1
|
Zhang Z, Dong Y, Wang X, Gao Y, Xian X, Li J, Wang Y. Protein post-translational modifications (PTM S) unlocking resilience to abiotic stress in horticultural crops: A review. Int J Biol Macromol 2025; 306:141772. [PMID: 40049463 DOI: 10.1016/j.ijbiomac.2025.141772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Horticultural crops are extensively cultivated throughout the world as crucial economical crops, encompassing fruits, vegetables, ornamentals, medicinal and beverage plants, for purposes such as food supply, special nutrition provision, medical application or aesthetic enjoyment. However, abiotic stress triggered by extreme climate change, such as excessive salt and prolonged drought, directly leads to the decline of nutritional quality of horticultural crops, contributing to the shortage of high-quality fruits. Post-translational modifications of proteins, such as phosphorylation and ubiquitination, can alter protein characteristics by adding specific groups to amino acids, which in turn impacts protein stability to regulate plant growth and development as well as environmental stress. Consequently, the revelation of the molecular mechanism of horticultural crops response to abiotic stress at post-translational modification level (PTMs) has always attracted a lot of scholars, as it is crucial for the development and breeding of climate-resilient apple varieties. At PTMs level, this review focuses on summarizing research advancements in horticultural crops responses to environmental stress, including drought, salt, cold, high temperature and iron (Fe) deficiency, with emphasis on sucrose non-fermentative 1 (SNF1) associated protein kinases (SnRKs) and mitogen-activated protein kinase (MAPK) cascade mediated phosphorylation, E3 ubiquitin ligases and BTB/TAZ subfamily BT2 mediated ubiquitination, SIZ1 SUMO E3 ligase mediated sumoylation, Nitric oxide (NO) mediated S-nitrosylation, and other forms of PTMs including protein glycosylation and lysine acetylation. In conclusion, this review adopts protein modification as an entry point to illuminate the mechanism of key genes regulating abiotic stress at PTMs level, providing a foundation for the cultivation of horticultural crops with superior resistance.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture Gansu Agricultural University, Lanzhou 730070, China
| | - Yongjuan Dong
- College of Horticulture Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoya Wang
- College of Horticulture Gansu Agricultural University, Lanzhou 730070, China
| | - Yanlong Gao
- College of Horticulture Gansu Agricultural University, Lanzhou 730070, China
| | - Xulin Xian
- College of Horticulture Gansu Agricultural University, Lanzhou 730070, China
| | - Juanli Li
- College of Horticulture Gansu Agricultural University, Lanzhou 730070, China
| | - Yanxiu Wang
- College of Horticulture Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Liu RX, Li SS, Yue QY, Li HL, Lu J, Li WC, Wang YN, Liu JX, Guo XL, Wu X, Lv YX, Wang XF, You CX. MdHMGB15-MdXERICO-MdNRP module mediates salt tolerance of apple by regulating the expression of salt stress-related genes. J Adv Res 2025:S2090-1232(25)00201-2. [PMID: 40139525 DOI: 10.1016/j.jare.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/24/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Soil salinity is an important limiting factor for plant growth. As a RING-type E3 ubiquitin ligase, MdXERICO is highly responsive to salt stress and can enhance the salt tolerance of plants. However, the molecular mechanism for the response of MdXERICO to salt stress remains unclear. OBJECTIVES This study aims to dissect the molecular mechanisms for MdXERICO to regulate plant response to salt stress. METHODS Transcriptome data were compared to obtain the salt stress-induced gene MdXERICO. Transgenic apple seedlings, apple calli, Arabidopsis, and tomato material were obtained using Agrobacterium-mediated transformation assays. Semiendogenous co-immunoprecipitation analysis, yeast two-hybrid, pull-down and dual-luciferase reporter system were used to detect the protein-protein interactions. Electrophoretic mobility shift assay, yeast one-hybrids, dual luciferase and Gus staining assay were employed to verify the protein-DNA interactions. RESULTS The results revealed that MdXERICO interacted with MdNRP and improved salt tolerance of apple by ubiquitinating and degrading MdNRP via the 26S proteasome pathway. Moreover, the HMG box-containing transcription factor MdHMGB15 interacted with the MdXERICO promoter, thereby activating its expression and enhancing the salt tolerance of apple. CONCLUSION This study explores the apple's tolerance to salt stress through the MdHMGB15-MdXERICO-MdNRP module, and provides potential targets for engineering salt-tolerant varieties.
Collapse
Affiliation(s)
- Ran-Xin Liu
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Shan-Shan Li
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Qian-Yu Yue
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Hong-Liang Li
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Jie Lu
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Wan-Cong Li
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Yue-Ning Wang
- College of Horticulture Science, Gansu Agricultural University, Lanzhou 730070 Gansu, China
| | - Jia-Xing Liu
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Xin-Long Guo
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Xiang Wu
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Ying-Xue Lv
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China.
| | - Chun-Xiang You
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018 Shandong, China.
| |
Collapse
|
3
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
4
|
Zhao S, Wu X, Liang J, Wang Z, Fan S, Du H, Yu H, Xiao Y, Peng F. Genetic Analysis of the Peach SnRK1β3 Subunit and Its Function in Transgenic Tomato Plants. Genes (Basel) 2024; 15:1574. [PMID: 39766841 PMCID: PMC11675834 DOI: 10.3390/genes15121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The sucrose non-fermentation-related kinase 1 (SnRK1) protein complex in plants plays an important role in energy metabolism, anabolism, growth, and stress resistance. SnRK1 is a heterotrimeric complex. The SnRK1 complex is mainly composed of α, β, βγ, and γ subunits. Studies on plant SnRK1 have primarily focused on the functional α subunit, with the β regulatory subunit remaining relatively unexplored. The present study aimed to elucidate the evolutionary relationship, structural prediction, and interaction with the core α subunit of peach SnRK1β3 (PpSnRK1) subunit. METHODS Bioinformatics analysis of PpSnRK1 was performed through software and website. We produced transgenic tomato plants overexpressing PpSnRK1 (OEPpSnRK1). Transcriptome analysis was performed on OEPpSnRK1 tomatoes. We mainly tested the growth index and drought resistance of transgenic tomato plants. RESULTS The results showed that PpSnRK1 has a 354 bp encoded protein sequence (cds), which is mainly located in the nucleus and cell membrane. Phylogenetic tree analysis showed that PpSnRK1β3 has similar domains to other woody plants. Transcriptome analysis of OEPpSnRK1β3 showed that PpSnRK1β3 is widely involved in biosynthetic and metabolic processes. Functional analyses of these transgenic plants revealed prolonged growth periods, enhanced growth potential, improved photosynthetic activity, and superior drought stress tolerance. CONCLUSIONS The study findings provide insight into the function of the PpSnRK1 subunit and its potential role in regulating plant growth and drought responses. This comprehensive analysis of PpSnRK1 will contribute to further enhancing our understanding of the plant SnRK1 protein complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (S.Z.)
| |
Collapse
|
5
|
Zhang LL, Zhu H, Chen CY, Shang NN, Sheng LX, Yu JQ. The function of an apple ATP-dependent Phosphofructokinase gene MdPFK5 in regulating salt stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14590. [PMID: 39468987 DOI: 10.1111/ppl.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Salt stress severely affects the growth and yield of apples (Malus domestica Borkh). Although salt-tolerant genes have been extensively studied, documentation on the role of the ATP-dependent phosphofructokinase gene MdPFK5 in salt stress is limited. This study conducted an evolutionary tree and three-dimensional structure analysis of the PFK gene family in Arabidopsis thaliana and MdPFK (MD01G1037400), revealing a close phylogenetic relationship between MdPFK (MD01G1037400) and AtPFK5. Given the similarity in their protein tertiary structures, MdPFK was designated as MdPFK5, suggesting functional similarities with AtPFK5. Further investigation revealed elevated expression levels of MdPFK5 in apple leaves and flowers, particularly showing significant upregulation 120 days after blooming and differential expression beginning at 3 hours of salt stress. Overexpression of MdPFPK5 conferred salt tolerance in both apple calli and transgenic lines of Arabidopsis thaliana. Moreover, NaCl treatment promoted soluble sugar accumulation in apple calli and transgenic lines of Arabidopsis thaliana overexpressing MdPFK5. This study provides new insights into the salt tolerance function of MdPFK5.
Collapse
Affiliation(s)
- Li-Li Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Hao Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Chao-Yan Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Na-Na Shang
- Dongying Vocational Institute, Dongying, China
| | - Li-Xia Sheng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Zhang HY, Wang X, Wang XN, Liu HF, Zhang TT, Wang DR, Liu GD, Liu YQ, Song XH, Zhang Z, You C. Brassinosteroids biosynthetic gene MdBR6OX2 regulates salt stress tolerance in both apple and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108767. [PMID: 38797009 DOI: 10.1016/j.plaphy.2024.108767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Salt stress is a critical limiting factor for fruit yield and quality of apples. Brassinosteroids (BRs) play an important role in response to abiotic stresses. In the present study, application of 2,4- Epicastasterone on seedlings of Malus 'M9T337' and Malus domestica 'Gala3' alleviated the physiological effects, such as growth inhibition and leaf yellowing, induced by salt stress. Further analysis revealed that treatment with NaCl induced expression of genes involved in BR biosynthesis in 'M9T337' and 'Gala3'. Among which, the expression of BR biosynthetic gene MdBR6OX2 showed a three-fold upregulation upon salt treatment, suggesting its potential role in response to salt stress in apple. MdBR6OX2, belonging to the CYP450 family, contains a signal peptide region and a P450 domain. Expression patterns analysis showed that the expression of MdBR6OX2 can be significantly induced by different abiotic stresses. Overexpressing MdBR6OX2 enhanced the tolerance of apple callis to salt stress, and the contents of endogenous BR-related compounds, such as Typhastero (TY), Castasterone (CS) and Brassinolide (BL) were significantly increased in transgenic calli compared with that of wild-type. Extopic expression of MdBR6OX2 enhanced tolerance to salt stress in Arabidopsis. Genes associated with salt stress were significantly up-regulated, and the contents of BR-related compounds were significantly elevated under salt stress. Our data revealed that BR-biosynthetic gene MdBR6OX2 positively regulates salt stress tolerance in both apple calli and Arabidopsis.
