increment in shoot biomass was not apparent in mature plants. A shorter day-length can limit the source-to-sink resource allocation in a plant in age-dependent manner, hence diminishing the eCO2 fertilization effect on the shoot biomass in Arabidopsis plants grown under short photoperiod.
Collapse
Affiliation(s)
- Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
- Present Address: School of Health and Allied Sciences, Pokhara University, Pokhara 30, Kaski, Gandaki 33700 Nepal
| | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| |
Collapse
|
6
|
Eller F, Hyldgaard B, Driever SM, Ottosen CO. Inherent trait differences explain wheat cultivar responses to climate factor interactions: New insights for more robust crop modelling. GLOBAL CHANGE BIOLOGY 2020; 26:5965-5978. [PMID: 32677162 DOI: 10.1111/gcb.15278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Climate change predictions foresee a combination of rising CO2 , temperature and altered precipitation. Effects of single climatic variables are well defined, but the importance of combined variables and genotypic effects is less known, although pivotal for assessing climate change impacts, for example, with crop growth models. This study provides developmental and physiological data from combined climatic factors for two distinct wheat cultivars (Paragon and Gladius), as a basis to improve predictions for climate change scenarios. The two cultivars were grown in controlled climate chambers in a fully factorial setup of atmospheric CO2 concentration, growth temperature and watering regime. The cultivars differed considerably in their developmental rate, response pattern and the parameters responsible for most of their variation. The growth of Paragon was linked to climatic effects on photosynthesis and mainly affected by temperature. Paragon was overall more negatively affected by all treatment combinations compared to Gladius. Gladius was mostly affected by watering regime. The cultivars' acclimation strategies to climate factors varied significantly. Thus, considering a single factor is an oversimplification very likely impacting the accuracy of crop growth models. Intraspecific crop variation could help understanding genotype by environment variation. Cultivars with high phenotypic plasticity may have greater resilience against climatic variability.
Collapse
Affiliation(s)
| | - Benita Hyldgaard
- Department of Biology, Aarhus University, Aarhus C, Denmark
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
7
|
Pan T, Wang Y, Wang L, Ding J, Cao Y, Qin G, Yan L, Xi L, Zhang J, Zou Z. Increased CO 2 and light intensity regulate growth and leaf gas exchange in tomato. PHYSIOLOGIA PLANTARUM 2020; 168:694-708. [PMID: 31376304 DOI: 10.1111/ppl.13015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Carbon dioxide concentration (CO2 ) and light intensity are known to play important roles in plant growth and carbon assimilation. Nevertheless, the underlying physiological mechanisms have not yet been fully explored. Tomato seedlings (Solanum lycopersicum Mill. cv. Jingpeng No. 1) were exposed to two levels of CO2 and three levels of light intensity and the effects on growth, leaf gas exchange and water use efficiency were investigated. Elevated CO2 and increased light intensity promoted growth, dry matter accumulation and pigment concentration and together the seedling health index. Elevated CO2 had no significant effect on leaf nitrogen content but did significantly upregulate Calvin cycle enzyme activity. Increased CO2 and light intensity promoted photosynthesis, both on a leaf-area basis and on a chlorophyll basis. Increased CO2 also increased light-saturated maximum photosynthetic rate, apparent quantum efficiency and carboxylation efficiency and, together with increased light intensity, it raised photosynthetic capacity. However, increased CO2 reduced transpiration and water consumption across different levels of light intensity, thus significantly increasing both leaf-level and plant-level water use efficiency. Among the range of treatments imposed, the combination of increased CO2 (800 µmol CO2 mol-1 ) and high light intensity (400 µmol m-2 s-1 ) resulted in optimal growth and carbon assimilation. We conclude that the combination of increased CO2 and increased light intensity worked synergistically to promote growth, photosynthetic capacity and water use efficiency by upregulation of pigment concentration, Calvin cycle enzyme activity, light energy use and CO2 fixation. Increased CO2 also lowered transpiration and hence water usage.
