1
|
Negi P, Pandey M, Paladi RK, Majumdar A, Pandey SP, Barvkar VT, Devarumath R, Srivastava AK. Stomata-Photosynthesis Synergy Mediates Combined Heat and Salt Stress Tolerance in Sugarcane Mutant M4209. PLANT, CELL & ENVIRONMENT 2025; 48:4668-4684. [PMID: 40052246 DOI: 10.1111/pce.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 05/06/2025]
Abstract
Sugarcane (Saccharum officinarum L.) is an economically important long-duration crop which is currently facing concurrent heat waves and soil salinity. The present study evaluates an inducible salt-tolerant sugarcane mutant M4209, developed via radiation-induced mutagenesis of elite check variety Co 86032, under heat (42/30°C; day/night), NaCl (200 mM) or heat + NaCl (HS)-stress conditions. Though heat application significantly improved plant growth and biomass in both genotypes, this beneficial impact was partially diminished in Co 86032 under HS-stress conditions, coinciding with higher Na+ accumulation and lower triacylglycerol levels. Besides, heat broadly equalised the negative impact on NaCl stress in terms of various physiological and biochemical attributes in both the genotypes, indicating its spaciotemporal advantage. The simultaneous up- and downregulation of antagonistic regulators, epidermal patterning factor (EPF) 9 (SoEPF9) and SoEPF2, respectively attributed to the OSD (Open Small Dense) stomatal phenotype in M4209, which resulted into enhanced conductance, transpirational cooling and gaseous influx. This led to improved photoassimilation, which was supported by higher plastidic:nonplastidic lipid ratio, upregulation of SoRCA (Rubisco activase) and better source strength, resulting in overall plant growth enhancement across all the tested stress scenarios. Taken together, the present study emphasised the knowledge-driven harnessing of stomatal-photosynthetic synergy for ensuring global sugarcane productivity, especially under "salt-heat" coupled stress scenarios.
Collapse
Affiliation(s)
- Pooja Negi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Radha K Paladi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Shailaja P Pandey
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Wang M, Jia Y, Jian G, Liu C, Zou Z, Yang Y, Xue J, Li H, Jian S, Zeng L. Inhibitor treatment and subcellular localization analysis reveal the contribution of a cytosolic terpene synthase to the substantial release of anti-insect monoterpenes by Sphagneticola trilobata (L.) Pruski. J Adv Res 2025:S2090-1232(25)00066-9. [PMID: 39894346 DOI: 10.1016/j.jare.2025.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION Bird strikes are one of the greatest threats to aviation safety in the worldwide. Sphagneticola trilobata (L.) Pruski has anti-insect effects that may indirectly decrease bird populations, thereby reducing bird strikes. However, it is unclear how S. trilobata exerts its anti-insect effects. Moreover, the mechanism mediating the biosynthesis of its main volatile compounds is unknown. OBJECTIVES This study was conducted to identify the major anti-insect volatile compounds in S. trilobata and elucidate their biosynthetic mechanisms. METHODS A continuous sampling method was used to analyze the released volatiles of S. trilobata. Direct feeding or fumigation treatments with the main monoterpenes were followed by the evaluation of anti-insect functions. Evolutionary and enzyme activity analyses were performed to verify the functions of target enzymes. The subcellular localization and potential functions of the target enzymes were revealed by quantitative analyses of synthase gene expression, subcellular localization experiments, inhibitor experiments, and enzyme activity analysis of proteins from different subcellular organelles. RESULTS α-Phellandrene, limonene, and p-cymene, which had a circadian release pattern, were the major volatiles in S. trilobata. These three monoterpenes have anti-insect functions. Additionally, StTPS3 has a relatively broad substrate specificity in vitro, which may result in the production of limonene, p-cymene, and β-caryophyllene. The circadian rhythm in StTPS3 expression was consistent with the changes in volatile compound levels. The encoded enzyme was localized in the cytoplasm. Inhibition of the mevalonate pathway reduced monoterpene formation. Proteins extracted from the cytoplasm and chloroplasts may catalyze the synthesis and conversion of monoterpene precursors. CONCLUSION The study data provide direct evidence for the anti-insect effects of S. trilobata, while positively elucidating the biosynthesis of key volatiles from cytoplasmic GPP and NPP. Furthermore, the findings may be relevant for the control of bird populations at airports and the reduction of the risk of bird strikes.