Collapse
Affiliation(s)
- Hai-Yuan Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xun Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Na Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hao-Feng Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ting-Ting Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Guo-Dong Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Qi Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Hua Song
- Beijing Vocational College of Agriculture, Beijing, 100093, China
| | - Zhenlu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chunxiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
7
|
Chen JS, Wang ST, Mei Q, Sun T, Hu JT, Xiao GS, Chen H, Xuan YH. The role of CBL-CIPK signaling in plant responses to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:53. [PMID: 38714550 DOI: 10.1007/s11103-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/06/2024] [Indexed: 05/10/2024]
Abstract
Plants have a variety of regulatory mechanisms to perceive, transduce, and respond to biotic and abiotic stress. One such mechanism is the calcium-sensing CBL-CIPK system responsible for the sensing of specific stressors, such as drought or pathogens. CBLs perceive and bind Calcium (Ca2+) in response to stress and then interact with CIPKs to form an activated complex. This leads to the phosphorylation of downstream targets, including transporters and ion channels, and modulates transcription factor levels and the consequent levels of stress-associated genes. This review describes the mechanisms underlying the response of the CBL-CIPK pathway to biotic and abiotic stresses, including regulating ion transport channels, coordinating plant hormone signal transduction, and pathways related to ROS signaling. Investigation of the function of the CBL-CIPK pathway is important for understanding plant stress tolerance and provides a promising avenue for molecular breeding.
Collapse
Affiliation(s)
- J S Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - S T Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Q Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - T Sun
- Chongqing Customs Technology Center, Chongqing, 400020, China
| | - J T Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - G S Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| | - H Chen
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Y H Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Xia C, Zhang X, Zuo Y, Zhang X, Zhang H, Wang B, Deng H. Genome-wide identification, expression analysis, and abiotic stress response of the CBL and CIPK gene families in Artocarpus nanchuanensis. Int J Biol Macromol 2024; 267:131454. [PMID: 38588845 DOI: 10.1016/j.ijbiomac.2024.131454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Artocarpus nanchuanensis, the northernmost species in the jackfruit genus, has great economic and horticultural value due to its nutritious fruit and beautiful tree shape. Calcineurin B-like proteins (CBLs) act as plant-specific Ca2+ sensors and participate in regulating plant responses to various abiotic stresses by interacting with CBL-interacting protein kinases (CIPKs). However, the characteristics and functions of the CBL and CIPK genes in A. nanchuanensis are still unclear. Here, we identified 14 CBL and 33 CIPK genes from the A. nanchuanensis genome, and based on phylogenetic analysis, they were divided into 4 and 7 clades, respectively. Gene structure and motif analysis indicated that the AnCBL and AnCIPK genes were relatively conserved. Colinear analysis showed that segmental duplication contributed to the expansion of the AnCBL and AnCIPK gene families. Expression analysis showed that AnCBL and AnCIPK genes were widely expressed in various tissues of A. nanchuanensis and exhibited tissue-specific expression. In addition, three genes (AnCBL6, AnCIPK7/8) may play important roles in response to salt, cold, and drought stresses. In summary, this study lays an important foundation for the improvement of stress resistance in A. nanchuanensis and provides new insight for the functional research on CBL and CIPK gene families.
Collapse
Affiliation(s)
- Changying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiao Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Binru Wang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Xie X, Lin M, Xiao G, Wang Q, Li Z. Identification and Characterization of the AREB/ABF Gene Family in Three Orchid Species and Functional Analysis of DcaABI5 in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:774. [PMID: 38592811 PMCID: PMC10974128 DOI: 10.3390/plants13060774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
AREB/ABF (ABA response element binding) proteins in plants are essential for stress responses, while our understanding of AREB/ABFs from orchid species, important traditional medicinal and ornamental plants, is limited. Here, twelve AREB/ABF genes were identified within three orchids' complete genomes and classified into three groups through phylogenetic analysis, which was further supported with a combined analysis of their conserved motifs and gene structures. The cis-element analysis revealed that hormone response elements as well as light and stress response elements were widely rich in the AREB/ABFs. A prediction analysis of the orchid ABRE/ABF-mediated regulatory network was further constructed through cis-regulatory element (CRE) analysis of their promoter regions. And it revealed that several dominant transcriptional factor (TF) gene families were abundant as potential regulators of these orchid AREB/ABFs. Expression profile analysis using public transcriptomic data suggested that most AREB/ABF genes have distinct tissue-specific expression patterns in orchid plants. Additionally, DcaABI5 as a homolog of ABA INSENSITIVE 5 (ABI5) from Arabidopsis was selected for further analysis. The results showed that transgenic Arabidopsis overexpressing DcaABI5 could rescue the ABA-insensitive phenotype in the mutant abi5. Collectively, these findings will provide valuable information on AREB/ABF genes in orchids.
Collapse
Affiliation(s)
- Xi Xie
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.X.); (M.L.); (G.X.); (Q.W.)
| | - Miaoyan Lin
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.X.); (M.L.); (G.X.); (Q.W.)
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.X.); (M.L.); (G.X.); (Q.W.)
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (X.X.); (M.L.); (G.X.); (Q.W.)
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen 518114, China
| |
Collapse
|
10
|
Chen GL, Wang DR, Liu X, Wang X, Liu HF, Zhang CL, Zhang ZL, Li LG, You CX. The apple lipoxygenase MdLOX3 positively regulates zinc tolerance. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132553. [PMID: 37722326 DOI: 10.1016/j.jhazmat.2023.132553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Various abiotic stresses, especially heavy metals near factories around the world, limit plant growth and productivity worldwide. Zinc is a light gray transition metal, and excessive zinc will inactivate enzymes in the soil, weaken the biological function of microorganisms, and enter the food chain through enrichment, thus affecting human health. Lipoxygenase (LOX) can catalyze the production of fatty acid derivatives from phenolic triglycerides in plants and is an important pathway of fatty acid oxidation in plants, which usually begins under unfavorable conditions, especially under biotic and abiotic stresses. Lipoxygenase can be divided into 9-LOX and 13-LOX. MdLOX3 is a homolog of AtLOX3 and has been identified in apples (housefly apples). MdLOX3 has a typical conserved lipoxygenase domain, and promoter analysis shows that it contains multiple stress response elements. In addition, different abiotic stresses and hormonal treatments induced the MdLOX3 response. In order to explore the inherent anti-heavy metal mechanism of MdLOX3, this study verified the properties of MdLOX3 based on genetic analysis and overexpression experiments, including plant taproots length, plant fresh weight, chlorophyll, anthocyanins, MDA, relative electrical conductivity, hydrogen peroxide and superoxide anion, NBT\DAB staining, etc. In the experiment, overexpression of MdLOX3 in apple callus and Arabidopsis effectively enhanced the tolerance to zinc stress by improving the ability to clear ROS. Meanwhile, tomato materials with overexpression of ectopia grew better under excessive zinc ion stress. These results indicated that MdLOX3 had a good tolerance to heavy metal zinc. Homologous mutants are more sensitive to zinc, which proves that MdLOX3 plays an important positive role in zinc stressed apples, which broadens the range of action of LOX3 in different plants.
Collapse
Affiliation(s)
- Guo-Lin Chen
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Da-Ru Wang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xin Liu
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xun Wang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Hao-Feng Liu
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | | | - Zhen-Lu Zhang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Lin-Guang Li
- Shandong Institute of Pomology, Taian, Shandong 271000, China.
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
11
|
Wu Y, Luo Q, Wu Z, Yu J, Zhang Q, Shi F, Zou Y, Li L, Zhao H, Wang Y, Chen M, Chang J, He G, Yang G, Li Y. A straight-forward gene mining strategy to identify TaCIPK19 as a new regulator of drought tolerance in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108034. [PMID: 37738865 DOI: 10.1016/j.plaphy.2023.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Drought stress is one of the most impactful abiotic stresses to global wheat production. Therefore, identifying key regulators such as the calcineurin B-like protein interacting protein kinase (CIPK) in the signaling cascades known to coordinate developmental cues and environmental stimuli represents a useful approach to improve drought tolerance. However, functional studies have been very limited partly due to the difficulties in prioritizing candidate genes from the large TaCIPK family. To address this issue, we demonstrate a straight-forward strategy by analyzing gene expression patterns in response to phytohormones or stresses and identified TaCIPK19 as a new regulator to improve drought tolerance. The effects of TaCIPK19 on drought tolerance were evaluated in both tobacco and wheat through transgenic approach. Ectopic expression of TaCIPK19 in tobacco greatly improves drought tolerance with enhanced ABA biosynthesis/signaling and ROS scavenging capacity. TaCIPK19 overexpression in wheat also confers the drought tolerance at both seedling and mature stages with enhanced ROS scavenging capacity. Additionally, potential CBL partners interacting with TaCIPK19 were investigated. Collectively, our finding exemplifies a straight-forward approach to facilitate reverse genetics related to abiotic stress improvement and demonstrates TaCIPK19 as a new candidate gene to improve ROS scavenging capacity and drought tolerance, which is useful for genetic improvement and breeding application in wheat.
Collapse
Affiliation(s)
- Ya'nan Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qingchen Luo
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Zehao Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jingbo Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fu Shi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuge Zou
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Li Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| |
Collapse
|
12
|
Yang W, Chen X, Chen J, Zheng P, Liu S, Tan X, Sun B. Virus-Induced Gene Silencing in the Tea Plant ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:3162. [PMID: 37687408 PMCID: PMC10490191 DOI: 10.3390/plants12173162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
The recent availability of a number of tea plant genomes has sparked substantial interest in using reverse genetics to explore gene function in tea (Camellia sinensis). However, a hurdle to this is the absence of an efficient transformation system, and virus-induced gene silencing (VIGS), a transient transformation system, could be an optimal choice for validating gene function in the tea plant. In this study, phytoene desaturase (PDS), a carotenoid biosynthesis gene, was used as a reporter to evaluate the VIGS system. The injection sites of the leaves (leaf back, petiole, and stem) for infiltration were tested, and the results showed that petiole injection had the most effective injection, without leading to necrotic lesions that cause the leaves to drop. Tea leaves were inoculated with Agrobacterium harboring a tobacco rattle virus plasmid (pTRV2) containing a CsPDS silencing fragment. The tea leaves exhibited chlorosis symptoms 7-14 days after inoculation, depending on the cultivar. In the chlorosis plants, the coat protein (CP) of tobacco rattle virus (TRV) was detected and coincided with the lower transcription of CsPDS and reduced chlorophyll content compared with the empty vector control, with 81.82% and 54.55% silencing efficiency of 'LTDC' and 'YSX', respectively. These results indicate that the VIGS system with petiole injection could quickly and effectively silence a gene in tea plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Xindong Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (X.C.); (J.C.); (P.Z.); (S.L.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (X.C.); (J.C.); (P.Z.); (S.L.)
| |
Collapse
|
13
|
Li S, Jing X, Tan Q, Wen B, Fu X, Li D, Chen X, Xiao W, Li L. The NAC transcription factor MdNAC29 negatively regulates drought tolerance in apple. FRONTIERS IN PLANT SCIENCE 2023; 14:1173107. [PMID: 37484477 PMCID: PMC10359905 DOI: 10.3389/fpls.2023.1173107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 07/25/2023]
Abstract
Drought stress is an adverse stimulus that affects agricultural production worldwide. NAC transcription factors are involved in plant development and growth but also play different roles in the abiotic stress response. Here, we isolated the apple MdNAC29 gene and investigated its role in regulating drought tolerance. Subcellular localization experiments showed that MdNAC29 was localized to the nucleus and transcription was induced by the PEG treatment. Over-expression of MdNAC29 reduced drought tolerance in apple plants, calli, and tobacco, and exhibited higher relative conductivity, malondialdehyde (MDA) content, and lower chlorophyll content under drought stress. The transcriptomic analyses revealed that MdNAC29 reduced drought resistance by modulating the expression of photosynthesis and leaf senescence-related genes. The qRT-PCR results showed that overexpression of MdNAC29 repressed the expression of drought-resistance genes. Yeast one-hybrid and dual-luciferase assays demonstrated that MdNAC29 directly repressed MdDREB2A expression. Moreover, the yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that MdNAC29 interacted with the MdPP2-B10 (F-box protein), which responded to drought stress, and MdPP2-B10 enhanced the repressive effect of MdNAC29 on the transcriptional activity of the MdDREB2A. Taken together, our results indicate that MdNAC29 is a negative regulator of drought resistance, and provide a theoretical basis for further molecular mechanism research.
