1
|
Bojórquez-Velázquez E, Zamora-Briseño JA, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Comparative Proteomic Analysis of Wild and Cultivated Amaranth Species Seeds by 2-DE and ESI-MS/MS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2728. [PMID: 39409597 PMCID: PMC11478449 DOI: 10.3390/plants13192728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Amaranth is a promising staple food that produces seeds with excellent nutritional quality. Although cultivated species intended for grain production have interesting agronomic traits, relatively little is known about wild species, which can prosper in diverse environments and could be a rich genetic source for crop improvement. This work focuses on the proteomic comparison between the seeds of wild and cultivated amaranth species using polarity-based protein extraction and two-dimensional gel electrophoresis. Differentially accumulated proteins (DAPs) showed changes in granule-bound starch synthases and a wide range of 11S globulin isoforms. The electrophoretic profile of these proteins suggests that they may contain significant phosphorylation as post-translational modifications (PTMs), which were confirmed via immunodetection. These PTMs may impact the physicochemical functionality of storage proteins, with potential implications for seed agronomic traits and food system applications. Low-abundant DAPs with highly variable accumulation patterns are also discussed; these were involved in diverse molecular processes, such as genic regulation, lipid storage, and stress response.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
- Red de Estudios Moleculares Avanzados, Campus III, Instituto de Ecología A. C., Xalapa 91073, Mexico;
| | | | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | | | - Ana Paulina Barba de la Rosa
- Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí 78216, Mexico or (E.B.-V.); (A.B.-P.)
| |
Collapse
|
2
|
Choudhary P, Pramitha L, Aggarwal PR, Rana S, Vetriventhan M, Muthamilarasan M. Biotechnological interventions for improving the seed longevity in cereal crops: progress and prospects. Crit Rev Biotechnol 2023; 43:309-325. [PMID: 35443842 DOI: 10.1080/07388551.2022.2027863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Seed longevity is a measure of the viability of seeds during long-term storage and is crucial for germplasm conservation and crop improvement programs. Also, longevity is an important trait for ensuring food and nutritional security. Thus, a better understanding of various factors regulating seed longevity is requisite to improve this trait and to minimize the genetic drift during the regeneration of germplasm. In particular, seed deterioration of cereal crops during storage adversely affects agricultural productivity and food security. The irreversible process of seed deterioration involves a complex interplay between different genes and regulatory pathways leading to: loss of DNA integrity, membrane damage, inactivation of storage enzymes and mitochondrial dysfunction. Identifying the genetic determinants of seed longevity and manipulating them using biotechnological tools hold the key to ensuring prolonged seed storage. Genetics and genomics approaches had identified several genomic regions regulating the longevity trait in major cereals such as: rice, wheat, maize and barley. However, very few studies are available in other Poaceae members, including millets. Deploying omics tools, including genomics, proteomics, metabolomics, and phenomics, and integrating the datasets will pinpoint the precise molecular determinants affecting the survivability of seeds. Given this, the present review enumerates the genetic factors regulating longevity and demonstrates the importance of integrated omics strategies to dissect the molecular machinery underlying seed deterioration. Further, the review provides a roadmap for deploying biotechnological approaches to manipulate the genes and genomic regions to develop improved cultivars with prolonged storage potential.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mani Vetriventhan
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | | |
Collapse
|
3
|
Niñoles R, Planes D, Arjona P, Ruiz-Pastor C, Chazarra R, Renard J, Bueso E, Forment J, Serrano R, Kranner I, Roach T, Gadea J. Comparative analysis of wild-type accessions reveals novel determinants of Arabidopsis seed longevity. PLANT, CELL & ENVIRONMENT 2022; 45:2708-2728. [PMID: 35672914 DOI: 10.1111/pce.14374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.
Collapse
Affiliation(s)
- Regina Niñoles
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Planes
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paloma Arjona
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carmen Ruiz-Pastor
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Rubén Chazarra
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Joan Renard
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Eduardo Bueso
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Javier Forment
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ramón Serrano
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - José Gadea
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
4
|
Arif MAR, Afzal I, Börner A. Genetic Aspects and Molecular Causes of Seed Longevity in Plants-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:598. [PMID: 35270067 PMCID: PMC8912819 DOI: 10.3390/plants11050598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
Abstract
Seed longevity is the most important trait related to the management of gene banks because it governs the regeneration cycle of seeds. Thus, seed longevity is a quantitative trait. Prior to the discovery of molecular markers, classical genetic studies have been performed to identify the genetic determinants of this trait. Post-2000 saw the use of DNA-based molecular markers and modern biotechnological tools, including RNA sequence (RNA-seq) analysis, to understand the genetic factors determining seed longevity. This review summarizes the most important and relevant genetic studies performed in Arabidopsis (24 reports), rice (25 reports), barley (4 reports), wheat (9 reports), maize (8 reports), soybean (10 reports), tobacco (2 reports), lettuce (1 report) and tomato (3 reports), in chronological order, after discussing some classical studies. The major genes identified and their probable roles, where available, are debated in each case. We conclude by providing information about many different collections of various crops available worldwide for advanced research on seed longevity. Finally, the use of new emerging technologies, including RNA-seq, in seed longevity research is emphasized by providing relevant examples.
