1
|
Bortolami G, de Werk TA, Larter M, Thonglim A, Mueller-Roeber B, Balazadeh S, Lens F. Integrating gene expression analysis and ecophysiological responses to water deficit in leaves of tomato plants. Sci Rep 2024; 14:29024. [PMID: 39578554 PMCID: PMC11584733 DOI: 10.1038/s41598-024-80261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Soil water deficit (WD) significantly impacts plant survival and crop yields. Many gaps remain in our understanding of the synergistic coordination between molecular and ecophysiological responses delaying substantial drought-induced effects on plant growth. To investigate this synergism in tomato leaves, we combined molecular, ecophysiological, and anatomical methods to examine gene expression patterns and physio-anatomical characteristics during a progressing WD experiment. Four sampling points were selected for transcriptomic analysis based on the key ecophysiological responses of the tomato leaves: 4 and 5 days after WD (d-WD), corresponding to 10% and 90% decrease in leaf stomatal conductance; 8 d-WD, the leaf wilting point; and 10 d-WD, when air embolism blocks 12% of the leaf xylem water transport. At 4 d-WD, upregulated genes were mostly linked to ABA-independent responses, with larger-scale ABA-dependent responses occurring at 5 d-WD. At 8 d-WD, we observed an upregulation of heat shock transcription factors, and two days later (10 d-WD), we found a strong upregulation of oxidative stress transcription factors. Finally, we found that young leaves present a stronger dehydration tolerance than mature leaves at the same drought intensity level, presumably because young leaves upregulate genes related to increased callose deposition resulting in limiting water loss to the phloem, and related to increased cell rigidity by modifying cell wall structures. This combined dataset will serve as a framework for future studies that aim to obtain a more holistic WD plant response at the molecular, ecophysiological and anatomical level.
Collapse
Affiliation(s)
- G Bortolami
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, 1015, Lausanne, Switzerland
| | - T A de Werk
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - M Larter
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
- BIOGECO, INRAE, Université de Bordeaux, 33615, Pessac, France
| | - A Thonglim
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - B Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - S Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
- Institute Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - F Lens
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands.
- Institute Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
2
|
Miranda MT, Pires GS, Pereira L, de Lima RF, da Silva SF, Mayer JLS, Azevedo FA, Machado EC, Jansen S, Ribeiro RV. Rootstocks affect the vulnerability to embolism and pit membrane thickness in Citrus scions. PLANT, CELL & ENVIRONMENT 2024; 47:3063-3075. [PMID: 38660960 DOI: 10.1111/pce.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations. Scions of 'Tahiti' acid lime, 'Hamlin', 'Pera' and 'Valencia' oranges grafted on a 'Rangpur' lime rootstock exhibit similar vulnerability to embolism. In field-grown trees, measurements of leaf water potential did not suggest significant embolism formation during the dry season, while stomata of Citrus trees presented an isohydric response to declining water availability. When 'Valencia' orange scions were grafted on 'Rangpur' lime, 'IAC 1710' citrandarin, 'Sunki Tropical' mandarin or 'Swingle' citrumelo rootstocks, variation in intervessel pit membrane thickness of the scion was found. The 'Rangpur' lime rootstock, which is known for its drought resistance, induced thicker pit membranes in the scion, resulting in higher embolism resistance than the other rootstocks. Similarly, the rootstock 'IAC 1710' citrandarin generated increased embolism resistance of the scion, which is highly relevant for citriculture.
Collapse
Affiliation(s)
- Marcela T Miranda
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center of Agricultural and Post-Harvest Biosystems, Agronomic Institute (IAC), Campinas, SP, Brazil
- Institute of Botany, Ulm University, Ulm, Germany
| | - Gabriel S Pires
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Rodrigo F de Lima
- Laboratory of Plant Anatomy, Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Simone F da Silva
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana L S Mayer
- Laboratory of Plant Anatomy, Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernando A Azevedo
- Center of Citriculture Sylvio Moreira, Agronomic Institute (IAC), Cordeirópolis, SP, Brazil
| | - Eduardo C Machado
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center of Agricultural and Post-Harvest Biosystems, Agronomic Institute (IAC), Campinas, SP, Brazil
| | | | - Rafael V Ribeiro
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
3
|
Haverroth EJ, Rimer IM, Oliveira LA, de Lima LGA, Cesarino I, Martins SCV, McAdam SAM, Cardoso AA. Gradients in embolism resistance within stems driven by secondary growth in herbs. PLANT, CELL & ENVIRONMENT 2024; 47:2986-2998. [PMID: 38644584 DOI: 10.1111/pce.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
The stems of some herbaceous species can undergo basal secondary growth, leading to a continuum in the degree of woodiness along the stem. Whether the formation of secondary growth in the stem base results in differences in embolism resistance between the base and the upper portions of stems is unknown. We assessed the embolism resistance of leaves and the basal and upper portions of stems simultaneously within the same individuals of two divergent herbaceous species that undergo secondary growth in the mature stem bases. The species were Solanum lycopersicum (tomato) and Senecio minimus (fireweed). Basal stem in mature plants of both species displayed advanced secondary growth and greater resistance to embolism than the upper stem. This also resulted in significant vulnerability segmentation between the basal stem and the leaves in both species. Greater embolism resistance in the woodier stem base was found alongside decreases in the pith-to-xylem ratio, increases in the proportion of secondary xylem, and increases in lignin content. We show that there can be considerable variation in embolism resistance across the stem in herbs and that this variation is linked to the degree of secondary growth present. A gradient in embolism resistance across the stem in herbaceous plants could be an adaptation to ensure reproduction or basal resprouting during episodes of drought late in the lifecycle.