Collapse
Affiliation(s)
- Sen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiuli Jing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
14
|
Song J, Sun P, Kong W, Xie Z, Li C, Liu JH. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. THE NEW PHYTOLOGIST 2023; 238:216-236. [PMID: 36210523 DOI: 10.1111/nph.18526] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Arginine decarboxylase (ADC)-mediated putrescine (Put) biosynthesis plays an important role in plant abiotic stress response. SNF1-related protein kinases 2s (SnRK2s) and abscisic acid (ABA)-response element (ABRE)-binding factors (ABFs), are core components of the ABA signaling pathway involved in drought stress response. We previously reported that ADC of Poncirus trifoliata (PtrADC) functions in drought tolerance. However, whether and how SnRK2 and ABF regulate PtrADC to modulate putrescine accumulation under drought stress remains largely unclear. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that a protein complex composed of PtrSnRK2.4 and PtrABF2 modulates putrescine biosynthesis and drought tolerance by directly regulating PtrADC. PtrABF2 was upregulated by dehydration in an ABA-dependent manner. PtrABF2 activated PtrADC expression by directly and specifically binding to the ABRE core sequence within its promoter and positively regulated drought tolerance via modulating putrescine accumulation. PtrSnRK2.4 interacts with and phosphorylates PtrABF2 at Ser93. PtrSnRK2.4-mediated PtrABF2 phosphorylation is essential for the transcriptional regulation of PtrADC. Besides, PtrSnRK2.4 was shown to play a positive role in drought tolerance by facilitating putrescine synthesis. Taken together, this study sheds new light on the regulatory module SnRK2.4-ABF2-ADC responsible for fine-tuning putrescine accumulation under drought stress, which advances our understanding on transcriptional regulation of putrescine synthesis.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Kong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Fiallos-Salguero MS, Li J, Li Y, Xu J, Fang P, Wang Y, Zhang L, Tao A. Identification of AREB/ABF Gene Family Involved in the Response of ABA under Salt and Drought Stresses in Jute ( Corchorus olitorius L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1161. [PMID: 36904020 PMCID: PMC10005393 DOI: 10.3390/plants12051161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The abscisic acid (ABA)-responsive element binding protein/ABRE-binding factor (AREB/ABF) subfamily members are essential to ABA signaling pathways and plant adaptation to various environmental stresses. Nevertheless, there are no reports on AREB/ABF in jute (Corchorus L.). Here, eight AREB/ABF genes were identified in the C. olitorius genome and classified into four groups (A-D) based on their phylogenetic relationships. A cis-elements analysis showed that CoABFs were widely involved in hormone response elements, followed by light and stress responses. Furthermore, the ABRE response element was involved in four CoABFs, playing an essential role in the ABA reaction. A genetic evolutionary analysis indicated that clear purification selection affects jute CoABFs and demonstrated that the divergence time was more ancient in cotton than in cacao. A quantitative real-time PCR revealed that the expression levels of CoABFs were upregulated and downregulated under ABA treatment, indicating that CoABF3 and CoABF7 are positively correlated with ABA concentration. Moreover, CoABF3 and CoABF7 were significantly upregulated in response to salt and drought stress, especially with the application of exogenous ABA, which showed higher intensities. These findings provide a complete analysis of the jute AREB/ABF gene family, which could be valuable for creating novel jute germplasms with a high resistance to abiotic stresses.
Collapse
Affiliation(s)
- Manuel Sebastian Fiallos-Salguero
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunqing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiantang Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingping Fang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yankun Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aifen Tao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory of Crop Breeding for Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Liu RX, Li HL, Rui L, Liu GD, Wang T, Wang XF, Li LG, Zhang Z, You CX. An apple NITRATE REDUCTASE 2 gene positively regulates nitrogen utilization and abiotic stress tolerance in Arabidopsis and apple callus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:23-32. [PMID: 36689830 DOI: 10.1016/j.plaphy.2023.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is an essential element that plays an important role in crop biomass accumulation and quality formation. Increased crop yield is relied on excessive application of fertilizers, which usually leads to environmental pollution and unsustainable development. Thus, identification and characterization of genes involved in promoting nitrogen use efficiency is of high priority in crop breeding. The activity of nitrate reductase (NR) plays a critical role in nitrogen metabolism. In model plant Arabidopsis, NITRATE REDUCTASE 2 (NIA2), one of the two NRs, is responsible for about 90% of the NR activity. In this study, MdNIA2 gene in apple (Malus domestica) genome was screened out and identified by using AtNIA2 as bait. Phylogenetic analysis revealed that MdNIA2 had the closest evolutionary relationship with MbNIA from Malus baccata. Ectopic expression of MdNIA2 in Arabidopsis elevated the nitrogen use efficiency and increased root hair elongation and formation, resulting in promoted plant growth. Furthermore, the overexpression of MdNIA2 improved salt and drought tolerance in transgenic Arabidopsis and improved the salt tolerance of transgenic apple callus, and MdNIA2-reagualted NO metabolism might contribute to the abiotic stress tolerance. Overall, our data indicate the critical role of MdNIA2 in regulating nitrogen utilization efficiency and abiotic stress responses.
Collapse
Affiliation(s)
- Ran-Xin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Guo-Dong Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Tian Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin-Guang Li
- Shandong Institute of Pomology, Tai-An, Shandong, 271000, China
| | - Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
17
|
Liu HF, Zhang TT, Liu YQ, Kang H, Rui L, Wang DR, You CX, Xue XM, Wang XF. Genome-wide analysis of the 6B-INTERACTING PROTEIN1 gene family with functional characterization of MdSIP1-2 in Malus domestica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:89-100. [PMID: 36621305 DOI: 10.1016/j.plaphy.2022.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Trihelix transcription factors consist of five subfamilies, including GT-1, GT-2, SH4, GTγ, and SIP1, which play important roles in the responses to biotic and abiotic stresses, however, seldom is known about the role of the SIP1 genes in apples. In this study, 12 MdSIP1 genes were first identified in apples by genome-wide analysis, and contained conserved MYB/SANT-like domains. Expression patterns analyses showed that the MdSIP1 genes had different tissue expression patterns, and different transcription levels in response to abiotic stresses, indicating that MdSIP1s may play multiple roles under various abiotic stresses. Among them, the MdSIP1-2 gene was cloned and ectopic transformed into Arabidopsis, and its biology function was identified. The subcellular localization showed that MdSIP1-2 protein was specifically localized in the nucleus, and that overexpression of MdSIP1-2 promoted the development of lateral roots, increased abscisic acid (ABA) sensitivity, and improved salt and drought tolerance. These findings suggested that MdSIP1-2 plays an important role in root development, ABA synthesis, and salt and drought stress tolerance. In conclusion, these results lay a solid foundation for determining the role of MdSIP1 in the growth and development and abiotic stress tolerance of apples.
Collapse
Affiliation(s)
- Hao-Feng Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ting-Ting Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Qi Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui Kang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Min Xue
- Shandong Institute of Pomology, Taian, Shandong, 271000, China.
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
18
|
Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:371-439. [PMID: 36858741 DOI: 10.1016/bs.apcsb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.
Collapse
|
19
|
Pan X, Wang C, Liu Z, Gao R, Feng L, Li A, Yao K, Liao W. Identification of ABF/AREB gene family in tomato ( Solanum lycopersicum L.) and functional analysis of ABF/AREB in response to ABA and abiotic stresses. PeerJ 2023; 11:e15310. [PMID: 37163152 PMCID: PMC10164373 DOI: 10.7717/peerj.15310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that plays an important regulatory role in plant growth and stress response. The AREB (ABA-responsive element binding protein)/ABF (ABRE-binding factor) are important ABA-signaling components that participate in abiotic stress response. However, genome-scale analysis of ABF/AREB has not been systemically investigated in tomato. This study was conducted to identify tomato ABF/AREB family members and analyze their response to ABA and abiotic stresses. The results show that a total of 10 ABF/AREB members were identified in tomato, which are randomly distributed on five chromosomes. Domain analysis showed that these members exhibit high protein similarity, especially in the basic leucine zipper (bZIP) domain region. Subcellular localization analysis indicated that all 10 ABF/AREB members are localized in the nucleus. Phylogenetic tree analysis showed that tomato ABF/AREB genes are divided into two groups, and they are similar with the orthologs of other plants. The analysis of cis-acting elements showed that most tomato ABF/AREB genes contain a variety of hormones and stress-related elements. Expression profiles of different tissues indicated that SlABF2 and SlABF10 play an important role in fruit ripening. Finally, qRT-PCR analysis revealed that 10 tomato ABF/AREB genes respond to ABA, with SlABF3 being the most sensitive. SlABF3, SlABF5 and SlABF10 positively respond to salt and cold stresses. SlABF1, SlABF3 and SlABF10 are significantly induced under UV radiation treatment. SlABF3 and SlABF5 are significantly induced in osmotic stress. Overall, this study may provide insight into the role of tomato ABF/AREB homologues in plant response to abiotic stresses, which laid a foundation for future functional study of ABF/AREB in tomato.
