1
|
Huo J, Li C, Zhao Y, Han G, Li X, Zhang Z. Hydraulic mechanism of limiting growth and maintaining survival of desert shrubs in arid habitats. PLANT PHYSIOLOGY 2024; 196:2450-2462. [PMID: 39268873 DOI: 10.1093/plphys/kiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 09/15/2024]
Abstract
The growth and survival of woody plant species is mainly driven by evolutionary and environmental factors. However, little is known about the hydraulic mechanisms that respond to growth limitation and enable desert shrub survival in arid habitats. To shed light on these hydraulic mechanisms, 9-, 31-, and 56-yr-old Caragana korshinskii plants that had been grown under different soil water conditions at the southeast edge of the Tengger Desert, Ningxia, China, were used in this study. The growth of C. korshinskii was mainly limited by soil water rather than shrub age in nonwatered habitats, which indicated the importance of maintaining shrub survival prior to growth under drought. Meanwhile, higher vessel density, narrower vessels, and lower xylem hydraulic conductivity indicated that shrubs enhanced hydraulic safety and reduced their hydraulic efficiency in arid conditions. Importantly, xylem hydraulic conductivity is mediated by variation in xylem hydraulic architecture-regulated photosynthetic carbon assimilation and growth of C. korshinskii. Our study highlights that the synergistic variation in xylem hydraulic safety and hydraulic efficiency is the hydraulic mechanism of limiting growth and maintaining survival in C. korshinskii under drought, providing insights into the strategies for growth and survival of desert shrubs in arid habitats.
Collapse
Affiliation(s)
- Jianqiang Huo
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chengyi Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environmental of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoling Han
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhishan Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Hesse BD, Hikino K, Gebhardt T, Buchhart C, Dervishi V, Goisser M, Pretzsch H, Häberle KH, Grams TEE. Acclimation of mature spruce and beech to five years of repeated summer drought - The role of stomatal conductance and leaf area adjustment for water use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175805. [PMID: 39197757 DOI: 10.1016/j.scitotenv.2024.175805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Forests globally are experiencing severe droughts, leading to significant reductions in growth, crown dieback and even tree mortality. The ability of forest ecosystems to acclimate to prolonged and repeated droughts is critical for their survival with ongoing climate change. In a five-year throughfall exclusion experiment, we investigated the long-term physiological and morphological acclimation of mature Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to repeated summer drought at the leaf, shoot and whole tree level. Throughout the drought period, spruce reduced their total water use by 70 % to only 4-9 L per day and tree, while beech was less affected with about 30 % reduction of water use. During the first two summers, spruce achieved this by closing their stomata by up to 80 %. Additionally, from the second drought summer onwards, spruce produced shorter shoots and needles, resulting in a stepwise reduction of total leaf area of over 50 % by the end of the experiment. Surprisingly, no premature leaf loss was observed. This reduction in leaf area allowed a gradual increase in stomatal conductance. After the five-year drought experiment, water consumption per leaf area was the same as in the controls, while the total water consumption of spruce was still reduced. In contrast, beech showed no significant reduction in whole-tree leaf area, but nevertheless reduced water use by up to 50 % by stomatal closure. If the restriction of transpiration by stomatal closure is sufficient to ensure survival of Norway spruce during the first drought summers, then the slow but steady reduction in leaf area will ensure successful acclimation of water use, leading to reduced physiological drought stress and long-term survival. Neighboring beech appeared to benefit from the water-saving strategy of spruce by using the excess water.