Collapse
Affiliation(s)
- Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ian M Rimer
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Leydson G A de Lima
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues, São Paulo, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Liu J, Carriquí M, Xiong D, Kang S. Influence of IAA and ABA on maize stem vessel diameter and stress resistance in variable environments. PHYSIOLOGIA PLANTARUM 2024; 176:e14443. [PMID: 39039017 DOI: 10.1111/ppl.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
The plasticity of the xylem and its associated hydraulic properties play crucial roles in plant acclimation to environmental changes, with vessel diameter (Dv) being the most functionally prominent trait. While the effects of external environmental factors on xylem formation and Dv are not fully understood, the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) are known to play significant signalling roles under stress conditions. This study investigates how these hormones impact Dv under various environmental changes. Experiments were conducted in maize plants subjected to drought, soil salinity, and high CO2 concentration treatments. We found that drought and soil salinity significantly reduced Dv at the same stem internode, while an elevated CO2 concentration can mitigate this decrease in Dv. Remarkably, significant negative correlations were observed between Dv and the contents of IAA and ABA when considering the different treatments. Moreover, appropriate foliar application of either IAA or ABA on well-watered and stressed plants led to a decrease in Dv, while the application of corresponding inhibitors resulted in an increase in Dv. This finding underscores the causal relationship between Dv and the levels of both IAA and ABA, offering a promising approach to manipulating xylem vessel size.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| |
Collapse
|
5
|
Torres-Ruiz JM, Cochard H, Delzon S, Boivin T, Burlett R, Cailleret M, Corso D, Delmas CEL, De Caceres M, Diaz-Espejo A, Fernández-Conradi P, Guillemot J, Lamarque LJ, Limousin JM, Mantova M, Mencuccini M, Morin X, Pimont F, De Dios VR, Ruffault J, Trueba S, Martin-StPaul NK. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. THE NEW PHYTOLOGIST 2024; 241:984-999. [PMID: 38098153 DOI: 10.1111/nph.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.
Collapse
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Sylvain Delzon
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | | - Regis Burlett
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Maxime Cailleret
- INRAE, Aix-Marseille Université, UMR RECOVER, Aix-en-Provence, 13100, France
| | - Déborah Corso
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140, Villenave d'Ornon, France
| | | | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41012, Spain
| | | | - Joannes Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, 34394, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, 34394, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, 05508-060, São Paulo, Brazil
| | - Laurent J Lamarque
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, G9A 5H7, Québec, Canada
| | | | - Marylou Mantova
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Xavier Morin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34394, France
| | | | - Victor Resco De Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lleida, 25198, Spain
- JRU CTFC-AGROTECNIO-CERCA Center, Lleida, 25198, Spain
| | | | - Santiago Trueba
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | |
Collapse
|
6
|
Petek-Petrik A, Petrík P, Lamarque LJ, Cochard H, Burlett R, Delzon S. Drought survival in conifer species is related to the time required to cross the stomatal safety margin. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6847-6859. [PMID: 37681745 DOI: 10.1093/jxb/erad352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
The regulation of water loss and the spread of xylem embolism have mostly been considered separately. The development of an integrated approach taking into account the temporal dynamics and relative contributions of these mechanisms to plant drought responses is urgently needed. Do conifer species native to mesic and xeric environments display different hydraulic strategies and temporal sequences under drought? A dry-down experiment was performed on seedlings of four conifer species differing in embolism resistance, from drought-sensitive to extremely drought-resistant species. A set of traits related to drought survival was measured, including turgor loss point, stomatal closure, minimum leaf conductance, and xylem embolism resistance. All species reached full stomatal closure before the onset of embolism, with all but the most drought-sensitive species presenting large stomatal safety margins, demonstrating that highly drought-resistant species do not keep their stomata open under drought conditions. Plant dry-down time to death was significantly influenced by the xylem embolism threshold, stomatal safety margin, and minimum leaf conductance, and was best explained by the newly introduced stomatal margin retention index (SMRIΨ50) which reflects the time required to cross the stomatal safety margin. The SMRIΨ50 may become a key tool for the characterization of interspecific drought survival variability in trees.
