1
|
Okon K, Zubik-Duda M, Nosalewicz A. Light-driven modulation of plant response to water deficit. A review. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24295. [PMID: 40261980 DOI: 10.1071/fp24295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
The dependence of agriculture on water availability is an important premise justifying attempts to enhance water use efficiency for plant production. Photosynthetic efficiency, directly impacts biomass production, is dependent on both water availability and the quality and quantity of light. Understanding how these factors interact is crucial for improving crop yields. Many overlapping signalling pathways and functions of common bioactive molecules that shape plant responses to both water deficit and light have been identified and discussed in this review. Separate or combined action of these environmental factors include the generation of reactive oxygen species, biosynthesis of abscisic acid, stomatal functioning, chloroplast movement and alterations in the levels of photosynthetic pigments and bioactive molecules. Plant response to water deficit depends on light intensity and its characteristics, with differentiated impacts from UV, blue, and red light bands determining the strength and synergistic or antagonistic nature of interactions. Despite its significance, the combined effects of these environmental factors remain insufficiently explored. The findings highlight the potential for optimising horticultural production through controlled light conditions and regulated deficit irrigation. Future research should assess light and water manipulation strategies to enhance resource efficiency and crop nutritional value.
Collapse
Affiliation(s)
- K Okon
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - M Zubik-Duda
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - A Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
2
|
Zhu L, Sun Y, Wang R, Zeng J, Li J, Huang M, Wang M, Shen Q, Guo S. Applied potassium negates osmotic stress impacts on plant physiological processes: a meta-analysis. HORTICULTURE RESEARCH 2025; 12:uhae318. [PMID: 39949879 PMCID: PMC11825146 DOI: 10.1093/hr/uhae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/06/2024] [Indexed: 02/16/2025]
Abstract
Potassium (K) availability in plant cells is critical for maintaining plant productivity across many terrestrial ecosystems. Yet, there is no comprehensive assessment of the mechanisms by which plants respond to potassium application in such conditions, despite the global challenge of escalating osmotic stress. Herein, we conducted a meta-analysis using data from 2381 paired observations to investigate plant responses to potassium application across various morphological, physiological, and biochemical parameters under both osmotic and nonosmotic stress. Globally, our results showed the significant effectiveness of potassium application in promoting plant productivity (e.g. +12%~30% in total dry weight), elevating photosynthesis (+12%~30%), and alleviating osmotic damage (e.g. -19%~26% in malonaldehyde), particularly under osmotic stress. Moreover, we found evidence of interactive effects between osmotic stress and potassium on plant traits, which were more pronounced under drought than salt stress, and more evident in C3 than C4 plants. Our synthesis verifies a global potassium control over osmotic stress, and further offers valuable insights into its management and utilization in agriculture and restoration efforts.
Collapse
Affiliation(s)
- Linxing Zhu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers Of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Rongfeng Wang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers Of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jixing Zeng
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers Of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers Of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengting Huang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers Of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers Of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers Of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers Of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Li G, Zhao X, Yang J, Hu S, Ponnu J, Kimura S, Hwang I, Torii KU, Hou H. Water wisteria genome reveals environmental adaptation and heterophylly regulation in amphibious plants. PLANT, CELL & ENVIRONMENT 2024; 47:4720-4740. [PMID: 39076061 DOI: 10.1111/pce.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
Heterophylly is a phenomenon whereby an individual plant dramatically changes leaf shape in response to the surroundings. Hygrophila difformis (Acanthaceae; water wisteria), has recently emerged as a model plant to study heterophylly because of its striking leaf shape variation in response to various environmental factors. When submerged, H. difformis often develops complex leaves, but on land it develops simple leaves. Leaf complexity is also influenced by other factors, such as light density, humidity, and temperature. Here, we sequenced and assembled the H. difformis chromosome-level genome (scaffold N50: 60.43 Mb, genome size: 871.92 Mb), which revealed 36 099 predicted protein-coding genes distributed over 15 pseudochromosomes. H. difformis diverged from its relatives during the Oligocene climate-change period and expanded gene families related to its amphibious habit. Genes related to environmental stimuli, leaf development, and other pathways were differentially expressed in submerged and terrestrial conditions, possibly modulating morphological and physiological acclimation to changing environments. We also found that auxin plays a role in H. difformis heterophylly. Finally, we discovered candidate genes that respond to different environmental conditions and elucidated the role of LATE MERISTEM IDENTITY 1 (LMI1) in heterophylly. We established H. difformis as a model for studying interconnections between environmental adaptation and morphogenesis.
