1
|
Supriya L, Dake D, Woch N, Gupta P, Gopinath K, Padmaja G, Muthamilarasan M. Sugar sensors in plants: Orchestrators of growth, stress tolerance, and hormonal crosstalk. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154471. [PMID: 40048883 DOI: 10.1016/j.jplph.2025.154471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Sugars, vital metabolites for cellular health, play a central role in regulating diverse intracellular pathways that control plant growth and development. They also enhance stress responses, enabling plants to endure adverse conditions. A few intracellular molecules involved in sensing the intracellular sugar content and concomitantly facilitating appropriate response (growth or survivability) are known as sugar sensors. Among the numerous sugar sensors identified in plants, this review focuses on four extensively studied sugar sensors, namely hexokinase (HXK), Sucrose non-fermenting 1-related kinase-1 (Snf1-related kinase-1 or SnRK1), Target of rapamycin (TOR), and trehalose 6-phosphate (T6P). This review explores the multifaceted functions of these sugar sensors, highlighting their critical role in balancing energy metabolism and coordinating physiological processes under optimal and adverse conditions. By analyzing their involvement in plant growth, development, and stress response, this review underscores the significance of these sensors throughout the plant life cycle. Furthermore, this review highlights the intricate interplay among these sugar sensors, demonstrating how their activities are finely tuned and interdependent. We also examined the crosstalk between these sugar sensors and phytohormones, fine-tuning plant responses to environmental stimuli. Altogether, this review elucidates the significance of sugar sensors as integrators of metabolic and hormonal signals, providing a comprehensive understanding of their pivotal roles in plant biology. This knowledge paves the way for potential agricultural innovations to enhance crop productivity and resilience in the face of climate change.
Collapse
Affiliation(s)
- Laha Supriya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Dake
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Nyanthanglo Woch
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Prodosh Gupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Kodetham Gopinath
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Gudipalli Padmaja
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
2
|
Mu T, Luo S, Li L, Zhang R, Wang P, Zhang G. A review of the interaction mechanisms between jasmonic acid (JA) and various plant hormones, as well as the core regulatory role of MYC2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112407. [PMID: 39894056 DOI: 10.1016/j.plantsci.2025.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Jasmonic acid (JA), as a defensive plant hormone, can synergistically or antagonistically interact with common hormones such as gibberellin (GA), abscisic acid (ABA), indole-3-acetic hormone acid (IAA), and ethylene (ETH) during the plant growth process, as well as interact with hormones such as melatonin (MT), brassinolide (BR), and resveratrol to regulate plant growth and development processes such as metabolite synthesis, pest and disease defense, and organ growth. The core regulatory factor MYC2 of JA mainly mediates the signal transduction pathways of these hormone interactions by interacting with other genes or regulating transcription. This article reviews the mechanism of cross-talk between JA and hormones such as ABA, GA, and salicylic acid (SA), and discusses the role of MYC2 in hormone interactions.
Collapse
Affiliation(s)
- Tingting Mu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Long Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Rongrong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou 730070, China.
| |
Collapse
|
3
|
Shang E, Tu Q, Yu Z, Ding Z. Cell wall dynamic changes and signaling during plant lateral root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:632-648. [PMID: 39878232 DOI: 10.1111/jipb.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Lateral roots (LRs), are an important component of plant roots, playing a crucial role in anchoring the plant in the soil and facilitating the uptake of water and nutrients. As post-embryonic organs, LRs originate from the pericycle cells of the primary root, and their formation is characterized by precise regulation of cell division and complex intercellular interactions, both of which are closely tied to cell wall regulation. Considering the rapid advances in molecular techniques over the past three decades, we reframe the understanding of the dynamic change in cell wall during LR development by summarizing the factors that precipitate these changes and their effects, as well as the regulated signals involved. Additionally, we discuss current challenges in this field and propose potential solutions.
Collapse
Affiliation(s)
- Erlei Shang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
4
|
Sharma A, Samtani H, Laxmi A. Molecular dialogue between light and temperature signalling in plants: from perception to thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:677-694. [PMID: 39167699 DOI: 10.1093/jxb/erae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Light and temperature are the two most variable environmental signals that regulate plant growth and development. Plants in the natural environment usually encounter warmer temperatures during the day and cooler temperatures at night, suggesting both light and temperature are closely linked signals. Due to global warming, it has become important to understand how light and temperature signalling pathways converge and regulate plant development. This review outlines the diverse mechanisms of light and temperature perception, and downstream signalling, with an emphasis on their integration and interconnection. Recent research has highlighted the regulation of thermomorphogenesis by photoreceptors and their downstream light signalling proteins under different light conditions, and circadian clock components at warm temperatures. Here, we comprehensively describe these studies and demonstrate their connection with plant developmental responses. We also explain how the gene signalling pathways of photomorphogenesis and thermomorphogenesis are interconnected with the heat stress response to mediate thermotolerance, revealing new avenues to manipulate plants for climate resilience. In addition, the role of sugars as signalling molecules between light and temperature signalling pathways is also highlighted. Thus, we envisage that such detailed knowledge will enhance the understanding of how plants perceive light and temperature cues simultaneously and bring about responses that help in their adaptation.
