1
|
Hollmann F, Weber M, Aarts MGM, Clemens S. Engineering of nicotianamine synthesis enhances cadmium mobility in plants and results in higher seed cadmium concentrations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70181. [PMID: 40300133 PMCID: PMC12040310 DOI: 10.1111/tpj.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
Efficient biofortification, i.e., the enrichment of edible plant organs with micronutrients available for human consumption, is pursued through breeding and genetic engineering approaches. Enriching for iron (Fe) and zinc (Zn), two of the most critical trace elements, in cereal grains can be achieved by boosting the synthesis of nicotianamine (NA), a key metal chelator in plants. However, metal transport and distribution pathways are not entirely specific and may lead to the adventitious accumulation of potentially highly toxic non-essential metals such as cadmium (Cd). We found evidence for the formation of intracellular Cd-NA complexes driving Cd uptake and accumulation in two different yeast species and therefore studied Arabidopsis thaliana mutants as well as NA synthase overexpression lines in wild-type and mutant backgrounds that showed varying degrees of NA deficiency or overproduction relative to controls. NA synthesis was enhanced by metal excess and conferred Cd and Zn tolerance. Importantly, when cultivated on soil containing environmentally relevant Cd levels, NA-overproducing lines accumulated not only more Fe and Zn in their seeds but also more Cd. Thus, the engineering of NA synthesis can result in an unintended food safety risk that should be mitigated by carefully monitoring Cd phytoavailability in soils and, ideally, the use of low Cd germplasm for the engineering of biofortified crops.
Collapse
Affiliation(s)
- Fabian Hollmann
- Plant PhysiologyUniversity of BayreuthD‐95440BayreuthGermany
| | - Michael Weber
- Plant PhysiologyUniversity of BayreuthD‐95440BayreuthGermany
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University & Research6700AAWageningenNetherlands
| | - Stephan Clemens
- Plant PhysiologyUniversity of BayreuthD‐95440BayreuthGermany
| |
Collapse
|
2
|
Uraguchi S, Sato M, Hagai C, Hirakawa M, Ogawa K, Odagiri M, Sato H, Ohmori A, Ohshiro Y, Nakamura R, Takanezawa Y, Kiyono M. Phenylmercury stress induces root tip swelling through auxin homeostasis disruption. PLANT MOLECULAR BIOLOGY 2024; 115:8. [PMID: 39694938 PMCID: PMC11655593 DOI: 10.1007/s11103-024-01538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
We previously reported that in Arabidopsis, the phytochelatin-mediated metal-detoxification machinery is also essential for organomercurial phenylmercury (PheHg) tolerance. PheHg treatment causes severe root growth inhibition in cad1-3, an Arabidopsis phytochelatin-deficient mutant, frequently accompanied by abnormal root tip swelling. Here, we examine morphological and physiological characteristics of PheHg-induced abnormal root tip swelling in comparison to Hg(II) stress and demonstrate that auxin homeostasis disorder in the root is associated with the PheHg-induced root tip swelling. Both Hg(II) and PheHg treatments severely inhibited root growth in cad1-3 and simultaneously induced the disappearance of starch-containing plastid amyloplasts in columella cells. However, further confocal imaging of the root tip revealed distinct effects of Hg(II) and PheHg toxicity on root cell morphology. PheHg treatment suppressed most major genes involved in auxin homeostasis, whereas these expression levels were up-regulated after 24 h of Hg(II) treatment. PheHg-triggered suppression of auxin transporters PIN1, PIN2, and PIN3 as GFP-fusion proteins was observed in the root tip, accompanied by an auxin reporter DR5rev::GFP signal reduction. Supplementation of indole-3-acetic acid (IAA) drastically canceled the PheHg-induced root swelling, however, Hg(II) toxicity was not mitigated by IAA. The presented results show that the collapse of auxin homeostasis especially in root tips is a cause for the abnormal root tip swelling under PheHg stress conditions.