Collapse
Affiliation(s)
- Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Hu
- Laboratory of Marine Biological Resources Development and Utilization, Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, China
| | - Jathish Ponnu
- Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | - Keiko U Torii
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
- Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Ma Y, Tang M, Wang M, Yu Y, Ruan B. Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes (Basel) 2024; 15:1529. [PMID: 39766796 PMCID: PMC11675997 DOI: 10.3390/genes15121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Drought stress is a pivotal environmental factor impacting rice production and presents a significant challenge to sustainable agriculture worldwide. This review synthesizes the latest research advancements in the regulatory mechanisms and signaling pathways that rice employs in response to drought stress. It elaborates on the adaptive changes and molecular regulatory mechanisms that occur in rice under drought conditions. The review highlights the perception and initial transmission of drought signals, key downstream signaling networks such as the MAPK and Ca2+ pathways, and their roles in modulating drought responses. Furthermore, the discussion extends to hormonal signaling, especially the crucial role of abscisic acid (ABA) in drought responses, alongside the identification of drought-resistant genes and the application of gene-editing technologies in enhancing rice drought resilience. Through an in-depth analysis of these drought stress regulatory signaling pathways, this review aims to offer valuable insights and guidance for future rice drought resistance breeding and agricultural production initiatives.
Collapse
Affiliation(s)
| | | | | | | | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.M.); (M.T.); (M.W.); (Y.Y.)
| |
Collapse
|
5
|
Neugart S, Steininger V, Fernandes C, Martínez-Abaigar J, Núñez-Olivera E, Schreiner M, Strid Å, Viczián A, Albert A, Badenes-Pérez FR, Castagna A, Dáder B, Fereres A, Gaberscik A, Gulyás Á, Gwynn-Jones D, Nagy F, Jones A, Julkunen-Tiitto R, Konstantinova N, Lakkala K, Llorens L, Martínez-Lüscher J, Nybakken L, Olsen J, Pascual I, Ranieri A, Regier N, Robson M, Rosenqvist E, Santin M, Turunen M, Vandenbussche F, Verdaguer D, Winkler B, Witzel K, Grifoni D, Zipoli G, Hideg É, Jansen MAK, Hauser MT. A synchronized, large-scale field experiment using Arabidopsis thaliana reveals the significance of the UV-B photoreceptor UVR8 under natural conditions. PLANT, CELL & ENVIRONMENT 2024; 47:4031-4047. [PMID: 38881245 DOI: 10.1111/pce.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Viktoria Steininger
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| | - Catarina Fernandes
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| | | | | | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Åke Strid
- Department of Natural Sciences, School of Science and Technology, Örebro University, Örebro, Sweden
| | - András Viczián
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Beatriz Dáder
- Department of Agricultural Production, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences, Spanish Council for Scientific Research, Madrid, Spain
| | - Alenka Gaberscik
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ágnes Gulyás
- Department of Climatology and Landscape Ecology, University of Szeged, Szeged, Hungary
| | - Dylan Gwynn-Jones
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Ferenc Nagy
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Alan Jones
- Earthwatch Europe, Oxford, UK
- Scion, New Zealand Forest Research Institute, Rotorua, New Zealand
| | | | - Nataliia Konstantinova
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| | - Kaisa Lakkala
- Finnish Meteorological Institute - Space and Earth Observation Centre, Sodankylä, Finland
| | - Laura Llorens
- Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Johann Martínez-Lüscher
- Plant Stress Physiology group (Associated Unit to EEAD, CSIC), BIOMA Institute for Biodiversity and the Environment, University of Navarra, Pamplona, Spain
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn Olsen
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Inmaculada Pascual
- Plant Stress Physiology group (Associated Unit to EEAD, CSIC), BIOMA Institute for Biodiversity and the Environment, University of Navarra, Pamplona, Spain
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Nicole Regier
- Earth and Environment Sciences, Forel Institute, Geneva University, Geneva, Switzerland
| | - Matthew Robson
- Organismal & Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
- National School of Forestry, University of Cumbria, Ambleside, UK
| | - Eva Rosenqvist
- Institute of Plant and Environmental Sciences, Crop Science, University of Copenhagen, Tåstrup, Denmark
| | - Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Minna Turunen
- Arctic Centre, University of Lapland, Rovaniemi, Finland
| | | | - Dolors Verdaguer
- Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Daniele Grifoni
- National Research Council, Institute of Bioeconomy, Sesto Fiorentino, Italy
- Laboratory of Monitoring and Environmental Modelling for the Sustainable Development (LaMMA Consortium), Sesto Fiorentino, Italy
| | - Gaetano Zipoli
- National Research Council Institute for Biometeorology, Sesto Fiorentino, Italy
| | - Éva Hideg
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Marcel A K Jansen
- Environmental Research Institute, School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland
| | - Marie-Theres Hauser