Collapse
Affiliation(s)
- Tonghua Pan
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Yunlong Wang
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Linghui Wang
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
| | - Juanjuan Ding
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Yanfei Cao
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Gege Qin
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Lulu Yan
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Linjie Xi
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Zhirong Zou
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| |
Collapse
|
8
|
Kang DA, Kim K, Lim JY, Park JT, Kim JH. Mixed matrix membranes consisting of ZIF-8 in rubbery amphiphilic copolymer: Simultaneous improvement in permeability and selectivity. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Zou Z, Liu F, Chen C, Fernando WGD. Effect of Elevated CO 2 Concentration on the Disease Severity of Compatible and Incompatible Interactions of Brassica napus- Leptosphaeria maculans Pathosystem. PLANTS (BASEL, SWITZERLAND) 2019; 8:E484. [PMID: 31717434 PMCID: PMC6918218 DOI: 10.3390/plants8110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022]
Abstract
Global warming by increased atmospheric CO2 concentration has been widely accepted. Yet, there has not been any consistent conclusion on the doubled CO2 concentration that in the future will affect plant disease incidence and severity. Blackleg disease, mainly caused by Leptosphaeria maculans, is a major disease on canola production globally. Brassica napus and L. maculans have a gene-for-gene interaction, which causes an incompatible reaction between canola plants carrying resistance genes and L. maculans isolates carrying corresponding avirulence genes. In this study, B. napus varieties and lines inoculated with different Leptosphaeria isolates were subjected to simulated growth conditions, namely, growth chambers with normal environments and with controlled CO2 concentrations of 400, 600, and 800 ppm. The results indicated that the elevated CO2 concentrations have no noticeable effect on the inferred phenotypes of the canola-blackleg interactions. However, the disease severity decreased in most of the B. napus-L. maculans interactions at extremely high CO2 concentration (800 ppm). The varied pathogenicity changes of the B. napus-L. maculans pathosystem under elevated CO2 concentrations at 400 or 600 ppm may be due to the genetic background or physiological differences in plants and pathogenicity differences in L. maculans isolates having different Avr gene profiles. The mechanisms by which elevated CO2 concentrations affect the B. napus-L. maculans pathosystem will help us understand how climate change will impact crops and diseases.
Collapse
Affiliation(s)
- Zhongwei Zou
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada; (Z.Z.); (F.L.); (C.C.)
| | - Fei Liu
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada; (Z.Z.); (F.L.); (C.C.)
| | - Changqin Chen
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada; (Z.Z.); (F.L.); (C.C.)
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - W. G. Dilantha Fernando
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada; (Z.Z.); (F.L.); (C.C.)
| |
Collapse
|
10
|
Menezes‐Silva PE, Loram‐Lourenço L, Alves RDFB, Sousa LF, Almeida SEDS, Farnese FS. Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol Evol 2019; 9:11979-11999. [PMID: 31695903 PMCID: PMC6822037 DOI: 10.1002/ece3.5663] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/10/2023] Open
Abstract
Anthropogenic activities such as uncontrolled deforestation and increasing greenhouse gas emissions are responsible for triggering a series of environmental imbalances that affect the Earth's complex climate dynamics. As a consequence of these changes, several climate models forecast an intensification of extreme weather events over the upcoming decades, including heat waves and increasingly severe drought and flood episodes. The occurrence of such extreme weather will prompt profound changes in several plant communities, resulting in massive forest dieback events that can trigger a massive loss of biodiversity in several biomes worldwide. Despite the gravity of the situation, our knowledge regarding how extreme weather events can undermine the performance, survival, and distribution of forest species remains very fragmented. Therefore, the present review aimed to provide a broad and integrated perspective of the main biochemical, physiological, and morpho-anatomical disorders that may compromise the performance and survival of forest species exposed to climate change factors, particularly drought, flooding, and global warming. In addition, we also discuss the controversial effects of high CO2 concentrations in enhancing plant growth and reducing the deleterious effects of some extreme climatic events. We conclude with a discussion about the possible effects that the factors associated with the climate change might have on species distribution and forest composition.