Collapse
|
20
|
Gao C, Lu S, Zhou R, Wang Z, Li Y, Fang H, Wang B, Chen M, Cao Y. The OsCBL8-OsCIPK17 Module Regulates Seedling Growth and Confers Resistance to Heat and Drought in Rice. Int J Mol Sci 2022; 23:12451. [PMID: 36293306 PMCID: PMC9604039 DOI: 10.3390/ijms232012451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2023] Open
Abstract
The calcium signaling pathway is critical for plant growth, development, and response to external stimuli. The CBL-CIPK pathway has been well characterized as a calcium-signaling pathway. However, in most reports, only a single function for this module has been described. Here, we examined multiple functions of this module. CIPK showed a similar distribution to that of CBL, and OsCBL and OsCIPK families were retained after experiencing whole genome duplication events through the phylogenetic and synteny analysis. This study found that OsCBL8 negatively regulated rice seed germination and seedling growth by interacting with OsCIPK17 with overexpression and gene editing mutant plants as materials combining plant phenotype, physiological indicators and transcriptome sequencing. This process is likely mediated by OsPP2C77, which is a member of the ABA signaling pathway. In addition, OsCBL mediated the targeting of OsNAC77 and OsJAMYB by OsCIPK17, thus conferring resistance to high temperatures and pathogens in rice. Our work reveals a unique signaling pathway, wherein OsCBL8 interacts with OsCIPK17 and provides rice with multiple resistance while also regulating seedling growth.
Collapse
Affiliation(s)
- Cong Gao
- College of Life Sciences, Nantong University, Nantong 226007, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuai Lu
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Rong Zhou
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Zihui Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Yi Li
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Hui Fang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Baohua Wang
- College of Life Sciences, Nantong University, Nantong 226007, China
| | - Moxian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271000, China
| | - Yunying Cao
- College of Life Sciences, Nantong University, Nantong 226007, China
| |
Collapse
|
21
|
Yu C, Ke Y, Qin J, Huang Y, Zhao Y, Liu Y, Wei H, Liu G, Lian B, Chen Y, Zhong F, Zhang J. Genome-wide identification of calcineurin B-like protein-interacting protein kinase gene family reveals members participating in abiotic stress in the ornamental woody plant Lagerstroemia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:942217. [PMID: 36204074 PMCID: PMC9530917 DOI: 10.3389/fpls.2022.942217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) play important roles in plant responses to stress. However, their function in the ornamental woody plant Lagerstroemia indica is remains unclear. In this study, the LiCIPK gene family was analyzed at the whole genome level. A total of 37 LiCIPKs, distributed across 17 chromosomes, were identified. Conserved motif analysis indicated that all LiCIPKs possess a protein kinase motif (S_TKc) and C-terminal regulatory motif (NAF), while seven LiCIPKs lack a protein phosphatase interaction (PPI) motif. 3D structure analysis further revealed that the N-terminal and C-terminal 3D-structure of 27 members are situated near to each other, while 4 members have a looser structure, and 6 members lack intact structures. The intra- and interspecies collinearity analysis, synonymous substitution rate (K s ) peaks of duplicated LiCIPKs, revealed that ∼80% of LiCIPKs were retained by the two whole genome duplication (WGD) events that occurred approximately 56.12-61.16 million year ago (MYA) and 16.24-26.34 MYA ago. The promoter of each LiCIPK contains a number of auxin, abscisic acid, gibberellic acid, salicylic acid, and drought, anaerobic, defense, stress, and wound responsive cis-elements. Of the 21 members that were successfully amplified by qPCR, 18 LiCIPKs exhibited different expression patterns under NaCl, mannitol, PEG8000, and ABA treatments. Given that LiCIPK30, the AtSOS2 ortholog, responded to all four types of stress it was selected for functional verification. LiCIPK30 complements the atsos2 phenotype in vivo. 35S:LiCIPK-overexpressing lines exhibit increased leaf area increment, chlorophyll a and b content, reactive oxygen species scavenging enzyme activity, and expression of ABF3 and RD22, while the degree of membrane lipid oxidation decreases under NaCl treatment compared to WT. The evolutionary history, and potential mechanism by which LiCIPK30 may regulate plant tolerance to salt stress were also discussed. In summary, we identified LiCIPK members involved in abiotic stress and found that LiCIPK30 transgenic Arabidopsis exhibits more salt and osmotic stress tolerance than WT. This research provides a theoretical foundation for further investigation into the function of LiCIPKs, and for mining gene resources to facilitate the cultivation and breeding of new L. indica varieties in coastal saline-alkali soil.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yongchao Ke
- School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunpeng Huang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yanchun Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| |
Collapse
|
22
|
Wang DR, Yang K, Wang X, You CX. A C2H2-type zinc finger transcription factor, MdZAT17, acts as a positive regulator in response to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153737. [PMID: 35717763 DOI: 10.1016/j.jplph.2022.153737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Salt stress restricts plant growth and productivity worldwide. Zinc finger proteins play important roles in response to various abiotic plant stresses. In this research, we identified and characterized the ZAT17 gene in Malus domestica, which encodes a C2H2-type zinc finger protein. MdZAT17 has two typical conserved zinc finger domains and an ERF-associated amphiphilic repression (EAR) motif. Promoter analysis showed that MdZAT17 contains several stress-related response elements (ABRE, CGTCA-motif, and TC-rich repeats), and qRT-PCR analysis showed that the expression level of MdZAT17 was induced by various abiotic stress treatments. The overexpression of MdZAT17 improved tolerance to salt stress in apple calli. The ectopic expression of MdZAT17 in Arabidopsis enhanced salt stress tolerance and led to lower malondialdehyde (MDA) content, lower reactive oxygen species (ROS) accumulation, and greater anthocyanin accumulation under salt stress. Moreover, the overexpression of MdZAT17 transgenic apple calli and Arabidopsis reduced the sensitivity to abscisic acid (ABA). In conclusion, our results indicate that MdZAT17 plays a positive regulatory role in salt tolerance, providing a theoretical basis for further research on its molecular mechanisms.
Collapse
Affiliation(s)
- Da-Ru Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Kuo Yang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Xun Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
23
|
Jiang Y, Zhang H, Li Y, Chang C, Wang Y, Feng H, Li R. A Novel Transcriptional Regulator HbERF6 Regulates the HbCIPK2-Coordinated Pathway Conferring Salt Tolerance in Halophytic Hordeum brevisubulatum. FRONTIERS IN PLANT SCIENCE 2022; 13:927253. [PMID: 35873960 PMCID: PMC9302439 DOI: 10.3389/fpls.2022.927253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Halophytic Hordeum brevisubulatum is a perennial grass which has evolved many distinctive salt-adaptive mechanisms. Our previous studies indicated it could thrive under salt stress through maintaining better K+ and Na+ homeostasis. Stress-responsive HbCIPK2 can phosphorylate K+ channel HbVGKC1 and Na+ transporter HbSOS1L to prevent Na+ accumulation and K+ reduction, hence pathway was not detected in glycophytic plants. In this study, we cloned the inducible promoter of HbCIPK2 by genome-walking, and identified a novel transcriptional regulator HbERF6 through yeast one-hybrid screening. HbERF6 functioned as a transcription factor which can bind to the GCC-box of the HbCIPK2 promoter to activate its expression. HbERF6 transgenic lines in Arabidopsis improved salt tolerance compared with wild type, and especially induced AtCIPK24 (SOS2) expression, resulting in K+/Na+ homeostasis to enhance salt tolerance. All the results confirmed the inducible function of HbERF6 for CIPK genes during salt tolerance. This regulatory network that integrates transcriptional regulation and post-translation modification will unravel a novel salt stress-responsive mechanism, highlighting the value and utilization of the halophytic resource.
Collapse
Affiliation(s)
- Ying Jiang
- Agro-Biotechnology Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Haiwen Zhang
- Agro-Biotechnology Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Yang Li
- Agro-Biotechnology Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Congcong Chang
- Agro-Biotechnology Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Yunxiao Wang
- Agro-Biotechnology Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Hao Feng
- Agro-Biotechnology Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| | - Ruifen Li
- Agro-Biotechnology Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, China
| |
Collapse
|
24
|
Ji XL, Li HL, Qiao ZW, Zhang JC, Sun WJ, You CX, Hao YJ, Wang XF. The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple. PLANT PHYSIOLOGY 2022; 189:1005-1020. [PMID: 35218363 PMCID: PMC9157121 DOI: 10.1093/plphys/kiac084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 05/27/2023]
Abstract
Ubiquitination is an important post-translational protein modification. Although BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC and TRANSCRIPTION ADAPTOR PUTATIVE ZINC FINGER domain protein 2 (BT2) is involved in many biological processes, its role in apple (Malus domestic) root formation remains unclear. Here, we revealed that MdBT2 inhibits adventitious root (AR) formation through interacting with AUXIN RESPONSE FACTOR8 (MdARF8) and INDOLE-3-ACETIC ACID INDUCIBLE3 (MdIAA3). MdBT2 facilitated MdARF8 ubiquitination and degradation through the 26S proteasome pathway and negatively regulated GRETCHEN HAGEN 3.1 (MdGH3.1) and MdGH3.6 expression. MdARF8 regulates AR formation through inducing transcription of MdGH3s (MdGH3.1, MdGH3.2, MdGH3.5, and MdGH3.6). In addition, MdBT2 facilitated MdIAA3 stability and slightly promoted its interaction with MdARF8. MdIAA3 inhibited AR formation by forming heterodimers with MdARF8 as well as other MdARFs (MdARF5, MdARF6, MdARF7, and MdARF19). Our findings reveal that MdBT2 acts as a negative regulator of AR formation in apple.
Collapse
Affiliation(s)
- Xing-Long Ji
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong-Liang Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Zhi-Wen Qiao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Wei-Jian Sun
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| |
Collapse
|
25
|
Jia M, Li X, Wang W, Li T, Dai Z, Chen Y, Zhang K, Zhu H, Mao W, Feng Q, Liu L, Yan J, Zhong S, Li B, Jia W. SnRK2 subfamily I protein kinases regulate ethylene biosynthesis by phosphorylating HB transcription factors to induce ACO1 expression in apple. THE NEW PHYTOLOGIST 2022; 234:1262-1277. [PMID: 35182082 PMCID: PMC9314909 DOI: 10.1111/nph.18040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 05/20/2023]
Abstract
Ethylene (ETH) controls climacteric fruit ripening and can be triggered by osmotic stress. However, the mechanism regulating ETH biosynthesis during fruit ripening and under osmotic stress is largely unknown in apple (Malus domestica). Here, we explored the roles of SnRK2 protein kinases in ETH biosynthesis related to fruit ripening and osmoregulation. We identified the substrates of MdSnRK2-I using phosphorylation analysis techniques. Finally, we identified the MdSnRK2-I-mediated signaling pathway for ETH biosynthesis related to fruit ripening and osmoregulation. The activity of two MdSnRK2-I members, MdSnRK2.4 and MdSnRK2.9, was significantly upregulated during ripening or following mannitol treatment. Overexpression of MdSnRK2-I increased ETH biosynthesis under normal and osmotic conditions in apple fruit. MdSnRK2-I phosphorylated the transcription factors MdHB1 and MdHB2 to enhance their protein stability and transcriptional activity on MdACO1. MdSnRK2-I also interacted with MdACS1 and increased its protein stability through two phosphorylation sites. The increased MdACO1 expression and MdACS1 protein stability resulted in higher ETH production in apple fruit. In addition, heterologous expression of MdSnRK2-I or manipulation of SlSnRK2-I expression in tomato (Solanum lycopersicum) fruit altered fruit ripening and ETH biosynthesis. We established that MdSnRK2-I functions in fruit ripening and osmoregulation, and identified the MdSnRK2-I-mediated signaling pathway controlling ETH biosynthesis.