Collapse
Affiliation(s)
- Benjamin D Hesse
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research, Institute of Botany, Gregor-Mendel-Straße 33, 1180 Vienna, Austria.
| | - Kyohsuke Hikino
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeå, Sweden
| | - Timo Gebhardt
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Forest and Agroforest Systems, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Claudia Buchhart
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Vjosa Dervishi
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Michael Goisser
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Hans Pretzsch
- Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Häberle
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Thorsten E E Grams
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| |
Collapse
|
3
|
Peltier DMP, Carbone MS, McIntire CD, Robertson N, Thompson RA, Malone S, LeMoine J, Richardson AD, McDowell NG, Adams HD, Pockman WT, Trowbridge AM. Carbon starvation following a decade of experimental drought consumes old reserves in Pinus edulis. THE NEW PHYTOLOGIST 2023; 240:92-104. [PMID: 37430467 DOI: 10.1111/nph.19119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Shifts in the age or turnover time of non-structural carbohydrates (NSC) may underlie changes in tree growth under long-term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation. We measured NSC age (Δ14 C) along with a suite of ecophysiological metrics in Pinus edulis trees experiencing either extreme short-term drought (-90% ambient precipitation plot, 2020-2021) or a decade of severe drought (-45% plot, 2010-2021). We tested the hypothesis that carbon starvation - consumption exceeding synthesis and storage - increases the age of sapwood NSC. One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long-term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (-75%), basal area increment (-39%), and bole respiration rates (-28%). Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.
Collapse
Affiliation(s)
- Drew M P Peltier
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Mariah S Carbone
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Cameron D McIntire
- Northeastern Area State, Private, and Tribal Forestry, USDA Forest Service, 271 Mast Road, Durham, NH, 03824, USA
| | - Nathan Robertson
- Biology Department, University of New Mexico, Albuquerque, NM, 87106, USA
| | - R Alex Thompson
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - Shealyn Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jim LeMoine
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Andrew D Richardson
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Henry D Adams
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - William T Pockman
- Biology Department, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Shao J, Zhou X, Zhang P, Zhai D, Yuan T, Li Z, He Y, McDowell NG. Embolism resistance explains mortality and recovery of five subtropical evergreen broadleaf trees to persistent drought. Ecology 2023; 104:e3877. [PMID: 36178039 DOI: 10.1002/ecy.3877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 02/03/2023]
Abstract
Subtropical evergreen broadleaf forests (SEBF) are experiencing and expected to suffer more frequent and severe drought events. However, how the hydraulic traits directly link to the mortality and recovery of SEBF trees remains unclear. In this study, we conducted a drought-rewatering experiment on tree seedlings of five dominant species to investigate how the hydraulic traits were related to tree mortality and the resistance and recovery of photosynthesis (A) and transpiration (E) under different drought severities. Species with greater embolism resistance (P50 ) survived longer than those with a weaker P50 . However, there was no general hydraulic threshold associated with tree mortality, with the lethal hydraulic failure varying from 64% to 93% loss of conductance. The photosynthesis and transpiration of tree species with a greater P50 were more resistant to and recovered faster from drought than those with lower P50 . Other plant traits could not explain the interspecific variation in tree mortality and drought resistance and recovery. These results highlight the unique importance of embolism resistance in driving carbon and water processes under persistent drought across different trees in SEBFs. The absence of multiple efficient drought strategies in SEBF seedlings implies the difficulty of natural seedling regeneration under future droughts, which often occurs after destructive disturbances (e.g., extreme drought events and typhoon), suggesting that this biome may be highly vulnerable to co-occurring climate extremes.