Collapse
Affiliation(s)
- Anja Petek-Petrik
- Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Peter Petrík
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), 82467 Garmisch-Partenkirchen, Germany
| | - Laurent J Lamarque
- BIOGECO, University of Bordeaux, INRAE, F-33615 Pessac, France
- Département des Sciences de l'Environnement, UQTR, Trois-Rivières, Québec, Canada
| | - Hervé Cochard
- PIAF, University of Clermont Auvergne, INRAE, 63000 Clermont-Ferrand, France
| | - Régis Burlett
- BIOGECO, University of Bordeaux, INRAE, F-33615 Pessac, France
| | - Sylvain Delzon
- BIOGECO, University of Bordeaux, INRAE, F-33615 Pessac, France
| |
Collapse
|
7
|
Haverroth EJ, Oliveira LA, Andrade MT, Taggart M, McAdam SAM, Zsögön A, Thompson AJ, Martins SCV, Cardoso AA. Abscisic acid acts essentially on stomata, not on the xylem, to improve drought resistance in tomato. PLANT, CELL & ENVIRONMENT 2023; 46:3229-3241. [PMID: 37526514 DOI: 10.1111/pce.14676] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/15/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Drought resistance is essential for plant production under water-limiting environments. Abscisic acid (ABA) plays a critical role in stomata but its impact on hydraulic function beyond the stomata is far less studied. We selected genotypes differing in their ability to accumulate ABA to investigate its role in drought-induced dysfunction. All genotypes exhibited similar leaf and stem embolism resistance regardless of differences in ABA levels. Their leaf hydraulic resistance was also similar. Differences were only observed between the two extreme genotypes: sitiens (sit; a strong ABA-deficient mutant) and sp12 (a transgenic line that constitutively overaccumulates ABA), where the water potential inducing 50% embolism was 0.25 MPa lower in sp12 than in sit. Maximum stomatal and minimum leaf conductances were considerably lower in plants with higher ABA (wild type [WT] and sp12) than in ABA-deficient mutants. Variations in gas exchange across genotypes were associated with ABA levels and differences in stomatal density and size. The lower water loss in plants with higher ABA meant that lethal water potentials associated with embolism occurred later during drought in sp12 plants, followed by WT, and then by the ABA-deficient mutants. Therefore, the primary pathway by which ABA enhances drought resistance is via declines in water loss, which delays dehydration and hydraulic dysfunction.
Collapse
Affiliation(s)
- Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Moab T Andrade
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Matthew Taggart
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Andrew J Thompson
- Centre for Soil, Agrifood and Biosciences, Cranfield University, Bedfordshire, UK
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
8
|
Blackman CJ, Billon LM, Cartailler J, Torres-Ruiz JM, Cochard H. Key hydraulic traits control the dynamics of plant dehydration in four contrasting tree species during drought. TREE PHYSIOLOGY 2023; 43:1772-1783. [PMID: 37318310 PMCID: PMC10652334 DOI: 10.1093/treephys/tpad075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Trees are at risk of mortality during extreme drought, yet our understanding of the traits that govern the timing of drought-induced hydraulic failure remains limited. To address this, we tested SurEau, a trait-based soil-plant-atmosphere model designed to predict the dynamics of plant dehydration as represented by the changes in water potential against those observed in potted trees of four contrasting species (Pinus halepensis Mill., Populus nigra L., Quercus ilex L. and Cedrus atlantica (Endl.) Manetti ex Carriére) exposed to drought. SurEau was parameterized with a range of plant hydraulic and allometric traits, soil and climatic variables. We found a close correspondence between the predicted and observed plant water potential (in MPa) dynamics during the early phase drought, leading to stomatal closure, as well as during the latter phase of drought, leading to hydraulic failure in all four species. A global model's sensitivity analysis revealed that, for a common plant size (leaf area) and soil volume, dehydration time from full hydration to stomatal closure (Tclose) was most strongly controlled by the leaf osmotic potential (Pi0) and its influence on stomatal closure, in all four species, while the maximum stomatal conductance (gsmax) also contributed to Tclose in Q. ilex and C. atlantica. Dehydration times from stomatal closure to hydraulic failure (Tcav) was most strongly controlled by Pi0, the branch residual conductance (gres) and Q10a sensitivity of gres in the three evergreen species, while xylem embolism resistance (P50) was most influential in the deciduous species P. nigra. Our findings point to SurEau as a highly useful model for predicting changes in plant water status during drought and suggest that adjustments made in key hydraulic traits are potentially beneficial to delaying the onset of drought-induced hydraulic failure in trees.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Lise-Marie Billon
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Julien Cartailler
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| |
Collapse
|
9
|
Petrík P, Petek-Petrik A, Mukarram M, Schuldt B, Lamarque LJ. Leaf physiological and morphological constraints of water-use efficiency in C 3 plants. AOB PLANTS 2023; 15:plad047. [PMID: 37560762 PMCID: PMC10407996 DOI: 10.1093/aobpla/plad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
The increasing evaporative demand due to climate change will significantly affect the balance of carbon assimilation and water losses of plants worldwide. The development of crop varieties with improved water-use efficiency (WUE) will be critical for adapting agricultural strategies under predicted future climates. This review aims to summarize the most important leaf morpho-physiological constraints of WUE in C3 plants and identify gaps in knowledge. From the carbon gain side of the WUE, the discussed parameters are mesophyll conductance, carboxylation efficiency and respiratory losses. The traits and parameters affecting the waterside of WUE balance discussed in this review are stomatal size and density, stomatal control and residual water losses (cuticular and bark conductance), nocturnal conductance and leaf hydraulic conductance. In addition, we discussed the impact of leaf anatomy and crown architecture on both the carbon gain and water loss components of WUE. There are multiple possible targets for future development in understanding sources of WUE variability in plants. We identified residual water losses and respiratory carbon losses as the greatest knowledge gaps of whole-plant WUE assessments. Moreover, the impact of trichomes, leaf hydraulic conductance and canopy structure on plants' WUE is still not well understood. The development of a multi-trait approach is urgently needed for a better understanding of WUE dynamics and optimization.
