1
|
Mitchell D, Schönbeck L, Shah S, Santiago LS. Leaf drought and heat tolerance are integrated across three temperate biome types. Sci Rep 2025; 15:12201. [PMID: 40204802 PMCID: PMC11982534 DOI: 10.1038/s41598-025-95623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Leaf-scale heat and drought tolerance provide direct measures of the ability to withstand environmental stress and can be used to evaluate plant susceptibility to emerging climatic extremes. However, recent droughts increasingly occur with heatwaves, causing plants to withstand two simultaneous environmental stresses. Tolerance of leaf-level processes to heat and drought stress have mostly been studied independently, preventing an understanding of whether tolerance co-occurs for these two environmental stresses. To address this, we measured leaf photosynthetic heat tolerance as the critical temperatures at which photosystem II efficiency starts to decrease (Tcrit) and shows a decrease of 50% (T50) or 95% (T95) in three temperate biomes (desert, oak-pine forest, and mediterranean-type shrubland). We also characterized drought tolerance as the water potential at leaf turgor loss point (πtlp) and cellular membrane stability in response to simulated drought. We found coordination of heat and drought tolerance through a significant relationship of πtlp with T50 and Tcrit that varied with season, whereas T95 showed no relation to πtlp. Species with greater drought tolerance also showed greater membrane stability, implicating membrane leakiness as a potential mechanism of physiological decline during stress. Despite local variation in temperature and precipitation extremes, leaf heat and drought tolerance converged to common cross-biome relationships, providing evidence of interdependence that spanned distinct climates.
Collapse
Affiliation(s)
- Denise Mitchell
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
| | - Leonie Schönbeck
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
- Southern Swedish Forest Research Center, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Shukan Shah
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, Riverside, CA, 92521, USA.
- Smithsonian Tropical Research Institute, Ancon, Balboa, Panama.
| |
Collapse
|
2
|
Cuervo-Gómez M, Melgarejo LM, Salgado-Negret B. Thermal acclimation of tree species in a tropical Andean city: Exploring the role of species origin and thermal niche. AMERICAN JOURNAL OF BOTANY 2025; 112:e16462. [PMID: 39871519 DOI: 10.1002/ajb2.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 01/29/2025]
Abstract
PREMISE The warmer and drier atmospheric conditions of urban environments challenge plant performance to different extents based on a species' ability to acclimate to the conditions. We evaluated the influence of species origin and thermal niche on the acclimation of leaf traits and shifts in the occupation of the functional trait space of 10 tree species growing in two environmentally contrasting sites in Bogotá, Colombia. METHODS We measured six leaf traits per species in both sites and used generalized linear models to evaluate the influence of origin and thermal niche on acclimation of leaf traits and t-tests to analyze shifts in the occupation of the functional trait space. RESULTS Species origin predicted thermal tolerance and morphological trait acclimation to warmer conditions. Although exotic species decreased thermal tolerance at the warmer site, species from both origins acclimated traits consistently. Shifts in the occupation of the functional trait space varied between origins; warmer conditions reduced the size of the functional trait space of exotics and increased the phenotypic similarity of natives. Thermal tolerance acclimation and changes in functional trait space varied across species. Finally, thermal niche metrics were uncoupled from species origin and failed to explain the acclimation capacity of the studied species. CONCLUSIONS Although species origin influenced acclimation to warmer conditions, the effect of origin was not related to species' thermal niches. Our results provide crucial information for decision-makers involved in designing urban and peri-urban green spaces that can withstand climate change.