Collapse
Affiliation(s)
- Aishwarye Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Harsha Samtani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
5
|
Xia S, Zhao Y, Deng Q, Han X, Wang X. VvRF2b interacts with VvTOR and influences VvTOR-regulated sugar metabolism in grape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112276. [PMID: 39362500 DOI: 10.1016/j.plantsci.2024.112276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The production of top-quality wines is closely related to the quality of the wine grapes. In wine grapes (Vitis vinifera L., Vv), sugar is a crucial determinant of berry quality, regulated by an interplay of various transcription factors and key kinases. Many transcription factors involved in sugar metabolism remain unexplored. Target of Rapamycin (TOR) is an important protein kinase in plants, recently found to regulate sugar metabolism in grapes. However, transcription factors or other factors involved in this process are rarely reported. Here, we utilized transgenic callus tissues from 'Cabernet Sauvignon' grape fruit engineered via gene overexpression (oe) and CRISPR/Cas9-based gene knockout (ko), and discovered a bZIP transcription factor, VvRF2b, whose knockout resulted in increased accumulation of fructose and sucrose, indicating that VvRF2b is a negative regulator of sugar accumulation. Subcellular localization and transcriptional activation tests showed that VvRF2b is an activator of transcription located both in the nucleus and cell membrane. Analysis of VvRF2b and VvTOR gene levels and sugar contents (glucose, fructose, and sucrose) in 'Cabernet Sauvignon' grape fruits at 30, 70, and 90 days after bloom (DAB) revealed that VvRF2b is expressed more highly during fruit development, while VvTOR is expressed more during the sugar accumulation phase, furthermore, VvTOR gene levels in koVvRF2b transgenic calli increased significantly, suggesting a strong relationship between the knockout of VvRF2b and the overexpression of VvTOR. Additionally, bimolecular fluorescence complementation and luciferase complementation assays demonstrated the interaction between VvRF2b and VvTOR proteins. After knocking out the VvRF2b gene in oeVvTOR calli, it was found that the knockout of VvRF2b promotes VvTOR-regulated sucrose accumulation and enhances the expression of sugar metabolism-related genes regulated by VvTOR. In summary, our results suggest that VvRF2b interacts with VvTOR protein and influences VvTOR-regulated sugar metabolism.
Collapse
Affiliation(s)
- Shuang Xia
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ying Zhao
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Qiaoyun Deng
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaoyu Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiuqin Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Geng S, Wang X, Yan W, Liu Q, Wang N, Zhang J, Guo J, Liu J, Luo L. Overexpression of Cassava MeSTP7 Promotes Arabidopsis Seedling Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:3102. [PMID: 39520020 PMCID: PMC11548149 DOI: 10.3390/plants13213102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The sugar transporter (STP) gene family is a key regulator of plant development, which is crucial for the efficient transport and utilization of sugars during plant growth and development. In this study, we identified the MeSTP7 gene, which is highly expressed in cassava fibrous roots, early storage roots, and under hormonal treatment, including IAA, MeJA, ABA, and GA3, and abiotic stressors, such as mannitol and NaCl. A strong response was observed with exoqenous IAA. Transfecting MeSTP7 into Arabidopsis promoted early seedling growth, particularly in lateral root development. The content of endogenous hormones (IAA and MeJA) as well as soluble sugars (sucrose, fructose, and glucose) was elevated in transgenic Arabidopsis. Hormone treatments with IAA, MeJA, GA3, and ABA on transgenic Arabidopsis revealed that transgenic Arabidopsis responded positively to added 20 μM IAA. They also exhibited co-induced regulation of lateral root formation by GA3, MeJA, and ABA. qRT-PCR analysis showed that overexpression of MeSTP7 upregulated the expression of IAA14, ARF7, and ARF19 in Arabidopsis. Under IAA treatment, the expression of these genes was similarly upregulated but downregulated under MeJA treatment. These results suggest that MeSTP7 may promote Arabidopsis seedling development by increasing the content of sucrose, glucose, and fructose in roots, which in turn influences IAA-based hormonal signaling.