Collapse
Affiliation(s)
- Peter Petrík
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Anja Petek-Petrik
- Institute of Botany, Czech Academy of Sciences, Lidická 971, 602 00 Brno, Czech Republic
| | - Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 960 01 Zvolen, Slovakia
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Pienner Str. 7, 01737 Tharandt, Germany
| | - Laurent J Lamarque
- Département des Sciences de l’environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| |
Collapse
|
10
|
Habibpourmehraban F, Wu Y, Masoomi-Aladizgeh F, Amirkhani A, Atwell BJ, Haynes PA. Pre-Treatment of Rice Plants with ABA Makes Them More Tolerant to Multiple Abiotic Stress. Int J Mol Sci 2023; 24:ijms24119628. [PMID: 37298579 DOI: 10.3390/ijms24119628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Multiple abiotic stress is known as a type of environmental unfavourable condition maximizing the yield and growth gap of crops compared with the optimal condition in both natural and cultivated environments. Rice is the world's most important staple food, and its production is limited the most by environmental unfavourable conditions. In this study, we investigated the pre-treatment of abscisic acid (ABA) on the tolerance of the IAC1131 rice genotype to multiple abiotic stress after a 4-day exposure to combined drought, salt and extreme temperature treatments. A total of 3285 proteins were identified and quantified across the four treatment groups, consisting of control and stressed plants with and without pre-treatment with ABA, with 1633 of those proteins found to be differentially abundant between groups. Compared with the control condition, pre-treatment with the ABA hormone significantly mitigated the leaf damage against combined abiotic stress at the proteome level. Furthermore, the application of exogenous ABA did not affect the proteome profile of the control plants remarkably, while the results were different in stress-exposed plants by a greater number of proteins changed in abundance, especially those which were increased. Taken together, these results suggest that exogenous ABA has a potential priming effect for enhancing the rice seedlings' tolerance against combined abiotic stress, mainly by affecting stress-responsive mechanisms dependent on ABA signalling pathways in plants.
Collapse
Affiliation(s)
- Fatemeh Habibpourmehraban
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yunqi Wu
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Farhad Masoomi-Aladizgeh
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ardeshir Amirkhani
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
11
|
Lamarque LJ, Delmas CEL, Charrier G, Burlett R, Dell'Acqua N, Pouzoulet J, Gambetta GA, Delzon S. Quantifying the grapevine xylem embolism resistance spectrum to identify varieties and regions at risk in a future dry climate. Sci Rep 2023; 13:7724. [PMID: 37173393 PMCID: PMC10181993 DOI: 10.1038/s41598-023-34224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Maintaining wine production under global warming partly relies on optimizing the choice of plant material for a given viticultural region and developing drought-resistant cultivars. However, progress in these directions is hampered by the lack of understanding of differences in drought resistance among Vitis genotypes. We investigated patterns of xylem embolism vulnerability within and among 30 Vitis species and sub-species (varieties) from different locations and climates, and assessed the risk of drought vulnerability in 329 viticultural regions worldwide. Within a variety, vulnerability to embolism decreased during summer. Among varieties, we have found wide variations in drought resistance of the vascular system in grapevines. This is particularly the case within Vitis vinifera, with varieties distributed across four clusters of embolism vulnerability. Ugni blanc and Chardonnay featured among the most vulnerable, while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. Regions possibly at greater risk of being vulnerable to drought, such as Poitou-Charentes, France and Marlborough, New Zealand, do not necessarily have arid climates, but rather bear a significant proportion of vulnerable varieties. We demonstrate that grapevine varieties may not respond equally to warmer and drier conditions, and highlight that hydraulic traits are key to improve viticulture suitability under climate change.