Collapse
Affiliation(s)
- Junjiong Shao
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Peipei Zhang
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Deping Zhai
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Tengfei Yuan
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Zhen Li
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yanghui He
- Center for Global Change and Ecological Forecasting, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, Richland, Washington, USA.,School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
Zhu LW, Zhao P. Climate-driven sapwood-specific hydraulic conductivity and the Huber value but not leaf-specific hydraulic conductivity on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159334. [PMID: 36220474 DOI: 10.1016/j.scitotenv.2022.159334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Efficient water transport is crucial for plant growth and survival. Plant hydraulic conductivity varies between functional groups and biomes and is strongly influenced by changing environmental conditions. However, correlations of conductivity-related hydraulic traits with climatic variables are not fully understood, preventing clarification of plant form and function under climate change scenarios. By compiling leaf-specific hydraulic conductivity (KL), sapwood-specific hydraulic conductivity (Ks), and Huber values (Hv, sapwood area to leaf area ratio) along with climatic variables including mean annual temperature (MAT), mean annual precipitation (MAP) and aridity index (AI) for 428 species across a wide range of plant functional types (PFTs) and biomes at a global scale, we found greater variability of KL within PFTs and biomes than across PFTs and biomes. Interaction effects between PFTs and biomes on KL and Ks were found. The interaction between MAT and MAP played a significant role in Ks and Hv (t = 3.89, P < 0.001 for Ks and t = -5.77, P < 0.001 for Hv). With increasing AI, Ks increased and Hv decreased. KL was not influenced by the investigated climatic variables. Our study provides a better understanding of the dynamics of hydraulic structure and function across functional groups and biomes and of the abiotic drivers of their large-scale variations.
Collapse
Affiliation(s)
- Li-Wei Zhu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ping Zhao
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
6
|
Limousin JM, Roussel A, Rodríguez-Calcerrada J, Torres-Ruiz JM, Moreno M, Garcia de Jalon L, Ourcival JM, Simioni G, Cochard H, Martin-StPaul N. Drought acclimation of Quercus ilex leaves improves tolerance to moderate drought but not resistance to severe water stress. PLANT, CELL & ENVIRONMENT 2022; 45:1967-1984. [PMID: 35394675 DOI: 10.1111/pce.14326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Increasing temperature and drought can result in leaf dehydration and defoliation even in drought-adapted tree species such as the Mediterranean evergreen Quercus ilex L. The stomatal regulation of leaf water potential plays a central role in avoiding this phenomenon and is constrained by a suite of leaf traits including hydraulic conductance and vulnerability, hydraulic capacitance, minimum conductance to water vapour, osmotic potential and cell wall elasticity. We investigated whether the plasticity in these traits may improve leaf tolerance to drought in two long-term rainfall exclusion experiments in Mediterranean forests. Osmotic adjustment was observed to lower the water potential at turgor loss in the rainfall-exclusion treatments, thus suggesting a stomatal closure at more negative water potentials and a more anisohydric behaviour in drier conditions. Conversely, leaf hydraulic conductance and vulnerability did not exhibit any plasticity between treatments so the hydraulic safety margins were narrower in the rainfall-exclusion treatments. The sequence of leaf responses to seasonal drought and dehydration was conserved among treatments and sites but trees were more likely to suffer losses of turgor and hydraulic functioning in the rainfall-exclusion treatments. We conclude that leaf plasticity might help the trees to tolerate moderate drought but not to resist severe water stress.
Collapse
Affiliation(s)
| | - Amélie Roussel
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jesús Rodríguez-Calcerrada
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid Ciudad Universitaria, Madrid, Spain
| | | | - Myriam Moreno
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE Avignon Cedex 9, Domaine Saint Paul, Site Agroparc, France
| | | | | | - Guillaume Simioni
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE Avignon Cedex 9, Domaine Saint Paul, Site Agroparc, France