Collapse
Affiliation(s)
- María Cuervo-Gómez
- Departamento de Biología, Universidad Nacional de Colombia, sede Bogotá, Colombia
| | - Luz Marina Melgarejo
- Departamento de Biología, Universidad Nacional de Colombia, sede Bogotá, Colombia
| | | |
Collapse
|
3
|
de Sousa Oliveira TC, Veenendaal E, Domingues TF. The thermal optimum of photosynthetic parameters is regulated by leaf nutrients in neotropical savannas. TREE PHYSIOLOGY 2025; 45:tpae163. [PMID: 39673198 DOI: 10.1093/treephys/tpae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Global warming significantly threatens species in the Cerrado, the world's largest savannah. Therefore, understanding how plants respond to temperature change, particularly in relation to leaf-level photosynthetic capacity, is crucial to understanding the future of Cerrado vegetation. Here, we determined the optimum temperature of the maximum rate of RuBP-carboxylation and maximum electron transport rate (TOptV and TOptJ, respectively) of 12 tree species in two opposite borders (northeastern and southeastern) of the Cerrado with distinct temperature regimes. We focused on four widespread species found in both sites, four restricted to the northeast, and four to the southeast. We compared TOptV and TOptJ between regions and between widespread species (co-occurring in both sites) and species restricted to each ecoregion. Additionally, we also explored the relationship between TOptV and TOptJ with leaf nitrogen (N), phosphorus (P) and potassium (K). As a result, we found that TOptV and TOptJ values were similar across species, regardless of the study region or species distribution range. The similarity of TOpt values among species suggests that photosynthetic performance is optimized to current temperatures. Additionally, we also observed that the TOptV and TOptJ were similar to the local maximum ambient temperatures. Therefore, if these species do not have enough plasticity, the increasing temperature predicted for this region may reduce their photosynthetic performance. Finally, the studied species exhibited general relationships between the TOptV and TOptJ and foliar key nutrients, particularly with P, suggesting the nutrient availability has an important role in the thermal acclimation of leaves. These findings offer valuable insights into physiological and ecological mechanisms in photosynthesis performance present in the Cerrado species.
Collapse
Affiliation(s)
- Tony César de Sousa Oliveira
- Plant Ecology and Nature Conservation Group, Wageningen University (WU), Droevendaalsesteeg 36708PB, Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil
- Institute of Biogeosciences, Forschungszentrum Jülich, Wilhelm-Johnen Strasse, Jülich, 52428, Germany
- Faculty of Communication and Environment, Hochschule Rhein-Waal, Südstr. 8 Kamp-lintfort, 47475, Germany
| | - Elmar Veenendaal
- Plant Ecology and Nature Conservation Group, Wageningen University (WU), Droevendaalsesteeg 36708PB, Wageningen, The Netherlands
| | - Tomas Ferreira Domingues
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
4
|
Martínez-Villa JA, Paquette A, Feeley KJ, Morales-Morales PA, Messier C, Durán SM. Changes in morphological and physiological traits of urban trees in response to elevated temperatures within an Urban Heat Island. TREE PHYSIOLOGY 2024; 44:tpae145. [PMID: 39541501 DOI: 10.1093/treephys/tpae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Urban heat islands (UHIs) are a common phenomenon in metropolitan areas worldwide where the air temperature is significantly higher in urban areas than in surrounding suburban, rural or natural areas. Mitigation strategies to counteract UHI effects include increasing tree cover and green spaces to reduce heat. The successful application of these approaches necessitates a deep understanding of the thermal tolerances in urban trees and their susceptibility to elevated urban temperatures. We evaluated how the photosynthetic thermal optimum (Topt), photosynthetic heat tolerance (T50) and key leaf thermoregulatory morphological traits (leaf area [LA], specific leaf area, leaf width, thickness and leaf dry matter content) differ between conspecific trees growing in 'hot' (UHI) vs 'cool' parts of Montreal, Canada (with a difference of 3.4 °C in air temperature), to assess the ability of seven common tree species to acclimation to higher temperatures. We hypothesized that individuals with hotter growing temperatures would exhibit higher Topt and T50, as well as leaf thermoregulatory morphological traits aligned with conservative strategies (e.g., reduced LA and increased leaf mass) compared with their counterparts in the cooler parts of the city. Contrary to our a priori hypotheses, LA increased with growing temperatures and only four of the seven species had higher T50 and only three had higher Topt values in the hotter area. These results suggest that many tree species cannot acclimate to elevated temperatures and that the important services they provide, such as carbon capture, can be negatively affected by high temperatures caused by climate change and/or the UHI effect. The ability vs inability of tree species to acclimate to high temperatures should be considered when implementing long term tree planting programs in urban areas.