Collapse
Affiliation(s)
- Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Masakazu Sato
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Chihiro Hagai
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Momoko Hirakawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kotomi Ogawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Miyu Odagiri
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Haruka Sato
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ayaka Ohmori
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Ohshiro
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
3
|
Tabara M, Uraguchi S, Kiyono M, Watanabe I, Takeda A, Takahashi H, Fukuhara T. A resilient mutualistic interaction between cucumber mosaic virus and its natural host to adapt to an excess zinc environment and drought stress. JOURNAL OF PLANT RESEARCH 2024; 137:1151-1164. [PMID: 39190237 DOI: 10.1007/s10265-024-01573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A perennial pseudometallophyte Arabidopsis halleri is frequently infected with cucumber mosaic virus (CMV) in its natural habitat. The purpose of this study was to characterize the effect of CMV infection on the environmental adaptation of its natural host A. halleri. The CMV(Ho) strain isolated from A. halleri was inoculated into clonal virus-free A. halleri plants, and a unique plant-virus system consisting of CMV(Ho) and its natural wild plant host was established. In a control environment with ambient zinc supplementation, CMV(Ho) infection retarded growth in the above-ground part of host plants but conferred strong drought tolerance. On the other hand, in an excess zinc environment, simulating a natural edaphic environment of A halleri, host plants hyperaccumulated zinc and CMV(Ho) infection did not cause any symptoms to host plants while conferring mild drought tolerance. We also demonstrated in Nicotiana benthamiana as another host that similar effects were induced by the combination of excess zinc and CMV(Ho) infection. Transcriptomic analysis indicated that the host plant recognized CMV(Ho) as a mutualistic symbiont rather than a parasitic pathogen. These results suggest a resilient mutualistic interaction between CMV(Ho) and its natural host A. halleri in its natural habitat.
Collapse
Affiliation(s)
- Midori Tabara
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Izumi Watanabe
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Atsushi Takeda
- College of Life Sciences, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aza-Aoba, 468-1, Sendai, 980-0845, Japan
| | - Toshiyuki Fukuhara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
4
|
Shi A, Xu J, Shao Y, Alwathnani H, Rensing C, Zhang J, Xing S, Ni W, Zhang L, Yang W. Salicylic Acid's impact on Sedum alfredii growth and cadmium tolerance: Comparative physiological, transcriptomic, and metabolomic study. ENVIRONMENTAL RESEARCH 2024; 252:119092. [PMID: 38729407 DOI: 10.1016/j.envres.2024.119092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yudie Shao
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Department of Environmental Microbiology, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - JinLin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Spielmann J, Schloesser M, Hanikenne M. Reduced expression of bZIP19 and bZIP23 increases zinc and cadmium accumulation in Arabidopsis halleri. PLANT, CELL & ENVIRONMENT 2024; 47:2093-2108. [PMID: 38404193 DOI: 10.1111/pce.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/27/2024]
Abstract
Zinc is an essential micronutrient for all living organisms. When challenged by zinc-limiting conditions, Arabidopsis thaliana plants use a strategy centered on two transcription factors, bZIP19 and bZIP23, to enhance the expression of several zinc transporters to improve their zinc uptake capacity. In the zinc and cadmium hyperaccumulator plant Arabidopsis halleri, highly efficient root-to-shoot zinc translocation results in constitutive local zinc deficiency in roots and in constitutive high expression of zinc deficiency-responsive ZIP genes, supposedly boosting zinc uptake and accumulation. Here, to disrupt this process and to analyze the functions of AhbZIP19, AhbZIP23 and their target genes in hyperaccumulation, the genes encoding both transcriptional factors were knocked down using artificial microRNAs (amiRNA). Although AhbZIP19, AhbZIP23, and their ZIP target genes were downregulated, amiRNA lines surprisingly accumulated more zinc and cadmium compared to control lines in both roots and shoot driving to shoot toxicity symptoms. These observations suggested the existence of a substitute metal uptake machinery in A. halleri to maintain hyperaccumulation. We propose that the iron uptake transporter AhIRT1 participates in this alternative pathway in A. halleri.