Collapse
Affiliation(s)
- Miao Wang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 China
| | - Yongxia Jia
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China
| | - Guotai Jian
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 China
| | - Chengshun Liu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 China
| | - Zeyuan Zou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 China
| | - Yuhua Yang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China
| | - Jinghua Xue
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China
| | - Hanxiang Li
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 China; CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China.
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650 China.
| |
Collapse
|
3
|
Liu S, Gong D, Wang Y, Wang H, Liu X, Huang J, Xu Q, Ma F, He C, Wang B. Responses of plant volatile emissions to increasing nitrogen deposition: A pilot study on Eucalyptus urophylla. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175887. [PMID: 39216761 DOI: 10.1016/j.scitotenv.2024.175887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) significantly impact atmospheric chemistry, with emissions potentially influenced by nitrogen (N) deposition. The response of BVOC emissions to increasing N deposition remains debated. In this study, we examined Eucalyptus urophylla (E. urophylla) using three N treatments: N0, N50, and N100 (0, 50, and 100 kg N hm-2 yr-1 N addition). These treatments were applied to mature E. urophylla trees in a plantation subjected to over 10 years of soil N addition in southern China, a region with severe N deposition. Seventeen BVOCs were measured, with isoprene (36.99 %), α-pinene (38.80 %), and d-limonene (14.27 %) being the predominant compounds under natural conditions. Total BVOC emissions under N50 were nearly double those under N0 and N100, with leaf net CO2 assimilation identified as the most critical photosynthetic parameter. Isoprene and α-pinene emissions significantly increased under N50 compared to N0, while d-limonene emission decreased under N100. Stronger correlations for individual BVOCs under N50 and N100 compared to N0 might be due to differences in BVOC biosynthetic pathways and storage structures. The localized canopy-scale emission factors (EFs) under N50 were significantly higher than the default values in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), suggesting the model might underestimate BVOC emissions from Eucalyptus in southern China under increased N deposition. Additionally, the secondary pollutant formation potentials of BVOCs were evaluated, identifying isoprene and monoterpenes as primary precursors of ozone and secondary organic aerosols. This study provides insights into the impacts of increased N deposition on BVOC emissions and their contribution to secondary atmospheric pollution. Updating localized BVOC EFs for subtropical tree species in southern China is crucial to reduce uncertainties in BVOC estimations under current and future N deposition scenarios.
Collapse
Affiliation(s)
- Shiwei Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Yujin Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| | - Xiaoting Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Juan Huang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Qiao Xu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Fangyuan Ma
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane QLD4000, Australia
| | - Boguang Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| |
Collapse
|
4
|
Sulaiman HY, Runno-Paurson E, Niinemets Ü. The same boat, different storm: stress volatile emissions in response to biotrophic fungal infections in primary and alternate hosts. PLANT SIGNALING & BEHAVIOR 2023; 18:2217030. [PMID: 37232366 PMCID: PMC10730184 DOI: 10.1080/15592324.2023.2217030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Rust infection results in stress volatile emissions, but due to the complexity of host-pathogen interaction and variations in innate defense and capacity to induce defense, biochemical responses can vary among host species. Fungal-dependent modifications in volatile emissions have been well documented in numerous host species, but how emission responses vary among host species is poorly understood. Our recent experiments demonstrated that the obligate biotrophic crown rust fungus (P. coronata) differently activated primary and secondary metabolic pathways in its primary host Avena sativa and alternate host Rhamnus frangula. In A. sativa, emissions of methyl jasmonate, short-chained lipoxygenase products, long-chained saturated fatty acid derivatives, mono- and sesquiterpenes, carotenoid breakdown products, and benzenoids were initially elicited in an infection severity-dependent manner, but the emissions decreased under severe infection and photosynthesis was almost completely inhibited. In R. frangula, infection resulted in low-level induction of stress volatile emissions, but surprisingly, in enhanced constitutive isoprene emissions, and even severely-infected leaves maintained a certain photosynthesis rate. Thus, the same pathogen elicited a much stronger response in the primary than in the alternate host. We argue that future work should focus on resolving mechanisms of different fungal tolerance and resilience among primary and secondary hosts.