Collapse
Affiliation(s)
- Meiru Jia
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Xingliang Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wei Wang
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Tianyu Li
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Zhengrong Dai
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Yating Chen
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Kaikai Zhang
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Haocheng Zhu
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wenwen Mao
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Qianqian Feng
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Liping Liu
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Jiaqi Yan
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Silin Zhong
- School of Life SciencesState Key Laboratory of AgrobiotechnologyChinese University of Hong KongEG12 Science Centre EastHong Kong999077China
| | - Bingbing Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| | - Wensuo Jia
- Department of PomologyCollege of HorticultureChina Agricultural UniversityNo.2 Yuanmingyuan West RoadBeijing100193China
| |
Collapse
|
26
|
Wang D, Wang X, Zhang C, Yang K, Wang X, Cui J, Liu D, You C. Genome-wide Identification, Expression, and Functional Analysis of MdMSI Genes in Apples (Malus domestica Borkh.). Front Genet 2022; 13:846321. [PMID: 35309144 PMCID: PMC8927680 DOI: 10.3389/fgene.2022.846321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
The multicopy suppressor of IRA (MSI) is a subfamily of WD40 repeat proteins, which is widely involved in plant growth and development. In order to explore the function of MdMSI members in abiotic stress, we identified eight MSI gene family members from the Malus × domestica reference genome. They were distributed on six chromosomes, and they had similar secondary and tertiary structures. We found a variety of regulatory elements in response to hormones and abiotic stress in MdMSI promoters. Through qRT-PCR analysis, it was revealed that MdMSIs were expressed in all tissues, especially in roots. The analysis results also revealed that the expression of MdMSIs was induced in varying degrees under salt, drought stress, and ABA treatments. Furthermore, we obtained the overexpression of MdMSI1-1 transgenic apple calli and Arabidopsis. The overexpression of MdMSI1-1 in calli and Arabidopsis played a negative regulatory role in salt stress response. Our work laid a foundation for further verifying the function of MSI genes under abiotic stress in apples.
Collapse
Affiliation(s)
- Daru Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Xun Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Chunling Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Kuo Yang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Xinjie Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Jianying Cui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dandan Liu
- College of Agriculture, Yunnan University, Kunming, China
- *Correspondence: Dandan Liu, ; Chunxiang You,
| | - Chunxiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- *Correspondence: Dandan Liu, ; Chunxiang You,
| |
Collapse
|
27
|
New functions of CIPK gene family are continue to emerging. Mol Biol Rep 2022; 49:6647-6658. [PMID: 35229240 DOI: 10.1007/s11033-022-07255-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
CIPK protein family is a key protein family in Ca2+ mediated plant signaling pathway, which plays an indispensable role in plant response to stress and development. Every gene in this family encodes specific proteins. They interact with calcium ion signals, make plants to deal with various stress or stimuli. This article mainly reviews the mechanism, positioning and physiological functions of the CIPK family in different species in recent years. According to our team's research, CIPK8 interacts with CBL5 to improve salt tolerance, and CIPK23 interacts with TGA1 to regulate nitrate uptake negatively in chrysanthemum. In addition, we discussed current limitations and future research directions. The article will enhance the understanding of the functional characteristics of the CIPK gene family under different stresses, provide insights for future breeding and the development of new crop varieties with enhanced stress tolerance.
Collapse
|
28
|
He H, Zhang Y, Wen B, Meng X, Wang N, Sun M, Zhang R, Zhao X, Tan Q, Xiao W, Li D, Fu X, Chen X, Li L. PpNUDX8, a Peach NUDIX Hydrolase, Plays a Negative Regulator in Response to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 12:831883. [PMID: 35251068 PMCID: PMC8888663 DOI: 10.3389/fpls.2021.831883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Drought stress is a serious abiotic stress source that affects the growth and fruit quality of peach trees. However, the molecular mechanism of the NUDIX hydrolase family in peaches in response to drought stress is still unclear. Here, we isolated and identified the PpNUDX8 (Prupe.5G062300.1) gene from the peach NUDIX hydrolase family, and found that PpNUDX8 has a typical NUDIX hydrolase domain. In this study, we performed 15% PEG6000 drought treatment on peach seedlings, and qRT-PCR analysis showed that 15% PEG6000 induced the transcription level of PpNUDX8. Overexpression of PpNUDX8 reduced the tolerance of calli to 4% PEG6000 treatment. Compared with wild-type apple calli, PpNUDX8 transgenic apple calli had a lower fresh weight and higher MDA content. After 15% PEG6000 drought treatment, PpNUDX8 transgenic tobacco had a greater degree of wilting and shorter primary roots than Under control conditions. The chlorophyll, soluble protein, and proline contents in the transgenic tobacco decreased, and the MDA content and relative conductivity increased. At the same time, PpNUDX8 negatively regulated ABA signal transduction and reduced the transcriptional expression of stress response genes. In addition, PpNUDX8 was not sensitive to ABA, overexpression of PpNUDX8 reduced the expression of the ABA synthesis-related gene NCED6 and increases the expression of the ABA decomposition-related gene CYP1 in tobacco, which in turn leads to a decrease in the ABA content in tobacco. In addition, Under control conditions, overexpression of PpNUDX8 destroyed the homeostasis of NAD and reduced nicotinamide adenine dinucleotide (NADH) in tobacco. After 15% PEG6000 drought treatment, the changes in NAD and NADH in PpNUDX8 transgenic tobacco were more severe than those in WT tobacco. In addition, PpNUDX8 also interacted with PpSnRk1γ (Prupe.6G323700.1).
Collapse
Affiliation(s)
- HuaJie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - YuZheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - BinBin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XiangGuang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - MingYun Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XueHui Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - QiuPing Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
- College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - DongMei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XiLing Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - XiuDe Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- Shandong Province Collaborative Innovation Center for High-Quality and High-Efficiency Vegetable Production, Taian, China
| |
Collapse
|
29
|
Wang DR, Yang K, Wang X, Lin XL, Rui L, Liu HF, Liu DD, You CX. Overexpression of MdZAT5, an C2H2-Type Zinc Finger Protein, Regulates Anthocyanin Accumulation and Salt Stress Response in Apple Calli and Arabidopsis. Int J Mol Sci 2022; 23:ijms23031897. [PMID: 35163816 PMCID: PMC8836528 DOI: 10.3390/ijms23031897] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
Zinc finger proteins are widely involved and play an important role in plant growth and abiotic stress. In this research, MdZAT5, a gene encoding C2H2-type zinc finger protein, was cloned and investigated. The MdZAT5 was highly expressed in flower tissues by qRT-PCR analyses and GUS staining. Promoter analysis showed that MdZAT5 contained multiple response elements, and the expression levels of MdZAT5 were induced by various abiotic stress treatments. Overexpression of MdZAT5 in apple calli positively regulated anthocyanin accumulation by activating the expressions of anthocyanin biosynthesis-related genes. Overexpression of MdZAT5 in Arabidopsis also enhanced the accumulation of anthocyanin. In addition, MdZAT5 increased the sensitivity to salt stress in apple calli. Ectopic expression of MdZAT5 in Arabidopsis reduced the expression of salt-stress-related genes (AtNHX1 and AtABI1) and improved the sensitivity to salt stress. In conclusion, these results suggest that MdZAT5 plays a positive regulatory role in anthocyanin accumulation and negatively regulates salt resistance.
Collapse
Affiliation(s)
- Da-Ru Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Kuo Yang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Xun Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Xiao-Lu Lin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Hao-Feng Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
| | - Dan-Dan Liu
- College of Agriculture, Yunnan University, Kunming 650091, China
- Correspondence: (D.-D.L.); (C.-X.Y.)
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China; (D.-R.W.); (K.Y.); (X.W.); (L.R.); (H.-F.L.)
- Correspondence: (D.-D.L.); (C.-X.Y.)
| |
Collapse
|
30
|
Liu YJ, Gao N, Ma QJ, Zhang JC, Wang X, Lu J, Hao YJ, Wang XF, You CX. The MdABI5 transcription factor interacts with the MdNRT1.5/MdNPF7.3 promoter to fine-tune nitrate transport from roots to shoots in apple. HORTICULTURE RESEARCH 2021; 8:236. [PMID: 34719676 PMCID: PMC8558332 DOI: 10.1038/s41438-021-00667-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Nitrate is a major nitrogen resource for plant growth and development and acts as both a crucial nutrient and a signaling molecule for plants; hence, understanding nitrate signaling is important for crop production. Abscisic acid (ABA) has been demonstrated to be involved in nitrate signaling, but the underlying mechanism is largely unknown in apple. In this study, we found that exogenous ABA inhibited the transport of nitrate from roots to shoots in apple, and the transcription of the nitrate transporter MdNRT1.5/MdNPF7.3 was noticeably reduced at the transcriptional level by ABA, which inhibited the transport of nitrate from roots to shoots. Then, it was found that the ABA-responsive transcription factor MdABI5 bound directly to the ABRE recognition site of the MdNRT1.5 promoter and suppressed its expression. Overexpression of MdABI5 inhibited ABA-mediated transport of nitrate from roots to shoots. Overall, these results demonstrate that MdABI5 regulates the transport of nitrate from roots to shoots partially by mediating the expression of MdNRT1.5, illuminating the molecular mechanism by which ABA regulates nitrate transport in apple.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ning Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Qi-Jun Ma
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jing Lu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
31
|
Xu M, Li H, Liu ZN, Wang XH, Xu P, Dai SJ, Cao X, Cui XY. The soybean CBL-interacting protein kinase, GmCIPK2, positively regulates drought tolerance and ABA signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:980-989. [PMID: 34583133 DOI: 10.1016/j.plaphy.2021.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 05/27/2023]
Abstract
Calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant environmental stress responses. However, the biological functions of the CBL-CIPK signaling pathway in the tolerance of soybean (Glycine max) to drought stress remain elusive. Here, we characterized the GmCIPK2 gene in soybean, and its expression was induced by drought stress and exogenous abscisic acid (ABA) treatments. The overexpression of GmCIPK2 enhanced drought tolerance in transgenic Arabidopsis and soybean hairy roots, whereas downregulation of GmCIPK2 expression in soybean hairy roots by RNA interference resulted in increased drought sensitivity. Further analysis showed that GmCIPK2 was involved in ABA-mediated stomatal closure in plants under drought stress conditions. GmCIPK2 increased the expression of ABA- and drought-responsive genes during drought stress. Additionally, yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays demonstrated that a positive regulator of drought stress, GmCBL1, physically interacted with GmCIPK2 on the plasma membrane. Collectively, our results demonstrated that GmCIPK2 positively regulates drought tolerance and ABA signaling in plants, providing new insights into the underlying mechanisms of how the CBL-CIPK signaling pathway contributes to drought tolerance in soybean.