Collapse
Affiliation(s)
- Laurent J Lamarque
- Université de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France.
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
| | | | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Régis Burlett
- Université de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | | | | | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 33882, Villenave d'Ornon, France
| | - Sylvain Delzon
- Université de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| |
Collapse
|
12
|
Nowicka B. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3430. [PMID: 36559545 PMCID: PMC9781743 DOI: 10.3390/plants11243430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Due to the growing human population, the increase in crop yield is an important challenge for modern agriculture. As abiotic and biotic stresses cause severe losses in agriculture, it is also crucial to obtain varieties that are more tolerant to these factors. In the past, traditional breeding methods were used to obtain new varieties displaying demanded traits. Nowadays, genetic engineering is another available tool. An important direction of the research on genetically modified plants concerns the modification of phytohormone metabolism. This review summarizes the state-of-the-art research concerning the modulation of phytohormone content aimed at the stimulation of plant growth and the improvement of stress tolerance. It aims to provide a useful basis for developing new strategies for crop yield improvement by genetic engineering of phytohormone metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
13
|
Jacob V, Choat B, Churchill AC, Zhang H, Barton CVM, Krishnananthaselvan A, Post AK, Power SA, Medlyn BE, Tissue DT. High safety margins to drought-induced hydraulic failure found in five pasture grasses. PLANT, CELL & ENVIRONMENT 2022; 45:1631-1646. [PMID: 35319101 DOI: 10.1111/pce.14318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Determining the relationship between reductions in stomatal conductance (gs ) and leaf water transport during dehydration is key to understanding plant drought responses. While numerous studies have analysed the hydraulic function of woody species, minimal research has been conducted on grasses. Here, we sought to characterize hydraulic vulnerability in five widely-occurring pasture grasses (including both C3 and C4 grasses) and determine whether reductions in gs and leaf hydraulic conductance (Kleaf ) during dehydration could be attributed to xylem embolism. Using the optical vulnerability (OV) technique, we found that all species were highly resistant to xylem embolism when compared to other herbaceous angiosperms, with 50% xylem embolism (PX50 ) occurring at xylem pressures ranging from -4.4 to -6.1 MPa. We observed similar reductions in gs and Kleaf under mild water stress for all species, occurring well before PX50 . The onset of xylem embolism (PX12 ) occurred consistently after stomatal closure and 90% reduction of Kleaf . Our results suggest that factors other than xylem embolism are responsible for the majority of reductions in gs and Kleaf during drought and reductions in the productivity of pasture species under moderate drought may not be driven by embolism.
Collapse
Affiliation(s)
- Vinod Jacob
- Western Sydney University, Penrith, New South Wales, Australia
| | - Brendan Choat
- Western Sydney University, Penrith, New South Wales, Australia
| | | | - Haiyang Zhang
- Western Sydney University, Penrith, New South Wales, Australia
| | | | | | - Alison K Post
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sally A Power
- Western Sydney University, Penrith, New South Wales, Australia
| | | | - David T Tissue
- Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
14
|
Li S, Hamani AKM, Zhang Y, Liang Y, Gao Y, Duan A. Coordination of leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought. BMC PLANT BIOLOGY 2021; 21:536. [PMID: 34781896 PMCID: PMC8591842 DOI: 10.1186/s12870-021-03304-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Leaf hydraulic and economics traits are critical for balancing plant water and CO2 exchange, and their relationship has been widely studied. Leaf anatomical traits determine the efficiency of CO2 diffusion within mesophyll structure. However, it remains unclear whether leaf anatomical traits are associated with leaf hydraulic and economics traits acclimation to long-term drought. RESULTS To address this knowledge gap, eight hydraulic traits, including stomatal and venation structures, four economics traits, including leaf dry mass per area (LMA) and the ratio between palisade and spongy mesophyll thickness (PT/ST), and four anatomical traits related to CO2 diffusion were measured in tomato seedlings under the long-term drought conditions. Redundancy analysis indicated that the long-term drought decreased stomatal conductance (gs) mainly due to a synchronized reduction in hydraulic structure such as leaf hydraulic conductance (Kleaf) and major vein width. Simultaneously, stomatal aperture on the adaxial surface and minor vein density (VDminor) also contributed a lot to this reduction. The decreases in mesophyll thickness (Tmes) and chlorophyll surface area exposed to leaf intercellular air spaces (Sc/S) were primarily responsible for the decline of mesophyll conductance (gm) thereby affecting photosynthesis. Drought increased leaf density (LD) thus limited CO2 diffusion. In addition, LMA may not be important in regulating gm in tomato under drought. Principal component analysis revealed that main anatomical traits such as Tmes and Sc/S were positively correlated to Kleaf, VDminor and leaf thickness (LT), while negatively associated with PT/ST. CONCLUSIONS These findings indicated that leaf anatomy plays an important role in maintaining the balance between water supply and CO2 diffusion responses to drought. There was a strong coordination between leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought.