Collapse
Affiliation(s)
- Hassan Yusuf Sulaiman
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Eve Runno-Paurson
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
5
|
Prerostova S, Rezek J, Jarosova J, Lacek J, Dobrev P, Marsik P, Gaudinova A, Knirsch V, Dolezal K, Plihalova L, Vanek T, Kieber J, Vankova R. Cytokinins act synergistically with heat acclimation to enhance rice thermotolerance affecting hormonal dynamics, gene expression and volatile emission. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107683. [PMID: 37062127 DOI: 10.1016/j.plaphy.2023.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Heat stress is a frequent environmental constraint. Phytohormones can significantly affect plant thermotolerance. This study compares the effects of exogenous cytokinin meta-topolin-9-(tetrahydropyran-2-yl)purine (mT9THP) on rice (Oryza sativa) under control conditions, after acclimation by moderate temperature (A; 37 °C, 2h), heat stress (HS; 45 °C, 6h) and their combination (AHS). mT9THP is a stable cytokinin derivative that releases active meta-topolin gradually, preventing the rapid deactivation reported after exogenous cytokinin application. Under control conditions, mT9THP negatively affected jasmonic acid in leaves and abscisic and salicylic acids in crowns (meristematic tissue crucial for tillering). Exogenous cytokinin stimulated the emission of volatile organic compounds (VOC), especially 2,3-butanediol. Acclimation upregulated trans-zeatin, expression of stress- and hormone-related genes, and VOC emission. The combination of acclimation and mT9THP promoted the expression of stress markers and antioxidant enzymes and moderately increased VOC emission, including 2-ethylhexyl salicylate or furanones. AHS and HS responses shared some common features, namely, increase of ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), cis-zeatin and cytokinin methylthio derivatives, as well as the expression of heat shock proteins, alternative oxidases, and superoxide dismutases. AHS specifically induced jasmonic acid and auxin indole-3-acetic acid levels, diacylglycerolipids with fewer double bonds, and VOC emissions [e.g., acetamide, lipoxygenase (LOX)-derived volatiles]. Under direct HS, exogenous cytokinin mimicked some positive acclimation effects. The combination of mT9THP and AHS had the strongest thermo-protective effect, including a strong stimulation of VOC emissions (including LOX-derived ones). These results demonstrate for the first time the crucial contribution of volatiles to the beneficial effects of cytokinin and AHS on rice thermotolerance.
Collapse
Affiliation(s)
- Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Jan Rezek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 313, 165 02, Prague, Czech Republic.
| | - Jana Jarosova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Petr Marsik
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 313, 165 02, Prague, Czech Republic.
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Karel Dolezal
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Chemical Biology, Faculty of Science, Palacky University, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic.
| | - Lucie Plihalova
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Chemical Biology, Faculty of Science, Palacky University, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic.
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 313, 165 02, Prague, Czech Republic.