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| |
Collapse
|
6
|
Cunningham N, Crestani G, Csepregi K, Coughlan NE, Jansen MAK. Exploring the complexities of plant UV responses; distinct effects of UV-A and UV-B wavelengths on Arabidopsis rosette morphology. Photochem Photobiol Sci 2024; 23:1251-1264. [PMID: 38736023 PMCID: PMC11224116 DOI: 10.1007/s43630-024-00591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
UV-B radiation can substantially impact plant growth. To study UV-B effects, broadband UV-B tubes are commonly used. Apart from UV-B, such tubes also emit UV-A wavelengths. This study aimed to distinguish effects of different UV-B intensities on Arabidopsis thaliana wildtype and UVR8 mutant rosette morphology, from those by accompanying UV-A. UV-A promotes leaf-blade expansion along the proximal-distal, but not the medio-lateral, axis. Consequent increases in blade length: width ratio are associated with increased light capture. However, petiole length is not affected by UV-A exposure. This scenario is distinct from the shade avoidance driven by low red to far-red ratios, whereby leaf blade elongation is impeded but petiole elongation is promoted. Thus, the UV-A mediated elongation response is phenotypically distinct from classical shade avoidance. UV-B exerts inhibitory effects on petiole length, blade length and leaf area, and these effects are mediated by UVR8. Thus, UV-B antagonises aspects of both UV-A mediated elongation and classical shade avoidance. Indeed, this study shows that accompanying UV-A wavelengths can mask effects of UV-B. This may lead to potential underestimates of the magnitude of the UV-B induced morphological response using broadband UV-B tubes.
Collapse
Affiliation(s)
- Natalie Cunningham
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland
| | - Gaia Crestani
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland
| | - Kristóf Csepregi
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság u. 6, 7624, Pecs, Hungary
| | - Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland.
| |
Collapse
|
7
|
Ač A, Jansen MAK, Grace J, Urban O. Unravelling the neglected role of ultraviolet radiation on stomata: A meta-analysis with implications for modelling ecosystem-climate interactions. PLANT, CELL & ENVIRONMENT 2024; 47:1769-1781. [PMID: 38314642 DOI: 10.1111/pce.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.
Collapse
Affiliation(s)
- Alexander Ač
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
| | - Marcel A K Jansen
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, UCC, Cork, Ireland
| | - John Grace
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Otmar Urban
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
8
|
Su-Zhou C, Durand M, Aphalo PJ, Martinez-Abaigar J, Shapiguzov A, Ishihara H, Liu X, Robson TM. Weaker photosynthetic acclimation to fluctuating than to corresponding steady UVB radiation treatments in grapevines. PHYSIOLOGIA PLANTARUM 2024; 176:e14383. [PMID: 38859677 DOI: 10.1111/ppl.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.
Collapse
Affiliation(s)
- Chenxing Su-Zhou
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Alexey Shapiguzov
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Finland
| | - Hirofumi Ishihara
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- National School of Forestry, University of Cumbria, Ambleside, UK
| |
Collapse
|
9
|
Cun S, Zhang C, Chen J, Qian L, Sun H, Song B. Effects of UV-B radiation on pollen germination and tube growth: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170097. [PMID: 38224898 DOI: 10.1016/j.scitotenv.2024.170097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Despite widespread recognition of pollen's potential sensitivity to ultraviolet-B (UV-B) radiation (280-315 nm), there remains ongoing debate surrounding the extent and mechanisms of this effect. In this study, using published data on pollen germination and tube growth including 377 pair-wise comparisons from 77 species in 30 families, we present the first global quantification of the effects of UV-B radiation on pollen germination and tube growth, along with its underlying mechanisms. Our results showed a substantial reduction in both pollen germination and tube growth in response to UV-B radiation, affecting 90.9 % and 84.2 % of species, respectively. Notably, these reductions exhibited phylogenetic constraints, highlighting the role of evolutionary history in shaping the sensitivity of pollen germination and tube growth to UV-B radiation. A negative correlation between elevation and the sensitivity of pollen tube growth was detected, suggesting that pollens from plants at higher elevations exhibit greater resistance to UV-B radiation. Our investigation also revealed that the effects of UV-B radiation on pollen germination and tube growth were influenced by a range of abiotic and biotic factors. Nevertheless, the intensity and duration of UV-B radiation exposure exhibited the highest explanatory power for the effects on both pollen germination and tube growth. This suggests that the responses of pollens to UV-B radiation are profoundly influenced by its dose, a critical consideration within the context of global change. In conclusion, our study provides valuable insights into the diverse responses of pollen germination and tube growth to UV-B radiation, highlighting the environment and species-dependent nature of pollen's susceptibility to UV-B radiation, with substantial implications for our understanding of the ecological and agricultural consequences of ongoing changes in UV-B radiation.