| | - Hervé Cochard
- PIAF, University Clermont-Auvergne, INRAE, Clermont-Ferrand, France
| | - Nicolas Martin-StPaul
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE Avignon Cedex 9, Domaine Saint Paul, Site Agroparc, France
| |
Collapse
|
7
|
Lachenbruch B, St Clair JB, Harrington CA. Differences in branch hydraulic architecture related to the aridity of growing sites and seed sources of coastal Douglas-fir saplings. TREE PHYSIOLOGY 2022; 42:351-364. [PMID: 34553758 DOI: 10.1093/treephys/tpab106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
To better understand hydraulic adaptations of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) to local climate, we examined genetic (G) and environmental (E) responses of branch hydraulic architecture of 7-year-old saplings from dry and wet climates of origin grown at a relatively dry and a relatively wet common garden site in western Oregon. We sampled 2 years of branch growth from three dry-source and three wet-source families grown at both sites (72 branches, total). Overall, only 4 of the 11 traits had significant genetic (G) effects, whereas 9 traits had significant environmental (E) effects (P < 0.05). Both dry and wet sources had higher leaf-specific conductance (kl) at the dry than the wet site, but the values were achieved by different mechanisms and driven by G × E effects for leaf area/sapwood area (Al/As), shoot length (L), specific conductivity (Ks) and leaf-specific conductivity (Kl). Dry sources achieved higher kl in the dry site through higher Kl (via a lower Al/As and no change in Ks) with no difference in L. Wet sources achieved higher kl at the dry site through no difference in Kl (via no effect on Al/As, despite decreases in Al and As, and lower Ks) with lower L. Vulnerability to embolism (measured as percentage loss of conductivity at 4 MPa) had no G effect but an E effect, with slightly lower values at the dry site. Specific leaf area had G and E effects, with lower values for the dry sources and site. There were no G or E effects on wood density. The different responses of dry and wet sources to site aridity suggest that populations are differentially adapted to the aridity of growing sites. Population variation in response to aridity should be considered when selecting seed sources for establishing forests for future climates.
Collapse
Affiliation(s)
- Barbara Lachenbruch
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA
| | - J Bradley St Clair
- USDA-Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Constance A Harrington
- USDA-Forest Service, Pacific Northwest Research Station, 3625 93rd Avenue SW, Olympia, WA 98512, USA
| |
Collapse
|
8
|
The aboveground and belowground growth characteristics of juvenile conifers in the southwestern United States. Ecosphere 2021. [DOI: 10.1002/ecs2.3839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
9
|
Stinziano JR, Roback C, Sargent D, Murphy BK, Hudson PJ, Muir CD. Principles of resilient coding for plant ecophysiologists. AOB PLANTS 2021; 13:plab059. [PMID: 34646435 PMCID: PMC8501907 DOI: 10.1093/aobpla/plab059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/15/2021] [Indexed: 06/02/2023]
Abstract
Plant ecophysiology is founded on a rich body of physical and chemical theory, but it is challenging to connect theory with data in unambiguous, analytically rigorous and reproducible ways. Custom scripts written in computer programming languages (coding) enable plant ecophysiologists to model plant processes and fit models to data reproducibly using advanced statistical techniques. Since many ecophysiologists lack formal programming education, we have yet to adopt a unified set of coding principles and standards that could make coding easier to learn, use and modify. We identify eight principles to help in plant ecophysiologists without much programming experience to write resilient code: (i) standardized nomenclature, (ii) consistency in style, (iii) increased modularity/extensibility for easier editing and understanding, (iv) code scalability for application to large data sets, (v) documented contingencies for code maintenance, (vi) documentation to facilitate user understanding; (vii) extensive tutorials and (viii) unit testing and benchmarking. We illustrate these principles using a new R package, {photosynthesis}, which provides a set of analytical and simulation tools for plant ecophysiology. Our goal with these principles is to advance scientific discovery in plant ecophysiology by making it easier to use code for simulation and data analysis, reproduce results and rapidly incorporate new biological understanding and analytical tools.