Collapse
Affiliation(s)
- Julien Spielmann
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Seregin IV, Kozhevnikova AD. Nicotianamine: A Key Player in Metal Homeostasis and Hyperaccumulation in Plants. Int J Mol Sci 2023; 24:10822. [PMID: 37446000 DOI: 10.3390/ijms241310822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Nicotianamine (NA) is a low-molecular-weight N-containing metal-binding ligand, whose accumulation in plant organs changes under metal deficiency or excess. Although NA biosynthesis can be induced in vivo by various metals, this non-proteinogenic amino acid is mainly involved in the detoxification and transport of iron, zinc, nickel, copper and manganese. This review summarizes the current knowledge on NA biosynthesis and its regulation, considers the mechanisms of NA secretion by plant roots, as well as the mechanisms of intracellular transport of NA and its complexes with metals, and its role in radial and long-distance metal transport. Its role in metal tolerance is also discussed. The NA contents in excluders, storing metals primarily in roots, and in hyperaccumulators, accumulating metals mainly in shoots, are compared. The available data suggest that NA plays an important role in maintaining metal homeostasis and hyperaccumulation mechanisms. The study of metal-binding compounds is of interdisciplinary significance, not only regarding their effects on metal toxicity in plants, but also in connection with the development of biofortification approaches to increase the metal contents, primarily of iron and zinc, in agricultural plants, since the deficiency of these elements in food crops seriously affects human health.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| |
Collapse
|
7
|
Stanton C, Sanders D, Krämer U, Podar D. Zinc in plants: Integrating homeostasis and biofortification. MOLECULAR PLANT 2022; 15:65-85. [PMID: 34952215 DOI: 10.1016/j.molp.2021.12.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 05/24/2023]
Abstract
Zinc plays many essential roles in life. As a strong Lewis acid that lacks redox activity under environmental and cellular conditions, the Zn2+ cation is central in determining protein structure and catalytic function of nearly 10% of most eukaryotic proteomes. While specific functions of zinc have been elucidated at a molecular level in a number of plant proteins, wider issues abound with respect to the acquisition and distribution of zinc by plants. An important challenge is to understand how plants balance between Zn supply in soil and their own nutritional requirement for zinc, particularly where edaphic factors lead to a lack of bioavailable zinc or, conversely, an excess of zinc that bears a major risk of phytotoxicity. Plants are the ultimate source of zinc in the human diet, and human Zn deficiency accounts for over 400 000 deaths annually. Here, we review the current understanding of zinc homeostasis in plants from the molecular and physiological perspectives. We provide an overview of approaches pursued so far in Zn biofortification of crops. Finally, we outline a "push-pull" model of zinc nutrition in plants as a simplifying concept. In summary, this review discusses avenues that can potentially deliver wider benefits for both plant and human Zn nutrition.
Collapse
Affiliation(s)
| | - Dale Sanders
- John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Dorina Podar
- Department of Molecular Biology and Biotechnology and Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Seregin IV, Kozhevnikova AD. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. PHOTOSYNTHESIS RESEARCH 2021; 150:51-96. [PMID: 32653983 DOI: 10.1007/s11120-020-00768-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Mineral nutrition is one of the key factors determining plant productivity. In plants, metal homeostasis is achieved through the functioning of a complex system governing metal uptake, translocation, distribution, and sequestration, leading to the maintenance of a regulated delivery of micronutrients to metal-requiring processes as well as detoxification of excess or non-essential metals. Low-molecular-weight ligands, such as nicotianamine, histidine, phytochelatins, phytosiderophores, and organic acids, play an important role in metal transport and detoxification in plants. Nicotianamine and histidine are also involved in metal hyperaccumulation, which determines the ability of some plant species to accumulate a large amount of metals in their shoots. In this review we extensively summarize and discuss the current knowledge of the main pathways for the biosynthesis of these ligands, their involvement in metal uptake, radial and long-distance transport, as well as metal influx, isolation and sequestration in plant tissues and cell compartments. It is analyzed how diverse endogenous ligand levels in plants can determine their different tolerance to metal toxic effects. This review focuses on recent advances in understanding the physiological role of these compounds in metal homeostasis, which is an essential task of modern ionomics and plant physiology. It is of key importance in studying the influence of metal deficiency or excess on various physiological processes, which is a prerequisite to the improvement of micronutrient uptake efficiency and crop productivity and to the development of a variety of applications in phytoremediation, phytomining, biofortification, and nutritional crop safety.