Collapse
Affiliation(s)
- Shuang Li
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Abdoul Kader Mounkaila Hamani
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yingying Zhang
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
| | - Yueping Liang
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China
| | - Yang Gao
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China.
| | - Aiwang Duan
- Farmland Irrigation Research Institute, Key Laboratory of Crop Water Use and Regulation, Chinese Academy of Agriculture Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang, Henan, 453002, China.
| |
Collapse
|
15
|
Lemaire C, Blackman CJ, Cochard H, Menezes-Silva PE, Torres-Ruiz JM, Herbette S. Acclimation of hydraulic and morphological traits to water deficit delays hydraulic failure during simulated drought in poplar. TREE PHYSIOLOGY 2021; 41:2008-2021. [PMID: 34259313 DOI: 10.1093/treephys/tpab086] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/07/2021] [Indexed: 05/27/2023]
Abstract
The capacity of trees to tolerate and survive increasing drought conditions in situ will depend in part on their ability to acclimate (via phenotypic plasticity) key hydraulic and morphological traits that increase drought tolerance and delay the onset of drought-induced hydraulic failure. However, the effect of water-deficit acclimation in key traits that determine time to hydraulic failure (THF) during extreme drought remains largely untested. We measured key hydraulic and morphological traits in saplings of a hybrid poplar grown under well-watered and water-limited conditions. The time for plants to dry-down to critical levels of water stress (90% loss of stem hydraulic conductance), as well as the relative contribution of drought acclimation in each trait to THF, was simulated using a soil-plant hydraulic model (SurEau). Compared with controls, water-limited plants exhibited significantly lower stem hydraulic vulnerability (P50stem), stomatal conductance and total canopy leaf area (LA). Taken together, adjustments in these and other traits resulted in longer modelled THF in water-limited (~160 h) compared with well-watered plants (~50 h), representing an increase of more than 200%. Sensitivity analysis revealed that adjustment in P50stem and LA contributed the most to longer THF in water-limited plants. We observed a high degree of trait plasticity in poplar saplings in response to water-deficit growth conditions, with decreases in stem hydraulic vulnerability and leaf area playing a key role in delaying the onset of hydraulic failure during a simulated drought event. These findings suggest that understanding the capacity of plants to acclimate to antecedent growth conditions will enable better predictions of plant survivorship during future drought.
Collapse
Affiliation(s)
- Cédric Lemaire
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Chris J Blackman
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Paulo Eduardo Menezes-Silva
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
- Department of Biology, Goiano Federal Institute of Education, Science and Technology-IF Goiano, Rio Verde, Goiás, Brazil
| | - José M Torres-Ruiz
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Stéphane Herbette
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| |
Collapse
|
16
|
Sun Q, Gilgen AK, Signarbieux C, Klaus VH, Buchmann N. Cropping systems alter hydraulic traits of barley but not pea grown in mixture. PLANT, CELL & ENVIRONMENT 2021; 44:2912-2924. [PMID: 33763869 DOI: 10.1111/pce.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Extreme events such as drought and heatwaves are among the biggest challenges to agricultural production and food security. However, the effects of cropping systems on drought resistance of arable crops via their hydraulic behaviour remain unclear. We investigated how hydraulic traits of a field-grown pea-barley (Pisum sativum L. and Hordeum vulgare L.) mixture were affected by different cropping systems, that is, organic and conventional farming with intensive or conservation tillage. Xylem vulnerability to cavitation of both species was estimated by measuring the pressure inducing 50% loss of hydraulic conductivity (P50 ), while the water stress plants experienced in the field were assessed using native percentage loss of hydraulic conductivity (nPLC). Pea and barley showed contrasting hydraulic behaviours: pea was less vulnerable to xylem cavitation and less stressed than barley; cropping systems affected the xylem vulnerability of barley, but not of pea. Barley grown under conventional farming with no tillage was more vulnerable and stressed than under organic farming with intensive tillage. nPLC proved to be a valuable indicator for plant water stress. Our results highlight the impact of cropping systems on crop xylem vulnerability and drought resistance, thus plant hydraulic traits, for protecting food security under future climate.