Collapse
Affiliation(s)
- Jospeh R Stinziano
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Cassaundra Roback
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Demi Sargent
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney 2753, Australia
| | - Bridget K Murphy
- Department of Biology, University of Toronto, Mississauga L5L 1C6, Canada
| | - Patrick J Hudson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
10
|
Sánchez-Salguero R, Camarero JJ. Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137599. [PMID: 32172101 DOI: 10.1016/j.scitotenv.2020.137599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Drought-induced dieback episodes have been globally reported. However, few studies have jointly examined the role played by drought on growth of co-occurring shrub and tree species showing different dieback and mortality. Here, we focused on dieback events affecting Mediterranean shrublands dominated by the Phoenician juniper (Juniperus phoenicea) since the middle 2000s in three sites across a wide geographical and climatic gradient in Spain. We compared their growth responses to climate and drought with coexisting tree species (Pinus pinea, Pinus pinaster and Quercus faginea), which did not show dieback in response to drought. We characterized the major climatic constraints of radial growth for trees, surviving and dead junipers by quantifying climate-growth relationships. Then, we simulated growth responses to temperature and soil moisture using the process-based VS-Lite growth model. Growth of shrubs and trees was strongly reduced during extreme droughts but the highest negative growth responsiveness to climate and drought was observed in trees followed by dead junipers from the most xeric and cold sites. Growth of dead junipers responded more negatively to droughts prior to the dieback than co-occurring, living junipers. Growth was particularly depressed in the dead junipers from the warmest site after the warm and dry 1990s. The growth model showed how a steep precipitation reduction in the 1980s triggered soil moisture limitation at the driest sites, affecting growth, particularly in the case of dead junipers and mainly in warm and dry sites. The asynchrony in the simulated seasonal timing of drought events caused contrasting effects on growth of co-occurring shrubs and tree species, compromising their future coexistence. Junipers were particularly vulnerable to hotter droughts during the early growing season. The presented projections indicate that de-shrubification events in response to hotter droughts will be common but conditioned by site conditions. Our modelling approach provides tools to evaluate vulnerability thresholds of growth under similar drought-induced dieback and mortality processes.
Collapse
Affiliation(s)
- Raúl Sánchez-Salguero
- Departamento Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Crta. de Utrera km. 1, 41013 Sevilla, Spain; Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain.
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| |
Collapse
|
11
|
Salomón RL, Steppe K, Ourcival JM, Villers S, Rodríguez-Calcerrada J, Schapman R, Limousin JM. Hydraulic acclimation in a Mediterranean oak subjected to permanent throughfall exclusion results in increased stem hydraulic capacitance. PLANT, CELL & ENVIRONMENT 2020; 43:1528-1544. [PMID: 32154937 DOI: 10.1111/pce.13751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Stem water storage capacity and hydraulic capacitance (CS ) play a crucial role in tree survival under drought-stress. To investigate whether CS adjusts to increasing water deficit, variation in stem water content (StWC) was monitored in vivo for 2 years and related to periodical measurements of tree water potential in Mediterranean Quercus ilex trees subjected either to permanent throughfall exclusion (TE) or to control conditions. Seasonal reductions in StWC were larger in TE trees relative to control ones, resulting in greater seasonal CS (154 and 80 kg m-3 MPa-1 , respectively), but only during the first phase of the desorption curve, when predawn water potential was above -1.1 MPa. Below this point, CS decreased substantially and did not differ between treatments (<20 kg m-3 MPa-1 ). The allometric relationship between tree diameter and sapwood area, measured via electrical resistivity tomography, was not affected by TE. Our results suggest that (a) CS response to water deficit in the drought-tolerant Q. ilex might be more important to optimize carbon gain during well-hydrated periods than to prevent drought-induced embolism formation during severe drought stress, and (b) enhanced CS during early summer does not result from proportional increases in sapwood volume, but mostly from increased elastic water.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jean M Ourcival
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CEFE UMR 5175, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier Cedex 5, France
| | - Selwyn Villers
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Roderick Schapman
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jean M Limousin
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CEFE UMR 5175, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier Cedex 5, France
| |
Collapse
|
12
|