Collapse
Affiliation(s)
- Mian Abdur Rehman Arif
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan
| | - Irfan Afzal
- Seed Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Andreas Börner
- Leibniz-Institute für Pflanzengenetik und Kulturpflanzenforschung (IPK), OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
5
|
Yuan Z, Fan K, Wang Y, Tian L, Zhang C, Sun W, He H, Yu S. OsGRETCHENHAGEN3-2 modulates rice seed storability via accumulation of abscisic acid and protective substances. PLANT PHYSIOLOGY 2021; 186:469-482. [PMID: 33570603 PMCID: PMC8154041 DOI: 10.1093/plphys/kiab059] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/26/2021] [Indexed: 05/23/2023]
Abstract
Seed storability largely determines the vigor of seeds during storage and is significant in agriculture and ecology. However, the underlying genetic basis remains unclear. In the present study, we report the cloning and characterization of the rice (Oryza sativa) indole-3-acetic acid (IAA)-amido synthetase gene GRETCHEN HAGEN3-2 (OsGH3-2) associated with seed storability. OsGH3-2 was identified by performing a genome-wide association study in rice germplasms with linkage mapping in chromosome substitution segment lines, contributing to the wide variation of seed viability in the populations after long periods of storage and artificial ageing. OsGH3-2 was dominantly expressed in the developing seeds and catalyzed IAA conjugation to amino acids, forming inactive auxin. Transgenic overexpression, knockout, and knockdown experiments demonstrated that OsGH3-2 affected seed storability by regulating the accumulation level of abscisic acid (ABA). Overexpression of OsGH3-2 significantly decreased seed storability, while knockout or knockdown of the gene enhanced seed storability compared with the wild-type. OsGH3-2 acted as a negative regulator of seed storability by modulating many genes related to the ABA pathway and probably subsequently late embryogenesis-abundant proteins at the transcription level. These findings shed light on the molecular mechanisms underlying seed storability and will facilitate the improvement of seed vigor by genomic breeding and gene-editing approaches in rice.
Collapse
Affiliation(s)
- Zhiyang Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Fan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuntong Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Tian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Milne L, Bayer M, Rapazote-Flores P, Mayer CD, Waugh R, Simpson CG. EORNA, a barley gene and transcript abundance database. Sci Data 2021; 8:90. [PMID: 33767193 DOI: 10.1038/s41597-021-00872-874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 05/27/2023] Open
Abstract
A high-quality, barley gene reference transcript dataset (BaRTv1.0), was used to quantify gene and transcript abundances from 22 RNA-seq experiments, covering 843 separate samples. Using the abundance data we developed a Barley Expression Database (EORNA*) to underpin a visualisation tool that displays comparative gene and transcript abundance data on demand as transcripts per million (TPM) across all samples and all the genes. EORNA provides gene and transcript models for all of the transcripts contained in BaRTV1.0, and these can be conveniently identified through either BaRT or HORVU gene names, or by direct BLAST of query sequences. Browsing the quantification data reveals cultivar, tissue and condition specific gene expression and shows changes in the proportions of individual transcripts that have arisen via alternative splicing. TPM values can be easily extracted to allow users to determine the statistical significance of observed transcript abundance variation among samples or perform meta analyses on multiple RNA-seq experiments. * Eòrna is the Scottish Gaelic word for Barley.
Collapse
Affiliation(s)
- Linda Milne
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Micha Bayer
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Paulo Rapazote-Flores
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Claus-Dieter Mayer
- Biomathematics and Statistics Scotland, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Craig G Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
7
|
Milne L, Bayer M, Rapazote-Flores P, Mayer CD, Waugh R, Simpson CG. EORNA, a barley gene and transcript abundance database. Sci Data 2021; 8:90. [PMID: 33767193 PMCID: PMC7994555 DOI: 10.1038/s41597-021-00872-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
A high-quality, barley gene reference transcript dataset (BaRTv1.0), was used to quantify gene and transcript abundances from 22 RNA-seq experiments, covering 843 separate samples. Using the abundance data we developed a Barley Expression Database (EORNA*) to underpin a visualisation tool that displays comparative gene and transcript abundance data on demand as transcripts per million (TPM) across all samples and all the genes. EORNA provides gene and transcript models for all of the transcripts contained in BaRTV1.0, and these can be conveniently identified through either BaRT or HORVU gene names, or by direct BLAST of query sequences. Browsing the quantification data reveals cultivar, tissue and condition specific gene expression and shows changes in the proportions of individual transcripts that have arisen via alternative splicing. TPM values can be easily extracted to allow users to determine the statistical significance of observed transcript abundance variation among samples or perform meta analyses on multiple RNA-seq experiments. * Eòrna is the Scottish Gaelic word for Barley.