Collapse
Affiliation(s)
- Shuang Cun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jiaqi Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Life Sciences, Yunnan University, Kunming 650504, China
| | - Lishen Qian
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
10
|
Cao H, Ding R, Du T, Kang S, Tong L, Chen J, Gao J. A meta-analysis highlights the cross-resistance of plants to drought and salt stresses from physiological, biochemical, and growth levels. PHYSIOLOGIA PLANTARUM 2024; 176:e14282. [PMID: 38591354 DOI: 10.1111/ppl.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
In nature, drought and salt stresses often occur simultaneously and affect plant growth at multiple levels. However, the mechanisms underlying plant responses to drought and salt stresses and their interactions are still not fully understood. We performed a meta-analysis to compare the effects of drought, salt, and combined stresses on plant physiological, biochemical, morphological and growth traits, analyze the different responses of C3 and C4 plants, as well as halophytes and non-halophytes, and identify the interactive effects on plants. There were numerous similarities in plant responses to drought, salt, and combined stresses. C4 plants had a more effective antioxidant defense system, and could better maintain above-ground growth. Halophytes could better maintain photosynthetic rate (Pn) and relative water content (RWC), and reduce growth as an adaptation strategy. The responses of most traits (Pn, RWC, chlorophyll content, soluble sugar content, H2O2 content, plant dry weight, etc.) to combined stress were less-than-additive, indicating cross-resistance rather than cross-sensitivity of plants to drought and salt stresses. These results are important to improve our understanding of drought and salt cross-resistance mechanisms and further induce resistance or screen-resistant varieties under stress combination.
Collapse
Affiliation(s)
- Heli Cao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Jia Gao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| |
Collapse
|
11
|
Shoaib N, Pan K, Mughal N, Raza A, Liu L, Zhang J, Wu X, Sun X, Zhang L, Pan Z. Potential of UV-B radiation in drought stress resilience: A multidimensional approach to plant adaptation and future implications. PLANT, CELL & ENVIRONMENT 2024; 47:387-407. [PMID: 38058262 DOI: 10.1111/pce.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.
Collapse
Affiliation(s)
- Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Nishbah Mughal
- Engineering Research Centre for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liling Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
12
|
Cao Y, Chen Y, Cheng N, Zhang K, Duan Y, Fang S, Shen Q, Yang X, Fang W, Zhu X. CsCuAO1 Associated with CsAMADH1 Confers Drought Tolerance by Modulating GABA Levels in Tea Plants. Int J Mol Sci 2024; 25:992. [PMID: 38256065 PMCID: PMC10815580 DOI: 10.3390/ijms25020992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.
Collapse
Affiliation(s)
- Yu Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Yiwen Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Nuo Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Shimao Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Qiang Shen
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Xiaowei Yang
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 417100, China; (Q.S.); (X.Y.)
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (Y.C.); (N.C.); (K.Z.); (Y.D.); (S.F.); (W.F.)
| |
Collapse
|
13
|
Sáenz-de la O D, Morales LO, Strid Å, Feregrino-Perez AA, Torres-Pacheco I, Guevara-González RG. Antioxidant and drought-acclimation responses in UV-B-exposed transgenic Nicotiana tabacum displaying constitutive overproduction of H 2O 2. Photochem Photobiol Sci 2023; 22:2373-2387. [PMID: 37486529 DOI: 10.1007/s43630-023-00457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Hydrogen peroxide (H2O2) is an important molecule that regulates antioxidant responses that are crucial for plant stress resistance. Exposure to low levels of ultraviolet-B radiation (UV-B, 280-315 nm) can also activate antioxidant defenses and acclimation responses. However, how H2O2 and UV-B interact to promote stress acclimation remains poorly understood. In this work, a transgenic model of Nicotiana tabacum cv Xanthi nc, with elevated Mn-superoxide dismutase (Mn-SOD) activity, was used to study the interaction between the constitutive overproduction of H2O2 and a 14-day UV-B treatment (1.75 kJ m-2 d-1 biologically effective UV-B). Subsequently, these plants were subjected to a 7-day moderate drought treatment to evaluate the impact on drought resistance of H2O2- and UV-dependent stimulation of the plants' antioxidant system. The UV-B treatment enhanced H2O2 levels and altered the antioxidant status by increasing the epidermal flavonol index, Trolox Equivalent Antioxidant Capacity, and catalase, peroxidase and phenylalanine ammonia lyase activities in the leaves. UV-B also retarded growth and suppressed acclimation responses in highly H2O2-overproducing transgenic plants. Plants not exposed to UV-B had a higher drought resistance in the form of higher relative water content of leaves. Our data associate the interaction between Mn-SOD transgene overexpression and the UV-B treatment with a stress response. Finally, we propose a hormetic biphasic drought resistance response curve as a function of leaf H2O2 content in N. tabacum cv Xanthi.