Collapse
Affiliation(s)
| | - Lucas Loram‐Lourenço
- Laboratory of Plant EcophysiologyInstituto Federal Goiano – Campus Rio VerdeGoiásBrazil
| | | | | | | | | |
Collapse
|
11
|
Eisenach C. How plants respond to climate change: A new Virtual Special Issue of Plant, Cell & Environment. PLANT, CELL & ENVIRONMENT 2019; 42:2537-2539. [PMID: 31256418 DOI: 10.1111/pce.13604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
|
12
|
Huang J, Hammerbacher A, Weinhold A, Reichelt M, Gleixner G, Behrendt T, van Dam NM, Sala A, Gershenzon J, Trumbore S, Hartmann H. Eyes on the future - evidence for trade-offs between growth, storage and defense in Norway spruce. THE NEW PHYTOLOGIST 2019; 222:144-158. [PMID: 30289558 DOI: 10.1111/nph.15522] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 05/20/2023]
Abstract
Carbon (C) allocation plays a central role in tree responses to environmental changes. Yet, fundamental questions remain about how trees allocate C to different sinks, for example, growth vs storage and defense. In order to elucidate allocation priorities, we manipulated the whole-tree C balance by modifying atmospheric CO2 concentrations [CO2 ] to create two distinct gradients of declining C availability, and compared how C was allocated among fluxes (respiration and volatile monoterpenes) and biomass C pools (total biomass, nonstructural carbohydrates (NSC) and secondary metabolites (SM)) in well-watered Norway spruce (Picea abies) saplings. Continuous isotope labelling was used to trace the fate of newly-assimilated C. Reducing [CO2 ] to 120 ppm caused an aboveground C compensation point (i.e. net C balance was zero) and resulted in decreases in growth and respiration. By contrast, soluble sugars and SM remained relatively constant in aboveground young organs and were partially maintained with a constant allocation of newly-assimilated C, even at expense of root death from C exhaustion. We conclude that spruce trees have a conservative allocation strategy under source limitation: growth and respiration can be downregulated to maintain 'operational' concentrations of NSC while investing newly-assimilated C into future survival by producing SM.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, 0028, Pretoria, South Africa
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Thomas Behrendt
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
| | - Anna Sala
- Division of Biological Sciences, The University of Montana, Missoula, MT, 59812, USA
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| |
Collapse
|
13
|
Uddin S, Parvin S, Löw M, Fitzgerald GJ, Tausz-Posch S, Armstrong R, Tausz M. The water use dynamics of canola cultivars grown under elevated CO 2 are linked to their leaf area development. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:164-169. [PMID: 30103086 DOI: 10.1016/j.jplph.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The 'CO2 fertilisation effect' is often predicted to be greater under drier than wetter conditions, mainly due to hypothesised early season water savings under elevated [CO2] (e[CO2]). However, water savings largely depend on the balance between CO2-induced improvement of leaf-level water use efficiency and CO2-stimulation of transpiring leaf area. The dynamics of water use during the growing season can therefore vary depending on leaf area development. Two canola (Brassica napus L.) cultivars of contrasting growth and vigour (vigorous hybrid cv. Hyola 50 and non-hybrid cv. Thumper) were grown under ambient [CO2] (a[CO2], ∼400 μmol mol-1) or e[CO2] (∼700 μmol mol-1) with two water treatments (well-watered and mild drought) in a glasshouse to investigate the interdependence of leaf area development and water use. Dynamics of water use during the growing season varied depending on [CO2] and cultivars. Early stimulation of leaf growth under e[CO2], which also depended on cultivar, overcompensated for the effect of increased leaf-level water use efficiency, so that weekly water use was greater and water depletion from soil greater under e[CO2] than a[CO2]. This result shows that the balance between leaf area and water use efficiency stimulation by e[CO2] can tip towards early depletion of available soil water, so that e[CO2] does not lead to water savings, and the 'CO2 fertilisation effect' is not greater under drier conditions.
Collapse
Affiliation(s)
- Shihab Uddin
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 4 Water Street, Creswick, VIC 3363, Australia; Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Shahnaj Parvin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, VIC 3363, Australia
| | - Markus Löw
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 4 Water Street, Creswick, VIC 3363, Australia
| | - Glenn J Fitzgerald
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 4 Water Street, Creswick, VIC 3363, Australia; Department of Economic Development, Jobs, Transport and Resources, Private Bag 260, Horsham, VIC 3401, Australia
| | - Sabine Tausz-Posch
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 4 Water Street, Creswick, VIC 3363, Australia; School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Roger Armstrong
- Department of Economic Development, Jobs, Transport and Resources, Private Bag 260, Horsham, VIC 3401, Australia; Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3086, Australia
| | - Michael Tausz
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, VIC 3363, Australia; Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|