Collapse
Affiliation(s)
- Sha Geng
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (S.G.); (W.Y.); (Q.L.); (N.W.)
| | - Xiaotong Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.W.); (J.G.)
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Wei Yan
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (S.G.); (W.Y.); (Q.L.); (N.W.)
| | - Qian Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (S.G.); (W.Y.); (Q.L.); (N.W.)
| | - Na Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (S.G.); (W.Y.); (Q.L.); (N.W.)
| | - Jianyu Zhang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.W.); (J.G.)
| | - Jiao Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.W.); (J.G.)
| | - Lijuan Luo
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
7
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
8
|
Li G, Zhao Y. The critical roles of three sugar-related proteins (HXK, SnRK1, TOR) in regulating plant growth and stress responses. HORTICULTURE RESEARCH 2024; 11:uhae099. [PMID: 38863993 PMCID: PMC11165164 DOI: 10.1093/hr/uhae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Sugar signaling is one of the most critical regulatory signals in plants, and its metabolic network contains multiple regulatory factors. Sugar signal molecules regulate cellular activities and organism development by combining with other intrinsic regulatory factors and environmental inputs. HXK, SnRK1, and TOR are three fundamental proteins that have a pivotal role in the metabolism of sugars in plants. HXK, being the initial glucose sensor discovered in plants, is renowned for its multifaceted characteristics. Recent investigations have unveiled that HXK additionally assumes a significant role in plant hormonal signaling and abiotic stress. SnRK1 serves as a vital regulator of growth under energy-depleted circumstances, whereas TOR, a large protein, acts as a central integrator of signaling pathways that govern cell metabolism, organ development, and transcriptome reprogramming in response to diverse stimuli. Together, these two proteins work to sense upstream signals and modulate downstream signals to regulate cell growth and proliferation. In recent years, there has been an increasing amount of research on these three proteins, particularly on TOR and SnRK1. Furthermore, studies have found that these three proteins not only regulate sugar signaling but also exhibit certain signal crosstalk in regulating plant growth and development. This review provides a comprehensive overview and summary of the basic functions and regulatory networks of these three proteins. It aims to serve as a reference for further exploration of the interactions between these three proteins and their involvement in co-regulatory networks.
Collapse
Affiliation(s)
- Guangshuo Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark
| | - Ying Zhao
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
9
|
Sharkey TD. The end game(s) of photosynthetic carbon metabolism. PLANT PHYSIOLOGY 2024; 195:67-78. [PMID: 38163636 PMCID: PMC11060661 DOI: 10.1093/plphys/kiad601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
The year 2024 marks 70 years since the general outline of the carbon pathway in photosynthesis was published. Although several alternative pathways are now known, it is remarkable how many organisms use the reaction sequence described 70 yrs ago, which is now known as the Calvin-Benson cycle or variants such as the Calvin-Benson-Bassham cycle or Benson-Calvin cycle. However, once the carbon has entered the Calvin-Benson cycle and is converted to a 3-carbon sugar, it has many potential fates. This review will examine the last stages of photosynthetic metabolism in leaves. In land plants, this process mostly involves the production of sucrose provided by an endosymbiont (the chloroplast) to its host for use and transport to the rest of the plant. Photosynthetic metabolism also usually involves the synthesis of starch, which helps maintain respiration in the dark and enables the symbiont to supply sugars during both the day and night. Other end products made in the chloroplast are closely tied to photosynthetic CO2 assimilation. These include serine from photorespiration and various amino acids, fatty acids, isoprenoids, and shikimate pathway products. I also describe 2 pathways that can short circuit parts of the Calvin-Benson cycle. These final processes of photosynthetic metabolism play many important roles in plants.