Collapse
Affiliation(s)
- Qing Sun
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Anna K Gilgen
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Constant Signarbieux
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Ecological Systems Laboratory (ECOS), Lausanne, Switzerland
| | - Valentin H Klaus
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Thonglim A, Delzon S, Larter M, Karami O, Rahimi A, Offringa R, Keurentjes JJB, Balazadeh S, Smets E, Lens F. Intervessel pit membrane thickness best explains variation in embolism resistance amongst stems of Arabidopsis thaliana accessions. ANNALS OF BOTANY 2021; 128:171-182. [PMID: 33216143 PMCID: PMC8324034 DOI: 10.1093/aob/mcaa196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/13/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The ability to avoid drought-induced embolisms in the xylem is one of the essential traits for plants to survive periods of water shortage. Over the past three decades, hydraulic studies have been focusing on trees, which limits our ability to understand how herbs tolerate drought. Here we investigate the embolism resistance in inflorescence stems of four Arabidopsis thaliana accessions that differ in growth form and drought response. We assess functional traits underlying the variation in embolism resistance amongst the accessions studied using detailed anatomical observations. METHODS Vulnerability to xylem embolism was evaluated via vulnerability curves using the centrifuge technique and linked with detailed anatomical observations in stems using light microscopy and transmission electron microscopy. KEY RESULTS The data show significant differences in stem P50, varying 2-fold from -1.58 MPa in the Cape Verde Island accession to -3.07 MPa in the woody soc1 ful double mutant. Out of all the anatomical traits measured, intervessel pit membrane thickness (TPM) best explains the differences in P50, as well as P12 and P88. The association between embolism resistance and TPM can be functionally explained by the air-seeding hypothesis. There is no evidence that the correlation between increased woodiness and increased embolism resistance is directly related to functional aspects. However, we found that increased woodiness is strongly linked to other lignification characters, explaining why mechanical stem reinforcement is indirectly related to increased embolism resistance. CONCLUSIONS The woodier or more lignified accessions are more resistant to embolism than the herbaceous accessions, confirming the link between increased stem lignification and increased embolism resistance, as also observed in other lineages. Intervessel pit membrane thickness and, to a lesser extent, theoretical vessel implosion resistance and vessel wall thickness are the missing functional links between stem lignification and embolism resistance.
Collapse
Affiliation(s)
- Ajaree Thonglim
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| | | | - Maximilian Larter
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| | - Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - Salma Balazadeh
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, BE Leiden, the Netherlands
| | - Erik Smets
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| | - Frederic Lens
- Naturalis Biodiversity Center, Research Group Functional Traits, RA Leiden, The Netherlands
| |
Collapse
|
18
|
Li S, Zhang J, Liu L, Wang Z, Li Y, Guo L, Li Y, Zhang X, Ren S, Zhao B, Zhang N, Guo YD. SlTLFP8 reduces water loss to improve water-use efficiency by modulating cell size and stomatal density via endoreduplication. PLANT, CELL & ENVIRONMENT 2020; 43:2666-2679. [PMID: 32799324 DOI: 10.1111/pce.13867] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/09/2020] [Indexed: 05/23/2023]
Abstract
Improving plant water-use efficiency (WUE) is important to plant survival and crop yield in the context of water limitation. In this study, SlTLFP8 (Tubby-like F-box protein 8) was identified as an osmotic-induced gene in tomato. Transgenic tomato with up-regulated expression of SlTLFP8 showed enhanced water-deficient resistance, whereas knockout mutants generated by CRISPR/Cas9 were more sensitive to water deficit. SlTLFP8 overexpression significantly enhanced WUE by suppressing transpiration under both water-sufficient and water-deficient conditions. Further study showed that overexpressing SlTLFP8 significantly increased leaf epidermal cell size and thereby decreased stomatal density 10-20%, conversely SlTLFP8 knockout resulted in decreased cell size and thereby increased stomatal density 20-50%. SlTLFP8 overexpression and knockout modulated ploidy levels in leaf cells. Changes in expression of cell cycle related genes also indicated that SlTLFP8 affected cell size and stomatal density through endocycle transition. Despite changes in stomata density and transpiration, altering the expression of SlTLFP8 did not change photosynthesis. Additionally, biomass was not altered and there was little difference in fruit yield for transgenic and wild type lines under water-sufficient and water-deficient conditions. Our results demonstrate the effect of SlTLFP8 on endoreduplication and the potential of SlTLFP8 for improvement of WUE. BRIEF SUMMERY: This work found a new mechanism of TLP (Tubby like protein) response to water-deficient stress. SlTLFP8, a member of TLP family, regulates water-deficient resistance by modulating water loss via affecting stomatal density. Expression of SlTLFP8 was induced by osmotic stress. Transgenic tomato lines with SlTLFP8 overexpression or SlTLFP8 knockout showed significantly differences in water-use efficiency (WUE) and water-deficient resistance. The difference of leaf water loss caused by transpiration is the main explanation of the difference in WUE and water-deficient resistance. Additionally, overexpressing SlTLFP8 significantly decreased stomatal density, while SlTLFP8 knockout resulted in increased stomatal density, and SlTLFP8 affected stomatal density through endoreduplication and altered epidermal cell size. Despite changes in stomata density, altering the expression of SlTLFP8 did not result in distinct changes in photosynthesis, biomass and yield of tomato.