Collapse
Affiliation(s)
- Linda Milne
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Micha Bayer
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Paulo Rapazote-Flores
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Claus-Dieter Mayer
- Biomathematics and Statistics Scotland, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
- School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Craig G Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
8
|
Shvachko NА, Khlestkina EK. Molecular genetic bases of seed resistance to oxidative stress during storage. Vavilovskii Zhurnal Genet Selektsii 2020; 24:451-458. [PMID: 33659828 PMCID: PMC7716554 DOI: 10.18699/vj20.47-o] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Conservation of plant genetic diversity, including economically important crops, is the foundation
for food safety. About 90 % of the world’s crop genetic diversity is stored as seeds in genebanks. During storage
seeds suffer physiological stress consequences, one of which is the accumulation of free radicals, primarily reactive
oxygen species (ROS). An increase in ROS leads to oxidative stress, which negatively affects the quality of
seeds and can lead to a complete loss of their viability. The review summarizes data on biochemical processes
that affect seed longevity. The data on the destructive effect of free radicals towards plant cell macromolecules
are analyzed, and the ways to eliminate excessive ROS in plants, the most important of which is the glutathioneascorbate
pathway, are discussed. The relationship between seed dormancy and seed longevity is examined.
Studying seeds of different plant species revealed a negative correlation between seed dormancy and longevity,
while various authors who researched Arabidopsis seeds reported both positive and negative correlations
between dormancy and seed longevity. A negative correlation between seed dormancy and viability probably
means that seeds are able to adapt to changing environmental conditions. This review provides a summary of
Arabidopsis genes associated with seed viability. By now, a significant number of loci and genes affecting seed
longevity have been identified. This review contains a synopsis of modern studies on the viability of barley
seeds. QTLs associated with barley seed longevity were identified on chromosomes 2H, 5H and 7H. In the QTL
regions studied, the Zeo1, Ale, nud, nadp-me, and HvGR genes were identified. However, there is still no definite
answer as to which genes would serve as markers of seed viability in a certain plant species.
Collapse
Affiliation(s)
- N А Shvachko
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - E K Khlestkina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
9
|
Molecular and environmental factors regulating seed longevity. Biochem J 2020; 477:305-323. [PMID: 31967650 DOI: 10.1042/bcj20190165] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Seed longevity is a central pivot of the preservation of biodiversity, being of main importance to face the challenges linked to global climate change and population growth. This complex, quantitative seed quality trait is acquired on the mother plant during the second part of seed development. Understanding what factors contribute to lifespan is one of the oldest and most challenging questions in plant biology. One of these challenges is to recognize that longevity depends on the storage conditions that are experimentally used because they determine the type and rate of deleterious conditions that lead to cell death and loss of viability. In this review, we will briefly review the different storage methods that accelerate the deteriorative reactions during storage and argue that a minimum amount of information is necessary to interpret the longevity data. Next, we will give an update on recent discoveries on the hormonal factors regulating longevity, both from the ABA signaling pathway but also other hormonal pathways. In addition, we will review the effect of both maternal and abiotic factors that influence longevity. In the last section of this review, we discuss the problems in unraveling cause-effect relationship between the time of death during storage and deteriorative reactions leading to seed ageing. We focus on the three major types of cellular damage, namely membrane permeability, lipid peroxidation and RNA integrity for which germination data on seed stored in dedicated seed banks for long period times are now available.
Collapse
|
10
|
Benninghaus VA, van Deenen N, Müller B, Roelfs KU, Lassowskat I, Finkemeier I, Prüfer D, Schulze Gronover C. Comparative proteome and metabolome analyses of latex-exuding and non-exuding Taraxacum koksaghyz roots provide insights into laticifer biology. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1278-1293. [PMID: 31740929 PMCID: PMC7031084 DOI: 10.1093/jxb/erz512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Taraxacum koksaghyz has been identified as one of the most promising alternative rubber crops. Its high-quality rubber is produced in the latex of laticifers, a specialized cell type that is organized in a network of elongated tubules throughout the entire plant body. In order to gain insights into the physiological role(s) of latex and hence laticifer biology, we examine the effects of barnase-induced latex RNA degradation on the metabolite and protein compositions in the roots. We established high-quality datasets that enabled precise discrimination between cellular and physiological processes in laticifers and non-laticifer cell types of roots at different vegetative stages. We identified numerous latex-specific proteins, including a perilipin-like protein that has not been studied in plants yet. The barnase-expressing plants revealed a phenotype that did not exude latex, which may provide a valuable genetic basis for future studies of plant-environment interactions concerning latex and also help to clarify the evolution and arbitrary distribution of latex throughout the plant kingdom. The overview of temporal changes in composition and protein abundance provided by our data opens the way for a deeper understanding of the molecular interactions, reactions, and network relationships that underlie the different metabolic pathways in the roots of this potential rubber crop.