Collapse
Affiliation(s)
- Johanna Andrea Martínez-Villa
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - Alain Paquette
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - Kenneth J Feeley
- Biology Department, University of Miami, 1301 Memorial Dr #215, Coral Gables, FL 33146, United States
| | - Paula Andrea Morales-Morales
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia - Sede Medellín, Medellin, Antioquia, Cra. 65 #59a-110, Medellín, Antioquia, Colombia
| | - Christian Messier
- Département des sciences biologiques, Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, 141 Av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada
| | - Sandra M Durán
- Department of Forest and Rangeland Stewardship, Colorado State University, 1472 Campus DeliveryFort Collins, CO 80523-1472, United States
| |
Collapse
|
5
|
Cook AM, Rezende EL, Petrou K, Leigh A. Beyond a single temperature threshold: Applying a cumulative thermal stress framework to plant heat tolerance. Ecol Lett 2024; 27:e14416. [PMID: 38549256 DOI: 10.1111/ele.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Most plant thermal tolerance studies focus on single critical thresholds, which limit the capacity to generalise across studies and predict heat stress under natural conditions. In animals and microbes, thermal tolerance landscapes describe the more realistic, cumulative effects of temperature. We tested this in plants by measuring the decline in leaf photosynthetic efficiency (FV/FM) following a combination of temperatures and exposure times and then modelled these physiological indices alongside recorded environmental temperatures. We demonstrate that a general relationship between stressful temperatures and exposure durations can be effectively employed to quantify and compare heat tolerance within and across plant species and over time. Importantly, we show how FV/FM curves translate to plants under natural conditions, suggesting that environmental temperatures often impair photosynthetic function. Our findings provide more robust descriptors of heat tolerance in plants and suggest that heat tolerance in disparate groups of organisms can be studied with a single predictive framework.
Collapse
Affiliation(s)
- Alicia M Cook
- School of Life Sciences, University of Technology Sydney (UTS), Broadway, New South Wales, Australia
| | - Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherina Petrou
- School of Life Sciences, University of Technology Sydney (UTS), Broadway, New South Wales, Australia
| | - Andy Leigh
- School of Life Sciences, University of Technology Sydney (UTS), Broadway, New South Wales, Australia
| |
Collapse
|
6
|
Kullberg AT, Slot M, Feeley KJ. Thermal optimum of photosynthesis is controlled by stomatal conductance and does not acclimate across an urban thermal gradient in six subtropical tree species. PLANT, CELL & ENVIRONMENT 2023; 46:831-849. [PMID: 36597283 DOI: 10.1111/pce.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Modelling the response of plants to climate change is limited by our incomplete understanding of the component processes of photosynthesis and their temperature responses within and among species. For ≥20 individuals, each of six common subtropical tree species occurring across steep urban thermal gradients in Miami, Florida, USA, we determined rates of net photosynthesis (Anet ), maximum RuBP carboxylation, maximum RuBP regeneration and stomatal conductance, and modelled the optimum temperature (Topt ) and process rate of each parameter to address two questions: (1) Do the Topt of Anet (ToptA ) and the maximum Anet (Aopt ) of subtropical trees reflect acclimation to elevated growth temperatures? And (2) What limits Anet in subtropical trees? Against expectations, we did not find significant acclimation of ToptA , Aopt or the Topt of any of the underlying photosynthetic parameters to growth temperature in any of the focal species. Model selection for the single best predictor of Anet both across leaf temperatures and at ToptA revealed that the Anet of most trees was best predicted by stomatal conductance. Our findings are in accord with those of previous studies, especially in the tropics, that have identified stomatal conductance to be the most important factor limiting Anet , rather than biochemical thermal responses.