Collapse
Affiliation(s)
- Diana Sáenz-de la O
- School of Engineering, National Technological Institute of Mexico-Campus Roque, Guanajuato, México
| | - Luis O Morales
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Åke Strid
- School of Science and Technology, Örebro University, Örebro, Sweden.
| | - A Angélica Feregrino-Perez
- Basic and Applied Bioengineering Group, School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Querétaro, México
| | - Irineo Torres-Pacheco
- Center for Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Querétaro, Mexico
| | - Ramón G Guevara-González
- Center for Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Querétaro, Mexico.
| |
Collapse
|
14
|
Jan R, Kim N, Asaf S, Lubna, Asif S, Du XX, Kim EG, Jang YH, Kim KM. OsCM regulates rice defence system in response to UV light supplemented with drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:902-914. [PMID: 37641387 DOI: 10.1111/plb.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/16/2023] [Indexed: 08/31/2023]
Abstract
Studies on plant responses to combined abiotic stresses are very limited, especially in major crop plants. The current study evaluated the response of chorismate mutase overexpressor (OxCM) rice line to combined UV light and drought stress. The experiments were conducted in pots in a growth chamber, and data were assessed for gene expression, antioxidant and hormone regulation, flavonoid accumulation, phenotypic variation, and amino acid accumulation. Wild-type (WT) rice had reduced the growth and vigour, while transgenic rice maintained growth and vigour under combined UV light and drought stress. ROS and lipid peroxidation analysis revealed that chorismate mutase (OsCM) reduced oxidative stress mediated by ROS scavenging and reduced lipid peroxidation. The combined stresses reduced biosynthesis of total flavonoids, kaempferol and quercetin in WT plants, but increased significantly in plants with OxCM. Phytohormone analysis showed that SA was reduced by 50% in WT and 73% in transgenic plants, while ABA was reduced by 22% in WT plants but increased to 129% in transgenic plants. Expression of chorismate mutase regulates phenylalanine biosynthesis, UV light and drought stress-responsive genes, e.g., phenylalanine ammonia lyase (OsPAL), dehydrin (OsDHN), dehydration-responsive element-binding (OsDREB), ras-related protein 7 (OsRab7), ultraviolet-B resistance 8 (OsUVR8), WRKY transcription factor 89 (OsWRKY89) and tryptophan synthase alpha chain (OsTSA). Moreover, OsCM also increases accumulation of free amino acids (aspartic acid, glutamic acid, leucine, tyrosine, phenylalanine and proline) and sodium (Na), potassium (K), and calcium (Ca) ions in response to the combined stresses. Together, these results suggest that chorismate mutase expression induces physiological, biochemical and molecular changes that enhance rice tolerance to combined UV light and drought stresses.
Collapse
Affiliation(s)
- R Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| | - N Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - S Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - S Asif
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - X-X Du
- Biosafty Division, National Academy of Agriculture Science, Rural Development, Administration, Jeonju, South Korea
| | - E-G Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Y-H Jang
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - K-M Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
15
|
Crestani G, Cunningham N, Csepregi K, Badmus UO, Jansen MAK. From stressor to protector, UV-induced abiotic stress resistance. Photochem Photobiol Sci 2023; 22:2189-2204. [PMID: 37270745 PMCID: PMC10499975 DOI: 10.1007/s43630-023-00441-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Plants are continuously exposed to combinations of abiotic and biotic stressors. While much is known about responses to individual stressors, understanding of plant responses to combinations of stressors is limited. The effects of combined exposure to drought and UV radiation are particularly relevant in the context of climate change. In this study it was explored whether UV-exposure can be used as a tool to prime stress-resistance in plants grown under highly protected culture conditions. It was hypothesised that priming mint plantlets (Mentha spicata L.) with a low-dose of UV irradiance can alleviate the drought effect caused by a change in humidity upon transplanting. Plants were grown for 30 days on agar in sealed tissue culture containers. During this period, plants were exposed to ~ 0.22 W m-2 UV-B for 8 days, using either UV-blocking or UV- transmitting filters. Plants were then transplanted to soil and monitored for a further 7 days. It was found that non-UV exposed mint plants developed necrotic spots on leaves, following transfer to soil, but this was not the case for plants primed with UV. Results showed that UV induced stress resistance is associated with an increase in antioxidant capacity, as well as a decrease in leaf area. UV-induced stress resistance can be beneficial in a horticultural setting, where priming plants with UV-B can be used as a tool in the production of commercial crops.