Collapse
Affiliation(s)
| | - Nicole van Deenen
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Muenster, Germany
| | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Muenster, Germany
| | - Ines Lassowskat
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Muenster, Germany
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | | |
Collapse
|
11
|
Bojórquez-Velázquez E, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species. BMC PLANT BIOLOGY 2019; 19:59. [PMID: 30727945 PMCID: PMC6366027 DOI: 10.1186/s12870-019-1656-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Amaranth is a plant naturally resistant to various types of stresses that produces seeds of excellent nutritional quality, so amaranth is a promising system for food production. Amaranth wild relatives have survived climate changes and grow under harsh conditions, however no studies about morphological and molecular characteristics of their seeds are known. Therefore, we carried out a detailed morphological and molecular characterization of wild species A. powellii and A. hybridus, and compared them with the cultivated amaranth species A. hypochondriacus (waxy and non-waxy seeds) and A. cruentus. RESULTS Seed proteins were fractionated according to their polarity properties and were analysed in one-dimensional gel electrophoresis (1-DE) followed by nano-liquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS). A total of 34 differentially accumulated protein bands were detected and 105 proteins were successfully identified. Late embryogenesis abundant proteins were detected as species-specific. Oleosins and oil bodies associated proteins were observed preferentially in A. cruentus. Different isoforms of the granule-bound starch synthase I, and several paralogs of 7S and 11S globulins were also identified. The in silico structural analysis from different isoforms of 11S globulins was carried out, including new types of 11S globulin not reported so far. CONCLUSIONS The results provide novel information about 11S globulins and proteins related in seed protection, which could play important roles in the nutritional value and adaptive tolerance to stress in amaranth species.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, 56250 Texcoco, Estado de México Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, 36821 Guanajuato, Mexico
| | | |
Collapse
|
12
|
Yazdanpanah F, Maurino VG, Mettler-Altmann T, Buijs G, Bailly MN, Karimi Jashni M, Willems L, Sergeeva LI, Rajjou LC, Hilhorst HWM, Bentsink LN. NADP-MALIC ENZYME 1 Affects Germination after Seed Storage in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:318-328. [PMID: 30388244 DOI: 10.1093/pcp/pcy213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/26/2018] [Indexed: 05/07/2023]
Abstract
Aging decreases the quality of seeds and results in agricultural and economic losses. The damage that occurs at the biochemical level can alter the seed physiological status. Although loss of viability has been investigated frequently, little information exists on the molecular and biochemical factors involved in seed deterioration and loss of viability. Oxidative stress has been implicated as a major contributor to seed deterioration, and several pathways are involved in protection against this. In this study, we show that seeds of Arabidopsis thaliana lacking a functional NADP-MALIC ENZYME 1 (NADP-ME1) have reduced seed viability relative to the wild type. Seeds of the NADP-ME1 loss-of-function mutant display higher levels of protein carbonylation than those of the wild type. NADP-ME1 catalyzes the oxidative decarboxylation of malate to pyruvate with the simultaneous production of CO2 and NADPH. Upon seed imbibition, malate and amino acids accumulate in embryos of aged seeds of the NADP-ME1 loss-of-function mutant compared with those of the wild type. NADP-ME1 expression is increased in imbibed aged as compared with non-aged seeds. NADP-ME1 activity at testa rupture promotes normal germination of aged seeds. In seedlings of aged seeds, NADP-ME1 is specifically active in the root meristematic zone. We propose that NADP-ME1 activity is required for protecting seeds against oxidation during seed dry storage.
Collapse
Affiliation(s)
- Farzaneh Yazdanpanah
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Universit�tsstra�e 1, D�sseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Universit�tsstra�e 1, D�sseldorf, Germany
| | - Gonda Buijs
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Marlï Ne Bailly
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles cedex, France
- DBV Technologies - Technology Center, Green Square BAT D, 80-84 rue des Meuniers, Bagneux France
| | - Mansoor Karimi Jashni
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, PB Wageningen, The Netherlands
| | - Leo Willems
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Lidiya I Sergeeva
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Loï C Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles cedex, France
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Leï Nie Bentsink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| |
Collapse
|