| | - Joseph Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| |
Collapse
|
6
|
Sulaiman HY, Liu B, Abiola YO, Kaurilind E, Niinemets Ü. Impact of heat priming on heat shock responses in Origanum vulgare: Enhanced foliage photosynthetic tolerance and biphasic emissions of volatiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:567-579. [PMID: 36774912 DOI: 10.1016/j.plaphy.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Climate change enhances the frequency of heatwaves that negatively affect photosynthesis and can alter constitutive volatile emissions and elicit emissions of stress volatiles, but how pre-exposure to mildly warmer temperatures affects plant physiological responses to subsequent severe heat episodes remains unclear, especially for aromatic plants with high and complex volatile defenses. We studied the impact of heat shock (45 °C/5 min) applied alone and after exposure to moderate heat stress (35 °C/1 h, priming) on foliage photosynthesis and volatile emissions in the aromatic plant Origanum vulgare through 72 h recovery period. Heat stress decreased photosynthesis rates and stomatal conductance, whereas the reductions in photosynthesis were primarily due to non-stomatal factors. In non-primed plants, heat shock-induced reductions in photosynthetic activity were the greatest, but photosynthetic activity completely recovered by the end of the experiment. In primed plants, a certain inhibition of photosynthetic activity remained, suggesting a sustained priming effect. Heat shock enhanced the emissions of volatiles including lipoxygenase pathway volatiles, long-chained fatty acid-derived compounds, mono- and sesquiterpenes, geranylgeranyl diphosphate pathway volatiles, and benzenoids, whereas different heat treatments resulted in unique emission blends. In non-primed plants, stress-elicited emissions recovered at 72 h. In primed plants, volatile emissions were multiphasic, the first phase, between 0.5 and 10 h, reflected the primary stress response, whereas the secondary rise, between 24 and 72 h, indicated activations of different defense metabolic pathways. Our results demonstrate that exposure to mild heat leads to a sustained physiological stress memory that enhances plant resistance to subsequent severe heat stress episodes.
Collapse
Affiliation(s)
- Hassan Yusuf Sulaiman
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
| | - Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
| | - Yusuph Olawale Abiola
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
7
|
Wei Y, Li K, Chong Z, Aamir Khan M, Liang C, Meng Z, Wang Y, Guo S, Chen Q, Zhang R. Genetic and transcriptome analysis of a cotton leaf variegation mutant. Gene 2023; 866:147257. [PMID: 36754177 DOI: 10.1016/j.gene.2023.147257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
In eukaryotic photosynthetic organisms, chloroplast is not only a site for photosynthesis, but it also have a vital role in signal transduction mechanisms. Plants exhibit various colors in nature with various mutants induced by EMS, whose traits are regulated by developmental and environmental factors, making them ideal for studying the regulation of chloroplast development. In this study, the cotton leaf variegated mutant (VAR) induced by EMS was used for this experiment. Genetic analysis revealed that VAR phenotype was a dominant mutation and by performing freehand section inspection, it was noticed that the vascular bundles of VAR were smaller. Chloroplast ultrastructure showed that the stacking of grana thylakoid was thinner and the starch granules were increased significantly in VAR comparedto wild type (WT). Transcriptome analysis found that the KEGG was enriched in photosynthesis pathway, and GO was abundant in zinc ion transmembrane transport, electron transporter and cation binding terms. In addition, GhFTSH5 expression in VAR was significantly higher than WT and the promoter sequence of GhFTSH5 had differences. The results showed that the VAR plant had altered GhFTSH5 expression and disrupted chloroplast structure, which in turn affects plant photosynthesis. More importantly, this study lays a foundation for further analyzing molecular mechanism of cotton variegated phenotypes.
Collapse
Affiliation(s)
- Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Kaili Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China; Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhili Chong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China; College of Plant Science, Tarim University, 1487 East Tarim Avenue, Aral City 843300, China
| | - Muhammad Aamir Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi 830052, China.
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China.