Collapse
Affiliation(s)
- Alyssa T Kullberg
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Kenneth J Feeley
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| |
Collapse
|
7
|
Andrew SC, Arnold PA, Simonsen AK, Briceño VF. Consistently high heat tolerance acclimation in response to a simulated heatwave across species from the broadly distributed Acacia genus. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:71-83. [PMID: 36210348 DOI: 10.1071/fp22173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
When leaves exceed their thermal threshold during heatwaves, irreversible damage to the leaf can accumulate. However, few studies have explored short-term acclimation of leaves to heatwaves that could help plants to prevent heat damage with increasing heatwave intensity. Here, we studied the heat tolerance of PSII (PHT) in response to a heatwave in Acacia species from across a strong environmental gradient in Australia. We compared PHT metrics derived from temperature-dependent chlorophyll fluorescence response curves (T-F 0 ) before and during a 4-day 38°C heatwave in a controlled glasshouse experiment. We found that the 15 Acacia species displayed surprisingly large and consistent PHT acclimation responses with a mean tolerance increase of 12°C (range, 7.7-19.1°C). Despite species originating from diverse climatic regions, neither maximum temperature of the warmest month nor mean annual precipitation at origin were clear predictors of PHT. To our knowledge, these are some of the largest measured acclimation responses of PHT from a controlled heatwave experiment. This remarkable capacity could partially explain why this genus has become more diverse and common as the Australian continent became more arid and suggests that the presence of Acacia in Australian ecosystems will remain ubiquitous with climate change.
Collapse
Affiliation(s)
| | - Pieter A Arnold
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Anna K Simonsen
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA; and Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Verónica F Briceño
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
8
|
Li X, Wen Y, Chen X, Qie Y, Cao KF, Wee AKS. Correlations between photosynthetic heat tolerance and leaf anatomy and climatic niche in Asian mangrove trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:960-966. [PMID: 35962602 DOI: 10.1111/plb.13460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic heat tolerance (PHT ) is a key predictor of plant response to climate change. Mangroves are an ecologically and economically important coastal plant community comprised of trees growing at their physiological limits. Mangroves are currently impacted by global warming, yet the PHT of mangrove trees is poorly understood. In this study, we provide the first assessment of PHT in 13 Asian mangrove species, based on the critical temperature that causes the initial damage (TCrit ) and the temperature that causes 50% damage (T50 ) to photosystem II. We tested the hypotheses that the PHT in mangroves is: (i) correlated with climatic niche and leaf traits, and (ii) higher than in plants from other tropical ecosystems. Our results demonstrated correlations between PHT and multiple key climate variables, the palisade to spongy mesophyll ratio and the leaf area. The two most heat-sensitive species were Kandelia obovata and Avicennia marina. Our study also revealed that mangrove trees show high heat tolerance compared to plants from other tropical ecosystems. The high PHT of mangroves thus demonstrated a conservative evolutionary strategy in heat tolerance, and highlights the need for integrative and comparative studies on thermoregulatory traits and climatic niche in order to understand the physiological response of mangrove trees to climate change-driven heatwaves and rising global temperatures.
Collapse
Affiliation(s)
- X Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Y Wen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - X Chen
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Y Qie
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - K-F Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - A K S Wee
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| |
Collapse
|
9
|
Jagadish SVK, Way DA, Sharkey TD. Scaling plant responses to high temperature from cell to ecosystem. PLANT, CELL & ENVIRONMENT 2021; 44:1987-1991. [PMID: 33987846 DOI: 10.1111/pce.14082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Affiliation(s)
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Terrestrial Ecosystem Science & Technology Group, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|