Collapse
Affiliation(s)
- Shuangtao Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jiaojiao Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yu Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xichun Zhang
- College of Plant Science & Technology, Beijing University of Agriculture, Beijing, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, Virginia, USA
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186322] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The observation of a much-improved fitness of wild-type plants over abscisic acid (ABA)-deficient mutants during drought has led researchers from all over to world to perform experiments aiming at a better understanding of how this hormone modulates the physiology of plants under water-limited conditions. More recently, several promising approaches manipulating ABA biosynthesis and signaling have been explored to improve water use efficiency and confer drought tolerance to major crop species. Here, we review recent progress made in the last decade on (i) ABA biosynthesis, (ii) the roles of ABA on plant-water relations and on primary and secondary metabolisms during drought, and (iii) the regulation of ABA levels and perception to improve water use efficiency and drought tolerance in crop species.
Collapse
|
20
|
Živanović B, Milić Komić S, Tosti T, Vidović M, Prokić L, Veljović Jovanović S. Leaf Soluble Sugars and Free Amino Acids as Important Components of Abscisic Acid-Mediated Drought Response in Tomato. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1147. [PMID: 32899651 PMCID: PMC7570426 DOI: 10.3390/plants9091147] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Water deficit has a global impact on plant growth and crop yield. Climate changes are going to increase the intensity, duration and frequency of severe droughts, particularly in southern and south-eastern Europe, elevating the water scarcity issues. We aimed to assess the contribution of endogenous abscisic acid (ABA) in the protective mechanisms against water deficit, including stomatal conductance, relative water potential and the accumulation of osmoprotectants, as well as on growth parameters. To achieve that, we used a suitable model system, ABA-deficient tomato mutant, flacca and its parental line. Flacca mutant exhibited constitutively higher levels of soluble sugars (e.g., galactose, arabinose, sorbitol) and free amino acids (AAs) compared with the wild type (WT). Water deficit provoked the strong accumulation of proline in both genotypes, and total soluble sugars only in flacca. Upon re-watering, these osmolytes returned to the initial levels in both genotypes. Our results indicate that flacca compensated higher stomatal conductance with a higher constitutive level of free sugars and AAs. Additionally, we suggest that the accumulation of AAs, particularly proline and its precursors and specific branched-chain AAs in both, glucose and sucrose in flacca, and sorbitol in WT, could contribute to maintaining growth rate during water deficit and recovery in both tomato genotypes.
Collapse
Affiliation(s)
- Bojana Živanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Sonja Milić Komić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, PO Box 51, 11001 Belgrade, Serbia
| | - Marija Vidović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia
| | - Sonja Veljović Jovanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| |
Collapse
|
21
|
Jerszurki D, Sperling O, Parthasarathi T, Lichston JE, Yaaran A, Moshelion M, Rachmilevitch S, Lazarovitch N. Wide vessels sustain marginal transpiration flux and do not optimize inefficient gas exchange activity under impaired hydraulic control and salinity. PHYSIOLOGIA PLANTARUM 2020; 170:60-74. [PMID: 32303105 DOI: 10.1111/ppl.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/03/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Plants optimize water use and carbon assimilation via transient regulation of stomata resistance and by limiting hydraulic conductivity in a long-term response of xylem anatomy. We postulated that without effective hydraulic regulation plants would permanently restrain water loss and photosynthetic productivity under salt stress conditions. We compared wild-type tomatoes to a transgenic type (TT) with impaired stomatal control. Gas exchange activity, biomass, starch content, leaf area and root traits, mineral composition and main stems xylem anatomy and hydraulic conductivity were analyzed in plants exposed to salinities of 1 and 4 dS m-1 over 60 days. As the xylem cannot easily readjust to different environmental conditions, shifts in its anatomy and the permanent effect on plant hydraulic conductivity kept transpiration at lower levels under unstressed conditions and maintained it under salt-stress, while sustaining higher but inefficient assimilation rates, leading to starch accumulation and decreased plant biomass, leaf and root area and root length. Narrow conduits in unstressed TT plants were related to permanent restrain of hydraulic conductivity and plant transpiration. Under salinity, TT plants followed the atmospheric water demand, sustained similar transpiration rate from unstressed to salt-stressed conditions and possibly maintained hydraulic integrity, due to likely impaired hydraulic regulation, wider conduits and higher hydraulic conductivity. The accumulation of salts and starch in the TT plants was a strong evidence of salinity tolerance via osmotic regulation, also thought to help to maintain the assimilation rates and transpiration flux under salinity, although it was not translated into higher growth.
Collapse
Affiliation(s)
- Daniela Jerszurki
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Or Sperling
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Gilat Research Center, Israel
| | - Theivasigamani Parthasarathi
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | | | - Adi Yaaran
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food & Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food & Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Rachmilevitch
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Naftali Lazarovitch
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|