| |
Collapse
|
8
|
Zhang B, Gao H, Wang G, Zhang S, Shi M, Li Y, Huang Z, Xiang W, Gao W, Zhang C, Liu X. Guvermectin, a novel plant growth regulator, can promote the growth and high temperature tolerance of maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1025634. [PMID: 36311060 PMCID: PMC9615569 DOI: 10.3389/fpls.2022.1025634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 05/27/2023]
Abstract
Guvermectin is a recently discovered microbial N9-glucoside cytokinin compound extracted from Streptomyces sanjiangensis NEAU6. Although some research has reported that N9-glucoside cytokinin compounds do not have the activity of cytokinin, it has been noted that guvermectin can promote growth and antifungal activity in Arabidopsis. Maize is an important food crop in the world and exploring the effect of guvermectin on this crop could help its cultivation in regions with adverse environmental conditions such as a high temperature. Here, we investigated the effects of guvermectin seed soaking treatment on the growth of maize at the seedlings stage and its yield attributes with different temperature stresses. The maize (cv. Zhengdan 958) with guvermectin seed soaking treatment were in two systems: paper roll culture and field conditions. Guvermectin seed soaking treated plants had increased plant height, root length, and mesocotyl length at the seedlings stage, and spike weight at maturity in the field. But only root length was increased at the paper roll culture by guvermectin seed soaking treatment. Guvermectin seed soaking treatment reduced the adverse effects on maize seedling when grow at a high temperature. Further experiments showed that, in high temperature conditions, guvermectin treatment promoted the accumulation of heat shock protein (HSP) 17.0, HSP 17.4 and HSP 17.9 in maize roots. Comparative transcriptomic profiling showed there were 33 common differentially expressed genes (DEGs) in guvermectin treated plants under high temperature and room temperature conditions. The DEGs suggested that guvermectin treatment led to the differential modulation of several transcripts mainly related with plant defense, stress response, and terpenoid biosynthesis. Taken together, these results suggested that the guvermectin treatment promoted the growth and tolerance of high temperature stresses, possibly by activation of related pathways. These results show that guvermectin is a novel plant growth regulator and could be developed as an application to maize seeds to promote growth in high temperature environments.
Collapse
Affiliation(s)
- Borui Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Huige Gao
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Guozhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Sicong Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Mengru Shi
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yun Li
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Zhongqiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenna Gao
- Science and Technology Research Center of China Customs, Beijing, China
| | - Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Ye J, Yang K, Li Y, Xu F, Cheng S, Zhang W, Liao Y, Yang X, Wang L, Wang Q. Genome-wide transcriptome analysis reveals the regulatory network governing terpene trilactones biosynthesis in Ginkgo biloba. TREE PHYSIOLOGY 2022; 42:2068-2085. [PMID: 35532090 DOI: 10.1093/treephys/tpac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Ginkgo biloba L. is currently the only remaining gymnosperm of the Ginkgoaceae Ginkgo genus, and its history can be traced back to the Carboniferous 200 million years ago. Terpene trilactones (TTLs) are one of the main active ingredients in G. biloba, including ginkgolides and bilobalide. They have a good curative effect on cardiovascular and cerebrovascular diseases because of their special antagonistic effect on platelet-activating factors. Therefore, it is necessary to deeply mine genes related to TTLs and to analyze their transcriptional regulation mechanism, which will hold vitally important scientific and practical significance for quality improvement and regulation of G. biloba. In this study, we performed RNA-Seq on the root, stem, immature leaf, mature leaf, microstrobilus, ovulate strobilus, immature fruit and mature fruit of G. biloba. The TTL regulatory network of G. biloba in different organs was revealed by different transcriptomic analysis strategies. Weighted gene co-expression network analysis (WGCNA) revealed that the five modules were closely correlated with organs. The 12 transcription factors, 5 structural genes and 24 Cytochrome P450 (CYP450) were identified as candidate regulators for TTL accumulation by WGCNA and cytoscape visualization. Finally, 6 APETALA2/ethylene response factors, 2 CYP450s and bHLH were inferred to regulate the metabolism of TTLs by correlation analysis. This study is the comprehensive in authenticating transcription factors, structural genes and CYP450 involved in TTL biosynthesis, thereby providing molecular evidence for revealing the comprehensive regulatory network involved in TTL metabolism in G. biloba.