Collapse
Affiliation(s)
- Meng Xu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Hui Li
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Zhen-Ning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xiao-Hua Wang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Ping Xu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Sheng-Jie Dai
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| | - Xiao-Yu Cui
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China.
| |
Collapse
|
32
|
Yang K, Li CY, An JP, Wang DR, Wang X, Wang CK, You CX. The C2H2-type zinc finger transcription factor MdZAT10 negatively regulates drought tolerance in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:390-399. [PMID: 34404010 DOI: 10.1016/j.plaphy.2021.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Various abiotic stressors, particularly drought stress, affect plant growth and yield. Zinc finger proteins play an important role in plant abiotic stress tolerance. Here, we isolated the apple MdZAT10 gene, a C2H2-type zinc finger protein, which is a homolog of Arabidopsis STZ/ZAT10. MdZAT10 was localized to the nucleus and highly expressed in leaves and fruit. Promoter analysis showed that MdZAT10 contained several response elements and the transcription level of MdZAT10 was induced by abiotic stress and hormone treatments. MdZAT10 was responsive to drought treatment both at the transcriptional and post-translational levels. MdZAT10-overexpressing apple calli decreased the expression level of MdAPX2 and increased sensitivity to PEG 6000 treatment. Moreover, ectopically expressed MdZAT10 in Arabidopsis reduced the tolerance to drought stress, and exhibited higher water loss, higher malondialdehyde (MDA) content and higher reactive oxygen species (ROS) accumulation under drought stress. In addition, MdZAT10 reduced the sensitivity to abscisic acid in apple. Ectopically expressed MdZAT10 in Arabidopsis promoted seed germination and seedling growth. These results indicate that MdZAT10 plays a negative regulator in the drought resistance, which can provide theoretical basis for further molecular mechanism research.
Collapse
Affiliation(s)
- Kuo Yang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chong-Yang Li
- National Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Da-Ru Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xun Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
33
|
Chen T, Zhang Z, Li B, Qin G, Tian S. Molecular basis for optimizing sugar metabolism and transport during fruit development. ABIOTECH 2021; 2:330-340. [PMID: 36303881 PMCID: PMC9590571 DOI: 10.1007/s42994-021-00061-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
Abstract
Sugars are fundamental metabolites synthesized in leaves and further delivered to fruit in fruit crops. They not only provide "sweetness" as fruit quality traits, but also function as signaling molecules to modulate the responses of fruit to environmental stimuli. Therefore, the understanding to the molecular basis for sugar metabolism and transport is crucial for improving fruit quality and dissecting responses to abiotic/biotic factors. Here, we provide a review for molecular components involved in sugar metabolism and transport, crosstalk with hormone signaling, and the roles of sugars in responses to abiotic and biotic stresses. Moreover, we also envisage the strategies for optimizing sugar metabolism during fruit quality maintenance.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
34
|
Peng Q, Zhu C, Liu T, Zhang S, Feng S, Wu C. Phosphorylation of OsFD1 by OsCIPK3 promotes the formation of RFT1-containing florigen activation complex for long-day flowering in rice. MOLECULAR PLANT 2021; 14:1135-1148. [PMID: 33845208 DOI: 10.1016/j.molp.2021.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Heading date is a critical trait that determines the regional adaptability and grain productivity of many crops. Although rice is a facultative short-day plant, its domestication led to the Ghd7-Ehd1-Hd3a/RFT1 pathway for adaptation to long-day conditions (LDs). The formation of the "florigen activation complex" (FAC) containing florigen Hd3a has been characterized. However, the molecular composition of the FAC that contains RFT1 for long-day flowering is unclear. We show here that RFT1 forms a ternary FAC with 14-3-3 proteins and OsFD1 to promote flowering under LDs. We identified a calcineurin B-like-interacting protein kinase, OsCIPK3, which directly interacts with and phosphorylates OsFD1, thereby facilitating the localization of the FAC to the nucleus. Mutation in OsCIPK3 results in a late heading date under LDs but a normal heading date under short-day conditions. Collectively, our results suggest that OsCIPK3 phosphorylates OsFD1 to promote RFT1-containing FAC formation and consequently induce flowering in rice under LDs.
Collapse
Affiliation(s)
- Qiang Peng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shijing Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
Liu YJ, An JP, Wang XF, Gao N, Wang X, Zhang S, Gao WS, Hao YJ, You CX. MdBZR1 regulates ABA response by modulating the expression of MdABI5 in apple. PLANT CELL REPORTS 2021; 40:1127-1139. [PMID: 33973072 DOI: 10.1007/s00299-021-02692-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/28/2021] [Indexed: 05/19/2023]
Abstract
MdBZR1 directly binds to the promoter of MdABI5 and suppresses its expression to mediate ABA response. The plant hormones brassinosteroids (BRs) and abscisic acid (ABA) antagonistically regulate various aspects of plant growth and development. However, the association between BR and ABA signaling is less clear. Here, we identified MdBZR1 in apple (Malus domestica) and demonstrated that it was activated by BRs and could respond to ABA treatment. Overexpression of MdBZR1 in apple calli and Arabidopsis reduced ABA-hypersensitive phenotypes, suggesting that MdBZR1 negatively regulates ABA signaling. Subsequently, we found that MdBZR1 directly bound to the promoter region of MdABI5 and suppressed its expression. MdABI5 was significantly induced by ABA treatment. And overexpression of MdABI5 in apple calli increased sensitivity to ABA. Ectopic expression of MdABI5 in Arabidopsis inhibited seed germination and seedling growth. In addition, overexpression of MdBZR1 partially attenuated MdABI5-mediated ABA sensitivity. Taken together, our data indicate that MdBZR1 directly binds to the promoter of MdABI5 and suppresses its expression to antagonistically mediate ABA response. Our work contributes to the functional studies of BZR1 and further broadens the insight into the between BR and ABA signaling.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ning Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Shuai Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wen-Sheng Gao
- Shandong Fruit and Tea Technology Services, Jinan, 250013, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
36
|
Ren YR, Zhao Q, Yang YY, Zhang R, Wang XF, Zhang TE, You CX, Huo HQ, Hao YJ. Interaction of BTB-TAZ protein MdBT2 and DELLA protein MdRGL3a regulates nitrate-mediated plant growth. PLANT PHYSIOLOGY 2021; 186:750-766. [PMID: 33764451 PMCID: PMC8154073 DOI: 10.1093/plphys/kiab065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 06/01/2023]
Abstract
Nitrate acts as a vital signal molecule in the modulation of plant growth and development. The phytohormones gibberellin (GA) is also involved in this process. However, the exact molecular mechanism of how nitrate and GA signaling pathway work together in regulating plant growth remains poorly understood. In this study, we found that a nitrate-responsive BTB/TAZ protein MdBT2 participates in regulating nitrate-induced plant growth in apple (Malus × domestica). Yeast two-hybridization, protein pull-down, and bimolecular fluorescence complementation (BiFC) assays showed that MdBT2 interacts with a DELLA protein MdRGL3a, which is required for the ubiquitination and degradation of MdRGL3a proteins via a 26S proteasome-dependent pathway. Furthermore, heterologous expression of MdBT2 partially rescued growth inhibition caused by overexpression of MdRGL3a in Arabidopsis. Taken together, our findings indicate that MdBT2 promotes nitrate-induced plant growth partially through reducing the abundance of the DELLA protein MdRGL3a.
Collapse
Affiliation(s)
- Yi-Ran Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Qiang Zhao
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yu-Ying Yang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Rui Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Tian-En Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - He-Qiang Huo
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
37
|
Jiang H, Ma QJ, Zhong MS, Gao HN, Li YY, Hao YJ. The apple palmitoyltransferase MdPAT16 influences sugar content and salt tolerance via an MdCBL1-MdCIPK13-MdSUT2.2 pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:689-705. [PMID: 33548154 DOI: 10.1111/tpj.15191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 05/21/2023]
Abstract
Protein S-acyltransferases (PATs) are a category of eukaryotic transmembrane proteins that mediate the S-acylation of their target proteins. S-acylation, commonly known as palmitoylation, is a reversible protein modification that regulates the membrane association and function of target proteins. However, the functions and mechanisms of PATs in apple (Malus domestica) remain poorly understood. In this study, an MdPAT family member, MdPAT16, was identified and shown to have palmitoyltransferase activity. We demonstrated that this gene responds to salt stress and that its expression improves plant salt stress resistance. In addition, its overexpression significantly promotes the accumulation of soluble sugars. The same phenotypes were observed in transgenic tissue culture seedlings, transgenic roots, and Arabidopsis thaliana that ectopically expressed MdPAT16. MdPAT16 was shown to interact with MdCBL1 and stabilize MdCBL1 protein levels through palmitoylation. The N-terminal sequence of MdCBL1 contains a palmitoylation site, and its N-terminal deletion led to changes in MdCBL1 protein stability and subcellular localization. The phenotypes of MdCBL1 transgenic roots and transiently injected apple fruits were fully consistent with the sugar accumulation phenotype of MdPAT16. Mutation of the palmitoylation site interfered with this phenotype. These findings suggest that MdPAT16 palmitoylates its downstream target proteins, improving their stability. This may be a missing link in the plant salt stress response pathway and have an important impact on fruit quality.