Guérin M, von Arx G, Martin-Benito D, Andreu-Hayles L, Griffin KL, McDowell NG, Pockman W, Gentine P. Distinct xylem responses to acute vs prolonged drought in pine trees. TREE PHYSIOLOGY 2020; 40:605-620. [PMID: 31976523 DOI: 10.1093/treephys/tpz144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/17/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Increasing dryness challenges trees' ability to maintain water transport to the leaves. Most plant hydraulics models use a static xylem response to water stress. Yet, in reality, lower soil moisture and warmer temperatures during growing seasons feed back onto xylem development. In turn, adjustments to water stress in the newly built xylem influence future physiological responses to droughts. In this study, we investigate the annual variation of anatomical traits in branch xylem in response to different soil and atmospheric moisture conditions and tree stress levels, as indicated by seasonal predawn leaf water potential (ΨL,pd). We used a 6-year field experiment in southwestern USA with three soil water treatments applied to Pinus edulis Engelm trees-ambient, drought (45% rain reduction) and irrigation (15-35% annual water addition). All trees were also subject to a natural 1-year acute drought (soil and atmospheric) that occurred during the experiment. The irrigated trees showed only moderate changes in anatomy-derived hydraulic traits compared with the ambient trees, suggesting a generally stable, well-balanced xylem structure under unstressed conditions. The artificial prolonged soil drought increased hydraulic efficiency but lowered xylem construction costs and decreased tracheid implosion safety ((t/b)2), suggesting that annual adjustments of xylem structure follow a safety-efficiency trade-off. The acute drought plunged hydraulic efficiency across all treatments. The combination of acute and prolonged drought resulted in vulnerable and inefficient new xylem, disrupting the stability of the anatomical trade-off observed in the rest of the years. The xylem hydraulic traits showed no consistent direct link to ΨL,pd. In the future, changes in seasonality of soil and atmospheric moisture are likely to have a critical impact on the ability of P. edulis to acclimate its xylem to warmer climate. Furthermore, the increasing frequency of acute droughts might reduce hydraulic resilience of P. edulis by repeatedly creating vulnerable and less efficient anatomical structure.
Collapse
Affiliation(s)
- Marceau Guérin
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Georg von Arx
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111 CH-8903 Birmensdorf, Switzerland
| | - Dario Martin-Benito
- INIA, CIFOR, Ctra La Coruña km 7.5, 28040 Madrid, Spain
- Forest Ecology, Department of Environmental Sciences, Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Laia Andreu-Hayles
- Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9 W, Palisades, NY 10964, USA
| | - Kevin L Griffin
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - Nate G McDowell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA
| | - William Pockman
- Biology Department, MSC03 202, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
- Earth Institute, Columbia University, Hogan Hall, 2910 Broadway, New York, NY 10027, USA
| |
Collapse
|
13
|
Cao X, Shen Q, Liu L, Cheng J. Relationships of growth, stable carbon isotope composition and anatomical properties of leaf and xylem in seven mulberry cultivars: a hint towards drought tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:287-297. [PMID: 31677322 DOI: 10.1111/plb.13067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The fast growth of mulberry depends on high water consumption, but considerable variations in drought tolerance exist across different cultivars. Physiological and anatomical mechanisms are important to plant survival under drought. However, few research efforts have been made to reveal the relationships of these two aspects in relation to drought tolerance. In this study, growth rates, leaf functional physiology and anatomical characteristics of leaf and xylem of 1-year-old saplings of seven mulberry cultivars at a common garden were compared. Their relationships were also explored. Growth, leaf physiology and anatomy were significantly different among the tested cultivars. Foliar stable carbon isotope composition (δ13 C) was negatively correlated with growth rates, and closely related to several leaf and xylem anatomical traits. Particularly, leaf thickness, predicted hydraulic conductivity and vessel element length jointly contributed 77% of the variability in δ13 C. Cultivar Wupu had small stomata, intermediate leaf thickness, the smallest hydraulically weighted vessel diameter and highest vessel number, and higher δ13 C; Yunguo1 had high abaxial stomatal density, low specific leaf area, moderate hydraulic conductivity and δ13 C; these are beneficial features to reduce leaf water loss and drought-induced xylem embolism in arid areas. Cultivar Liaolu11 had contrasting physiological and anatomical traits compared with the previous two cultivars, suggesting that it might be sensitive to drought. Our findings indicate that growth and δ13 C are closely associated with both leaf and xylem anatomical characteristics in mulberry, which provides fundamental information to assist evaluation of drought tolerance in mulberry cultivars and in other woody trees.