Collapse
Affiliation(s)
- Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Ke Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yuting Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei 445000, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
10
|
He J, Tan C, Qin L. Root-Zone Heat Priming Effects on Maximum Quantum Efficiency of PSII, Productivity, Root Morphology and Nutritional Quality of Two Aeroponically Grown Leafy Greens in a Tropical Greenhouse. PLANTS (BASEL, SWITZERLAND) 2022; 11:1684. [PMID: 35807636 PMCID: PMC9269567 DOI: 10.3390/plants11131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of root zone (RZ) heat priming on Eruca sativa (cv. Arugula) and Lactuca sativa (cv. Canasta) in a tropical greenhouse by exposing them to three different RZ temperatures (RZTs). For the first group, plants were grown at 25 °C-RZT for 36 days. The second group of plants was grown at 25 °C-RZT for 10 days before transferring to 38 °C-RZT for 10 days and then to 42 °C-RZT for another 16 days (primed). For the third group, plants were grown at 25 °C-RZT for 20 days and for the last 16 days were transferred to 42 °C-RZT (non-primed). RZ heat priming did not affect the leaf expansion of Arugula while the leaf expansion was slower in RZ heat primed Canasta compared to 25 °C-RZT plants. After transferring to 42 °C-RZT in the later stage, RZ heat primed Arugula had similar productivity but a larger root system with higher nutritional quality at harvest and during postharvest storage compared to those of 25 °C-RZT plants. After subjection to 42 °C-RZT, although RZ heat priming enhanced its nutritional quality, the productivity of Canasta was compromised. The results of this study suggest that it is feasible to enhance productivity and nutritional quality of leafy greens at lower production cost through RZT management.
Collapse
Affiliation(s)
- Jie He
- Correspondence: ; Tel.: +65-6790-3817; Fax: +65-6896-9414
| | | | | |
Collapse
|
11
|
Guihur A, Rebeaud ME, Goloubinoff P. How do plants feel the heat and survive? Trends Biochem Sci 2022; 47:824-838. [PMID: 35660289 DOI: 10.1016/j.tibs.2022.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 01/03/2023]
Abstract
Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth's history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields and food security. Thus, achieving agricultural productivity under climate change calls for closer examination of the molecular mechanisms of heat-stress resistance in model and crop plants. This requires a better understanding of the mechanisms by which plant cells can sense rising temperatures and establish effective molecular defenses, such as molecular chaperones and thermoprotective metabolites, as reviewed here, to survive extreme diurnal variations in temperature and seasonal heat waves.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Mathieu E Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; School of Plant Sciences and Food Security, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
12
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
13
|
Liu B, Kaurilind E, Zhang L, Okereke CN, Remmel T, Niinemets Ü. Improved plant heat shock resistance is introduced differently by heat and insect infestation: the role of volatile emission traits. Oecologia 2022; 199:53-68. [PMID: 35471619 DOI: 10.1007/s00442-022-05168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Abstract
Heat stress is one of the most important abiotic stresses confronted by plants under global climate change. Plant exposure to abiotic or biotic stress can improve its tolerance to subsequent severe episodes of the same or different stress (stress priming), but so far there is limited comparative information about how pre-exposures to different abiotic and biotic elicitors alter plant resistance to severe heat stress. We exposed the perennial herb Melilotus albus Medik., a species rich in secondary metabolites, to moderate heat stress (35 °C) and greenhouse whitefly (Trialeurodes vaporariorum West.) infestation to comparatively determine whether both pre-treatments could enhance plant tolerance to the subsequent heat shock (45 °C) stress. Plant physiological responses to stress were characterized by photosynthetic traits and volatile organic compound emissions through 72 h recovery. Heat shock treatment reduced net assimilation rate (A) and stomatal conductance in all plants, but heat-primed plants had significantly faster rates of recovery of A than other plants. By the end of the recovery period, A in none of the three heat shock-stressed groups recovered to the control level, but in whitefly-infested plants it reached the pre-heat shock level. In heat-primed plants, the heat shock treatment was associated with a fast rise of monoterpene emissions, and in whitefly-infested plants with benzenoid emissions and an increase in total phenolic content.