Collapse
Affiliation(s)
- Gaia Crestani
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland.
| | - Natalie Cunningham
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| | - Kristóf Csepregi
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság u. 6, Pécs, 7624, Hungary
| | - Uthman O Badmus
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| |
Collapse
|
16
|
Hura T, Hura K, Ostrowska A, Urban K. Toward resilient agriculture and environmental protection: The role of cell wall-bound phenolics. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154020. [PMID: 37301037 DOI: 10.1016/j.jplph.2023.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Due to their unpredicted scope, duration, and effects, soil droughts pose a serious threat to agriculture. Gradual steppe formation and desertification of farming and horticultural lands are the consequences of climate change. Irrigation systems for field crops do not offer the most viable solution, as they depend heavily on freshwater resources, which are currently scarce. For these reasons, it is necessary to obtain crop cultivars that are not only more tolerant to soil drought, but also capable of effective use of water during and after drought. In this article, we highlight the importance of cell wall-bound phenolics in the efficient adaptation of crops to arid environments and protection of soil water resources.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Katarzyna Hura
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, Agricultural University, Podłużna 3, 30-239, Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Karolina Urban
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| |
Collapse
|
17
|
Barnes PW, Robson TM, Zepp RG, Bornman JF, Jansen MAK, Ossola R, Wang QW, Robinson SA, Foereid B, Klekociuk AR, Martinez-Abaigar J, Hou WC, Mackenzie R, Paul ND. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem Photobiol Sci 2023; 22:1049-1091. [PMID: 36723799 PMCID: PMC9889965 DOI: 10.1007/s43630-023-00376-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and function of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA.
| | - T M Robson
- Organismal & Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland.
- National School of Forestry, University of Cumbria, Ambleside, UK.
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | | | - R Ossola
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S A Robinson
- Global Challenges Program & School of Earth, Atmospheric and Life Sciences, Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño (La Rioja), Spain
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - R Mackenzie
- Cape Horn International Center (CHIC), Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
18
|
Rai N, Neugart S, Schröter D, Lindfors AV, Aphalo PJ. Responses of flavonoids to solar UV radiation and gradual soil drying in two Medicago truncatula accessions. Photochem Photobiol Sci 2023:10.1007/s43630-023-00404-6. [PMID: 36995651 DOI: 10.1007/s43630-023-00404-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023]
Abstract
Ground level UV-B (290-315 nm) and UV-A (315-400 nm) radiation regulates multiple aspects of plant growth and development. In a natural environment, UV radiation interacts in a complex manner with other environmental factors (e.g., drought) to regulate plants' morphology, physiology, and growth. To assess the interactive effects of UV radiation and soil drying on plants' secondary metabolites and transcript abundance, we performed a field experiment using two different accessions of Medicago truncatula (F83005-5 French origin and Jemalong A17 Australian origin). Plants were grown for 37 days under long-pass filters to assess the effects of UV short wavelength (290-350 nm, UVsw) and UV-A long wavelength (350-400 nm, UV-Alw). Soil-water deficit was induced by not watering half of the plants during the last seven days of the experiment. The two accessions differed in the concentration of flavonoids in the leaf epidermis and in the whole leaf: F83005-5 had higher concentration than Jemalong A17. They also differed in the composition of the flavonoids: a greater number of apigenin derivatives than tricin derivatives in Jemalong A17 and the opposite in F83005-5. Furthermore, UVsw and soil drying interacted positively to regulate the biosynthesis of flavonoids in Jemalong A17 through an increase in transcript abundance of CHALCONE SYNTHASE (CHS). However, in F83005-5, this enhanced CHS transcript abundance was not detected. Taken together the observed metabolite and gene transcript responses suggest differences in mechanisms for acclimation and stress tolerance between the accessions.
Collapse
Affiliation(s)
- Neha Rai
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland.