Collapse
Affiliation(s)
- I V Seregin
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276.
| | - A D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology RAS, IPPRAS, Botanicheskaya st., 35, Moscow, Russian Federation, 127276
| |
Collapse
|
9
|
Peng JS, Guan YH, Lin XJ, Xu XJ, Xiao L, Wang HH, Meng S. Comparative understanding of metal hyperaccumulation in plants: a mini-review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1599-1607. [PMID: 32060864 DOI: 10.1007/s10653-020-00533-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/29/2020] [Indexed: 05/14/2023]
Abstract
Hyperaccumulator plants are ideal models for investigating the regulatory mechanisms of plant metal homeostasis and environmental adaptation due to their notable traits of metal accumulation and tolerance. These traits may benefit either the biofortification of essential mineral nutrients or the phytoremediation of nonessential toxic metals. A common mechanism by which elevated expression of key genes involved in metal transport or chelation contributes to hyperaccumulation and hypertolerance was proposed mainly from studies examining two Brassicaceae hyperaccumulators, namely Arabidopsis halleri and Noccaea caerulescens (formerly Thlaspi caerulescens). Meanwhile, recent findings regarding systems outside the Brassicaceae hyperaccumulators indicated that functional enhancement of key genes might represent a strategy evolved by hyperaccumulator plants. This review provides a brief outline of metal hyperaccumulation in plants and highlights commonalities and differences among various hyperaccumulators.
Collapse
Affiliation(s)
- Jia-Shi Peng
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Yu-Hao Guan
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xian-Jing Lin
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xiao-Jing Xu
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Lu Xiao
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Hai-Hua Wang
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Shuan Meng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
10
|
Hanikenne M, Esteves SM, Fanara S, Rouached H. Coordinated homeostasis of essential mineral nutrients: a focus on iron. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2136-2153. [PMID: 33175167 DOI: 10.1093/jxb/eraa483] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/13/2020] [Indexed: 05/22/2023]
Abstract
In plants, iron (Fe) transport and homeostasis are highly regulated processes. Fe deficiency or excess dramatically limits plant and algal productivity. Interestingly, complex and unexpected interconnections between Fe and various macro- and micronutrient homeostatic networks, supposedly maintaining general ionic equilibrium and balanced nutrition, are currently being uncovered. Although these interactions have profound consequences for our understanding of Fe homeostasis and its regulation, their molecular bases and biological significance remain poorly understood. Here, we review recent knowledge gained on how Fe interacts with micronutrient (e.g. zinc, manganese) and macronutrient (e.g. sulfur, phosphate) homeostasis, and on how these interactions affect Fe uptake and trafficking. Finally, we highlight the importance of developing an improved model of how Fe signaling pathways are integrated into functional networks to control plant growth and development in response to fluctuating environments.
Collapse
Affiliation(s)
- Marc Hanikenne
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Sara M Esteves
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Steven Fanara
- InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Hatem Rouached
- BPMP, Univ. Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Spielmann J, Ahmadi H, Scheepers M, Weber M, Nitsche S, Carnol M, Bosman B, Kroymann J, Motte P, Clemens S, Hanikenne M. The two copies of the zinc and cadmium ZIP6 transporter of Arabidopsis halleri have distinct effects on cadmium tolerance. PLANT, CELL & ENVIRONMENT 2020; 43:2143-2157. [PMID: 32445418 DOI: 10.1111/pce.13806] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Plants have the ability to colonize highly diverse environments. The zinc and cadmium hyperaccumulator Arabidopsis halleri has adapted to establish populations on soils covering an extreme range of metal availabilities. The A. halleri ZIP6 gene presents several hallmarks of hyperaccumulation candidate genes: it is constitutively highly expressed in roots and shoots and is associated with a zinc accumulation quantitative trait locus. Here, we show that AhZIP6 is duplicated in the A. halleri genome. The two copies are expressed mainly in the vasculature in both A. halleri and Arabidopsis thaliana, indicative of conserved cis regulation, and acquired partial organ specialization. Yeast complementation assays determined that AhZIP6 is a zinc and cadmium transporter. AhZIP6 silencing in A. halleri or expression in A. thaliana alters cadmium tolerance, but has no impact on zinc and cadmium accumulation. AhZIP6-silenced plants display reduced cadmium uptake upon short-term exposure, adding AhZIP6 to the limited number of Cd transporters supported by in planta evidence. Altogether, our data suggest that AhZIP6 is key to fine-tune metal homeostasis in specific cell types. This study additionally highlights the distinct fates of duplicated genes in A. halleri.