Collapse
Affiliation(s)
- Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Plant Resilience Institute, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Li J, Sheng Y, Xu H, Li Q, Lin X, Zhou Y, Zhao Y, Song X, Wang J. Transcriptome and hormone metabolome reveal the mechanism of stem bending in water lily ( Nymphaea tetragona) cut-flowers. FRONTIERS IN PLANT SCIENCE 2023; 14:1195389. [PMID: 37746018 PMCID: PMC10515221 DOI: 10.3389/fpls.2023.1195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Water lilies are popular ornamental cut-flowers with significant economic and cultural value. However, stem bending affects the preservation of cut-flowers during their vase life. To gain further insights into the molecular mechanisms of stem bending, transcriptome profiling, hormone measurement, and morphological analysis were performed using the stems of the 'Blue Bird' water lily. Transcriptome analysis revealed that 607 differentially expressed genes (DEGs) were associated with the dorsal and ventral stems of the water lily, of which 247 were up-regulated and 360 were down-regulated. Significant differences in genes associated with plant hormones, calcium ions, glucose metabolism, and photosynthesis pathways genes involved in the dorsal and ventral areas of the curved stem. In particular, DEGs were associated with the hormone synthesis, gravity response, starch granules, Ca2+ ions, and photosynthesis. The results of qRT-PCR were consistent with that of the transcriptome sequence analysis. A total of 12 hormones were detected, of which abscisic acid, indole-3-carboxaldehyde, indole-3-carboxaldehyde and jasmonic acid were significantly differentially expressed in the dorsal and ventral stems, and were significantly higher in the dorsal stem than in the ventral stem. The cell morphology in the dorsal and ventral areas of the curved stem clearly changed during vase life. The direction of starch granule settlement was consistent with the bending direction of the water lily stem, as well as the direction of gravity. In conclusion, stem bending in water lily cut-flowers is regulated by multiple factors and genes. This study provides an important theoretical basis for understanding the complex regulatory mechanism of water lily stem bending.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Yuhui Sheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
- College of Agricultural, Hengxing University, Qingdao, Shandong, China
| | - Huixian Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Qinxue Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Xiuya Lin
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Yang Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Ying Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| | - Jian Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Haikou, Hainan, China
| |
Collapse
|
11
|
Yang Y, Wang W, Hu Q, Raman H, Liu J. Genome-wide association and RNA-seq analyses identify loci for pod orientation in rapeseed ( Brassica napus). FRONTIERS IN PLANT SCIENCE 2023; 13:1097534. [PMID: 36714779 PMCID: PMC9880488 DOI: 10.3389/fpls.2022.1097534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Spatial distribution and orientation of pods on the main raceme (stem) and branches could affect rapeseed yield. However, genomic regions underlying the pod orientation were not described in Brassica species. Here, we determined the extent of genetic variation in pod orientation, described as the angles of pedicel on raceme (APR) and angles of the pod on pedicel (APP) among 136 rapeseed accessions grown across three environments of the upper, middle and lower Yangtze River in China. The APR ranged from 59° to 109°, while the APP varied from 142° to 178°. Statistical analysis showed that phenotypic variation was due to genotypic (G) and environmental (E) effects. Using the genome-wide association analysis (GWAS) approach, two QTLs for APR (qBnAPR.A02 and qBnAPR.C02) and two for APP (qBnAPP.A05 and qBnAPP.C05), having minor to moderate allelic effects (4.30% to 19.47%) were identified. RNA-seq analysis revealed 606 differentially expressed genes (DEGs) in two rapeseed accessions representing the extreme phenotypes for pod orientation and different alleles at the QTLs of APR. Three DEGs (BnLAZY4.A02, BnSAUR32.A02, and BnSAUR32.C02) were identified as the most likely candidates responsible for variation in pod orientation (APR). This study elucidates the genomic regions and putative candidate genes underlying pod orientation in B. napus.
Collapse
Affiliation(s)
- Yuting Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Shenzhen Graduate School, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Wenxiang Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qiong Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Harsh Raman
- New South Wales (NSW) Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Jia Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
12
|
Burkart RC, Eljebbawi A, Stahl Y. Come together now: Dynamic body-formation of key regulators integrates environmental cues in plant development. FRONTIERS IN PLANT SCIENCE 2022; 13:1052107. [PMID: 36452084 PMCID: PMC9702078 DOI: 10.3389/fpls.2022.1052107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Plants as sessile organisms are constantly exposed to changing environmental conditions, challenging their growth and development. Indeed, not only above-ground organs but also the underground root system must adapt accordingly. Consequently, plants respond to these constraints at a gene-regulatory level to ensure their survival and well-being through key transcriptional regulators involved in different developmental processes. Recently, intrinsically disordered domains within these regulators are emerging as central nodes necessary not only for interactions with other factors but also for their partitioning into biomolecular condensates, so-called bodies, possibly driven by phase separation. Here, we summarize the current knowledge about body-forming transcriptional regulators important for plant development and highlight their functions in a possible environmental context. In this perspective article, we discuss potential mechanisms for the formation of membrane-less bodies as an efficient and dynamic program needed for the adaptation to external cues with a particular focus on the Arabidopsis root. Hereby, we aim to provide a perspective for future research on transcriptional regulators to investigate body formation as an expeditious mechanism of plant-environment interactions.
Collapse
Affiliation(s)
- Rebecca C. Burkart
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ali Eljebbawi
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|