- Department of Plant Sciences, University of Geneva, Geneva, Switzerland.
| | - Susanne Neugart
- Division of Quality and Sensory of Plant Products, Department of Crop Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - David Schröter
- Research Area of Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops e. V., Grossbeeren, Germany
| | | | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Yang B, Cui M, Dai Z, Li J, Yu H, Fan X, Rutherford S, Du D. Non-Additive Effects of Environmental Factors on Growth and Physiology of Invasive Solidago canadensis and a Co-Occurring Native Species ( Artemisia argyi). PLANTS (BASEL, SWITZERLAND) 2022; 12:128. [PMID: 36616257 PMCID: PMC9823473 DOI: 10.3390/plants12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Changes in environmental factors, such as temperature and UV, have significant impacts on the growth and development of both native and invasive plant species. However, few studies examine the combined effects of warming and enhanced UV on plant growth and performance in invasive species. Here, we investigated single and combined effects of warming and UV radiation on growth, leaf functional and photosynthesis traits, and nutrient content (i.e., total organic carbon, nitrogen and phosphorous) of invasive Solidago canadensis and its co-occurring native species, Artemisia argyi, when grown in culture racks in the greenhouse. The species were grown in monoculture and together in a mixed community, with and without warming, and with and without increased UV in a full factorial design. We found that growth in S. canadensis and A. argyi were inhibited and more affected by warming than UV-B radiation. Additionally, there were both antagonistic and synergistic interactions between warming and UV-B on growth and performance in both species. Overall, our results suggested that S. canadensis was more tolerant to elevated temperatures and high UV radiation compared to the native species. Therefore, substantial increases in temperature and UV-B may favour invasive S. canadensis over native A. argyi. Research focusing on the effects of a wider range of temperatures and UV levels is required to improve our understanding of the responses of these two species to greater environmental variability and the impacts of climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Susan Rutherford
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
UV Radiation Induces Specific Changes in the Carotenoid Profile of Arabidopsis thaliana. Biomolecules 2022; 12:biom12121879. [PMID: 36551307 PMCID: PMC9775031 DOI: 10.3390/biom12121879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation.
Collapse
|
21
|
Veselá B, Holub P, Urban O, Surá K, Hodaňová P, Oravec M, Divinová R, Jansen MAK, Klem K. UV radiation and drought interact differently in grass and forb species of a mountain grassland. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111488. [PMID: 36206962 DOI: 10.1016/j.plantsci.2022.111488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Among abiotic stressors, drought and enhanced ultraviolet radiation (UV) received a lot of attention, because of their potential to impair plant growth. Since drought and UV induce partially similar protective mechanisms, we tested the hypothesis that UV ameliorates the effect of reduced water availability (WA) in selected grass (Holcus mollis and Agrostis capillaris) and forb species (Hypericum maculatum and Rumex acetosa). During 2011-2014, an outdoor manipulation experiment was conducted on a mountain grassland ecosystem (Beskydy Mts; Czech Republic). Lamellar shelters were used to pass (WAamb) or exclude (WA-) incident precipitation in order to simulate reduced water availability (WA). In addition, the lamellas were made from acrylics either transmitting (UVamb) or blocking (UV-) incident UV. Generally, both UV exposure and reduced WA enhanced epidermal UV-screening, while exposure to both factors resulted in less than additive interactions. Although UV radiation increased epidermal UV-screening rather in the grass (up to 29 % in A. capillaris) than forb (up to 12 % in H. maculatum) species and rather in well-watered than reduced WA plants, such acclimation response did not result in significant alleviation of reduced WA effects on gas exchange and morphological parameters. The study contributes to a better understanding of plant responses to complex environmental conditions and will help for successful modelling forecasts of future climate change impacts.
Collapse
Affiliation(s)
- Barbora Veselá
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Petr Holub
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic.
| | - Otmar Urban
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Kateřina Surá
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic; Mendel University in Brno, Zemědělská 1, Brno CZ-613 00, Czech Republic
| | - Petra Hodaňová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Michal Oravec
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Renata Divinová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Marcel A K Jansen
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic; School of Biological, Earth and Environmental Sciences, Environmental Research Institute, UCC, Cork, Ireland
| | - Karel Klem
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic; Mendel University in Brno, Zemědělská 1, Brno CZ-613 00, Czech Republic
| |
Collapse
|
22
|
Angon PB, Tahjib-Ul-Arif M, Samin SI, Habiba U, Hossain MA, Brestic M. How Do Plants Respond to Combined Drought and Salinity Stress?-A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212884. [PMID: 36365335 PMCID: PMC9655390 DOI: 10.3390/plants11212884] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/12/2023]
Abstract
Plants are frequently exposed to one or more abiotic stresses, including combined salinity-drought, which significantly lowers plant growth. Many studies have been conducted to evaluate the responses of plants to combined salinity and drought stress. However, a meta-analysis-based systematic review has not been conducted yet. Therefore, this study analyzed how plants respond differently to combined salinity-drought stress compared to either stress alone. We initially retrieved 536 publications from databases and selected 30 research articles following a rigorous screening. Data on plant growth-related, physiological, and biochemical parameters were collected from these selected articles and analyzed. Overall, the combined salinity-drought stress has a greater negative impact on plant growth, photosynthesis, ionic balance, and oxidative balance than either stress alone. In some cases, salinity had a greater impact than drought stress and vice versa. Drought stress inhibited photosynthesis more than salinity, whereas salinity caused ionic imbalance more than drought stress. Single salinity and drought reduced shoot biomass equally, but salinity reduced root biomass more than drought. Plants experienced more oxidative stress under combined stress conditions because antioxidant levels did not increase in response to combined salinity-drought stress compared to individual salinity or drought stress. This study provided a comparative understanding of plants' responses to individual and combined salinity and drought stress, and identified several research gaps. More comprehensive genetic and physiological studies are needed to understand the intricate interplay between salinity and drought in plants.