Collapse
Affiliation(s)
- Julien Spielmann
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Hassan Ahmadi
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Maxime Scheepers
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Michael Weber
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Sarah Nitsche
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Monique Carnol
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Liège, Belgium
| | - Bernard Bosman
- InBioS-PhytoSystems, Laboratory of Plant and Microbial Ecology, University of Liège, Liège, Belgium
| | - Juergen Kroymann
- CNRS, AgroParisTech, Ecologie Systématique et Evolution, Université Paris-Saclay, Orsay, France
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Grignet A, de Vaufleury A, Papin A, Bert V. Urban soil phytomanagement for Zn and Cd in situ removal, greening, and Zn-rich biomass production taking care of snail exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3187-3201. [PMID: 31838670 DOI: 10.1007/s11356-019-06796-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The phytoextraction potential of Arabidopsis halleri (L.) O'Kane & Al Shehbaz and Salix viminalis L. to partially remove Zn and Cd in soil was investigated. In an urban field site, a very short rotation coppice of willows was implemented, and growth parameters were monitored for 3 years. A. halleri was cultivated in the same site with or without fertilizer to improve biomass yield and/or Zn and Cd aerial part concentrations. Effects of harvest and co-cultivation on these two parameters were measured. To determine if willows and A. halleri leaves were risky in case of consumption by a herbivorous invertebrate like the landsnail Cantareus aspersus, metal concentrations of snails fed with Zn- and Cd-enriched and low enriched leaves were compared. Willows and A. halleri grew well on the metal-contaminated soil (1.7 and 616 mg kg-1 Cd and Zn, respectively). The A. halleri Zn foliar concentration reached the Zn hyperaccumulation threshold (> 10,000 mg kg-1 DW) in the presence of NPK fertilizer and although the soil was alkaline (pH > 8.2). Cd concentration increased with harvest and fertilizer. Cd and Zn foliar concentrations of willows were far above baseline values. Laboratory snails exposure revealed that willow leaves ingestion caused a moderate increase of Cd, Pb, and Zn bioaccumulation in snails compared to the one caused by A. halleri ingestion. The soil and plant metal concentrations were reflected by field snail biomonitoring. This study confirmed the interest of selecting A. halleri and willows to partially remove Zn and Cd in the soil and emphasized their potential usefulness in greening urban contaminated area and producing raw materials for green chemistry while paying attention to the environmental pollutant transfer.
Collapse
Affiliation(s)
- Arnaud Grignet
- Clean Technologies and Circular Economy Unit, RISK Department, Chronic Risk Division, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France
| | - Annette de Vaufleury
- Department Chrono-environnement, UMR UFC/CNRS 6249 USC INRA, University of Bourgogne Franche-Comté, 16 Route de Gray, 25000, Besançon, France
| | - Arnaud Papin
- Method and Developments in Environmental Analysis Unit, CARA Department, Chronic Risk Division, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France
| | - Valérie Bert
- Clean Technologies and Circular Economy Unit, RISK Department, Chronic Risk Division, INERIS, Parc Technologique Alata BP 2, 60550, Verneuil en Halatte, France.