Collapse
Affiliation(s)
- X Cao
- Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Q Shen
- Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - L Liu
- Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - J Cheng
- Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
14
|
Liu J, Kang S, Davies WJ, Ding R. Elevated [CO 2 ] alleviates the impacts of water deficit on xylem anatomy and hydraulic properties of maize stems. PLANT, CELL & ENVIRONMENT 2020; 43:563-578. [PMID: 31721225 DOI: 10.1111/pce.13677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/06/2019] [Indexed: 05/15/2023]
Abstract
Plants can modify xylem anatomy and hydraulic properties to adjust to water status. Elevated [CO2 ] can increase plant water potential via reduced stomatal conductance and water loss. This raises the question of whether elevated [CO2 ], which thus improves plant water status, will reduce the impacts of soil water deficit on xylem anatomy and hydraulic properties of plants. To analyse the impacts of water and [CO2 ] on maize stem xylem anatomy and hydraulic properties, we exposed potted maize plants to varying [CO2 ] levels (400, 700, 900, and 1,200 ppm) and water levels (full irrigation and deficit irrigation). Results showed that at current [CO2 ], vessel diameter, vessel roundness, stem cross-section area, specific hydraulic conductivity, and vulnerability to embolism decreased under deficit irrigation; yet, these impacts of deficit irrigation were reduced at elevated [CO2 ]. Across all treatments, midday stem water potential was tightly correlated with xylem traits and displayed similar responses. A distinct trade-off between efficiency and safety in stem xylem water transportation in response to water deficit was observed at current [CO2 ] but not observed at elevated [CO2 ]. The results of this study enhance our knowledge of plant hydraulic acclimation under future climate environments and provide insights into trade-offs in xylem structure and function.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - William J Davies
- Lancaster Environment Centre, Lancaster University, Bailrigg, LA1 4YQ, UK
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| |
Collapse
|
15
|
Sevanto S, Ryan M, Dickman LT, Derome D, Patera A, Defraeye T, Pangle RE, Hudson PJ, Pockman WT. Is desiccation tolerance and avoidance reflected in xylem and phloem anatomy of two coexisting arid-zone coniferous trees? PLANT, CELL & ENVIRONMENT 2018; 41:1551-1564. [PMID: 29569276 DOI: 10.1111/pce.13198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation-tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long-term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X-ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one-seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.
Collapse
Affiliation(s)
- Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Bikini Atoll Road MS J535, Los Alamos, NM, 87545, USA
| | - Max Ryan
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Bikini Atoll Road MS J535, Los Alamos, NM, 87545, USA
| | - L Turin Dickman
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Bikini Atoll Road MS J535, Los Alamos, NM, 87545, USA
| | - Dominique Derome
- Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Material Science and Technology (Empa), Ueberlandstrasse 129, 8600, Duebendorf, Switzerland
| | - Alessandra Patera
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Centre d'Imagerie BioMedicale, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne, Switzerland
| | - Thijs Defraeye
- Laboratory for Multiscale Studies in Building Physics, Swiss Federal Laboratories for Material Science and Technology (Empa), Ueberlandstrasse 129, 8600, Duebendorf, Switzerland
- Chair of Building Physics, ETH Zurich, Stefano-Franscini-Platz 5, 8093, Zurich, Switzerland
| | - Robert E Pangle
- Department of Biology, University of New Mexico, Castetter Hall 1480, Yale Boulevard NE, Albuquerque, NM, 87131, USA
| | - Patrick J Hudson
- Department of Biology, University of New Mexico, Castetter Hall 1480, Yale Boulevard NE, Albuquerque, NM, 87131, USA
| | - William T Pockman
- Department of Biology, University of New Mexico, Castetter Hall 1480, Yale Boulevard NE, Albuquerque, NM, 87131, USA
| |
Collapse
|