Collapse
Affiliation(s)
- Prodipto Bishnu Angon
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samia Islam Samin
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ummya Habiba
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - M. Afzal Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marian Brestic
- Institut of Plant and Environmental Sciences, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
23
|
Holub P, Klem K, Veselá B, Surá K, Urban O. Interactive effects of UV radiation and water deficit on production characteristics in upland grassland and their estimation by proximity sensing. Ecol Evol 2022; 12:e9330. [PMID: 36188527 PMCID: PMC9502068 DOI: 10.1002/ece3.9330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
An increase in extreme weather and changes in other conditions associated with ongoing climate change are exposing ecosystems to a very wide range of environmental drivers that interact in ways which are not sufficiently understood. Such uncertainties in how ecosystems respond to multifactorial change make it difficult to predict the impacts of environmental change on ecosystems and their functions. Since water deficit (WD) and ultraviolet radiation (UV) trigger similar protective mechanisms in plants, we tested the hypothesis that UV modulates grassland acclimation to WD, mainly through changes in the root/shoot (R/S) ratio, and thus enhances the ability of grassland to acquire water from the soil and hence maintain its productivity. We also tested the potential of spectral reflectance and thermal imaging for monitoring the impacts of WD and UV on grassland production parameters. The experimental plots were manipulated by lamellar shelters allowing precipitation to pass through or to be excluded. The lamellas were either transmitting or blocking the UV. The results show that WD resulted in a significant decrease in aboveground biomass (AB). In contrast, belowground biomass (BB), R/S ratio, and total biomass (TB) increased significantly in response to WD, especially in UV exclusion treatment. UV exposure had a significant effect on AB and BB, but only in the last year of the experiment. The differences in the effect of WD between years show that the effect of precipitation removal is largely influenced by the potential evapotranspiration (PET) in a given year and hence mainly by air temperatures, while the resulting effect on production parameters is best correlated with the water balance given by the difference between precipitation and PET. Canopy temperature and selected spectral reflectance indices showed a significant response to WD and also significant relationships with morphological (AB, R/S) and biochemical (C/N ratio) parameters. In particular, the vegetation indices NDVI and RDVI provided the best correlations of biomass changes caused by WD and thus the highest potential to remotely sense drought effects on terrestrial vegetation.
Collapse
Affiliation(s)
- Petr Holub
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
| | - Karel Klem
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
- Mendel University in BrnoBrnoCzech Republic
| | - Barbora Veselá
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
| | - Kateřina Surá
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
- Mendel University in BrnoBrnoCzech Republic
| | - Otmar Urban
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
24
|
Martínez-Abaigar J, Núñez-Olivera E. Bryophyte ultraviolet-omics: from genes to the environment. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4412-4426. [PMID: 35274697 DOI: 10.1093/jxb/erac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) radiation has contributed to the evolution of organisms since the origins of life. Bryophytes also have evolutionary importance as the first clearly identified lineage of land plants (embryophytes) colonizing the terrestrial environment, thus facing high UV and water scarcity, among other new challenges. Here we review bryophyte UV-omics, the discipline relating bryophytes and UV, with an integrative perspective from genes to the environment. We consider species and habitats investigated, methodology, response variables, protection mechanisms, environmental interactions, UV biomonitoring, molecular and evolutionary aspects, and applications. Bryophyte UV-omics shows convergences and divergences with the UV-omics of other photosynthetic organisms, from algae to tracheophytes. All these organisms converge in that UV damage may be limited under realistic UV levels, due to structural protection and/or physiological acclimation capacity. Nevertheless, bryophytes diverge because they have a unique combination of vegetative and reproductive characteristics to cope with high UV and other concomitant adverse processes, such as desiccation. This interaction has both evolutionary and ecological implications. In addition, UV effects on bryophytes depend on the species and the evolutionary lineage considered, with mosses more UV-tolerant than liverworts. Thus, bryophytes do not constitute a homogeneous functional type with respect to their UV tolerance.
Collapse
Affiliation(s)
- Javier Martínez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | | |
Collapse
|