Collapse
Affiliation(s)
- Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi-Jun Ma
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ming-Shuang Zhong
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
38
|
Yong X, Zheng T, Zhuo X, Ahmad S, Li L, Li P, Yu J, Wang J, Cheng T, Zhang Q. Genome-wide identification, characterisation, and evolution of ABF/AREB subfamily in nine Rosaceae species and expression analysis in mei ( Prunus mume). PeerJ 2021; 9:e10785. [PMID: 33604183 PMCID: PMC7868070 DOI: 10.7717/peerj.10785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Rosaceae is an important family containing some of the highly evolved fruit and ornamental plants. Abiotic stress responses play key roles in the seasonal growth and development of plants. However, the molecular basis of stress responses remains largely unknown in Rosaceae. Abscisic acid (ABA) is a stress hormone involving abiotic stress response pathways. The ABRE-binding factor/ABA-responsive element-binding protein (ABF/AREB) is a subfamily of the basic domain/leucine zipper (bZIP) transcription factor family. It plays an important role in the ABA-mediated signaling pathway. Here, we analyzed the ABF/AREB subfamily genes in nine Rosaceae species. A total of 64 ABF/AREB genes were identified, including 18, 28, and 18 genes in the Rosoideae, Amygdaloideae, and Maloideae traditional subfamilies, respectively. The evolutionary relationship of the ABF/AREB subfamily genes was studied through the phylogenetic analysis, the gene structure and conserved motif composition, Ka/Ks values, and interspecies colinearity. These gene sets were clustered into four groups. In the Prunus ABF/AREB (PmABF) promoters, several cis-elements related to light, hormone, and abiotic stress response were predicted. PmABFs expressed in five different tissues, except PmABF5, which expressed only in buds. In the dormancy stages, PmABF1, 2, 5 and 7 showed differential expression. The expression of PmABF3, 4 and 6 was positively correlated with the ABA concentration. Except for PmABF5, all the PmABFs were sensitive to ABA. Several ABRE elements were contained in the promoters of PmABF1, 3, 6, 7. Based on the findings of our study, we speculate that PmABFs may play a role in flower bud dormancy in P. mume.
Collapse
Affiliation(s)
- Xue Yong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jiayao Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
39
|
Ren YR, Zhao Q, Yang YY, Zhang TE, Wang XF, You CX, Hao YJ. The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation. HORTICULTURE RESEARCH 2021; 8:22. [PMID: 33518703 PMCID: PMC7848006 DOI: 10.1038/s41438-020-00457-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/16/2020] [Indexed: 05/08/2023]
Abstract
Nitrogen is an important factor that affects plant anthocyanin accumulation. In apple, the nitrate-responsive BTB/TAZ protein MdBT2 negatively regulates anthocyanin biosynthesis. In this study, we found that MdBT2 undergoes posttranslational modifications in response to nitrate deficiency. Yeast two-hybrid, protein pull-down, and bimolecular fluorescence complementation (BiFC) assays showed that MdBT2 interacts with MdGRF11, a 14-3-3 protein; 14-3-3 proteins compose a family of highly conserved phosphopeptide-binding proteins involved in multiple physiological and biological processes. The interaction of MdGRF11 negatively regulated the stability of the MdBT2 protein via a 26S proteasome-dependent pathway, which increased the abundance of MdMYB1 proteins to activate the expression of anthocyanin biosynthesis-related genes. Taken together, the results demonstrate the critical role of 14-3-3 proteins in the regulation of nitrate deficiency-induced anthocyanin accumulation. Our results provide a novel avenue to elucidate the mechanism underlying the induction of anthocyanin biosynthesis in response to nitrate deficiency.
Collapse
Affiliation(s)
- Yi-Ran Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Qiang Zhao
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yu-Ying Yang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Tian-En Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
40
|
Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z. Protein kinases in plant responses to drought, salt, and cold stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:53-78. [PMID: 33399265 DOI: 10.1111/jipb.13061] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/19/2020] [Indexed: 05/20/2023]
Abstract
Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review, we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1 (SNF1)-related protein kinases (SnRKs), mitogen-activated protein kinase (MAPK) cascades, calcium-dependent protein kinases (CDPKs/CPKs), and receptor-like kinases (RLKs). We also discuss future challenges in these research fields.
Collapse
Affiliation(s)
- Xuexue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng, 475001, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan, 250000, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
41
|
Chen K, Guo Y, Song M, Liu L, Xue H, Dai H, Zhang Z. Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. HORTICULTURE RESEARCH 2020; 7:204. [PMID: 33328445 PMCID: PMC7705020 DOI: 10.1038/s41438-020-00433-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/08/2020] [Accepted: 10/17/2020] [Indexed: 05/15/2023]
Abstract
Clarifying the stress signal transduction pathway would be helpful for understanding the abiotic stress resistance mechanism in apple (Malus × domestica Borkh.) and could assist in the development of new varieties with high stress tolerance by genetic engineering. The key NAC transcription factor SND1, which is involved in the lignin biosynthesis process in apple, was functionally analyzed. The results of the stress treatments indicated that MdSND1 could be induced by salt, mannitol and ABA. Compared with wild-type GL-3 plants, MdSND1-overexpressing apple plants with greater antioxidant capacity and lignin were more resistant to salt and simulated osmotic stress, while RNAi plants were more vulnerable. Additionally, molecular experiments confirmed that MdSND1 could regulate the biosynthesis of lignin by activating the transcription of MdMYB46/83. Moreover, genes known to be involved in the stress signal transduction pathway (MdAREB1A, MdAREB1B, MdDREB2A, MdRD29A, and MdRD22) were screened for their close correlations with the expression of MdSND1 and the response to salt and osmotic stress. Multiple verification tests further demonstrated that MdSND1 could directly bind to these gene promoters and activate their transcription. The above results revealed that MdSND1 is directly involved in the regulation of lignin biosynthesis and the signal transduction pathway involved in the response to both salt and osmotic stress in apple.
Collapse
Affiliation(s)
- Keqin Chen
- Group of Molecular Biology of Fruit Trees, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Yunna Guo
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Mengru Song
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Lifu Liu
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hao Xue
- Group of Molecular Biology of Fruit Trees, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hongyan Dai
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China.
| | - Zhihong Zhang
- Group of Molecular Biology of Fruit Trees, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
42
|
Zheng PF, Wang X, Yang YY, You CX, Zhang ZL, Hao YJ. Identification of Phytochrome-Interacting Factor Family Members and Functional Analysis of MdPIF4 in Malus domestica. Int J Mol Sci 2020; 21:ijms21197350. [PMID: 33027937 PMCID: PMC7582839 DOI: 10.3390/ijms21197350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Phytochrome-interacting factors (PIFs), members of the basic helix-loop-helix transcription factor family that have been extensively investigated in Arabidopsis thaliana, play essential roles in plant growth and development. However, PIF members have not been systematically investigated in apples, a worldwide perennial woody crop of economic importance. Here, seven PIF genes were identified from the Malus × domestica reference genome. Chromosomal locations, gene structures, and phylogenetic relationships of these members were analyzed. Analysis of cis-acting elements in promoter regions of MdPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. Subsequently, subcellular localization and transcriptional activity analysis revealed that MdPIFs were typical nuclear transcription factors with transcriptional activation ability. Expression analysis demonstrated that MdPIF genes had different gene expression patterns for various abiotic factors. Moreover, overexpressed MdPIF4 reduced the sensitivity of apple calluses to abscisic acid (ABA). Our work lays foundations for further investigation of PIF functions in plant growth and development in apples.
Collapse
|
43
|
Ma X, Li QH, Yu YN, Qiao YM, Haq SU, Gong ZH. The CBL-CIPK Pathway in Plant Response to Stress Signals. Int J Mol Sci 2020; 21:E5668. [PMID: 32784662 PMCID: PMC7461506 DOI: 10.3390/ijms21165668] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Plants need to cope with multitudes of stimuli throughout their lifecycles in their complex environments. Calcium acts as a ubiquitous secondary messenger in response to numerous stresses and developmental processes in plants. The major Ca2+ sensors, calcineurin B-like proteins (CBLs), interact with CBL-interacting protein kinases (CIPKs) to form a CBL-CIPK signaling network, which functions as a key component in the regulation of multiple stimuli or signals in plants. In this review, we describe the conserved structure of CBLs and CIPKs, characterize the features of classification and localization, draw conclusions about the currently known mechanisms, with a focus on novel findings in response to multiple stresses, and summarize the physiological functions of the CBL-CIPK network. Moreover, based on the gradually clarified mechanisms of the CBL-CIPK complex, we discuss the present limitations and potential prospects for future research. These aspects may provide a deeper understanding and functional characterization of the CBL-CIPK pathway and other signaling pathways under different stresses, which could promote crop yield improvement via biotechnological intervention.
Collapse
Affiliation(s)
- Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Yi-Ming Qiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| |
Collapse
|
44
|
Lian XY, Wang X, Gao HN, Jiang H, Mao K, You CX, Li YY, Hao YJ. Genome wide analysis and functional identification of MdKCS genes in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:299-312. [PMID: 32251955 DOI: 10.1016/j.plaphy.2020.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Apple fruit is covered by cuticle wax, which plays important roles protecting fruits from adverse environmental conditions. β-Ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme in plant wax synthesis. In this study, we identified 28 KCS gene family members from apple (Malus × domestica Borkh.) by homology analysis. Multi-sequence alignment and phylogenetic analyses revealed that the 28 MdKCS genes were divided into four subgroups, including KCS1-like, FAE1-like, FDH-like, and CER6. A chromosomal localization analysis revealed that 27 apple KCS genes were located on 11 chromosomes, while MdKCS28 was localized to the unassembled genomic scaffold. Most of the MdKCS proteins were hydrophilic proteins and they had similar secondary and tertiary structures. The prediction of cis-acting elements of the MdKCS gene promoters suggested that the MdKCS genes may be widely involved in hormone signaling and the stress response. Furthermore, the quantitative real-time polymerase chain reaction results showed that eight MdKCS genes were highly expressed in the apple pericarp, and were significantly induced by drought, abscisic acid (ABA), and NaCl treatments. We transformed the MdKCS21 gene into apple calli, and found the MdKCS21 overexpressing transgenic apple calli exhibited higher tolerance to ABA treatment. Finally, the MdKCS proteins were localized to the endoplasmic reticulum and vacuolar membrane by confocal laser microscopy. This study established a foundation to further analyze the function of KCS genes and provided candidate genes for molecular improvement of wax content in apple.