| |
Collapse
|
13
|
Nishida S, Tanikawa R, Ishida S, Yoshida J, Mizuno T, Nakanishi H, Furuta N. Elevated Expression of Vacuolar Nickel Transporter Gene IREG2 Is Associated With Reduced Root-to-Shoot Nickel Translocation in Noccaea japonica. FRONTIERS IN PLANT SCIENCE 2020; 11:610. [PMID: 32582232 PMCID: PMC7283525 DOI: 10.3389/fpls.2020.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/21/2020] [Indexed: 05/04/2023]
Abstract
A number of metal hyperaccumulator plants, including nickel (Ni) hyperaccumulators, have been identified in the genus Noccaea. The ability to accumulate Ni in shoots varies widely among species and ecotypes in this genus; however, little is known about the molecular mechanisms underlying this intra- and inter-specific variation. Here, in hydroponic culture, we compared Ni accumulation patterns between Noccaea japonica, which originated in Ni-enriched serpentine soils in Mt. Yubari (Hokkaido, Japan), and Noccaea caerulescens ecotype Ganges, which originated in zinc/lead-mine soils in Southern France. Both Noccaea species showed extremely high Ni tolerance compared with that of the non-accumulator Arabidopsis thaliana. But, following treatment with 200 μM Ni, N. caerulescens showed leaf chlorosis, whereas N. japonica did not show any stress symptoms. Shoot Ni concentration was higher in N. caerulescens than in N. japonica; this difference was due to higher efficiency of root-to-shoot Ni translocation in N. caerulescens than N. japonica. It is known that the vacuole Ni transporter IREG2 suppresses Ni translocation from roots to shoots by sequestering Ni in the root vacuoles. The expression level of the IREG2 gene in the roots of N. japonica was 10-fold that in the roots of N. caerulescens. Moreover, the copy number of IREG2 per genome was higher in N. japonica than in N. caerulescens, suggesting that IREG2 expression is elevated by gene multiplication in N. japonica. The heterologous expression of IREG2 of N. japonica and N. caerulescens in yeast and A. thaliana confirmed that both IREG2 genes encode functional vacuole Ni transporters. Taking these results together, we hypothesize that the elevation of IREG2 expression by gene multiplication causes the lower root-to-shoot Ni translocation in N. japonica.
Collapse
Affiliation(s)
- Sho Nishida
- Laboratory of Plant Nutrition, Faculty of Agriculture, Saga University, Saga, Japan
- *Correspondence: Sho Nishida,
| | - Ryoji Tanikawa
- Laboratory of Environmental Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Shota Ishida
- Laboratory of Environmental Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Junko Yoshida
- Laboratory of Soil Science and Plant Nutrition, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Takafumi Mizuno
- Laboratory of Soil Science and Plant Nutrition, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hiromi Nakanishi
- Laboratory of Plant Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Furuta
- Laboratory of Environmental Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
- Naoki Furuta,
| |
Collapse
|
14
|
Clemens S. Metal ligands in micronutrient acquisition and homeostasis. PLANT, CELL & ENVIRONMENT 2019; 42:2902-2912. [PMID: 31350913 DOI: 10.1111/pce.13627] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/09/2023]
Abstract
Acquisition and homeostasis of micronutrients such as iron (Fe) and zinc (Zn) pose specific challenges. Poor solubility and high reactivity require controlled synthesis and supply of ligands to complex these metals extracellularly and intracellularly. Cytosolic labile pools represent only a minute fraction of the total cellular content. Several low-molecular-weight ligands are known in plants, including sulfur ligands (cysteine and peptides), nitrogen/oxygen ligands (S-adenosyl-l-methionine-derived molecules and histidine), and oxygen ligands (phenolics and organic acids). Some ligands are secreted into the extracellular space and influence the phytoavailability of metal ions. A second principal function is the intracellular buffering of micronutrients as well as the facilitation of long-distance transport in xylem and phloem. Furthermore, low-molecular-weight ligands are involved in the storage of metals, predominantly in vacuoles. A detailed molecular understanding is hampered by technical limitations, in particular the difficulty to detect and quantify cellular metal-ligand complexes. More, but still too little, is known about ligand synthesis and the transport across membranes, either with or without a complexed metal. Metal ligands have an immediate impact on human well-being. Engineering metal ligand synthesis and distribution in crops has tremendous potential to improve the nutritional quality of food and to tackle major human health risks.
Collapse
Affiliation(s)
- Stephan Clemens
- Department of Plant Physiology and Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|