Collapse
Affiliation(s)
- Bin Liu
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.
| | - Eve Kaurilind
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Lu Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Chikodinaka N Okereke
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Triinu Remmel
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia.,Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
14
|
Brilli F, Dani KGS, Pasqualini S, Costarelli A, Cannavò S, Paolocci F, Zittelli GC, Mugnai G, Baraldi R, Loreto F. Exposure to different light intensities affects emission of volatiles and accumulations of both pigments and phenolics in Azolla filiculoides. PHYSIOLOGIA PLANTARUM 2022; 174:e13619. [PMID: 34988977 PMCID: PMC9305523 DOI: 10.1111/ppl.13619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/03/2021] [Indexed: 06/01/2023]
Abstract
Many agronomic trials demonstrated the nitrogen-fixing ability of the ferns Azolla spp. and its obligate cyanobiont Trichormus azollae. In this study, we have screened the emission of volatile organic compounds (VOCs) and analyzed pigments (chlorophylls, carotenoids) as well as phenolic compounds in Azolla filiculoides-T. azollae symbionts exposed to different light intensities. Our results revealed VOC emission mainly comprising isoprene and methanol (~82% and ~13% of the overall blend, respectively). In particular, by dissecting VOC emission from A. filiculoides and T. azollae, we found that the cyanobacterium does not emit isoprene, whereas it relevantly contributes to the methanol flux. Enhanced isoprene emission capacity (15.95 ± 2.95 nmol m-2 s-1 ), along with increased content of both phenolic compounds and carotenoids, was measured in A. filiculoides grown for long-term under high (700 μmol m-2 s-1 ) rather than medium (400 μmol m-2 s-1 ) and low (100 μmol m-2 s-1 ) light intensity. Moreover, light-responses of chlorophyll fluorescence demonstrated that A. filiculoides was able to acclimate to high growth light. However, exposure of A. filiculoides from low (100 μmol m-2 s-1 ) to very high light (1000 μmol m-2 s-1 ) did not affect, in the short term, photosynthesis, but slightly decreased isoprene emission and leaf pigment content whereas, at the same time, dramatically raised the accumulation of phenolic compounds (i.e. deoxyanthocyanidins and phlobaphenes). Our results highlight a coordinated photoprotection mechanism consisting of isoprene emission and phenolic compounds accumulation employed by A. filiculoides to cope with increasing light intensities.
Collapse
Affiliation(s)
- Federico Brilli
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - K. G. Srikanta Dani
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Stefania Pasqualini
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Alma Costarelli
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Sara Cannavò
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Francesco Paolocci
- Institute of Biosciences and BioResources (IBBR)National Research Council of Italy (CNR)PerugiaItaly
| | | | - Gianmarco Mugnai
- Institute of BioEconomy (IBE)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Rita Baraldi
- Institute of BioEconomy (IBE)National Research Council of Italy (CNR)BolognaItaly
| | - Francesco Loreto
- Institute for Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
- Department of BiologyThe University of Naples Federico IINaplesItaly
| |
Collapse
|
15
|
Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes. Int J Mol Sci 2021; 22:ijms22168843. [PMID: 34445546 PMCID: PMC8396215 DOI: 10.3390/ijms22168843] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Temperature stress is one of the major abiotic stresses that adversely affect agricultural productivity worldwide. Temperatures beyond a plant's physiological optimum can trigger significant physiological and biochemical perturbations, reducing plant growth and tolerance to stress. Improving a plant's tolerance to these temperature fluctuations requires a deep understanding of its responses to environmental change. To adapt to temperature fluctuations, plants tailor their acclimatory signal transduction events, and specifically, cellular redox state, that are governed by plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components. The role of ROS in plants as important signaling molecules during stress acclimation has recently been established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and integrated signaling events during temperature stress activate stress-response pathways and induce acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following temperature-induced oxidative stress, can have negative consequences on plant growth and stress acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently promotes plant tolerance. All these signaling events, including crosstalk between hormones and ROS, modify the plant's transcriptomic, metabolomic, and biochemical states and promote plant acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones, and their joint role in shaping a plant's responses to high and low temperatures, and we conclude by outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to combat temperature changes.
Collapse
|
16
|
Jagadish SVK, Way DA, Sharkey TD. Scaling plant responses to high temperature from cell to ecosystem. PLANT, CELL & ENVIRONMENT 2021; 44:1987-1991. [PMID: 33987846 DOI: 10.1111/pce.14082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Affiliation(s)
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Terrestrial Ecosystem Science & Technology Group, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|