Collapse
Affiliation(s)
- Xin-Yu Lian
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Huai-Na Gao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
45
|
Tartary Buckwheat Transcription Factor FtbZIP5, Regulated by FtSnRK2.6, Can Improve Salt/Drought Resistance in Transgenic Arabidopsis. Int J Mol Sci 2020; 21:ijms21031123. [PMID: 32046219 PMCID: PMC7037857 DOI: 10.3390/ijms21031123] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/23/2023] Open
Abstract
bZIP transcription factors have been reported to be involved in many different biological processes in plants. The ABA (abscisic acid)-dependent AREB/ABF-SnRK2 pathway has been shown to play a key role in the response to osmotic stress in model plants. In this study, a novel bZIP gene, FtbZIP5, was isolated from tartary buckwheat, and its role in the response to drought and salt stress was characterized by transgenic Arabidopsis. We found that FtbZIP5 has transcriptional activation activity, which is located in the nucleus and specifically binds to ABRE elements. It can be induced by exposure to PEG6000, salt and ABA in tartary buckwheat. The ectopic expression of FtbZIP5 reduced the sensitivity of transgenic plants to drought and high salt levels and reduced the oxidative damage in plants by regulating the antioxidant system at a physiological level. In addition, we found that, under drought and salt stress, the expression levels of several ABA-dependent stress response genes (RD29A, RD29B, RAB18, RD26, RD20 and COR15) in the transgenic plants increased significantly compared with their expression levels in the wild type plants. Ectopic expression of FtbZIP5 in Arabidopsis can partially complement the function of the ABA-insensitive mutant abi5-1 (abscisic acid-insensitive 5-1). Moreover, we screened FtSnRK2.6, which might phosphorylate FtbZIP5, in a yeast two-hybrid experiment. Taken together, these results suggest that FtbZIP5, as a positive regulator, mediates plant tolerance to salt and drought through ABA-dependent signaling pathways.
Collapse
|
46
|
Cui Y, Su Y, Wang J, Jia B, Wu M, Pei W, Zhang J, Yu J. Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6. Int J Mol Sci 2020; 21:E863. [PMID: 32013234 PMCID: PMC7037685 DOI: 10.3390/ijms21030863] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs), as key regulators, play an important role in plant growth and development and the response to various stresses. In the present study, we identified 80 and 78 CIPK genes in the Gossypium hirsutum and G. barbadense, respectively. The phylogenetic and gene structure analysis divided the cotton CIPK genes into five groups which were classified into an exon-rich clade and an exon-poor clade. A synteny analysis showed that segmental duplication contributed to the expansion of Gossypium CIPK gene family, and purifying selection played a major role in the evolution of the gene family in cotton. Analyses of expression profiles showed that GhCIPK genes had temporal and spatial specificity and could be induced by various abiotic stresses. Fourteen GhCIPK genes were found to contain 17 non-synonymous single nucleotide polymorphisms (SNPs) and co-localized with oil or protein content quantitative trait loci (QTLs). Additionally, five SNPs from four GhCIPKs were found to be significantly associated with oil content in one of the three field tests. Although most GhCIPK genes were not associated with natural variations in cotton oil content, the overexpression of the GhCIPK6 gene reduced the oil content and increased C18:1 and C18:1+C18:1d6 in transgenic cotton as compared to wild-type plants. In addition, we predicted the potential molecular regulatory mechanisms of the GhCIPK genes. In brief, these results enhance our understanding of the roles of CIPK genes in oil synthesis and stress responses.
Collapse
Affiliation(s)
- Yupeng Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China;
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| |
Collapse
|
47
|
Zhang H, Liu D, Yang B, Liu WZ, Mu B, Song H, Chen B, Li Y, Ren D, Deng H, Jiang YQ. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:188-203. [PMID: 31563949 DOI: 10.1093/jxb/erz432] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Abscisic acid (ABA) regulates numerous developmental processes and drought tolerance in plants. Calcium-dependent protein kinases (CPKs) are important Ca2+ sensors playing crucial roles in plant growth and development as well as responses to stresses. However, the molecular mechanisms of many CPKs in ABA signaling and drought tolerance remain largely unknown. Here we combined protein interaction studies, and biochemical and genetic approaches to identify and characterize substrates that were phosphorylated by CPK6 and elucidated the mechanism that underlines the role of CPK6 in ABA signaling and drought tolerance. The expression of CPK6 is induced by ABA and dehydration. Two cpk6 T-DNA insertion mutants are insensitive to ABA during seed germination and root elongation of seedlings; in contrast, overexpression of CPK6 showed the opposite phenotype. Moreover, CPK6-overexpressing lines showed enhanced drought tolerance. CPK6 interacts with and phosphorylates a subset of core ABA signaling-related transcription factors, ABA-responsive element-binding factors (ABFs/AREBs), and enhances their transcriptional activities. The phosphorylation sites in ABF3 and ABI5 were also identified through MS and mutational analyses. Taken together, we present evidence that CPK6 mediates ABA signaling and drought tolerance through phosphorylating ABFs/AREBs. This work thus uncovers a rather conserved mechanism of calcium-dependent Ser/Thr kinases in ABA signaling.
Collapse
Affiliation(s)
- Hanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Daoyin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Wu-Zhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Bangbang Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Huaxin Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Bingyou Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hanqing Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
48
|
Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2341-2355. [PMID: 31077628 PMCID: PMC6835124 DOI: 10.1111/pbi.13151] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 05/02/2023]
Abstract
To expand the cultivation area of apple (Malus×domestica Borkh.) and select resistant varieties by genetic engineering, it is necessary to clarify the mechanism of salt and osmotic stress tolerance in apple. The MdMYB46 transcription factor was identified, and the stress treatment test of MdMYB46-overexpressing and MdMYB46-RNAi apple lines indicated that MdMYB46 could enhance the salt and osmotic stress tolerance in apple. In transgenic Arabidopsis and apple, MdMYB46 promoted the biosynthesis of secondary cell wall and deposition of lignin by directly binding to the promoter of lignin biosynthesis-related genes. To explore whether MdMYB46 could coordinate stress signal transduction pathways to cooperate with the formation of secondary walls to enhance the stress tolerance of plants, MdABRE1A, MdDREB2A and dehydration-responsive genes MdRD22 and MdRD29A were screened out for their positive correlation with osmotic stress, salt stress and the transcriptional level of MdMYB46. The further verification test demonstrated that MdMYB46 could activate their transcription by directly binding to the promoters of these genes. The above results indicate that MdMYB46 could enhance the salt and osmotic stress tolerance in apple not only by activating secondary cell wall biosynthesis pathways, but also by directly activating stress-responsive signals.
Collapse
Affiliation(s)
- Keqin Chen
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Mengru Song
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Yunna Guo
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Lifu Liu
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Hao Xue
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Hongyan Dai
- Group of Fruit Germplasm Evaluation & UtilizationCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| | - Zhihong Zhang
- Group of Molecular Biology of Fruit TreesCollege of HorticultureShenyang Agricultural UniversityShenyangLiaoningChina
| |
Collapse
|
49
|
Ren YR, Yang YY, Zhang R, You CX, Zhao Q, Hao YJ. MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110219. [PMID: 31521216 DOI: 10.1016/j.plantsci.2019.110219] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/11/2019] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Abstract
The 14-3-3 proteins are a family of highly conserved phosphoserine-binding proteins that participate in the regulation of diverse physiological and developmental processes. In this research, twenty 14-3-3 genes in apples, which contained a highly conserved 14-3-3 domain, were identified and divided into two subgroups. Among them, MdGRF11 was further cloned and investigated. qRT-PCR analyses and GUS staining show that MdGRF11 is expressed in various organs and tissues with the highest expression levels found in the fruit. MdGRF11 was upregulated by polyethylene glycol 6000 (PEG 6000), NaCl, abscisic acid (ABA) and low temperature (4 °C) treatments. MdGRF11-overexpressing transgenic Arabidopsis and apple calli exhibited reduced sensitivity to salt and PEG 6000 treatments. Moreover, the ectopic expression of MdGRF11 improved the tolerance of transgenic tobacco to salt and drought stresses, which grew longer roots, underwent more growth, and presented higher chlorophyll levels than the wild-type control under salt and drought stress conditions. Furthermore, MdGRF11 expression remarkably reduced electrolyte leakage, malondialdehyde content levels, H2O2 and O2- accumulation under salt and drought stress conditions, which relied on the regulation of ROS-scavenging signaling to reduce oxidative damage of cells after salt and drought stress treatment. MdGRF11 also enhanced tolerance to stress by upregulating expression levels of ROS-scavenging and stress-related genes, especially improving responses to drought stress by modifying the water loss rates and stomatal aperture. Moreover, MdGRF11 could interact with MdAREB/ABF transcription factors through yeast two hybrid analyses. In conclusion, our results indicate that MdGRF11 acts as a positive regulator of salt and drought stress responses through regulating ROS scavenging and other signaling systems.
Collapse
Affiliation(s)
- Yi-Ran Ren
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Ying Yang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Rui Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Qiang Zhao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
50
|
Ma X, Gai WX, Qiao YM, Ali M, Wei AM, Luo DX, Li QH, Gong ZH. Identification of CBL and CIPK gene families and functional characterization of CaCIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.). BMC Genomics 2019; 20:775. [PMID: 31653202 PMCID: PMC6814991 DOI: 10.1186/s12864-019-6125-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Calcineurin B-like proteins (CBLs) are major Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to regulate growth and development in plants. The CBL-CIPK network is involved in stress response, yet little is understood on how CBL-CIPK function in pepper (Capsicum annuum L.), a staple vegetable crop that is threatened by biotic and abiotic stressors. Results In the present study, nine CaCBL and 26 CaCIPK genes were identified in pepper and the genes were named based on their chromosomal order. Phylogenetic and structural analysis revealed that CaCBL and CaCIPK genes clustered in four and five groups, respectively. Quantitative real-time PCR (qRT-PCR) assays showed that CaCBL and CaCIPK genes were constitutively expressed in different tissues, and their expression patterns were altered when the plant was exposed to Phytophthora capsici, salt and osmotic stress. CaCIPK1 expression changed in response to stress, including exposure to P. capsici, NaCl, mannitol, salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), ethylene (ETH), cold and heat stress. Knocking down CaCIPK1 expression increased the susceptibility of pepper to P. capsici, reduced root activity, and altered the expression of defense related genes. Transient overexpression of CaCIPK1 enhanced H2O2 accumulation, cell death, and expression of genes involved in defense. Conclusions Nine CaCBL and 26 CaCIPK genes were identified in the pepper genome, and the expression of most CaCBL and CaCIPK genes were altered when the plant was exposed to stress. In particular, we found that CaCIPK1 is mediates the pepper plant’s defense against P. capsici. These results provide the groundwork for further functional characterization of CaCBL and CaCIPK genes in pepper.
Collapse
Affiliation(s)
- Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yi-Ming Qiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huaian, Jiangsu, 223001, People's Republic of China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.,Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai, 810016, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China. .,State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, People's Republic of China.
| |
Collapse
|